Note on the Product of Wiener and Harary Indices

Luyi Li, Xueliang Li*, Weihao Liu
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
liluyi@mail.nankai.edu.cn, lxl@nankai.edu.cn, liuweihao@mail.nankai.edu.cn

(Received July 9, 2023)

Abstract

For a simple graph G, we use $d(u, v)$ to denote the distance between two vertices u, v in G. The Wiener index is defined as the sum of distances between all unordered pairs of vertices in a graph. In other word, given a connected graph G, the Wiener index $W(G)$ of G is $W(G)=\sum_{\{u, v\} \subseteq G} d(u, v)$. Another index of graphs closely related to Wiener index is the Harary index, defined as $H(G)=$ $\sum_{\{u, v\} \subseteq G, u \neq v} 1 / d(u, v)$. Recently, Gutman posed a the following conjecture: For a positive integer $n \geq 5$, let T_{n} be any n-vertex tree different from the star S_{n} and the path P_{n}. Then $W\left(S_{n}\right) \cdot H\left(S_{n}\right)<$ $W\left(T_{n}\right) \cdot H\left(T_{n}\right)<W\left(P_{n}\right) \cdot H\left(P_{n}\right)$. In this paper, we confirm the lower bound of the conjecture and disproof the upper bound of it.

1 Introduction

In this paper, we consider only finite, undirected and simple graphs. Let G be a graph. We use n and m to denote the number of vertices and the number of edges of G, respectively. For terminology and notation not defined here, we refer the reader to [1]. In 1947, Harold Wiener introduced

[^0]the Wiener index of a (molecular) graph for the purpose of determining the approximation formula of the boiling point of paraffin [9]. For a connected graph G, the Wiener index $W(G)$ of G is defined by
$$
W(G)=\sum_{\{u, v\} \subseteq G} d(u, v)
$$
where $d(u, v)$ denotes the distance of u and v in G.
Another index of a graph related to the Wiener index is the Harary index, which was introduced by Plavšić et al. [8] and Ivanciuc et al. [5]. For a connected graph G, the Harary index $H(G)$ of G is defined by
$$
H(G)=\sum_{\{u, v\} \subseteq G, u \neq v} 1 / d(u, v)
$$

The fundamental properties of the Wiener index and Harary index in the case of extrema have been proved in many articles. For example, let $n \geq 5$ and T_{n} be a n-vertex tree, different from the star S_{n} and the path P_{n}. Entringer [2] and Gutman [3, 4] proved

$$
W\left(S_{n}\right)<W\left(T_{n}\right)<W\left(P_{n}\right)
$$

independently. In fact, Gutman in [3] also proved

$$
H\left(P_{n}\right)<H\left(T_{n}\right)<H\left(S_{n}\right)
$$

For more results about the Wiener index and Harary index, please refer to $[6]$ and $[7,10]$.

Recently, by computer search, Gutman discovered a remarkable regularity and posed the following conjecture:

Conjecture 1. Let $n \geq 5$ and T_{n} be any n-vertex tree, different from the star S_{n} and the path P_{n}. Then

$$
W\left(S_{n}\right) \cdot H\left(S_{n}\right)<W\left(T_{n}\right) \cdot H\left(T_{n}\right)<W\left(P_{n}\right) \cdot H\left(P_{n}\right)
$$

In this paper, we will confirm the lower bound of Conjecture 1 and
disproof the upper bound of it. The following results are obtained.
Theorem 1. Let $n \geq 5$ and T_{n} be an n-vertex tree different from the star S_{n}. Then $W\left(S_{n}\right) H\left(S_{n}\right)<W\left(T_{n}\right) H\left(T_{n}\right)$.

Theorem 2. For sufficiently large integer n, there is an n-vertex tree T_{n} different from the path P_{n} such that $W\left(T_{n}\right) H\left(T_{n}\right)>W\left(P_{n}\right) H\left(P_{n}\right)$. Therefore, the path P_{n} cannot be the (unique) n-vertex tree that achieves the maximal value of the product of the two indices.

We feel that the upper bound of the product is achieved by a class of trees, not by a single tree.

2 Proofs of our results

Before we start our proofs, we introduce the following results, which are easily seen, or can be found in some published papers, see $[6,10]$.

Lemma 1. Let S_{n} be a star with n vertices and P_{n} be a path with n vertices. Then $W\left(S_{n}\right)=(n-1)^{2}$ and $W\left(P_{n}\right)=\binom{n+1}{3}$

Lemma 2. Let S_{n} be a star with n vertices and P_{n} be a path with n vertices. Then $H\left(S_{n}\right)=\frac{n^{2}+n-2}{4}$ and $H\left(P_{n}\right)=1+n \sum_{i=2}^{n-1} \frac{1}{i}$

Lemma 3. When $x_{1}>x_{2}>1$, the following inequality holds:

$$
x_{1}+\frac{1}{x_{1}}>x_{2}+\frac{1}{x_{2}}>2
$$

Now we give the proofs of our results.

Proof of Theorem 1: Choose an n-vertex tree T_{n} different from the star S_{n}, we will prove $W\left(S_{n}\right) H\left(S_{n}\right)<W\left(T_{n}\right) H\left(T_{n}\right)$. For the star S_{n}, note that $W\left(S_{n}\right) H\left(S_{n}\right)$ equals to the sum of all entries in the following Table 1. Let $\ell=\binom{n}{2}$ and $\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ be the sequence of distances such that $d_{1} \leq$ $d_{2} \leq \cdots \leq d_{\ell}$ in T_{n}. Then $W\left(T_{n}\right) H\left(T_{n}\right)=\left(\sum_{i=1}^{\ell} d_{i}\right) \cdot\left(\sum_{i=1}^{\ell} \frac{1}{d_{i}}\right)$. Since T_{n} contains exactly $n-1$ edges, which implies $d_{1}=d_{2}=\cdots=d_{n-1}=1$ and $d_{i} \geq 2$ for each $i \in\{n, n+1, \ldots, \ell\}$. In Tables 1 and 2 , we use $a_{i, j}$ and $b_{i, j}$ to denote the entry lying in row i and column j, respectively.

\times	d_{1}	d_{2}	\cdots	d_{n-1}	d_{n}	d_{n+1}	\cdots	d_{ℓ}
$\frac{1}{d_{1}}$	1	1	\cdots	1	2	2	\cdots	2
$\frac{1}{d_{2}}$	1	1	\cdots	1	2	2	\cdots	2
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ddots	\vdots
$\frac{1}{d_{n-1}}$	1	1	\cdots	1	2	2	\cdots	2
$\frac{I}{d_{n}}$	$\frac{1}{2}$	$\frac{1}{2}$	\cdots	$\frac{1}{2}$	1	1	\cdots	1
$\frac{1}{d_{n+1}}$	$\frac{1}{2}$	$\frac{1}{2}$	\cdots	$\frac{1}{2}$	1	1	\cdots	1
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ddots	\vdots
$\frac{1}{d_{\ell}}$	$\frac{1}{2}$	$\frac{1}{2}$	\cdots	$\frac{1}{2}$	1	1	\cdots	1

Table 1. $W\left(S_{n}\right) \times H\left(S_{n}\right)$

\times	d_{1}	d_{2}	\cdots	d_{n-1}	d_{n}	d_{n+1}	\cdots	d_{ℓ}
$\frac{1}{d_{1}}$	1	1	\cdots	1	d_{n}	d_{n+1}	\cdots	d_{ℓ}
$\frac{1}{d_{2}}$	1	1	\cdots	1	d_{n}	d_{n+1}	\cdots	d_{ℓ}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ddots	\vdots
$\frac{1}{d_{n-1}}$	1	1	\cdots	1	d_{n}	d_{n+1}	\cdots	d_{ℓ}
$\frac{1}{d_{n}}$	$\frac{1}{d_{n}}$	$\frac{1}{d_{n}}$	\cdots	$\frac{1}{d_{n}}$	1	$\frac{d_{n+1}}{d_{n}}$	\cdots	$\frac{d_{\ell}}{d_{n}}$
$\frac{1}{d_{n+1}}$	$\frac{1}{d_{n+1}}$	$\frac{1}{d_{n+1}}$	\cdots	$\frac{1}{d_{n+1}}$	$\frac{d_{n}}{d_{n+1}}$	1	\cdots	$\frac{d_{\ell}}{d_{n+1}}$
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ddots	\vdots
$\frac{1}{d_{\ell}}$	$\frac{1}{d_{\ell}}$	$\frac{1}{d_{\ell}}$	\cdots	$\frac{1}{d_{\ell}}$	$\frac{d_{n}}{d_{\ell}}$	$\frac{d_{n+1}}{d_{\ell}}$	\cdots	1

Table 2. $W\left(T_{n}\right) \times H\left(T_{n}\right)$

For each integer $i \in\{n, n+1, \ldots, \ell\}$, note that $d_{i} \geq 2$ in Table 2.
For any two integers $i \in\{1,2, \ldots, n-1\}$ and $j \in\{1,2, \ldots, n-1\}$, we have $b_{i j}=1=a_{i j}$;

For any two integers $i \in\{n, n+1, \ldots, \ell\}$ and $j \in\{1,2, \ldots, n-1\}$, we have $b_{j i}+b_{i j}=d_{i}+\frac{1}{d_{i}} \geq 2+\frac{1}{2}=a_{j i}+a_{i j}$ from Lemma 3. Note that the equality holds if and only if $b_{j i}=d_{i}=2$;

For any two integers $i \in\{n, n+1, \ldots, \ell\}$ and $j \in\{n, n+1, \ldots, \ell\}$, we have $b_{j i}+b_{i j}=\frac{d_{i}}{d_{j}}+\frac{d_{j}}{d_{i}} \geq 2=a_{j i}+a_{i j}$. Note that the equality holds if and only if $d_{i}=d_{j}$.

Since T_{n} is not a star, it follows that there are two integers $i \in\{n, n+$ $1, \ldots, \ell\}$ and $j \in\{n, n+1, \ldots, \ell\}$ such that $d_{i} \neq d_{j}$. Then $W\left(T_{n}\right) H\left(T_{n}\right)>$ $W\left(S_{n}\right) H\left(S_{n}\right)$. The proof is now complete.

Before starting the proof of Theorem 2, we introduce the graph in Figure 1, which we call the meteor graph M_{n} :

Figure 1. Meteor graph

The meteor graph can be obtained from $P_{\frac{n}{2}}$ and $S_{\frac{n}{2}}$ by joining one end vertex of $P_{\frac{n}{2}}$ and the center vertex of $S_{\frac{n}{2}}$. Now, we can calculate the Wiener index and Harary index of the meteor graph.

$$
\begin{aligned}
W\left(M_{n}\right) & =\binom{\frac{n}{2}+1}{3}+\left(\frac{n}{2}-1\right)^{2}+1+\left(\frac{n}{2}-1\right) 2+2+\left(\frac{n}{2}-1\right) 3+\cdots \\
+ & \frac{n}{2}+\left(\frac{n}{2}-1\right)\left(\frac{n}{2}+1\right)=\frac{5}{48} n^{3}+\frac{5}{8} n^{2}-\frac{5}{3} n+1 \\
H\left(M_{n}\right) & =1+\frac{n}{2} \sum_{i=2}^{\frac{n}{2}-1} \frac{1}{i}+\frac{\left(\frac{n}{2}\right)^{2}+\frac{n}{2}-2}{4}+1+\left(\frac{n}{2}-1\right) \frac{1}{2}+\frac{1}{2} \\
& +\left(\frac{n}{2}-1\right) \frac{1}{3}+\cdots+\frac{1}{\frac{n}{2}}+\left(\frac{n}{2}-1\right) \frac{1}{\frac{n}{2}+1} \\
& =1+\frac{n}{2} \sum_{i=1}^{\frac{n}{2}} \frac{1}{i}-\frac{n}{2}-1+\frac{n^{2}+2 n-8}{16}+\frac{n}{2} \sum_{i=1}^{\frac{n}{2}} \frac{1}{i} \\
& +\left(\frac{n}{2}-1\right)\left(\frac{n}{2} \sum_{i=1}^{\frac{n}{2}} \frac{1}{i}-1+\frac{1}{\frac{n}{2}+1}\right) \\
& =\frac{1}{16} n^{2}+\frac{n}{2} \sum_{i=1}^{\frac{n}{2}} \frac{1}{i}-\frac{7}{8} n+\frac{3}{2}-\frac{4}{n+2}
\end{aligned}
$$

Proof of Theorem 2: Note that $\sum_{i=1}^{n} \frac{1}{i}=\ln n+C$. Now we estimate the values of the products of the Wiener index and Harary index for the
path and meteor, respectively. That is,

$$
W\left(P_{n}\right) H\left(P_{n}\right)=\frac{1}{6} n^{4} \ln n+O\left(n^{4}\right)
$$

and

$$
W\left(M_{n}\right) H\left(M_{n}\right)=\frac{5}{768} n^{5}+O\left(n^{4} \ln n\right)
$$

It is clear that $W\left(M_{n}\right) H\left(M_{n}\right)>W\left(P_{n}\right) H\left(P_{n}\right)$ when n is sufficiently large.

Acknowledgment: This work was supported by National Natural Science Foundation of China (Nos. 12131013 and 12161141006) and Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY039).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[2] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283-296.
[3] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.
[4] I. Gutman, W. Linert, I. Lukovits, A. A. Dobrynin, Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997) 349-354.
[5] O. Ivanciuc, T. S. Balaban, A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem. 12 (1993) 309-318.
[6] M. Knor, R. Škrekovski, A. Tepeh, Selected topics on Wiener index, arXiv:2303.11405.
[7] X. Lin, Y. Fan, The connectivity and the Harary index of a graph, Discr. Appl. Math. 181 (2015) 167-173.
[8] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
[9] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
[10] B. Zhou, X. Cai, N. Trinajstić, On Harary index, J. Math. Chem. 44 (2008) 611-618.

[^0]: * Corresponding author.

