The σ-Irregularity of Chemical Trees

Žana Kovijanić Vukićević ${ }^{a}$, Goran Popivoda ${ }^{a, *}$, Saša Vujošević ${ }^{b}$, Riste Škrekovski ${ }^{c}$, Darko Dimitrov ${ }^{d}$
${ }^{a}$ University of Montenegro, Faculty of Science and Mathematics, 81000
Podgorica, Montenegro
${ }^{b}$ University of Montenegro, Faculty of Economics, 81000 Podgorica, Montenegro
${ }^{c}$ University of Ljubljana, FMF, 1000 Ljubljana, Slovenia
${ }^{d}$ Faculty of Information Studies, 8000 Novo Mesto, Slovenia
zanak@ucg.ac.me, goranp@ucg.ac.me, vsasa@ucg.ac.me, darko.dimitrov11@gmail.com

(Received May 13, 2023)

Abstract

The σ-irregularity index is a variant of the well-established Albertson irregularity index. For a graph $G=(V, E)$ it is defined as $\sigma(G)=\sum_{u v \in E}(d(u)-d(v))^{2}$, where $d(u)$ and $d(v)$ denote the degrees of vertices u and v, respectively. In this note, we characterize chemical trees of a given order with maximal σ-irregularity index.

1 Introduction

The graphs considered here are simple and finite. The vertex and the edge sets of a graph G are denoted by $V(G)$ and $E(G)$. For a vertex $v \in V(G)$, we denote the degree of v in G by $d_{G}(v)$. The subscript G will be omitted if from the context it is clear which graph is considered.

A graph G is regular if all its vertices have the same degree, otherwise, it is irregular. A topological invariant $\mathrm{I}(G)$ of a graph G is called an

[^0]irregularity measure or irregularity index, if $\mathrm{I}(G) \geq 0$ and $\mathrm{I}(G)=0$ if and only if graph G is a regular graph.

Irregularity measures of graphs play a significant role in many scientific areas including chemistry and network theory $[6-9,13,14]$. One of the best-known and most thoroughly investigated irregularity measures is the Albertson irregularity index [4]:

$$
\operatorname{irr}(G)=\sum_{u v \in E(G)}\left|d_{G}(u)-d_{G}(v)\right|
$$

For results on the Albertson irregularity index, we refer the readers to $[1,2,4,9,11]$. Trying to avoid the absolute value calculation in the Albertson irregularity index, one naturally arrived to the $\sigma(G)$-irregularity index:

$$
\sigma(G)=\sum_{u v \in E(G)}\left(d_{G}(u)-d_{G}(v)\right)^{2}
$$

The first results on σ-irregularity were obtained by Gutman et al. in [10]. In this seminal work, some fundamental properties of the σ-irregularity were presented including the relation

$$
\sigma(G)=F(G)-2 M_{2}(G)
$$

where

$$
F(G)=\sum_{u \in V(G)} d(u)^{3} \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v)
$$

are the forgotten index and the second Zagreb index, respectively.
The general graphs with maximal σ-irregularity were characterized in [3], where also some lower bounds on σ-irregularity were presented. The socalled inverse problem, which in this context means proving or disproving the existence of a graph whose σ-irregularity is equal to a given nonnegative integer, was resolved in $[3,10]$.

For some classes of graphs, Réti [12] compared the σ-irregularity with a couple of well-known irregularity measures.

A connected k-cyclic graph is a connected graph of order n and size
$n+k-1$. Recently, in [5], connected k-cyclic graphs with maximal σ irregularity were determined.

A connected graph with the maximum degree at most 4 is called a chemical graph. A non-cyclic chemical graph is a chemical tree. Among the (chemical) trees in [3] it was shown that the path graph has the smallest σ-irregularity. Here we characterize the chemical trees with maximal σ irregularity. Before we proceed with the characterization, we present in the next section the necessary additional notation and preliminaries.

1.1 Additional notation and preliminaries

Let T be a chemical tree. If $d(v)=k$, we name a vertex $v \in V(T)$ as k-vertex. Let us denote by n_{i} the number of vertices in T of degree i, $i=1,2,3,4$, and by $m_{i j}, 1 \leq i \leq j \leq 4$, the number of edges in T with end-vertices of degrees i and j. If T is a chemical tree with maximal σ-irregularity, then T will be called extremal.

Let denote by $\mathcal{H}(n)$ the family of chemical trees of order n with all vertices of degree either 1 or 4 . Note, this family is nonempty if and only if $n \equiv 2(\bmod 3)$. For the trees of this family, we have: $n_{1}=2(n+1) / 3$, $n_{4}=(n-2) / 3, m_{44}=(n-5) / 3$.

An edge subdivision of an edge $u v$ is a deletion of $u v$ and an addition of two edges $u w$ and $w v$ along with the new vertex w. For any $T \in$ $\mathcal{H}(n)$, integer $k \leq(n-5) / 3$, and any k edges e_{1}, \ldots, e_{k} of T whose both end-vertices are 4 -vertices, we denote by $T^{*}\left(e_{1}, \ldots, e_{k}\right)$ the chemical tree obtained from T by subdividing the edges e_{1}, \ldots, e_{k}. We designate the family of all trees as T^{*} obtained this way with $\mathcal{H}(n, k)$.

The main result, which we prove in the next section is as follows.
Theorem 1. Let T be a chemical tree of order $n \in[8, \infty) \backslash\{10\}$, and let $s=\max \left\{k \in \mathbb{N}_{0} \mid 4 k \leq n-5\right.$ and $\left.n-2-k \equiv 0(\bmod 3)\right\}$. Then,

$$
\sigma(T) \leq 6 n+2 s+6
$$

The equality holds if and only if $T \in \mathcal{H}(n-s, s)$.

As an immediate corollary of Theorem 1, a characterization of chemical trees with maximal σ-irregularity follows.

Corollary 1. Let T be a chemical tree with maximal σ-irregularity of order $n \in[8, \infty) \backslash\{10\}$. Then, $T \in \mathcal{H}\left(n-n_{2}, n_{2}\right)$, where the number of vertices of T with degree 2 is uniquely determined by $n_{2}=\max \{k \in$ $\mathbb{N}_{0} \mid 4 k \leq n-5$ and $\left.n-2-k \equiv 0(\bmod 3)\right\}$. The numbers of the remaining vertices of T, which are of degree 1 and 4, are $n_{1}=2\left(n-n_{2}+1\right) / 3$ and $n_{4}=\left(n-n_{2}-2\right) / 3$, respectively.

An illustration of chemical trees with maximal σ-irregularity that satisfy Corollary 1 and are of order $8,9,11,12$, and 13 is given in Figure 1, while chemical trees with maximal σ-irregularity that satisfy Corollary 1 and are of order $14, \ldots, 26$ are depicted in Figure 2. Observe that for a given $n \geq 14$, the chemical trees with maximal σ-irregularity are not unique. An example in Figure 3 shows all three non-isomorphic chemical trees of order 15 with maximal σ-irregularity.

$n=4$

$n=5$

$n=6$

$n=7$

$n=8$

$n=9$

$$
n=10
$$

$n=11$

$n=12$

$n=13$

Figure 1. Extremal chemical trees of order $4 \leq n \leq 13$ obtained by a computer-based search.

$n=17$

$n=18$

$n=19$

$n=20$

$n=21$

$n=22$

$n=23$

$n=24$

$n=25$

$n=26$

Figure 2. Extremal chemical trees of order $14 \leq n \leq 26$.

The following transformation will be frequently used in the rest of the paper. Let T be a chemical tree, $u v \in E(T)$ and $w \in V(T)$ such that $d(w)<4, w \neq u, v$, and $u w \notin E(T)$. By T^{\prime} we denote the chemical tree

Figure 3. All non-isomorphic extremal chemical trees of order 15. They all satisfy Corollary 1, and therefore, have the same number of vertices of degree 1,2 , and 4 .
obtained from T by deleting the edge $u v$ and by adding the edge $u w$, i.e., $T^{\prime}=T-u v+u w$. We denote this transformation by $[u v \xrightarrow{u} w]$.

2 Results

In this section, we first prove some auxiliary results needed for the proof of Theorem 1. The proofs of these results (Lemmas 1-3) will be derived for chemical trees of order $n \geq 14$. The extremal chemical trees with $4 \leq n \leq 13$ vertices can be easily computed by a computer-based search, and they are shown in Figure 1. The extremal trees with less than 4 vertices are self-evident and are omitted here.

Lemma 1. Let T be an extremal chemical tree. Then $m_{12}=0$.
Proof. Firstly, we prove the following properties:
(i) there is no path uvw in T such that $d(u)=1, d(v)=d(w)=2$;
(ii) there is no path uvw in T such that $d(u)=1, d(v)=2$ and $d(w)=3$;
(iii) if T has a path uvw such that $d(u)=1, d(v)=2$ and $d(w)=4$, then v is the unique 2-vertex of T, i.e., $n_{2}=1$, and there is no 3 -vertex in T, i.e., $n_{3}=0$.

We proceed by the assumption that $m_{12} \neq 0$ and obtain a contradiction to the extremality of T.
(i) Assume that there is a such path $u v w$ in T with $d(u)=1$, and $d(v)=d(w)=2$. Let $x \in V(T)$ be a neighbor of w, different from v, and let T^{\prime} be the chemical tree obtained by applying the transformation
$[u v \xrightarrow{u} w]$. Then,

$$
\sigma\left(T^{\prime}\right)-\sigma(T)=4+4+(d(x)-3)^{2}-1-(d(x)-2)^{2}=12-2 d(x)>0
$$

since $d(x) \leq 4$. It follows that T is not extremal, which contradicts the initial assumption.
(ii) Again, assume the opposite, that there is a path $u v w$ in T such that $d(u)=1, d(v)=2$, and $d(w)=3$. Let x, y be the neighbors of w, different from v. Denote by T^{\prime} the chemical tree obtained by $[u v \xrightarrow{u} w$] transformation of T. Then,

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & 9+9+(d(x)-4)^{2}+(d(y)-4)^{2} \\
& -2-(d(x)-3)^{2}-(d(y)-3)^{2} \\
= & 30-2 d(x)-2 d(y)>0
\end{aligned}
$$

since $d(x), d(y) \leq 4$. Thus, T is not extremal, which leads to a contradiction.
(iii) Let us prove the first part of the claim. Assume that there is a path $u v w$ in T such that $d(u)=1, d(v)=2$ and $d(w)=4$, and there exists a vertex $a \neq v$ of degree 2. Let x, y be the neighbors of a. Applying the transformation $\left[u v \xrightarrow{u} a\right.$] on T, we obtain the chemical tree T^{\prime}. We have that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & 4+9+(d(x)-3)^{2}+(d(y)-3)^{2} \\
& -1-4-(d(x)-2)^{2}-(d(y)-2)^{2} \\
= & 18-2 d(x)-2 d(y)>0
\end{aligned}
$$

since $d(x), d(y) \leq 4$, that is, T is not extremal.
To prove the second part of the claim, suppose that there exists a vertex a of degree 3 in T and let x, y, z be the neighbors of a. Let T^{\prime} be the chemical tree obtained by $[u v \xrightarrow{u} a]$ transformation of T. Then,

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & 9+9+(d(x)-4)^{2}+(d(y)-4)^{2}+(d(z)-4)^{2} \\
& -1-4-(d(x)-3)^{2}-(d(y)-3)^{2}-(d(z)-3)^{2}
\end{aligned}
$$

$$
=34-2 d(x)-2 d(y)-2 d(z)>0,
$$

since $d(x), d(y), d(z) \leq 4$, so T is not extremal.
From assertions $(i),(i i)$, and (iii), we may conclude that if T is an extremal chemical tree with $m_{12} \neq 0$, then T has only one 2 -vertex and all other vertices of T are of degree 1 or 4 . Denote by u the pendant neighbor of this unique 2 -vertex and by w its non-pendant neighbor. We have that $d(w)=4$ and since $n \geq 14$, at least one neighbor of w is a 4 -vertex. Denote it by a. Let $T^{\prime}=T-\{v u, w a\}+\{w u, u a\}$. Then,

$$
\sigma\left(T^{\prime}\right)-\sigma(T)=9+4+4-1-4=12>0 .
$$

Thus, we obtain a contradiction, and we conclude that $m_{12}=0$.
Lemma 2. Let T be an extremal chemical tree. Then $m_{22}=0$.
Proof. We prove that if T is an extremal chemical tree, then T satisfies the following properties:
(i) there is no path $v_{1} v_{2} v_{3}$ in T with $d\left(v_{i}\right)=2, i=1,2,3$;
(ii) there is no path $v_{1} v_{2} \ldots v_{3} v_{4}$ in T with $d\left(v_{i}\right)=2, i=1,2,3,4$;
(iii) there is no path $v_{1} v_{2} \ldots v_{3} v_{4}$ in T with $d\left(v_{1}\right)=d\left(v_{2}\right)=2$, and $d\left(v_{3}\right), d\left(v_{4}\right) \geq 3$.
We prove all the above claims again by a contradiction.
(i) Assume that there is a path $x v_{1} v_{2} v_{3} y$ such that $d\left(v_{i}\right)=2, i=1,2,3$. We apply the transformation depicted in Figure 4, obtaining a chemical tree $T^{\prime}=T-\left\{x v_{1}, v_{1} v_{2}\right\}+\left\{x v_{3}, v_{3} v_{1}\right\}$. It holds that

Figure 4. The transformation from the assertion (i) of the proof of Lemma 2. The dotted segment lines are optional.

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T) & =(d(x)-4)^{2}+(d(y)-4)^{2}+18-(d(x)-2)^{2}-(d(y)-2)^{2} \\
& =42-4 d(x)-4 d(y)>0
\end{aligned}
$$

since $d(x), d(y) \leq 4$, and therefore, T is not extremal.
(ii) To prove this claim, suppose that there is a path $u v_{1} v_{2} w \ldots x v_{3} v_{4} y$ with $d\left(v_{i}\right)=2, i=1,2,3,4$. Let T^{\prime} be the chemical tree obtained from T by applying the transformation $\left[v_{1} v_{2} \xrightarrow{v_{1}} v_{3}\right]$. Then,

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & (d(w)-1)^{2}+(d(x)-3)^{2}+1+1 \\
& -(d(w)-2)^{2}-(d(x)-2)^{2} \\
= & 4+2 d(w)-2 d(x)>0
\end{aligned}
$$

since $d(x) \leq 4$ and $d(w) \geq 3$. Again, we obtain that T is not extremal. Note that w could be equal to x.
(iii) Suppose that there is a path $v_{1} v_{2} \ldots v_{3} v_{4}$ with $d\left(v_{1}\right)=d\left(v_{2}\right)=2$, and $d\left(v_{3}\right), d\left(v_{4}\right) \geq 3$ and let $T^{\prime}=T-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}+\left\{v_{1} v_{3}, v_{2} v_{4}\right\}$ (see Figure 5 for an illustration).

Figure 5. The transformation from the assertion (iii) of the proof of Lemma 2.

It holds that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T) & =\left(d\left(v_{3}\right)-2\right)^{2}+\left(d\left(v_{4}\right)-2\right)^{2}-\left(d\left(v_{3}\right)-d\left(v_{4}\right)\right)^{2} \\
& \left.\left.=2\left(d\left(v_{3}\right)-2\right)\right)\left(d\left(v_{4}\right)-2\right)\right)>0
\end{aligned}
$$

since $d\left(v_{3}\right), d\left(v_{4}\right) \in\{3,4\}$, which means that T is not extremal.
If T is an extremal chemical tree with $m_{22} \neq 0$, then by the assertions (i) and (ii) it follows that $m_{22}=1$. Let $v_{1} v_{2} \in E(T), d\left(v_{1}\right)=d\left(v_{2}\right)=2$. Consider a path $x v_{1} v_{2} y v_{3} z$ in T. By assertions $(i),(i i)$, and (iii), it follows that $d(x), d(y), d(z)$ are 3 or 4 and $d\left(v_{3}\right)=2$. Observe that such a path in T exists, since we consider chemical trees of order $n \geq 14$. Let $T^{\prime}=$ $T-\left\{x v_{1}, v_{1} v_{2}, v_{2} y\right\}+\left\{x y, v_{1} v_{3}, v_{2} v_{3}\right\}$ (see Figure 6 for an illustration).

Figure 6. The final transformation from the proof of Lemma 2.

Then,

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & 18+(d(x)-d(y))^{2}+(d(y)-4)^{2}+(d(z)-4)^{2} \\
& -(d(x)-2)^{2}-2(d(y)-2)^{2}-(d(z)-2)^{2} \\
= & 34-2(d(x) d(y)+2 d(z)-2 d(x)) \geq 34-32=2>0,
\end{aligned}
$$

and hence, T is not extremal.
Lemma 3. If T is an extremal chemical tree, then $n_{3}=0$.
Proof. Firstly, we prove the following assertion.
Claim 1. An extremal chemical tree cannot have more than one 3-vertex. Proof of Claim 1. Assume that the claim is false and that an extremal chemical tree T has at least two 3 -vertices. Denote two of them by v_{1} and v_{2}. Regarding the neighborhood relation between v_{1} and v_{2}, one can distinguish the following three cases.
Case 1.1. v_{1} are v_{2} adjacent. Let vertices a_{1} and b_{1} be adjacent to v_{1}, and a_{2} and b_{2} be adjacent to v_{2}. We may assume that $d\left(a_{1}\right) \geq d\left(b_{1}\right)$, $d\left(a_{2}\right) \geq d\left(b_{2}\right)$ and $d\left(a_{1}\right) \geq d\left(a_{2}\right)$. Let T^{\prime} be obtained from T by applying the transformation $\left[b_{1} v_{1} \xrightarrow{b_{1}} v_{2}\right.$]. It holds that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & \left(2-d\left(a_{1}\right)\right)^{2}+\left(4-d\left(b_{1}\right)\right)^{2}+\left(4-d\left(a_{2}\right)\right)^{2} \\
& +\left(4-d\left(b_{2}\right)\right)^{2}+4-\left(3-d\left(a_{1}\right)\right)^{2}-\left(3-d\left(b_{1}\right)\right)^{2} \\
& -\left(3-d\left(a_{2}\right)\right)^{2}-\left(3-d\left(b_{2}\right)\right)^{2} \\
= & 2\left(10+d\left(a_{1}\right)-d\left(a_{2}\right)-d\left(b_{1}\right)-d\left(b_{2}\right)\right) \\
\geq & 2\left(10-d\left(b_{1}\right)-d\left(b_{2}\right)\right)>0,
\end{aligned}
$$

which is a contradiction of the optimality of T.

Case 1.2. v_{1} and v_{2} are not adjacent and they share a common neighbor. Let vertices a_{1} and b_{1} be adjacent to v_{1}, and a_{2} and b_{2} be adjacent to v_{2}. By c, we denote the common neighbor of v_{1} and v_{2}. We may assume that $d\left(a_{1}\right) \geq d\left(a_{2}\right)$. After applying the transformation $\left[b_{1} v_{1} \xrightarrow{b_{1}} v_{2}\right]$ on T, we get a chemical tree T^{\prime}. It holds that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & \left(2-d\left(a_{1}\right)\right)^{2}+\left(4-d\left(b_{1}\right)\right)^{2}+(2-d(c))^{2} \\
& +\left(4-d\left(a_{2}\right)\right)^{2}+\left(4-d\left(b_{2}\right)\right)^{2}+(4-d(c))^{2} \\
& -\left(3-d\left(a_{1}\right)\right)^{2}-\left(3-d\left(b_{1}\right)\right)^{2}-(3-d(c))^{2} \\
& -\left(3-d\left(a_{2}\right)\right)^{2}-\left(3-d\left(b_{2}\right)\right)^{2}-(3-d(c))^{2} \\
= & 2\left(9+d\left(a_{1}\right)-d\left(a_{2}\right)-d\left(b_{1}\right)-d\left(b_{2}\right)\right) \\
\geq & 2\left(9-d\left(b_{1}\right)-d\left(b_{2}\right)\right)>0,
\end{aligned}
$$

which is again a contradiction of the optimality of T.
Case 1.3. v_{1} and v_{2} are not adjacent and they do not share a common neighbor. Let vertices a_{1}, b_{1} and c_{1} be adjacent to v_{1}, and a_{2}, b_{2} and c_{2} be adjacent to v_{2}. It will be assumed that the degrees of $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$ and c_{2} are not equal to 3 , otherwise we proceed with Case 1.1. We may assume also that $d\left(a_{1}\right) \geq d\left(b_{1}\right) \geq d\left(c_{1}\right), d\left(a_{2}\right) \geq d\left(b_{2}\right) \geq d\left(c_{2}\right)$ and $d\left(a_{1}\right) \geq d\left(a_{2}\right)$. In the case when c_{1} is not on the path $v_{1} \ldots v_{2}$ apply the transformation $\left[c_{1} v_{1} \xrightarrow{c_{1}} v_{2}\right]$ to T obtaining a chemical tree T^{\prime}. It holds that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T) & =\left(2-d\left(a_{1}\right)\right)^{2}+\left(2-d\left(b_{1}\right)\right)^{2}+\left(4-d\left(c_{1}\right)\right)^{2} \\
& +\left(4-d\left(a_{2}\right)\right)^{2}+\left(4-d\left(b_{2}\right)\right)^{2}+\left(4-d\left(c_{2}\right)\right)^{2} \\
& -\left(3-d\left(a_{1}\right)\right)^{2}-\left(3-d\left(b_{1}\right)\right)^{2}-\left(3-d\left(c_{1}\right)\right)^{2} \\
& -\left(3-d\left(a_{2}\right)\right)^{2}-\left(3-d\left(b_{2}\right)\right)^{2}-\left(3-d\left(c_{2}\right)\right)^{2} \\
& =2\left(9+d\left(a_{1}\right)-d\left(a_{2}\right)+d\left(b_{1}\right)-d\left(b_{2}\right)-d\left(c_{1}\right)-d\left(c_{2}\right)\right) \\
& \geq 2\left(9-d\left(b_{2}\right)-d\left(c_{2}\right)\right)>0 .
\end{aligned}
$$

If c_{1} is on the path $v_{1} \ldots v_{2}$, then we have two possibilities: $d\left(c_{1}\right)=$ $d\left(b_{1}\right)$ and $d\left(c_{1}\right)<d\left(b_{1}\right)$. In the first case, $d\left(c_{1}\right)=d\left(b_{1}\right)$, we swap the labels of the vertices b_{1} and c_{1} such that now c_{1} is not on the path $v_{1} \ldots v_{2}$, and we proceed with the previous transformation. If $d\left(c_{1}\right)<d\left(b_{1}\right)$, then it must
hold that $d\left(c_{1}\right)=2$ and $d\left(a_{1}\right)=d\left(b_{1}\right)=4$. Denote by x the neighbor of c_{1} different than v_{1}. By applying the transformation $\left[c_{1} x \xrightarrow{x} v_{1}\right.$] to T, we obtain the chemical tree T^{\prime}. It holds that $\sigma\left(T^{\prime}\right)-\sigma(T)=18-4 d(x)>0$, and therefore, T is not optimal. This concludes the proof of Claim 1.

Now, we assume that an extremal tree T has one 3 -vertex. We denoted it by v.

Next, we claim that if there is a 2-vertex in T, then its both neighbors cannot be v and a 4-vertex. Assume the opposite, that both neighbors of a 2 -vertex w are v and a 4-vertex u. Let denote by a and b the two vertices adjacent to v, which are different from w. By applying transformation $\left[w u \xrightarrow{u} v\right.$] to T, we obtain the chemical tree T^{\prime}. It holds that

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T)= & 9+(d(a)-4)^{2}+(d(b)-4)^{2} \\
& -1-4-(d(a)-3)^{2}-(d(b)-3)^{2} \\
= & 2(9-d(a)-d(b))>0
\end{aligned}
$$

which is a contradiction of the maximality of T. This establish the claim.
In addition, having by Lemmas 1 and 2 that $m_{12}=0$ and $m_{22}=0$, it follows that the 3 -vertex v can be adjacent only to a pendant vertex or to a 4 -vertex. Concerning the number of pendant neighbors to v three different cases can be distinguished.
Case 1. v has no pendant neighbors. In this case, all neighbors of v are 4vertices. Let $P: a v x \ldots u z$ be a path in T such that $d(u)=4$ and $d(z)=1$. Such a path exists due to Lemma 1 and previously proved claims. Let b be a neighbor of v not in P. Denote by T^{\prime} the tree obtained by transformation $[v b \xrightarrow{b} z]$ of T. Then, $\sigma\left(T^{\prime}\right)-\sigma(T)=16-12=4>0$, and therefore, T is not extremal.
Case 2. v has one pendant neighbor. Let a be the pendant vertex and u one 4-vertex adjacent to v. Consider the tree T^{\prime} obtained from T by applying the transformation $[u v \xrightarrow{u} a]$. The change of the σ-irregularity after this transformation is $\sigma\left(T^{\prime}\right)-\sigma(T)=2>0$. Thus, T is not extremal.

Case 3. v has two pendant neighbors. Let x and y be the two pendant neighbors of v and z be the 4 -vertex adjacent to v. Consider a path $v z w u$ of T. Observe that, such a path exists since $n \geq 14$. We distinguish two
possible cases regarding the degree of w. When $d(w)=4$, then $d(z)=4$, and we consider the tree $T^{\prime}=T-\{x v, y v, z w, w u\}+\{z x, x w, w y, y u\}$, depicted in Figure 7. It holds that

Figure 7. The transformation from the proof of Lemma 3, Case 3 when $d(w)=4$.

$$
\begin{aligned}
\sigma\left(T^{\prime}\right)-\sigma(T) & =(d(u)-2)^{2}+4+4+4+9-(d(u)-4)^{2}-1-4-4 \\
& =4 d(u)>0
\end{aligned}
$$

Therefore, T is not extremal.
When $d(w)=2$, then, by Lemma 2 we have that $d(u)=4$ and $d(z)=4$. Let now $T^{\prime}=T-\{z w, w u\}+\{z u, w v\}$ (see Figure 8 for an illustration). Then,

Figure 8. The transformation from the proof of Lemma 3, Case 3 when $d(w)=2$.

$$
\sigma\left(T^{\prime}\right)-\sigma(T)=27-17=10
$$

and thus, again T is not extremal, and we may finally conclude that $n_{3}=$ 0.

Now, we are ready to prove the main result.

Proof of Theorem 1. The extremal trees with $n=8,9,11,12,13$ vertices, obtained by computer-based search and presented in Figure 1, satisfy the theorem. Therefore, we proceed with the proof for $n \geq 14$.

Since by Lemma $3 n_{3}=0$, an extremal chemical tree T of order n satisfies the following two equations:

$$
\begin{gather*}
n_{1}+n_{2}+n_{4}=n \tag{1}\\
n_{1}+2 n_{2}+4 n_{4}=2(n-1) \tag{2}
\end{gather*}
$$

Lemmas 1-3 assert that in any extremal chemical tree $T, m_{12}=m_{13}=$ $m_{22}=m_{23}=m_{33}=m_{34}=0$. It follows that

$$
\sigma(T)=\sum_{u v \in E(T)}(d(u)-d(v))^{2}=9 m_{14}+4 m_{24}
$$

Moreover, each 2-vertex in T is adjacent to two 4-vertices, and thus, $2 n_{2}=$ m_{24}, and

$$
\begin{equation*}
\sigma(T)=9 m_{14}+8 n_{2} \tag{3}
\end{equation*}
$$

Note that $n_{1}=m_{14}$. From (1) and (2), we obtain $3 n_{1}=2 n-2 n_{2}+2$, or $3 m_{14}=2 n-2 n_{2}+2$, and therefore, (3) can be rewritten as

$$
\sigma(T)=6 n+2 n_{2}+6 .
$$

It follows that the maximal value of $\sigma(T)$ is achieved when n_{2} is maximal.
Now if T is an extremal chemical tree, let H be the chemical tree obtained from T using the following transformation: (i) remove every 2 vertex (if there is any), (ii) add an edge between the 4 -vertices, which were adjacent to a removed 2 -vertex. Note that $H \in \mathcal{H}\left(n-n_{2}\right)$. For the order of H it can be deduced that the relation $n-n_{2} \equiv 2(\bmod 3)$ must hold. Let m_{44}^{H} be the number of edges in H with end-vertices of degree 4. Then, $m_{44}^{H}=\left(n-n_{2}-5\right) / 3$ also holds. Since $n_{2} \leq m_{44}^{H}$, we obtain

$$
4 n_{2} \leq n-5
$$

Thus, the number of 2 -vertices, for which the maximal σ-irregularity is
obtained is

$$
n_{2}^{*}=\max \left\{k \in \mathbb{N}_{0} \mid 4 k \leq n-5 \text { and } n-k \equiv 2(\bmod 3)\right\}
$$

Acknowledgment: The first three authors are partially supported by Ministry of Science of Montenegro, Bilateral project no. 01-082/22-1659/1 while the last two authors are partially supported by Slovenian research agency ARRS, Project BI-ME/23-24-008, Project J1-3002, and Program J1-0383.

References

[1] H. Abdo, N. Cohen, D. Dimitrov, Graphs with maximal irregularity, Filomat 28 (2014) 1315-1322.
[2] H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, Discuss. Math. Graph Theory 34 (2014) 263-278.
[3] H. Abdo, D. Dimitrov, I. Gutman, Graphs with maximal σ irregularity, Discr. Appl. Math. 250 (2018) 57-64.
[4] M. O. Albertson, The irregularity of a graph, Ars Comb. 46 (1997) 219-225.
[5] A. Ali, A. M. Albalahi, A. M. Alanazi, A. A Bhatti, A. E. Hamza, On the maximum sigma index of k-cyclic graphs, Discr. Appl. Math. 352 (2023) 58-62.
[6] R. Criado, J. Flores, A. G. del Amo, M. Romance, Centralities of a network and its line graph: an analytical comparison by means of their irregularity, Int. J. Comput. Math. 91 (2014) 304-314.
[7] E. Estrada, Quantifying network heterogeneity, Phys. Rev. E 82 (2010) \#066102.
[8] E. Estrada, Randić index, irregularity and complex biomolecular networks, Acta Chim. Slov. 57 (2010) 597-603.
[9] I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees, J. Chem. Inf. Model. 45 (2005) 222-230.
[10] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik, I. N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem. 79 (2018) 491-508.
[11] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, DIMACS Ser. Discr. Math. Theor. Comput. Sci. 69 (2005) 253-264.
[12] T. Réti, On some properties of graph irregularity indices with a particular regard to the σ-index, Appl. Math. Comput. 344 (2019) 107-115.
[13] T. Réti, R. Sharafdini, Á. Drégelyi-Kiss, H. Haghbin, Graph irregularity indices used as molecular descriptors in QSPR studies, MATCH Commun. Math. Comput. Chem. 79 (2018) 509-524.
[14] T. A. B. Snijders, The degree variance: an index of graph heterogeneity, Soc. Netw. 3 (1981) 163-174.

[^0]: * Corresponding author.

