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Abstract

Palladium (Pd)-catalyzed cross coupling reactions are of great
significance in organic synthesis. However, the reaction route is
more complex, time-consuming and costly. For addressing the above
problems, a model-related feature selection strategy is introduced,
focusing on iterative optimization of feature description and pre-
diction to guide and strengthen each other. Then, we combine the
lightweight convolution neural network (CNN) driven by attention
mechanism with CatBoost to build an intelligent chemical synthe-
sis reaction analysis model—ChemCNet. Moreover, we conduct the
interpretability analysis based on ChemCNet model. The results
show that ChemCNet model has achieved relatively high prediction
accuracy and generalization, and it is helpful to provide reliable
decision-making information for the experimenter or institution.
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1 Introduction

Since the amount of valuable natural products in nature is very small

and cannot satisfy the demand, the artificial synthesis of natural products

has become very important, and synthetic methodology has become the

most important part of the field of organic chemistry at home and abroad.

Among the organic synthesis reactions, the Buchwald-Hartwig coupling

reaction is the most advanced C-N coupling reaction available. Richard F.

Heck discovered in the 1970s that the linkage between carbon atoms could

be achieved under milder conditions using a palladium catalyst [1], Sub-

sequently, Ei-ichi Negishi and Akira Suzuki further developed the method

of using palladium-catalyzed carbon-carbon bond cross-coupling [2–5]. In

2010, R. F. Heck, Ei-ichi Negishi and A. Suzuki were awarded the Nobel

Prize in Chemistry for the development of ”Palladium-catalyzed cross-

coupling methods in organic synthesis”. In 2022, C. R. Bertozzi, M.

Meldal, and K. B. Sharpless were awarded the Nobel Prize in Chemistry

for their significant contributions to ”developments in click chemistry and

bioorthogonal chemistry”. The creation of these coupling synthesis meth-

ods has enabled chemists to manipulate atoms and molecules in an un-

precedented degree.

Currently, automated organic synthesis frees people from complex, dan-

gerous, and boring working environments, increasing efficiency and preci-

sion. With theoretical modeling and technological innovations, complex

chemical reactions can be simulated, synthesized with the high-speed pro-

cessing power of computers, and the cross-fertilization of artificial intelli-

gence algorithms with chemical disciplines is of great importance to ad-

vance academic research [6]. In 2018, D. T. Ahneman et al. [7] reported

the prediction of the yield of the Buchwald-Hartwig amination reaction

by random forests, an advanced study of machine learning methods in

the field of multidimensional chemical space prediction; M. H. S. Segler et

al. [8] proposed the use of recurrent neural networks as a generative model

for molecular structures; J. Dong et al. [9] used the XGBoost model as a

prediction model, and X. H. Mu et al. [10] used Deep Forest as a model,

both of which improved the prediction accuracy. However, these works
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are not strong enough for deep feature mining of data, and further feature

learning is a direction worth thinking about.

Obtaining good features is the key to successful recognition in machine

learing , and finding good data representations is the core task of machine

learning. In general, key information exists in only a small number of

features, so only a small number of key features are sufficient to provide

enough information. Therefore, it is necessary to obtain comprehensive

and clean data to improve the prediction performance of the model. J.

Dong et al. [9] proposed a feature selection method based on importance

and relevance to successfully reduce the feature dimension, and X. H. Yang

et al. [11] constructed a gene selection method based on decision informa-

tion factor (DIF). M. Chieregato et al. [12] adopt an all relevant feature

selection method to select features. Features are closely related to the

model, we hope that the selected features can improve the effect of the

model. Therefore, how to select relevant features based on the model is

interesting and necessary.

Deep learning is the most flexible representation learning that extracts

highly abstracted feature through layer-by-layer networks, which is better

able to portray the rich intrinsic information of data. Deep learning shines

in a variety of tasks and has shown great potential in the last few decades.

2019, C. Coley et al. [13] proposed the use of graph convolutional neu-

ral network models to predict organic reaction products given reactants,

reagents, and solvents. H. X. Hou et al. [14] proposed a one-dimensional

CNN with added attention mechanism to predict reaction yields; 2021,

Y. N. Zhao et al. [15] used Deep Convolutional Neural Networks to pre-

dict reaction yields. Z. T. Song et al. [16] proposed an attention-based

multi-label neural networks for integrated prediction.

Motivated by these works, a feature selection method related to the

model is first used to screen features. On this basis, an intelligent and

lightweight prediction system is proposed, which combines a lightweight

attention driven CNN and the integration tree CatBoost [19] to integrate

feature representation learning and regression prediction into a model,

guiding and reinforcing each other, and obtains more desirable prediction

results.
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The main contributions of this paper are as follows.

(1) The model-related feature selection method for chemical descriptors

can not only reduce data dimension, but also enhance the expression effect

of the model.

(2) Theoretically, ChemCNet model integrates a lightweight convolu-

tional neural network and tree model into one model, and adds a light-

weight attention mechanism to focus on key features.

(3) Structure analysis, feature learning performance, prediction perfor-

mance and generalization performance and interpretability analysis (fea-

ture importance,ALE value [17] and SHAP value [18]) of ChemCNet model

are studied.

2 Intelligent prediction model for reaction

yield – ChemCNet

2.1 Model-based feature selection

In order to select a subset suitable of the features, RFE [20,21] (Recursive

Feature Elimination, RFE) backward search method and SHAP value as

feature evaluation criteria are used for feature selection.

Firstly, according to the principle of backward search, the features with

the lowest feature score will be removed, and then the model will continue

to be constructed on the remaining features to regain a new round of

feature ranking, and then the features with the lowest feature score will

be removed, and this process will be repeated to sequentially remove the

features with the lowest score until the specified number of features is

reached. In each iteration, the current set of remaining features is re-

evaluated, and the score of each feature is adjusted in the iterative process,

and finally presented in the form of RMSE (Root Mean Square Error,

RFE). The specific principle is as follows.

Start with an empty set of eliminated features E = {}. Calculate the
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current loss value:

L−E =
∑N

i=1
Li,{−E} =

∑N

i=1
l(yi, ai −

∑
k∈E

vi,k). (1)

For each available feature, use the SHAP value to calculate the score

when the loss function changes:

scorej = L{−E,−j} − L−E

=

N∑
i=1

l(yi, ai −
∑
k∈E

vi,k − vi,j)− L−E .
(2)

Remove a feature with the lowest score and add it to the set. If the

feature still needs to be eliminated, repeat this process.

2.2 ChemCNet

Based on the data, this paper designs a lightweight convolutional neural

network and adds a lightweight attention module to focus on the key fea-

tures without significantly increasing the complexity of the model. And, in

order to avoid the over-fitting risk brought by the full connection layer and

improve the prediction efficiency, the last full connection layer is replaced

by CatBoost, finally a hybrid model ChemCNet is built.

2.2.1 Feature representation learning

The classical DCNN model includes convolution layer, pooling layer, acti-

vation function and full connection layer. Among them,each convolutional

kernel can be considered as a feature filter to extract important features,

and the pooling layer has the characteristic of compression, and a large

amount of redundant information has been removed in subsection 2.1.

Taking into account the chemical background of the data, it is considered

to remove the pooling layer. Therefore, by simply stacking the input layer,

hidden layer and output layer, a network feature representation learning

model is established. The implicit layer is composed of four convolution

layers (the activation function of each layer is Rectified Linear Unit) and
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three full connection layers.

2.2.2 Attention mechanism

To focus on key features and enhance the expressiveness of the model,

an attention mechanism layer is further added. Set ECA [22] module as

the attention mechanism layer, a local cross-channel interaction strategy

that does not require dimensionality reduction, which effectively captures

the information of cross-channel interactions and can be efficiently im-

plemented by one-dimensional convolution. It is a lightweight attention

module with simple operation.

Let the output of a convolutional block be X ∈ RW×H×C , where W, H,

and C are the width, height, and channel dimension (number of channels)

(i.e., the number of filters), aggregated features y ∈ RC without dimension

reduction. The ECAmodule uses a band matrix to learn channel attention:
w1,1 · · · w1,k 0 0 · · · · · · 0

0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...

0 0 0 0 0 wC,C−k+1 · · · wC,C

 . (3)

The k × C parameter is involved, and the complete independence be-

tween different groups in the equation is avoided. The calculation of

the weight yi only considers the interaction with its k neighbors, i. e.

ωi = σ(
k∑

j=1

wj
i y

j
i ), y

j
i ∈ Ωk

i , where Ω
k
i represents the set of k adjacent chan-

nels. A more efficient approach is to make all channels share the same

learning parameters, i. e.,

ωi = σ

 k∑
j=1

wjyji

 , yji ∈ Ωk
i , (4)

Note that this strategy can be easily implemented by a fast 1D convolution

with kernel size k, i. e.,

ω = σ(C1Dk(y)), (5)
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where C1D represents one-dimensional convolution. This is the ECA mod-

ule, which only involves k parameters. The range k of interaction coverage

(i.e., the kernel size k of one-dimensional convolution) is determined ac-

cording to formulas (6) and (7).

C = ϕ(k) = 2(γ∗k−b), (6)

given the channel dimension C, the kernel size k can be adaptively deter-

mined:

k = φ(C) =

∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

, (7)

where γ is the coefficient of the primary term, b is the constant term, | t |
odd represents the nearest odd number of t. Obviously, by mapping φ,

high-dimensional channels have longer interactions, while low-dimensional

channels have shorter interactions by using nonlinear mapping. Set ac-

cording to data characteristics b = 1,γ = 2.

2.2.3 ChemCNet prediction model

Because the traditional connection layer is easy to be excessive, and the

good interpretability helps the experimenter to better optimize the design

route and provide constructive suggestions, we replace the final output

layer with CatBoost, and import the features extracted from the last full

connection layer into the CatBoost model as new input data for training

and prediction. ChemCNet prediction model has excellent feature learning

ability, ability to focus on key features and good interpretability of tree

model. CatBoost built the final model FT=
T∑

t=1
f t by integrating the weak

learner f t. The model loss function is set as:

L(f(x), y) =
∑
i

wi · l(f(xi), yi) + J(f), (8)

where L(f(x), y) is the loss value at point (x, y), wi is the weight of xi,

and J(f) is the regular term.

In the training tree building process, the trees are constructed se-

quentially and the goal of the next tree is to fit the negative gradient
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gi = −∂l(a,gi)
∂a

∣∣
a=FT−1(xi) of the loss function l, where ai = f(xi), wi is

the weight of xi. Therefore, the gradient descent method is used to opti-

mize the loss function. Grading function Score(a, g) = S(a, g) is needed

to measure the quality of gradient fitting. CatBoost implements both a

first-order gradient version and a version of XGBoost [23] Taylor expansion

that introduces a second-order gradient, as well as extending some other

scoring functions to determine whether the leaves are split (as shown in

Eq.9), and CatBoost allows the user to freely choose whether to use a

first-order gradient or a second-order gradient. ChemCNet model uses the

L2 scoring function.

L2 = −
∑
i

wi(ai − gi)
2
,

Co sin e =

∑
i

wi · ai · gi√∑
i

wiai2 ·
√∑

i

wiai2
.

(9)

Finding the optimal tree structure is an iterative process, and for the

sake of explanation, assume that the depth of the tree to be constructed

is 1. The structure of a tree like this needs to be determined by the

index j of some features and the boundary value c. Let xij denote the

j-th feature of the i-th sample and aleft,aright, denote the left and right

leaf nodes of the tree, respectively. When xij ≤ c, f(xi) = aleft, when

xij > c, f(xi) = aright. So now the goal is to find the optimal j and c with

the help of scoring function, so that the optimal tree structure is found.

Thus we have:

S(a, g) = −
∑
i

wi(ai − gi)
2

= −

 ∑
i:xij≤c

wi(aleft − gi)
2
+

∑
i:xij>c

wi(aright − gi)
2

 .

(10)

Let Wleft =
∑

i:xij≤c

wi,Wright =
∑

i:xij>c

wi, by deriving the optimal

values of aleft,aright, are: a∗left =

∑
i:xij≤c

wigi

Wleft
, a∗right =

∑
i:xij>c

wigi

Wright
, which
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are brought back to the scoring function, and the following equation can

be obtained after expanding the brackets and removing the constant term.

j∗, c∗ = argmaxj,cWleft · (a∗left)
2
+Wright · (a∗right)

2
. (11)

When the depth is greater than 1, the scoring function will change to

Score(a, g) =
∑

leaf S(aleaf , gleaf ), at which point the following equation

is available.

j∗, c∗ = argmaxj,cS(a, g), (12)

where a is the best leaf value obtained after the partitioning of j and c.

On the other hand, CatBoost introduces an ”artificial timeline”, a time-

line based on the arrival of training examples so that only ”previously seen”

examples can be used when calculating statistics. That is, for each sample

Xk, a separate model Mk is trained from the training set that does not

contain sample Xk. The model is used to estimate the gradient and use

this estimate to score the resulting tree. That is, only the current model

trained on the previous samples is used to update the gradient of the new

samples of the model, which provides unbiased gradients and effectively

avoids the overfitting problem caused by biased pointwise gradient esti-

mation that is common to all classical boosting algorithms. In each step

t of the learning process, each model can be interpreted as an approxi-

mation of a model F t. For each permutation σ, n different models Mi

need to be trained, and for each model Mi, Mi(X1), ...,Mi(Xn) must be

updated. Therefore, the resulting complexity of this operation is O(sn2).

This increases memory consumption and time complexity, so CatBoost

is chosen to maintain log2n models: M
′

i (Xj), i = 1, ..., [log2n], j < 2i+1,

where M
′

i (Xj) is an approximation of the previous 2i samples based on

sample j. Then, the number of predictions M
′

i (Xj) will be no greater

than
∑

0≤i≤log2n

2i+1 < 4n. This operation reduces the complexity of a tree

construction to O(sn). Thus, CatBoost first uses unbiased estimation of

gradient step size to select tree structure, and then performs standard

GBDT(Gradient Boosting Decision Tree). First initialize an empty tree

T , find all possible splitting methods using the greedy algorithm, form a
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candidate splitting set C, select any one split c ∈ C from C, assign the

split c to the tree T , noted as Tc, calculate the value of the leaf node

as leafi = GetLeaf(xi, Tc, σ), i = 1, 2, ..., n, calculate the average of the

gradient of the i− th leaf nodes as ∆i = avg(grad⌊log2(σ(i)−1)⌋(p)xj , rj , ),

where p : leafp = j, σ(p) < σ(i), i = 1, 2, ..., n, calculate the value of the

loss function Loss(Tc) = ∥∆− grad∥2 corresponding to the c − th split,

select the smallest loss function corresponding to T = argminTc(loss(Tc)),

which is the final output.

In summary, the workflow of ChemCNet prediction model is as follows.

(1) The dataset is divided into training and testing sets according to

7:3

(2) The obtained 24-dimensional feature data are jointly obtained as

25-dimensional data and normalized.

(3) Model training. The network loss function is set as MSE (Mean

Square Error), and the optimization algorithm is Adam. When the loss

function converges to the smallest value, the parameters of the network

model are saved. The feature data extracted from the third fully connected

layer is used as training data and imported into the CatBoost model for

training.

(4) Model testing. Similar to (3), feature extraction is performed on

the test set, and then the extracted features are imported into CatBoost

to predict the reaction yield and fit analysis with the actual reaction yield

to give the accuracy of the prediction.

Figure 1. Flow chart of ChemCNet prediction model.



51

3 Experimental results

This section analyzes ChemCNet from feature analysis, structure analysis,

feature learning performance, prediction performance and generalization

performance. Then, feature importance, ALE value and SHAP value are

used to explore the internal relationship between reaction conditions and

reaction yield, so as to provide more decision-making information for the

experimenter.

The machine learning work involved is implemented by a combination

of the Scikit-learn package (version 0.24.2) in Python (version 3.6.13),

Tensorflow 1.15.

3.1 Data description

We select the data on Buchwald-Hartwig coupling reaction published by

Ahneman et al. Ahneman et al. used an ultra-high-throughput device for

coupling reactions and obtained data for 4608 reactions (including con-

trols) spanning different reaction combinations consisting of 4 components,

including 23 isoxazole additives, 15 aryl or Heteroaryl halide, 4 palladium

catalyst ligands and 3 bases. The yields of these reactions are used as the

model output. The effective experimental data are 3960. According to the

characteristics of chemical reactions, 120 descriptors of related chemical

properties are selected, including electronegativity, dipole moment, NMR

shift, energy of frontier molecular orbital and so on. Chemical descriptors

of reactants, catalysts, and additives involved in the reaction are inde-

pendent variables, and the corresponding reaction yields are dependent

variables. Correspondingly, in order to avoid time-consuming analysis and

logging of computational data, Doyle et al. developed software to submit

molecular, atomic, and vibrational property calculations to Spartan and

subsequently extract these features from the resulting text files for acces-

sibility to a general user. The program requires only the input of reagent

structures in the Spartan graphical user interface and specification of the

reaction components in a Python script; it is applicable to any reaction

type. The program then generates the data table that can be used for

modeling. Therefore, the 120 descriptors can be divided into three cate-
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gories: molecular descriptors (28), atomic descriptors (64) and vibrational

descriptors (28) .

3.2 Feature analysis

The advantage of RFE is that the number of features can be set indepen-

dently, which gives more flexibility and choice. The 60, 50, 45, 40, 35, 30,

25, 20, 15, 10, and 5 feature descriptors were selected for experiments.

The feature selection process is shown in Fig.2. X-axis is the number

of features and y-axis is the loss function value RMSE of the model. Left 1

shows that when the feature descriptors are 60 (RMSE is 5.559), 40 (RMSE

is 5.566), 25 (RMSE is 5.684), and 15 (RMSE is 5.651), the RMSE of the

model is the smallest. Further narrowing the search interval (left 2, left 3)

reveals that the model has the smallest RMSE of 5.645 when 24 feature

descriptors are used for prediction. Although the RMSE is still higher

than the results of 60 and 40 feature descriptors, 24 feature descriptors

are finally selected as the features, considering that the number of 40 and

60 feature descriptors is still high and the operation is more complicated

and time-consuming. The correlation heat map (Fig.2.(b) ) shows that the

relevance among the features after feature filtering is obviously removed

relevance with the original data of 120 feature descriptors, and a concise

and comprehensive feature descriptor data is obtained, which will provide

convenient input and training for the subsequent model.
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(a)

(b) (c)

Figure 2. Feature analysis. (a)Feature descriptor screening process.
(b)Relevance heat map visualization results for the original
120 descriptors. (c)Relevance heat map visualization results
of the 24 feature descriptors obtained after feature screening.

3.3 Structure analysis

The structure of the network without CatBoost is denoted as ChemCNet-0.

Generally speaking, the more convolutional layers, the better the feature

learning ability of the network and the more comprehensive the informa-

tion extracted. However, the increase of convolution layers brings more

parameters, which increases the complexity of the model and the difficulty

of training. Therefore, the fully connected layer is first fixed to 2 layers

first, and then the effect of 2-4 convolutional layers on the prediction re-

sults is analyzed. The experimental results are shown in Fig.3.(a) , it can

be seen that RMSE decreases and R2 increases with the increase of the

number of convolutional layers. When the number of convolution layers

is 5, the model appears over-fitting, and the prediction results begin to

decline. When the number of convolution layers is 4, the model reaches

the optimal value. Therefore, setting the number of convolution layers to 4

can better extract the information of feature descriptors and obtain better

prediction results. The analysis results of the full connection layers are
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the same (experimental results are shown in Fig.3.(b)), when the number

of full connection layers is 4, the best result is obtained.

(a) (b)

Figure 3. Structure analysis. (a) The influence of different convolution
layers on the prediction results. (b) The influence of different
full connection layers on the prediction results.

Since the feature dimension is low, the kernel size is set to (2,2), so

at most two pooling layers can be added. The number and location of

pool layers are analyzed as follows. The experimental results are shown

in Table 1. It can be seen from Table 1 that when one layer of pooling

layer is added, the prediction accuracy of the network is not ideal. After

two layers of pooling layer are added, the prediction accuracy is worse,

indicating that adding pooling layer is not suitable for the data in this

paper, which will seriously affect the learning ability of the network. The

more layers are added, the worse the prediction accuracy of the network.

Therefore, this paper chooses to remove the pool layer.

Then, the location of ECA module is analyzed to select the optimal

location. The parameter r and b are set to 2 and 1 respectively. The ECA

module is placed after the first convolution, the second convolution, the

third convolution and the fourth convolution respectively. The experimen-

tal results are shown in Table 2. It can be seen that after the ECA module

is placed in the fourth layer of convolution, the prediction result of the

model is the best, which can improve the network performance without

significantly increasing the network complexity.

In summary, ChemCNet-0 contains 4 convolutional layers, 4 fully con-

nected layers and one attention mechanism layer. The nodes of the con-
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volutional layer are 16, 32, 64, 64, respectively , and the kernel size and

step size are 1×1, and the nodes in the fully connected layer is 256, 256,

48, and 1 (output layer), respectively.

Table 1. Impact of Pooling Layer on prediction Results.

Location of pooling layer R² RMSE

After the first CONV layer 0.57 17.76

After the second CONV layer 0.64 16.27

After the third CONV layer 0.65 16.06

After the forth CONV layer 0.66 15.9

Average 0.63 16.5

Place one layer after the first and sec-

ond CONV layers

0.37 21.41

Place one layer after the first and

third CONV layers

0.51 19.17

Place one layer after the first and

forth CONV layers

0.56 17.95

Place one layer after the second and

third CONV layers

0.61 16.99

Place one layer after the second and

forth CONV layers

0.62 16.79

Place one layer after the third and

forth CONV layers

0.64 16.3

Average 0.55 18.1

Table 2. Prediction results of ECA module at different positions of
ChemCNet-0.

ECA module location R² RMSE

After the first CONV layer 0.9646 5.07

After the second CONV layer 0.9651 5.06

After the third CONV layer 0.9645 5.12

After the forth CONV layer 0.9669 4.91
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3.4 Feature learning performance analysis

The framework of ChemCNet-0 model has been built, the convergence

analysis is then performed. The convergence curves are shown in Fig.4.

From Fig.4.(a), it can be seen that the loss value (Loss) decreases and

eventually plateaus as the number of iterations increases, indicating that

ChemCNet-0 is convergent and can be used for the next experiments.

We find that relatively small training sets can also effectively explore

hidden feature information, and play a good learning performance. As

shown in Fig.4.(b), 10% - 90% of the total data sets are selected as training

sets. It can be seen from the figure that the value of R2 is 0.923, and the

value of RMSE is 7.33 when the training set only accounts for 30% of the

data set, which is better than the results in Ref. [7]. The value of R2 is

0.949, and the RMSE is 6.13. When the training set accounts for 50%

of the data set. This result indicates that ChemCNet-0 has acceptable

accuracy to predict the yield by using relatively smaller training set (50%)

compare with the conventional 70/30 split of dataset.

Comparing with ChemNet [15] and LetNet [15], ChemCNet-0 has bet-

ter learning ability and the prediction accuracy reaches R2 = 0.97 and

RMSE=4.93 (Fig.4.(c)), which shows the applicability and superiority of

ChemCNet-0 to accurately and comprehensively capture the important

feature information, and the simpler structure of ChemCNet-0 effectively

reduce the model complexity.

In addition, in order to test the generalization ability of ChemCNet-0,

we conduct 10 times of 10 fold cross validation. The schematic diagram of

cross validation is shown in Fig.4.(d), and the experimental results of cross

validation are shown in Fig.4.(e). The experimental results show that the

feature learning module ChemCNet-0 can not only obtain more abstract

data features, but also accurately predict the reaction yield, and has a

good generalization ability.

In summary, ChemCNet-0 has excellent feature learning ability to fur-

ther acquire deeper features hidden inside the data, and also has good

generalization performance.
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(a) (b)

(c)

(d) (e)

Figure 4. Feature learning performance analysis of ChemCNet model.
(a) Convergence curve of ChemCNet-0. (b) prediction per-
formance of ChemCNet-0 under different training sets. (c)
Comparison of prediction accuracy of LetNet, ChemNet and
ChemCNet-0. (d) Cross validation method and data set par-
tition. (e) The experimental results of ChemCNet-0 10 fold
cross validation method.

3.5 Prediction performance analysis

The depth features extracted from ChemCNet-0 are imported into Cat-

Boost as new input data for training and prediction. In order to better fit
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the real data, we used ten fold cross validation and grid search method to

obtain the optimal parameters of CatBoost model.

Then, Student’s t test is performed on the actual and predicted values,

the results are shown in Fig.5.(a). There is no significant difference be-

tween them, and the prediction results are accurate. We compare the pre-

diction accuracy of ChemCNet with CatBoost and other machine learning

methods, including GBDT, Random Forest (RF), Decision Tree (DT), Ad-

aBoost (Ada), k-nearest neighbor (KNN), Ridge regression (Rid), Linear

(Lin), and Extreme Random Tree (Extra), and R2 and RMSE are used as

evaluation metrics. The prediction results are shown in Fig.5.(b). It is easy

to see that the prediction accuracy of the Linear Regression is low and not

suitable for application to this chemical reaction data; Although Decision

Tree and other machine learning methods have improved the prediction

accuracy, the results are still unsatisfactory. CatBoost has substantially

improved over these methods, but ChemCNet prediction model has better

prediction performance and better fit to the real yield with R2 = 0.97 and

RMSE=4.88.

In order to make the results clearer, we use residual to analyze the

error of CatBoost and ChemCNet regression prediction. In the residuals

plot, if the residuals are evenly distributed within a horizontal strip with a

residual of about 0, the selected model has a higher degree of fit, and the

narrower the strip is, the higher the fitting accuracy. Fig.5.(c) shows the

residual plots of the CatBoost and ChemCNet prediction models, respec-

tively. CatBoost has a larger residual and wider distribution area, while

the residuals of the ChemCNet are more concentrated around the straight

line y=0, with a more concentrated distribution and narrower distribution

area, and the prediction effect is significantly better than that of CatBoost,

which again proves the excellent prediction performance of the ChemCNet

model.

Fig.5.(c) shows the box plots of the prediction accuracy (RMSE and

R2) of the above models, from which it can be seen that the ChemCNet has

the smallest boxes, indicating that the ChemCNet has the most concen-

trated data distribution of the experimental results, the least data volatil-

ity, and the best and most stable prediction performance. From Fig.6.(a),
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it can be seen that the ChemCNet can also obtain acceptable prediction

accuracy compare to CatBoost in the case of small samples.Moreover, as

shown in Fig.6.(b), the ChemCNet also achieves higher prediction accu-

racy under sparse data, and the prediction results are better than those of

the CatBoost.

While keeping the ChemCNet-0 the same, the ChemCNet model is

compare with the ChemCNet-0+GBDT, ChemCNet-0+Decision Tree,

Che-mCNet-0+Random Forest, and ChemCNet-0+Extra Tree hybrid mo-

dels, respectively, and from Fig.6.(c), it can be found that the prediction

accuracy of the ChemCNet-0+machine learning model is better than single

machine learning regressor, and among them, ChemCNet has the lowest

RMSE value, which indicates that the model has better prediction per-

formance. It can also be seen that the prediction accuracy of the models

(GBDT, Decision Tree, Random Forest, and Extra Tree) are significantly

improved after the network feature learning, which again proves the excel-

lent feature extraction ability of ChemCNet-0.

In addition, ablation experiments were also conducted (Table 4-4):

comparison of lines 1, 2 and 4 shows that the prediction accuracy of the

single model (CatBoost, ChemNet-0) is not as good as that of the hybrid

model ChemCNet; The comparison of rows 1 and 3 shows that adding

feature representation learning can effectively improve the prediction ac-

curacy; The comparison between lines 2 and 4 shows that the prediction

accuracy can be improved again after replacing the full connection layer

with CatBoost; The comparison of 3 and 4 lines shows that the addition of

attention mechanism layer has not significantly increased the complexity

of the model, but also played a certain role in improving the prediction

results.

It can be seen from Fig.5 that ChemCNet can also obtain acceptable

prediction accuracy compare with CatBoost in the case of small samples.

In addition, the ablation study (Table 1) show that the prediction accuracy

of the single model (CatBoost, ChemNet-0) is inferior to that of the hybrid

model ChemCNet; the comparisons in rows 1,3 show that adding feature

representation learning can effectively improve the prediction accuracy.

The comparisons in rows 1,4 show that adding attention-driven feature
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learning improves the prediction accuracy again; the comparisons in rows

3,4 show that adding an attention mechanism layer helps to improve the

prediction results and does not significantly increase the complexity of the

model.

(a)

(b)

(c)

Figure 5. Prediction accuarcy analysis. (a) Student’s t test of the ac-
tual and predicted yield. (b) Comparison of predicted value
and real value fitting scatter plot. (c) Comparison of re-
gression residuals between ChemCNet model and CatBoost
model.
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(a)

(b)

(c)

Figure 6. Analysis of ChemCNet model prediction performance. (a)
Box plot of prediction accuracy of different models. (b) Com-
parison of the prediction results of ChemCNet model and
CatBoost model under different proportion of training data.
(c) RMSE value comparison between ChemNet-0+machine
learning regression and single machine learning regression.
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Table 3. Ablation experiment.

Feature

Learning

CatBoost Attention

mechanism

R² RMSE

1 ✓ 0.961 5.68

2 ✓ ✓ 0.9668 4.93

3 ✓ ✓ 0.9671 4.91

4 ✓ ✓ ✓ 0.9674 4.88

3.6 Generalization analysis

To evaluate the generalization performance of the ChemCNet, out-of-

sample prediction experiments are conducted. The Out-of-sample pre-

diction tests the generalization of the model by dividing the data set into

two disjoint parts, one to estimate the model and the other to predict.

Similar to ref. [7], five additives(15,18,19,21,22) are selected as unknown

reaction conditions and the remaining known reaction conditions are used

as training data to predict the yield of the unknown reaction conditions.

The structure diagram of the out of-sample predicted additive is shown in

Fig.7.(a), and the out of sample prediction results are shown in Fig.7.(b).

As shown in Fig.7.(b), the out-of-sample predictions of the ChemCNet

prediction model for all five additives are significantly higher than those

of CatBoost, on average, no additive has significant systematic deviation

from the prediction of the model. The high predictive power of ChemCNet

indicates that the effects of these substituents on the reaction results can be

well capture by the descriptors. In other words, the model constructed in

this paper can predict the effect of new isoxazole or aryl halide structures

on the outcome of Buchwald-Hartwig coupling reaction and provide the

combination of bases and ligands with the highest yields.This also proves

once again the excellent feature learning ability of deep learning and the

effectiveness and significance of using it for feature learning. It also reflects

from the side that features have a very important influence and role on

model learning, the improvement of the overall performance of the model

and the quality of the final experimental results.
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(a)

(b)

Figure 7. Generalization performance analysis of ChemCNet. (a)
Structure diagram of five out-of-sample predicted additives.
(b) Out of sample prediction results of ChemCNet.

3.7 Interpretability analysis

In this chapter, we carry out three interpretability tools(feature impor-

tance, ALE, SHAP) based on ChemCNet model, aiming at providing com-

prehensive decision information for the experimenter. Since ChemCNet-0

obtains abstract features, which is not conducive to analysis, we use 24

feature descriptors obtained in Section 3.2 for interpretability analysis.

3.7.1 Feature importance analysis

After obtaining the prediction model, we attempt to understand the fac-

tors that have a significant influence on the reaction yield prediction and
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provide valuable information for improving the yield of Buchwald-Hartwig

coupling reaction. Fig.8.(a) shows the class distribution of these 24 char-

acteristic descriptors, and the results show that Additive (additive) and

Halide (Aryl) account for the largest proportion, which may be the main

factors affecting the yield prediction. Fig.8.(b) shows the feature impor-

tance ranking of CatBoost model. It can be seen that the top 10 most im-

portant descriptors for predicting reaction results include 5 aryl halides,

5 halides, 2 additives, 2 ligands and 1 substrate. Seven descriptors are

related to electronegativity and NMR shift, including C-3 and H-2 elec-

trostatic charges on halides, C-3 NMR shift on additives, C-4 electrostatic

charges on additives, C-8 NMR shift and C-5 magnetic resonance shift on

ligands, and N-1 electrostatic charges on substrates. The above analysis

shows that the tendency of additives [24,25] and halides [26] as electrophiles

may affect the reaction results, and the electronic effect of ligands also plays

a key role in regulating the catalytic performance of metal catalysts.

To validate the effectiveness of the features, we sampling 70% as train-

ing set, and the top 23-15 descriptors are selected, which are based on the

feature ranking from high to low, as features to retrain CatBoost. The

sampling is repeated for ten times generate ten results used to plot with

corresponding feature numbers (noting the label as 0, right). Meanwhile,

the same procedure is applied on the same number of descriptors randomly

sampled from the original 120 descriptors to plot precision as the contrast

(notation labeled as 1,left) .

As can be seen from Fig.8.(c), as the number of features is decrease

from 23 to 15, the prediction accuracy obtained by using the filter features

for training remains at a high level, and the box volumes are all small, indi-

cating that the distribution of the prediction results is more concentrated

and stable, with no obvious fluctuations or differences. On the contrary,

as the number of randomly selected features decreases, its prediction accu-

racy decreases significantly and the box volume increases, indicating that

the distribution of its experimental results is more instable, with many

outliers and less stable experimental results. In contrast, the radar plots

(Fig.8.(d)) of prediction accuracy obtained using the features selected by

feature importance for training are very regular, and the experimental re-
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sults are all better than the randomly selected ones. In summary, the

features cover comprehensive and important information, and the experi-

mental results are more stable, which again verifies the effectiveness of the

filtered features obtained.

(a) (b)

(c)

(d)

Figure 8. Feature importance analysis. (a) Category distribution of 24
descriptors. (b) Feature importance ranking. (c) Prediction
accuracy boxplot. (d) Prediction accuracy radar plot.
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3.7.2 ALE-based analysis of the relationship between features

and yield

Among all descriptors, halides account for the largest proportion and the

descriptors representing the electronegativity of halides rank high, Then

observe the relationship between aryl halides and reaction yield. Combined

with the feature importance obtained in 3.7.1, we select feature descriptor

aryl halide *C3 NMR shift, aryl halide V3 frequency, aryl halide V2 fre-

quency, aryl halide *H2 electrostatic charge among the top 10 features for

analysis.

As shown in Fig.9.(a), (1) The ALE values of aryl halide *C3 NMR sh-

ift and aryl halide *H2 electrostatic charge changed more dramatically,

both showing ”linear changes”. Among them, the ALE value of the de-

scriptor aryl halide *C3 NMR shift has the largest change amplitude, that

is, the descriptor has the greatest influence on the prediction results, and

when the feature value is taken between 100 and 150, the ALE value of

the descriptor rises in a straight line from negative value to positive value,

and then the ALE value remains in a high and stable state, indicating that

the effect of the feature descriptor at this stage is a positive effect, and the

reaction yield output by the model is higher than the average yield value.

However, the descriptor has a linear decline when the eigenvalue is about

0.1. With 0.1 as the cut-off point, when the eigenvalue is less than 0.1, the

reaction yield is 3 greater than the average predicted value, which plays a

positive role, and when the eigenvalue is greater than 0.1, the reaction yield

is lower than the average predicted value, which has a negative impact. (2)

The ALE value of aryl halide V3 frequency and aryl halide V2 frequency

has different amplitudes, so the degree of influence on yield is different,

and the ALE value of the former changes more dramatically. The above

analysis shows that electrophilic halides may have a strong effect on the

reaction yield, and the vibration frequency of aryl halides in different vi-

bration modes is not the same, and the effect on the reaction yield is also

different.

Among all eight additive descriptors, four represent electronegativity

properties, among which additive * C3 NMR shift and additive * C4

electrostatic Charge ranked second and sixth in importance respectively.
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So the next step is to observe the relationship between additives and re-

action yield. Same as above, select descriptor additive * C3 NMR shift,

additive * C4 electrostatic charge for analysis. As can be seen from

Fig.9.(b), the descriptor additive * C3 NMR Shift has the largest change

in ALE value, that is, it has the largest impact on the yield. After the

characteristic value is 150, the ALE value of this descriptor gradually in-

creases, and after that, the ALE value remains at a high level, indicating

that this descriptor has a positive impact on the reaction yield in the sub-

sequent stage. The main reason for this difference is that additives, as an

electron-rich system, strongly affect the reaction results.

(a)

(b)

Figure 9. ALE analysis. (a) ALE diagram of the influence of aryl
halide descriptor on the reaction yield. (b) ALE diagram of
the influence of additive descriptor on the reaction yield.
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3.7.3 SHAP-based analysis of the relationship between features

and yield

(1) Correlation analysis between features and yield

It is not enough to understand the importance of a feature, we do not

know how the feature affects the prediction results, so it is necessary to fur-

ther understand the correlation between the feature and the yield. SHAP

profile maps analyze the correlation between feature descriptors and reac-

tion yields. The overview diagram of the overall characteristics of SHAP is

shown in Fig.10.(a), each row represents a feature descriptor with SHAP

value, a dot represents a sample, and a wide area indicates that it contains

a large number of samples. The color represents the feature value of the

feature descriptor, and the shade of the color represents the feature value

from small to large. It can be observed from the figure that the feature

descriptor aryl halide *C3 NMR shift has a small number of dark sample

points on the right, but most of the light points are gather on the left, so

there is basically a positive correlation between the feature descriptor and

the reaction yield, that is, the larger the feature value of the descriptor, the

larger the reaction yield. It is also noted that the characteristic descrip-

tor ayrl halide V3 frequency also has a significant effect on the chemical

reaction yield, and most of the light dots are concentrated on the right

side, while only a few dark dots are concentrated on the left side, which

means that there is a negative correlation between this descriptor and the

reaction yield, that is, the larger the characteristic value of the descriptor,

the smaller the corresponding reaction yield. The correlation between the

other descriptors and the reaction yield is the same as above, so we will

not analyze them one by one here.

(2) Feature interaction analysis

The combination of reaction conditions is very important in chemi-

cal reactions, and quantifying these interactions and revealing the hid-

den internal relationships is necessary and will help provide researchers

with richer experimental information. The previous analysis shows that

halide and additive may have a significant effect on the yield, especially

aryl halide *C3 NMR shift and additive *C3 NMR shift are important in

the model prediction process, therefore, this subsection uses SHAP values
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to further analyze the effect of the two features together on the reaction

yield. The Shapely interaction index ϕij extends the Shapely value by

assigning credit among all feature pairs, on which the SHAP interaction

value is defined as:

Φij =
∑

S⊆M\(i,j)

|S|!(|M | − |S| − 2)!

2(|M | − 1)!
∇ij(S), (13)

where ∇ij(S) = f(S ∪ {i, j}) − f(S ∪ {i}) − [f(S ∪ {j} − f(S)], i ̸= j,

f(S) = E[fx(x)|xs].

Fig.10.(b) shows the SHAP dependency diagram of the two descriptors.

In fact, the default second feature is automatically selected, that is, trying

to pick out the feature column that interacts most strongly with the addi-

tive *C3 NMR shift. When the second feature is not specified, the figure

automatically selects the aryl halide *C3 NMR shift, indicating that there

is indeed a strong interaction between the two descriptors. The X axis is

the eigenvalue range of the feature descriptor additive *C3 NMR shift, the

Y axis is its SHAP value, and the right is the eigenvalue range of the con-

trasting descriptor aryl halide *C3 NMR shift, where dark represents the

high eigenvalue part of the descriptor and light represents its low eigen-

value part. Color analysis is the distribution of aryl halide *C3 NMR shift

in the process of additive *C3 NMR shift changes. The light gray area at

the bottom of the plot shows a histogram of the distribution of data values.

It can be observed from the figure that the values of the feature points of

the descriptor additive *C3 NMR shift are concentrated between the inter-

vals (140,145) and (150,155). When the descriptor additive *C3 NMR sh-

ift takes a value before b, there are more light dots and fewer dark dots,

and most of its SHAP values are negative, indicating that for the de-

scriptor additive *C3 NMR shift before b, the smaller the value of the

descriptor aryl halide *C3 NMR shift, the descriptor additive *C3 NMR

The greater the negative impact of shift on reaction yield.

When the descriptor additive *C3 NMR shift takes values between

(b, 150), the SHAP value of the descriptor additive *C3 NMR shift is neg-

ative, regardless of how the descriptor aryl halide *C3 NMR shift is taken,

that is, it negatively affects the reaction yield. At the same time, it was
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noted that the dark dots were distributed below, which indicated that the

higher the eigenvalues of the descriptor aryl halide *C3 NMR shift, the

more likely it was to have a negative impact on the reaction yield.

When the descriptor additive *C3 NMR shift is taken after 150, the

SHAP value of the descriptor additive *C3 NMR shift is positive regard-

less of the value of the feature descriptor aryl halide *C3 NMR shift, that

is, it has a positive effect on the reaction yield. And the dark dots are

mostly distributed above at this time, which indicates that the higher

eigenvalues of the descriptor aryl halide *C3 NMR shift are more likely to

have a positive impact on the reaction yield.

From the above analysis, it can be concluded that when the descriptor

additive *C3 NMR shift takes a value after 150, the higher the aryl halide

*C3 NMR shift, the greater the positive effect on the yield, and the eas-

ier it is to obtain a high yield. Combined with the previous correlation

analysis between the characteristic variables and the reaction yield, it can

be seen that these two feature descriptors are positively correlated with

the reaction yield. However, from the interaction analysis, it is known

that even ”positive cooperation” is limited by ”specific conditions” (i.e.

different values) to obtain the ideal reaction yield.

After that, we show the reaction yield obtained under different combi-

nations of these two feature descriptors. The results are shown in Fig.12,

the horizontal axis is the value range of the descriptor additive *C3 NMR

shift, the vertical axis is the value range of aryl halide *C3 NMR shift, and

the more yellow the color of the point, the higher the reaction yield ob-

tained. We are more concerned about high yield than low yield, and it can

be observed from the figure that when the value of additive *C3 NMR shift

is 153.74 and the value of aryl halide *C3 NMR shift is 256.46, the reac-

tion yield reaches a maximum of 99.03. Through the analysis of ALE

values in the previous section, it can also be found that these two values

correspond to the situation that their respective ALE values are greater

than 0, which is consistent with the conclusions obtained from the previous

analysis.

(3) SHAP analysis of one single sample

Because of the variability among individuals, it is necessary to un-
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derstand the feature effects exhibited by features in the sample prediction

process. The force plot provides the details of the prediction, and it focuses

on explaining how individual predictions are generated and how individual

features affect the model’s decision in a single instance. The longer the

arrow, the greater the impact of the feature on the output. Base value is

the average predicted value of all samples, and output value, or f(x), is

the predicted value of the sample. A sample is randomly selected for illus-

tration, as shown in Fig.10.(c), aryl halide * C3 NMR Shift and base *

N1 electrostatic Charge is the two descriptors with the largest positive

contribution to the predicted value; aryl halide V3 Frequency and aryl

halide V2 Frequency is the two descriptors with the largest negative con-

tribution to the predicted value. However, it is noted that when there are

many features, the feature effect of each feature cannot be fully displayed.

Therefore, we consider using waterfall diagram for visual display.

The waterfall plot powerfully shows how a sample accumulates from

the base value to the final prediction of the model at the top of the plot,

while giving the magnitude and direction of the influence of each feature.

Fig.11.(a) shows the waterfall plot for this sample, which shows the predic-

tion process of this sample and the respective contribution of each feature

in the model prediction process. f(x) indicates the final predicted value

of this sample. The values next to the descriptor names are their fea-

ture values. Starting from the base value of 32.94 at the bottom of the

waterfall chart, the dark SHAP values indicate an increase in prediction

and the light SHAP values indicate a decrease in prediction. Compare

to the force diagram, the waterfall diagram shows more concisely the fea-

tures that play an important role in the model prediction process and their

”contribution”.

This will provide researchers with a more comprehensive and detailed

understanding of the specific effects of the descriptors in a specific chemical

reaction, so that they can make adjustments to their experiments.

(4) Multisample clustering SHAP analysis

The purpose of clustering is to find samples with certain similarities.

Generally speaking, clustering is based on features. This subsection uses a

stacked SHAP force map for clustering to analyze the influence of different
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features of many samples. The figure is obtained by rotating the force map

of a single sample by 90 degrees and stacking it horizontally. Due to the

large sample size, it is not easy to show all of them, so only the predictions

of the first 100 samples are shown here. The result is shown in Fig.10.(b),

the vertical axis is the predicted value f(x), the horizontal axis indicates

the number of samples, and the horizontal axis is aggregated and arranged

by the similarity of the samples. The graph will aggregate the samples with

similar SHAP values, thus the horizontal coordinate indicates the serial

number of the sample rearrangement, and the original index of this sample

will be displayed after mouse click. Each sample consists of a dark area

and a light area, with the light shaded part indicating the negative impact

on the model output and the dark shaded part indicating the positive

impact on the model output. The larger the dark area, the stronger the

positive impact, and conversely, the larger the light area, the stronger the

negative impact. The different features and their SHAP values can be

seen by pointing the mouse to any position at random. The clustering is

highlighted: the center part of the figure (serial number between 30 and

50) has more light area, which is the output of the model, that is, the

response with lower than average response yield; the second half of the

figure (serial number between 60 and 80) has more dark area, which is

the response with higher than average response yield. In Fig.11.(a), the

SHAP value of the 71st sample point (actually indexed as 13) is shown as

an example, and the final predicted value of this sample is 79.59 higher

than the average predicted value under the combined effect of each feature.

In practice, experimenters can use the graph to cluster samples of reac-

tions with similar properties, thus eliminating the need to view the reaction

of each chemical reaction one by one. By looking at their common char-

acteristics, the adjustment can be effectively narrowed down and scientific

efficiency can be improved, while saving experimental resources.

In the Buchwald-Hartwig coupling reaction, the electrophilic reagents

are able to undergo oxidative addition reactions with the zero-valent pal-

ladium complexes to produce transition state compounds of divalent pal-

ladium for the final production of the products. Among them, additives

and halides as electrophilic reagents are two important components affect-
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ing the yield of the reaction, which is consistent with the objective facts

and indicates that the output of the model constructed in this paper is

real and creditable. It is worth reminding that it is necessary to com-

bine the conclusions drawn from the above analysis with the experience of

the researchers and some specific experimental settings for comprehensive

decision making.

(a) (b)

(c)

Figure 10. SHAP analysis. (a)SHAP summary plot. (b) SHAP depen-
dency graph of two feature descriptors. (c) The reaction
yield under different value combinations of feature descrip-
tors.
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(a)

(b)

Figure 11. SHAP analysis of one single sample. (a) SHAP force plot.
(b) SHAP waterfall.

Figure 12. SHAP cluster analysis.

As shown in Fig.13, for the convenience of users, we has developed a free

EXE software called ChemCNet, which can implement feature analysis,

reaction yield intelligent prediction and interpretability analysis.
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Figure 13. The system interface of ChemCNet.

4 Conclusions

In this paper, a model-related feature selection method is adopted, and 24

feature descriptors with a large impact on the reaction yield are screened

out. Based on this, combine CNN with CatBoost, adding attention mecha-

nism, and finally build ChemCNet prediction model. ChemCNet enhances

the expression ability of features through feature re-representation, and it

provides more decision information for the experimenter with the good

interpretability of CatBoost . The experiments show that ChemCNet pre-

diction model achieves high accuracy in predicting reaction yields and has

good generalization ability. This will better assist the progress of research

in chemistry disciplines and provide more accurate help to experimenters.
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