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Abstract

The problem of complete characterization of trees with minimal
atom-bond-connectivity index (minimal-ABC trees) has a reputa-
tion as one of the most challenging and intriguing open problems
in mathematical chemistry. Recently, the problem has been com-
pletely solved. Here, we provide an overview of the key results that
led to its complete solution.

1 Introduction

The evolution of topological indices, defined as numerical values associ-

ated with a chemical constitution for correlation of chemical structure

with diverse physical properties, chemical reactivity, or biological activity,

dates back to the pioneering efforts of applying graph theory to investigate

structural phenomena within the molecule [3]. The atom-bond connectivity

index (ABC index), introduced in 1998 by Estrada et al. [32] was a rela-

tively recent addition to the wide list of topological molecular descriptors.
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The ABC index of a simple undirected graph G = (V,E) with vertex set

V = V (G) and edge set E = E(G) is defined as

ABC(G) =
∑
uv∈E

√
d(u) + d(v)− 2

d(u)d(v)
,

where d(v) is the degree of a vertex v ∈ V .

In [32], it was shown that the ABC index has a good correlation with

the heat of formation ∆H◦
f of alkanes. Later in 2008, Estrada [30] claimed

to have provided “a quantum-chemical explanation for this correlation

based on the ratio of 1, 3-interactions with respect to the total number of

1, 2-, 1, 3- and 1, 4-interactions in alkanes”, concluding that “the heat of

formation of alkanes can be obtained as a combination of stabilizing effects

coming from atoms, bonds and protobranches.” In a critical evaluation con-

ducted later, Gutman et al. [47] confirmed that the ABC index “reproduces

the heat of formation with an accuracy comparable to that of high-level ab

initio and DFT (MP2, B3LYP) quantum chemical calculations”. In light

of all this Gutman [43] asserted that “ABC index happens to be the only

topological index for which a theoretical, quantum-theory-based, foundation

and justification has been found.”

After that revelation, interest in the ABC index has grown rapidly.

As a well-motivated graph-based invariant, it has received considerable

attention within mathematical and chemical research communities. Due

to this interest, numerous results, structural properties, and a few variants

of the ABC index were established [2, 4, 5, 7, 9–11, 13, 14, 23, 33–35, 37–41,

44,46,48,55,58,60,61,64–66,68–70,72].

From a mathematical perspective, when a new graph-based structural

descriptor is introduced, one of the initial questions to be addressed is

which graph attains the maximum or minimum value of the particular

descriptor among graphs of the same order. From the fact that deleting

an edge in a graph strictly decreases its ABC index [5], or equivalently

that adding an edge in a graph strictly increases its ABC index [10], it

follows that the complete graph Kn has the maximum ABC index, while a

connected graph that has the minimal ABC index must be a tree. To show
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that the star graph Sn is the unique tree with the maximal ABC index

is a fairly easy task [35]. Initially, it appeared that characterizing trees

with the minimal ABC index (minimal-ABC trees) was not an especially

challenging problem, and that standard and routine techniques could solve

the problem. However, it turns out that characterizing minimal-ABC trees

is a very elusive problem, and despite many attempts, only very recently

a full characterization of minimal-ABC trees has been obtained.

1.1 Additional notations

The term big vertex refers to a vertex with degree greater than two that is

not adjacent to a vertex with degree two.

A path, whose both end-vertices have degrees at least three, and the

rest of the vertices have degree two, is called an internal path. A pendant

vertex is a vertex of degree one. A path, whose one end-vertex has degree

at least three, the other end-vertex is a pendant vertex, and the rest of the

vertices have degree two, is called a pendant path.

A path of length two adjacent to a vertex that has at least one child

of degree at least three is called a B1-branch. A vertex v with degree

k + 1, k ≥ 2, together with k pendant paths of length 2 attached to it,

comprised a so-called Bk-branch. The vertex v is referred to as the center

of the Bk-branch. By attaching a vertex to a pendant vertex of Bk-branch,

one obtains a so-called B∗
k-branch. Illustrations of Bk-, B

∗
k-, k ≥ 1, and

B∗∗
3 -branches are given in Figure 1. We will refer to them in general as

B-branches.

B1 B∗
1

k

Bk(k ≥ 2)

k − 1

B∗
k(k ≥ 2) B∗∗

3

Figure 1. Bk, B
∗
k , k ≥ 1 and B∗∗

3 branches.

For a given degree sequence Wang [67] defined greedy trees as follows:
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Definition 1. Suppose that the degrees of the non-leaf vertices are given,

the greedy tree is achieved by the following ‘greedy algorithm’:

1. Label the vertex with the largest degree as v (the root);

2. Label the neighbors of v as v1, v2, . . . , assign the largest degree avail-

able to them such that d(v1) ≥ d(v2) ≥ · · · ;

3. Label the neighbors of v1 (except v) as v11, v12, . . . , such that they

take all the largest degrees available and that d(v11) ≥ d(v12) ≥ · · · ,
then do the same for v2, v3, . . . ;

4. Repeat (3) for all newly labeled vertices, always starting with the

neighbors of the labeled vertex with largest degree whose neighbors

are not labeled yet.

In the rest of the paper, we give an overview of the key results that

led to the full characterization of the minimal-ABC trees. As a means of

providing a more comprehensive understanding of the milestones during

this discovery, we present the results in a logical order - this may not

always correspond to the chronological order in which they were published.

In Section 2 we present the theoretical results. A separate subsection is

dedicated to each important milestone or group of related results. Due

to the importance of computational results in indicating and leading the

research direction, they are presented in Section 3.

2 Theoretical results

2.1 Some initital results

One of the first mathematical results regarding minimal-ABC trees was

that by Furtula et al. [35], where the problem of finding the extremal

values of the ABC index was completely solved for chemical trees (trees

with maximal degree 4).

Another basic but essential result, already mentioned in the introduc-

tion, was presented independently in 2011 in the following two equivalent

theorems, obtained by Das et al., and Chen and Guo, respectively.
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Theorem 1 ( [10]). Adding an edge in a graph strictly increases its ABC

index.

Theorem 2 ( [5]). Deleting an edge in a graph strictly decreases its ABC

index.

2.2 Greedy tree

The following result by Gan et al. [38] from 2012 characterizes the trees

with minimal ABC index with prescribed degree sequences. This charac-

terization was used in many other proofs later.

Theorem 3. Given the degree sequence, the greedy tree minimizes the

ABC index.

The same result as in Theorem 3, using slightly different notation and

approach, was published also in the same year by Xing and Zhou [68].

2.3 Internal and pendent paths

The essential part in characterizing minimal-ABC trees was the earlier

results regarding the internal and pendent paths.

Theorem 4 ( [46]). The n-vertex tree with minimal ABC index does not

contain internal paths of any length k ≥ 2.

The above result by Gutman et al. from 2012 has a very important

consequence.

Corollary 1. Let T be a tree with minimal ABC index. Then the subgraph

induced by the vertices of T whose degrees are greater than two is also a

tree.

Lemma 1 ( [46, 58]). If T is a tree with minimal ABC index, then every

pendant path in T is of length 2 or 3, and there is at most one pendant

path of length 3 in T .

The next crucial result is the following one published in 2017.
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Theorem 5 ( [17]). A minimal-ABC tree of order n > 415 does not

contain a pendant path of length 3.

As a consequence from the results presented in this subsection, it fol-

lows that for n > 415, a minimal-ABC tree may contain only Bk-branches,

and, as it will be shown in Theorem 11 [28], maybe an additional B∗∗
3 -

branch. In the next section, beside the result about a B∗∗
3 -branch, we

present results that further reduced the size and the possible number of

Bk-branches.

2.4 The size and number of the B-branches

The next group of results has reduced significantly the possible candidates

for minimal-ABC trees, by excluding some configurations of B-branches.

Theorem 6 ( [14]). A minimal-ABC tree does not contain a Bk-branch,

k ≥ 5.

The last theorem reduced the further investigation only on B1-, B2-

, B3-, B∗∗
3 -,and B4-branches. In the sequel, we will mention the most

important results regarding each type of the above mentioned B-branches.

First we present results that showed some forbidden combinations of B-

branches.

Theorem 7 ( [22]). A minimal-ABC tree cannot contain a B4-branch and

a B1-branch simultaneously.

Theorem 8 ( [22]). A minimal-ABC tree cannot contain a B4-branch and

a B2-branch simultaneously.

The following results consider the possible number of B4-branches con-

tained in the minimal-ABC trees.

Theorem 9 ( [14]). A minimal-ABC tree does not contain more than four

B4-branches.

Theorem 10 ( [19]). A minimal-ABC tree, whose root has degree at least

1228, does not contain B4-branches.
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The following two results give the maximum possible numbers of B1-,

B2- and B∗∗
3 -branches, and their correlation.

Theorem 11 ( [28]). A minimal-ABC tree of order larger than 122 may

contain exactly two B1-branches, which together with one B2-branch com-

prise a B∗∗
3 -branch.

Theorem 12 ( [29]). Let T be a minimal-ABC tree. If T is of order

larger than 39 and contains B1-branches, then T contains exactly one B2-

branch. If T is of order larger than 163 and contains no B1-branch, then

T contains at most two B2-branches.

Proposition 13 ( [19]). Let x and y be vertices of a minimal-ABC tree G

that have a common parent vertex z, such that d(x) ≥ d(y) ≥ 7. If x has

only B3-branches as children and y has B3-branches and one B2-branch as

children, then d(x) ≤ d(y)+ 5. If y has B3-branches and two B2-branches

as children, then d(x) ≤ d(y) + 9.

The next results consider the number of the possible B-branches that

may be adjacent to root vertex of a minimal-ABC tree.

Lemma 2 ( [19]). Let G be a minimal-ABC tree. Then all B4-branches

(maximum 4) are adjacent to the root vertex of G.

Lemma 3 ( [19]). A minimal-ABC tree, whose root has degree at least

1228, does not contain B4-branches.

Lemma 4 ( [19]). The number of B-branches adjacent to the root vertex

of a minimal-ABC tree is at most 919.

Lemma 5 ( [19]). If the root vertex of a minimal-ABC tree has degree at

least 2956, then there are no B-branches attached to the root.

2.5 Big vertices and D-branches

Recall that by Corollary 1, it follows that the big vertices induce a tree.

The following conjecture was raised by Gutman and Furtula earlier in

2012.
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Conjecture 1 ( [44]). A minimal-ABC tree has (at most) one big (central)

vertex.

It was disproved by Ahmadi et al. in 2014 [1], where the correct result

was guessed. In this context, it is worth to mention that for a special class

of trees, so-called Kragujevac trees, that are comprised of a central vertex

and Bk-branches, k ≥ 1, the minimal-ABC trees were fully characterized

by Hosseini et al. [49].

Conjecture 2 ( [1]). The subgraph of a minimal-ABC tree induced by its

big vertices is a star.

The above conjecture was proven to be correct several years later in-

dependently in [18,50].

The following conjecture has been arisen also in [1], and was proven

later in [19,50] (see Theorem 17 in the next section).

Conjecture 3 ( [1]). After some enough large n, besides the big vertices,

minimal-ABC trees have only B3-branches.

Moreover, the structure of the minimal-ABC tree depicted in Figure 2,

for enough large trees, was conjectured in [1].

G(n, z)

z + 1 z + 1

rl

z z

rr

Figure 2. The figure from [1] with the conjectured structure of the
minimal-ABC tree.

This prompts the so-called D-branches, introduced in [1], additionally

to be considered. Considering the above results on B-branches, few types

of D-branches, depicted in Figure 3, were relevant for further considera-

tion.
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The vertex of a D-branch to whom the B-branches are attached is

referred to as the center of the D-branch.

z

Dz

z

D∗∗
z

z

D2
z,x

x(=1,2)

z

D4
z,x

x(=1,. . . , 4)

Figure 3. Dz-, D∗∗
z -, D2

z,x- (x = 1, 2) and D4
z,x- (x = 1, 2, 3, 4)

branches. The dashed line segments are optional.

2.6 Size and number of the D-branches

The following group of results, ones of the last towards the final solution,

are about D-branches.

2.6.1 Bounds on the size of the D-branches

Lemma 6 ( [18]). For z ≤ 14, there is no minimal-ABC tree, which has

a Dz- or D∗∗
z -branch.

Lemma 7 ( [18,19]). A minimal-ABC tree does not contain a Dz-, D
∗∗
z -

or D2
z,x-branch, z ≥ 132, for each x = 1, 2, if z ≥ 132.

Lemma 8 ( [19]). If a minimal-ABC tree contains at least 261 Dz-bran-

ches, then z ≤ 52.
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Proposition 14 ( [19]). If a minimal-ABC tree contains a D2
z,2-branch,

then 25 ≤ z ≤ 50. If a minimal-ABC tree contains a D2
z,1-branch, then

19 ≤ z ≤ 97.

Proposition 15 ( [19]). If a minimal-ABC tree contains a D∗∗
z -branch,

then 47 ≤ z ≤ 74.

2.6.2 The number of the D-branches and some impossible con-

figurations

As a consequence of Lemma 2 we have the following corollary.

Corollary 2. A minimal-ABC tree does not contain D4
z,x-branches, x =

1, 2, 3, 4.

Lemma 9 ( [19]). A minimal-ABC tree with at least 65 Dz-branches and

with the root of degree at least 146 does not contain a D2
k,2-branch.

Lemma 10 ( [19]). A minimal-ABC tree with at least 261 Dz-branches

and with the root of degree at least 1228 does not contain a D2
k,1-branch.

Lemma 11 ( [19]). If there are at least 56 Dz-branches, then the minimal-

ABC tree does not contain a D∗∗
k -branch.

Theorem 16 ( [19]). A minimal-ABC tree with the root vertex of degree at

least 1228 is comprised only of a root and Dz- and Dz+1-branches, where

z ∈ {50, 51, 52}, and maybe of B3-branches and at most one of D2
t,1-branch,

z − 5 ≤ t ≤ z, attached to the root.

Corollary 3 ( [19]). A minimal-ABC tree with the root vertex of degree at

least 1441 is comprised only of a root and Dz- and Dz+1-branches, where

z ∈ {50, 51, 52} and maybe of B3-branches attached to the root.

Theorem 17 ( [19]). A minimal-ABC tree with the root vertex of degree at

least 2956 is comprised only of a root and Dz- and Dz+1-branches, where

z ∈ {50, 51, 52}.

A comparable outcome was obtained in [50], albeit with supplementary

constraints.
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The intuition behind the structure of the minimal-ABC trees, which

was already conjectured in 2014 [1], is based on the fact that a B3–branch

has minimal value among all B-branches. Hence, it was anticipated that

the B3-branches would prevail, and the remaining vertices would merely

connect the B3-branches in an optimal manner, thereby minimizing the

ABC index. Furthermore, it was expected that for some sufficiently large

n, there would be only B3-branches.

Theorem 18 ( [19]). Let v be the root of a minimal-ABC tree G.

• If 2956 ≤ d(v) ≤ 3241, then G must contain D51-branches and in

addition

– either D52-branches,

– or at most 123 D50-branches.

In particular, when 2956 ≤ d(v) ≤ 3185, G contains at most 357

D52-branches.

• If d(v) ≥ 3242, then G must contain D52-branches and

– either at most 718 D51-branches.

– or at most 178 D53-branches.

In particular, when d(v) ≥ 3249, G contains at most 364 D51-

branches.

2.7 The optimization function and determining the

parameters of the minimal-ABC trees

According to the results presented in the previous sections, minimal-ABC

trees can be described quite closely. A final and exact description, in-

cluding the parameters of a minimal-ABC tree of order n (the number of

particular B-branches/D-branches), can be obtained by solving the fol-

lowing optimization problem:

minT∈T ABC(T )
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subject to

(1) d(v) = nz + nz+1 + b∗ + b1 + b2 + b3 · n3 + b4 · n4

(2) n = 1 + nz(7z + 1) + nz+1(7(z + 1) + 1) + b1(7(k1 − 1) + 5 + 1) +

b2(7(k2 − 2) + 10 + 1) + b3 · n3 · 7 + b4 · n4 · 9 + b∗ · (7z + 4)

(3) 15 ≤ z ≤ 131 (by Lemmas 6 and 7)

(4) z − 5 ≤ k1 ≤ z (by Proposition 13)

(5) z − 9 ≤ k2 ≤ z (by Proposition 13)

(6) 0 ≤ n4 ≤ 4 (by Theorem 9)

(7) 0 ≤ n3 + n4 ≤ 919 (by Lemma 4)

(8) b∗, b1, b2, b3, b4 ∈ {0, 1}

(9) at most one of b∗, b1, b2, b4 can be 1 (by Theorems 8 and 12).

In the above optimization function, nz and nz+1 are, respectively,

the numbers of Dz- and Dz+1-branches, n3 and n4 are, respectively, the

numbers of B3- and B4-branches attached to the root, k1 is the size

of the D2
k,1-branch, k2 is the size of the D2

k,2-branch, and parameters

b∗, b1, b2, b3, b4 ∈ {0, 1} are related to the existences of D∗∗
z -, D2

k,1-, D
2
k,2-,

B3- and B4-branches attached to the root vertex, respectively - for example

b∗ = 0/1 means that T does not contain/ does contain D∗∗
z -branch.

With the growth of the order of the trees, the above optimization prob-

lem becomes simpler.

When d(v) ≥ 1228, by Theorem 16, it follows that n4 = 0, b∗ = b2 =

b4 = 0, and 50 ≤ z ≤ 52. Further, when d(v) ≥ 2956, by Theorem 17, it

follows that n3 = n4 = 0, b∗ = b1 = b2 = b3 = b4 = 0 and 50 ≤ z ≤ 52.

Moreover, by Theorem 18, when d(v) ≥ 3249, we have 0 ≤ n51 ≤ 364 and

0 ≤ n53 ≤ 178. That allows us to determine the parameters of the minimal-

ABC tree for an arbitrary n in a constant time. The minimal-ABC trees

and their structures are given in Appendix 4. The minimal-ABC trees of

orders up to 1100 were already known [56].
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3 Computational results

For complete characterization of the minimal-ABC trees, in addition to

the theoretically proven properties, computer supported search has proved

extremely helpful in indicating and leading the research direction, as well

as in determining the exact number of B-branches in Section 2.7.

The first example of using computer search was done by Furtula et

al. [36], where the trees with minimal ABC index of up to size 31 were

computed. There, a brute-force approach of generating all trees of a given

order, speeded up by using a distributed computing platform, was applied.

A significant advancement towards enhancing computation speed was

achieved by focusing solely on the degree sequences of trees and leveraging

known structural properties of trees with minimal ABC index [13]. The

enumeration of tree degree sequences described in [13] was associated with

the enumeration of graph degree sequences, as studied by Ruskey et al. [63],

which relied on Havel-Hakimi’s recursive characterization of graph degree

sequences.

Due to the nature of the recursive relation used in the enumeration

of degree sequences in [63], the same degree sequences were generated

several times. That disadvantage was improved in [54], where the appro-

priate degree sequences were enumerated by applying an integer parti-

tioning argument. Subsequently, significant computational improvements

were attained by employing a parallelized version of the algorithm based

on degree sequences and incorporating additional constraints. These ad-

vancements were made possible by leveraging newly obtained theoretical

results [25,56,59].

An overview of the algorithms, along with some of their performance

statistics, can be found in Table 1.



18

T
a
b
le

1
.
T
h
e
co

m
p
a
ri
so
n
o
f
p
er
fo
rm

a
n
ce

o
f
th

e
ex

is
ti
n
g
se
a
rc
h
a
lg
o
ri
th

m
s.

T
h
e
a
b
b
re
v
ia
ti
o
n
D
S
st
a
n
d
s
fo
r
d
eg

re
e
se
q
u
en

ce
.

A
lg
or
it
h
m

R
a
n
g
e
o
f
n

T
im

e
(a
p
p
ro
x
.)

T
es
t
p
la
tf
o
rm

B
ru
te
-f
or
ce

se
ar
ch

[3
6]

1
≤

n
≤

3
1

7
d
ay

s
fo
r
n
=

3
1

C
o
m
p
u
te
r
g
ri
d
4
0
0
C
P
U
s

O
ri
gi
n
al

D
S
al
go
ri
th
m

[1
3]

1
≤

n
≤

3
0
0

1
5
d
ay
s

P
C
,
2
co
re
s,

2.
3
G
H
z

1
.
M
o
d
ifi
ed

D
S
al
go
ri
th
m

[5
4
]

1
≤

n
≤

3
0
0

7
5
.5

h
o
u
rs

P
C
,
2
co
re
s,

2
.4

G
H
z

2
.
P
ar
al
le
li
ze
d

m
o
d
ifi
ed

D
S
al
go
ri
th
m

[5
9]

1
≤

n
≤

3
0
0

0
.2
1
h
o
u
rs

W
o
rk
st
a
ti
o
n
g
ro
u
p
,
3
6
co
re
s

1
≤

n
≤

4
0
0

2
3
h
o
u
rs

3
.
M
o
d
ifi
ed

D
S
al
go
ri
th
m

[2
5
]

n
≤

3
0
0

1
3
se
co
n
d
s

P
C
,
2
co
re
s,

2
.3

G
H
z

1
≤

n
≤

4
0
0

3.
7
m
in
u
te
s

1
≤

n
≤

7
0
0

2
0
h
o
u
rs

n
=

8
0
0

2.
2
h
o
u
rs

1
≤

n
≤

8
0
0

7
d
ay
s

4
.
M
o
d
ifi
ed

D
S
al
go
ri
th
m

[5
6
]

1
≤

n
≤

1
1
0
0

7
d
ay
s

P
C
,
4
co
re
s,

2.
3
G
H
z

N
on

-l
in
ea
r
op

t.
p
ro
b
le
m

so
lv
er

[1
9
]

n
≤

1
3
2
9
·1
0
1
3

fe
w

se
co
n
d
s

P
C
,
4
co
re
s,

2
.3

G
H
z



19

Acknowledgment : The work was partially supported by Slovenian re-
search agency ARRS, Project J1-3002, and Program J1-0383.

References

[1] M. B. Ahmadi, D. Dimitrov, I. Gutman, S. A. Hosseini, Disproving
a conjecture on trees with minimal atom-bond connectivity index,
MATCH Commun. Math. Comput. Chem. 72 (2014) 685–698.

[2] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom–bond connectivity
index of graphs: a review over extremal results and bounds, Discr.
Math. Lett. 5 (2021) 67–92.

[3] A. T. Balaban, O. Ivanciuc, Historical development of topological in-
dices, in: J. Devillers, A. T. Balaban (Eds.), Topological Indices and
Related Descriptors in QSAR and QSPR, Gordon & Breach, Amster-
dam, 2000, pp. 21–57.

[4] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, New upper
bounds for the ABC index, MATCH Commun. Math. Comput. Chem.
76 (2016) 117–130.

[5] J. Chen, X. Guo, Extreme atom-bond connectivity index of graphs,
MATCH Commun. Math. Comput. Chem. 65 (2011) 713–722.

[6] J. Chen, X. Guo, The atom-bond connectivity index of chemical bi-
cyclic graphs, Appl. Math. J. Chinese Univ. 27 (2012) 243–252.

[7] J. Chen, J. Liu, X. Guo, Some upper bounds for the atom-bond con-
nectivity index of graphs, Appl. Math. Lett. 25 (2012) 1077–1081.

[8] R. Cruz, J. Rada, The path and the star as extremal values of
vertex-degree-based topological indices among trees, MATCH Com-
mun. Math. Comput. Chem. 82 (2019) 715–732.

[9] K. C. Das, Atom-bond connectivity index of graphs, Discr. Appl.
Math. 158 (2010) 1181–1188.

[10] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index,
Chem. Phys. Lett. 511 (2011) 452–454.

[11] K. C. Das, M. A. Mohammed, I. Gutman, K. A. Atan, Comparison be-
tween atom-bond connectivity indices of graphs, MATCH Commun.
Math. Comput. Chem. 76 (2016) 159–170.



20
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[65] R. Škrekovski, D. Dimitrov, J. Zhong, H. Wu, W. Gao, Remarks on
multiplicative atom-bond connectivity index, IEEE Access 7 (2019)
76806–76811.

[66] T. S. Vassilev, L. J. Huntington, On the minimum ABC index of
chemical trees, Appl. Math. 2 (2012) 8–16.

[67] H. Wang, Extremal trees with given degree sequence for the Randić
index, Discr. Math. 308 (2008) 3407–3411.

[68] R. Xing, B. Zhou, Extremal trees with fixed degree sequence for atom-
bond connectivity index, Filomat 26 (2012) 683–688.

[69] R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of con-
nected graphs, Discr. Appl. Math. 159 (2011) 1617–1630.

[70] R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity
index of trees, Discr. Appl. Math. 158 (2011) 1536–1545.

[71] J. Yang, F. Xia, H. Cheng, The atom-bond connectivity index of
benzenoid systems and phenylenes, Int. Math. Forum 6 (2011) 2001–
2005.

[72] X.-M. Zhang, Y. Yang, H. Wang, X.-D. Zhang, Maximum atom-bond
connectivity index with given graph parameters, Discr. Appl. Math.
215 (2016) 208–217.

[73] R. Zheng, J. Liu, J. Chen, B. Liu, Bounds on the general atom-bond
connectivity indices, MATCH Commun. Math. Comput. Chem. 83
(2020) 143–166.

[74] L. Zhong, Q. Cui, On a relation between the atom-bond connectivity
and the first geometric-arithmetic indices, Discr. Appl. Math. 185
(2015) 249–253.



25

4 Appendix: Minimal ABC-trees

Case n ≡ 0 (mod 7)

n = 7 n = 21 n = 28

n = 161, 168

n

7
− 1

35 ≤ n ≤ 154

n

7
− 3

n

7
− 2

n = 14

n

7
− 4

175 ≤ n ≤ 518

⌊
n

14

⌋
− 2,⌈

n

14

⌉
+ 1,

525 ≤ n ≤ 1302

525 ≤ n ≤ 602

525 ≤ n ≤ 602

⌈
n

14

⌉
− 3, 609 ≤ n ≤ 1302

⌊
n

14

⌋
+ 2, 609 ≤ n ≤ 1302

1309 ≤ n ≤ 1939

n3

z z + 1

n ∈ [1946, 2835] ∪ [4956, 5754] ∪ [7735, 8505] ∪ [10584, 11186] ∪ [13440, 13832] ∪ [16254, 16436] ∪ [19033, 19040]

n3

z + 1 z + 1z z

nz nz+1

Figure 4. Minimal-ABC trees with n vertices, where n ≡ 0 (mod 7).
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Case n ≡ 0 (mod 7)

n3

z + 1 z + 1z z

nz nz+1

n ∈ [4613, 4949] ∪ [7623, 7728]

n3

z + 1 z + 1z z

nz nz+1

4326 ≤ n ≤ 4606

z + 1 z + 1z z

nz nz+1

k

n ∈ {989513} ∪ [991998, 992019] ∪ [994483, 994525] ∪ [996975, 997031] ∪ [999467, 999537] ∪ [1001959, 1002043]

z + 1 z + 1z z

nz nz+1

n ∈ [2842, 4319] ∪ [5761, 7616] ∪ [8512, 10577] ∪ [11193, 13433] ∪ [13839, 16247] ∪ [16443, 19026] ∪ [19047, 989506]

∪[989520, 991991] ∪ [992026, 994476] ∪ [994532, 996968] ∪ [997038, 999460] ∪ [999544, 1001952] ∪ [1002050, 1004444]

∪[1004556, 1006943] ∪ [1007062, 1009442] ∪ [1009568, 1011948] ∪ [1012074, 1014447] ∪ [1015665, 1016953]

∪[1004451, 1004549] ∪ [1006950, 1007055] ∪ [1009449, 1009561] ∪ [1011955, 1012067] ∪ [1014454, 1015658]

∪[1016960,∞)

n3

Figure 5. Minimal-ABC trees with n vertices, where n ≡ 0 (mod 7).
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Case n ≡ 1 (mod 7)

n = 8 n = 15 n = 22 n = 36n = 29

b(n− 1)/14c − 4, n 6= 946

939 ≤ n ≤ 1072

64, n = 946

67, n = 946

d(n− 1)/14e , n 6= 946

⌈
n

7

⌉
− 6

n = 43, 50, 57

⌊
n

7

⌋

64 ≤ n ≤ 932

n ∈ [1842, 2395] ∪ [5048, 5356] ∪ [8065, 8121]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [1079, 1835] ∪ [4817, 5041]

z + 1 z + 1z z

nz nz+1

n3

k

Figure 6. Minimal-ABC trees with n vertices, where n ≡ 1 (mod 7).
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Case n ≡ 1 (mod 7)

n ∈ [3277, 4810] ∪ [6161, 8058] ∪ [8898, 10984] ∪ [11572, 13833] ∪ [14211, 16640] ∪ [16815, 989864]

n3

z + 1 z + 1z z

nz nz+1

z + 1 z + 1z z

nz nz+1

n ∈ {989871} ∪ [992356, 992377] ∪ [994841, 994883] ∪ [997333, 997389] ∪ [999818, 999895]

∪ [1002317, 1002401] ∪ [1004809, 1004907] ∪ [1007308, 1007413] ∪ [1009807, 1009919]

∪ [1012313, 1012425] ∪ [1014812, 1016604] ∪ [1017318,∞)

∪ [989878, 992349] ∪ [992384, 994834] ∪ [994890, 997326] ∪ [997396, 999811] ∪ [999902, 1002310]

∪ [1012432, 1014805] ∪ [1016611, 1017311]

∪ [1002408, 1004802] ∪ [1004914, 1007301] ∪ [1007420, 1009800] ∪ [1009926, 1012306]

n ∈ [2402, 3270] ∪ [5363, 6154] ∪ [8128, 8891] ∪ [10991, 11565] ∪ [13840, 14204] ∪ [16647, 16808]

n3

z + 1 z + 1z z

nz nz+1

Figure 7. Minimal-ABC trees with n vertices, where n ≡ 1 (mod 7).
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Case n ≡ 2 (mod 7)

n = 9 n = 16 n = 23

n = 37

n = 30

⌈
n

7

⌉
− 3

44 ≤ n ≤ 163

⌈
n

7

⌉
− 2

170 ≤ n ≤ 415

⌊
n− 2

14

⌋ ⌈
n− 2

14

⌉

422 ≤ n ≤ 1682

n ∈ [1689, 2333] ∪ [5294, 5469]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [2340, 2844] ∪ [5476, 5756] ∪ {8507}

z + 1 z + 1z z
n3

k

nz nz+1

Figure 8. Minimal-ABC trees with n vertices, where n ≡ 2 (mod 7).
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Case n ≡ 2 (mod 7)

n ∈ [2851, 3698] ∪ [5763, 6547] ∪ [5763, 6547] ∪ [8514, 9277] ∪ [11405, 11944] ∪ [14247, 14576] ∪ [17047, 17180]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [3705, 5287] ∪ [6554, 8500] ∪ [9284, 11398] ∪ [11951, 14240] ∪ [14583, 17040] ∪ [17187, 990215]

n3

z + 1 z + 1z z

nz nz+1

∪[1012671, 1012783] ∪ [1015170, 1017550] ∪ [1017683,∞)

z + 1 z + 1z z

nz nz+1

∪[990236, 992700] ∪ [992742, 995192] ∪ [995248, 997677] ∪ [997754, 1000169] ∪ [1000260, 1002661]

∪[1002766, 1005160] ∪ [1005272, 1007659] ∪ [1007778, 1010158] ∪ [1010284, 1012664] ∪ [1012790, 1015163]

∪[1017557, 1017676]

n ∈ [990222, 990229] ∪ [992707, 992735] ∪ [995199, 995241] ∪ [997684, 997747] ∪ [1000176, 1000253]

∪[1002668, 1002759] ∪ [1005167, 1005265] ∪ [1007666, 1007771] ∪ [1010165, 1010277]

Figure 9. Minimal-ABC trees with n vertices, where n ≡ 2 (mod 7).
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Case n ≡ 3 (mod 7)

n = 10 n = 17 n = 24 n = 31

38 ≤ n ≤ 73

⌈
n

7

⌉
− 5

⌊
n

7

⌋
− 1

80 ≤ n ≤ 857

n3

z + 1 z + 1z z

nz nz+1

n ∈ [2264, 2810] ∪ [5771, 5897]

z + 1 z + 1z z k

nz nz+1

∪[1003124, 1005518] ∪ [1005630, 1008017] ∪ [1008136, 1010516] ∪ [1010642, 1013015] ∪ [1013148, 1015521]

n ∈ [864, 2257] ∪ [4126, 5764] ∪ [6954, 8921] ∪ [9670, 11805] ∪ [12330, 14640] ∪ [14955, 17440] ∪ [17559, 990573]

∪[990594, 993058] ∪ [993100, 995543] ∪ [995606, 998035] ∪ [998112, 1000527] ∪ [1000618, 1003019]

n3

Figure 10. Minimal-ABC trees with n vertices, where n ≡ 3 (mod 7).
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Case n ≡ 3 (mod 7)

n ∈ [3286, 4119] ∪ [6163, 6947] ∪ [8928, 9663] ∪ [11812, 12323] ∪ [14647, 14948] ∪ [17447, 17552]

n3

z + 1 z + 1z z

nz nz+1

z + 1 z + 1z z

nz nz+1

∪[1003026, 1003117] ∪ [1005525, 1005623] ∪ [1008024, 1008129] ∪ [1010523, 1010635]

n ∈ [990580, 990587] ∪ [993065, 993093] ∪ [995550, 995599] ∪ [998042, 998105] ∪ [1000534, 1000611]

n ∈ [2817, 3279] ∪ [5904, 6156]

n3

z + 1 z + 1z z

nz nz+1

∪[1013022, 1013141] ∪ [1015528,∞)

Figure 11. Minimal-ABC trees with n vertices, where n ≡ 3 (mod 7).
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Case n ≡ 4 (mod 7)

n = 11 n = 18, 25, 32, 39

⌈
n

7

⌉
− 3

n = 46 53 ≤ n ≤ 305

⌈
n

7

⌉
− 2

⌊
n

7

⌋
− 1

312 ≤ n ≤ 501

⌊
n− 4

14

⌋
,⌈

n− 4

14

⌉
− 1,

508 ≤ n ≤ 1439

508 ≤ n ≤ 536

508 ≤ n ≤ 536

⌊
n− 4

14

⌋
− 1,

⌈
n− 4

14

⌉
,

543 ≤ n ≤ 1439

543 ≤ n ≤ 1439

n3

z + 1 z + 1z z

n ∈ [2804, 3273]& [6248, 6318]

z + 1 z + 1z z

nz nz+1

k

n ∈ [1446, 2797] ∪ [4540, 6241] ∪ [7340, 9335] ∪ [10056, 12212] ∪ [12709, 15047] ∪ [15327, 17840] ∪ [17931, 990931]

nz nz+1

∪[990952, 993416] ∪ [993458, 995901] ∪ [995964, 998393] ∪ [998470, 1000885] ∪ [1000976, 1003377]

∪[1003482, 1005876] ∪ [1005988, 1008375] ∪ [1008494, 1010874] ∪ [1011000, 1013373] ∪ [1013506, 1015879]

n3

Figure 12. Minimal-ABC trees with n vertices, where n ≡ 4 (mod 7).



34

Case n ≡ 4 (mod 7)

n ∈ [3280, 3700] ∪ [6325, 6549]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [3707, 4533] ∪ [6556, 7333] ∪ [9342, 10049] ∪ [12219, 12702] ∪ [15054, 15320] ∪ [17847, 17924]

n3

z + 1 z + 1z z

nz nz+1

z + 1 z + 1z z

nz nz+1

n ∈ [2842, 4319] ∪ [5761, 7616] ∪ [990938, 990945] ∪ [993423, 993451] ∪ [995908, 995957] ∪ [998400, 998463]

∪[1000892, 1000969] ∪ [1003384, 1003475] ∪ [1005883, 1005981] ∪ [1008382, 1008487] ∪ [1010881, 1010993]

∪[1013380, 1013499] ∪ [1015886,∞)

Figure 13. Minimal-ABC trees with n vertices, where n ≡ 4 (mod 7).
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Case n ≡ 5 (mod 7)

n = 12 n = 26n = 19 33 ≤ n ≤ 110

⌈
n

7

⌉
− 4

117 ≤ n ≤ 733

⌊
n

7

⌋
− 2

⌈
n− 5

14

⌉
− 1⌊

n− 5

14

⌋

740 ≤ n ≤ 999

n3

z + 1 z + 1z z

nz
nz+1

n ∈ [1937, 3316] ∪ [4947, 6711] ∪ [7733, 9756] ∪ [10435, 12619] ∪ [13088, 15447] ∪ [15699, 18240] ∪ [18303, 991282]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [1006, 1930] ∪ [4128, 4940] ∪ [6956, 7726] ∪ [9763, 10428] ∪ [12626, 13081] ∪ [15454, 15692] ∪ [18247, 18296]

∪[991310, 993767] ∪ [993816, 996259] ∪ [996322, 998744] ∪ [998828, 1001236] ∪ [1001334, 1003735]

∪[1003840, 1006227] ∪ [1006346, 1008726] ∪ [1008852, 1011232] ∪ [1011358, 1013731] ∪ [1013864, 1016237]

Figure 14. Minimal-ABC trees with n vertices, where n ≡ 5 (mod 7).
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Case n ≡ 5 (mod 7)

n ∈ [3323, 3722] ∪ [6718, 6739]

z + 1 z + 1z z

nz nz+1

n3

k

n ∈ [3729, 4121] ∪ [6746, 6949]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [991289, 991303] ∪ [993774, 993809] ∪ [996266, 996315] ∪ [998751, 998821] ∪ [1001243, 1001327]

z + 1 z + 1z z

nz nz+1

∪[1003742, 1003833] ∪ [1006234, 1006339] ∪ [1008733, 1008845] ∪ [1011239, 1011351]

∪[1013738, 1013857] ∪ [1016244,∞)

Figure 15. Minimal-ABC trees with n vertices, where n ≡ 5 (mod 7).
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Case n ≡ 6 (mod 7)

62 ≤ n ≤ 657

n = 13 n = 20 n = 27, 34

⌈
n

7

⌉
− 2

8

8

n = 41

n = 48

8

n = 55

⌊
n

7

⌋

n ∈ [664, 1448] ∪ [4178, 4535] ∪ [7174, 7342]

n3

z + 1 z + 1z z

nz nz+1

n ∈ [1455, 2393] ∪ [4542, 5347] ∪ [7349, 8119] ∪ [10170, 10807] ∪ [13033, 13460] ∪ [15854, 16064] ∪ [18640, 18668]

n3

z + 1 z + 1z z

nz nz+1

Figure 16. Minimal-ABC trees with n vertices, where n ≡ 6 (mod 7).
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Case n ≡ 6 (mod 7)

n ∈ [2400, 3821] ∪ [5354, 7167] ∪ [8126, 10163] ∪ [10814, 13026] ∪ [13467, 15847] ∪ [16071, 18633] ∪ [18675, 991640]

n3

z + 1 z + 1z z

nz nz+1

3828 ≤ n ≤ 4171

z + 1 z + 1z z

nz nz+1

k

n ∈ [991647, 991661] ∪ [994132, 994167] ∪ [996617, 996673] ∪ [999109, 999179] ∪ [1001601, 1001685]

z + 1 z + 1z z

nz nz+1

∪[1004093, 1004191] ∪ [1006592, 1006697] ∪ [1009091, 1009203] ∪ [1011597, 1011709]

∪[1014096, 1014705] ∪ [1016602,∞)

∪[991668, 994125] ∪ [994174, 996610] ∪ [996680, 999102] ∪ [999186, 1001594] ∪ [1001692, 1004086]

∪[1004198, 1006585] ∪ [1006704, 1009084] ∪ [1009210, 1011590] ∪ [1011716, 1014089] ∪ [1014712, 1016595]

n3

Figure 17. Minimal-ABC trees with n vertices, where n ≡ 6 (mod 7).
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