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Abstract

The σ-irregularity index is a variant of the well-established Al-
bertson irregularity index. For a graph G = (V,E) it is defined as
σ(G) =

∑
uv∈E(d(u) − d(v))2, where d(u) and d(v) denote the de-

grees of vertices u and v, respectively. In this note, we characterize
chemical trees of a given order with maximal σ-irregularity index.

1 Introduction

The graphs considered here are simple and finite. The vertex and the edge

sets of a graph G are denoted by V (G) and E(G). For a vertex v ∈ V (G),

we denote the degree of v in G by dG(v). The subscript G will be omitted

if from the context it is clear which graph is considered.

A graph G is regular if all its vertices have the same degree, otherwise,

it is irregular. A topological invariant I(G) of a graph G is called an
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irregularity measure or irregularity index, if I(G) ≥ 0 and I(G) = 0 if and

only if graph G is a regular graph.

Irregularity measures of graphs play a significant role in many scientific

areas including chemistry and network theory [6–9, 13, 14]. One of the

best-known and most thoroughly investigated irregularity measures is the

Albertson irregularity index [4]:

irr(G) =
∑

uv∈E(G)

|dG(u)− dG(v)|.

For results on the Albertson irregularity index, we refer the readers to

[1,2,4,9,11]. Trying to avoid the absolute value calculation in the Albertson

irregularity index, one naturally arrived to the σ(G)-irregularity index:

σ(G) =
∑

uv∈E(G)

(dG(u)− dG(v))
2.

The first results on σ-irregularity were obtained by Gutman et al. in [10].

In this seminal work, some fundamental properties of the σ-irregularity

were presented including the relation

σ(G) = F (G)− 2M2(G),

where

F (G) =
∑

u∈V (G)

d(u)3 and M2(G) =
∑

uv∈E(G)

d(u)d(v)

are the forgotten index and the second Zagreb index, respectively.

The general graphs with maximal σ-irregularity were characterized in

[3], where also some lower bounds on σ-irregularity were presented. The so-

called inverse problem, which in this context means proving or disproving

the existence of a graph whose σ-irregularity is equal to a given non-

negative integer, was resolved in [3, 10].

For some classes of graphs, Réti [12] compared the σ-irregularity with

a couple of well-known irregularity measures.

A connected k-cyclic graph is a connected graph of order n and size
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n + k − 1. Recently, in [5], connected k-cyclic graphs with maximal σ-

irregularity were determined.

A connected graph with the maximum degree at most 4 is called a

chemical graph. A non-cyclic chemical graph is a chemical tree. Among

the (chemical) trees in [3] it was shown that the path graph has the smallest

σ-irregularity. Here we characterize the chemical trees with maximal σ-

irregularity. Before we proceed with the characterization, we present in

the next section the necessary additional notation and preliminaries.

1.1 Additional notation and preliminaries

Let T be a chemical tree. If d(v) = k, we name a vertex v ∈ V (T ) as

k-vertex. Let us denote by ni the number of vertices in T of degree i,

i = 1, 2, 3, 4, and by mij , 1 ≤ i ≤ j ≤ 4, the number of edges in T

with end-vertices of degrees i and j. If T is a chemical tree with maximal

σ-irregularity, then T will be called extremal.

Let denote by H(n) the family of chemical trees of order n with all

vertices of degree either 1 or 4. Note, this family is nonempty if and only

if n ≡ 2 (mod 3). For the trees of this family, we have: n1 = 2(n+ 1)/3,

n4 = (n− 2)/3, m44 = (n− 5)/3.

An edge subdivision of an edge uv is a deletion of uv and an addition

of two edges uw and wv along with the new vertex w. For any T ∈
H(n), integer k ≤ (n − 5)/3, and any k edges e1, . . . , ek of T whose both

end-vertices are 4-vertices, we denote by T ∗(e1, . . . , ek) the chemical tree

obtained from T by subdividing the edges e1, . . . , ek. We designate the

family of all trees as T ∗ obtained this way with H(n, k).

The main result, which we prove in the next section is as follows.

Theorem 1. Let T be a chemical tree of order n ∈ [8,∞) \ {10}, and let

s = max{k ∈ N0 | 4k ≤ n− 5 and n− 2− k ≡ 0 (mod 3)}. Then,

σ(T ) ≤ 6n+ 2s+ 6.

The equality holds if and only if T ∈ H(n− s, s).
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As an immediate corollary of Theorem 1, a characterization of chemical

trees with maximal σ-irregularity follows.

Corollary 1. Let T be a chemical tree with maximal σ-irregularity of

order n ∈ [8,∞) \ {10}. Then, T ∈ H(n − n2, n2), where the number

of vertices of T with degree 2 is uniquely determined by n2 = max{k ∈
N0 | 4k ≤ n−5 and n−2−k ≡ 0 (mod 3)}. The numbers of the remaining

vertices of T , which are of degree 1 and 4, are n1 = 2(n − n2 + 1)/3 and

n4 = (n− n2 − 2)/3, respectively.

An illustration of chemical trees with maximal σ-irregularity that sat-

isfy Corollary 1 and are of order 8, 9, 11, 12, and 13 is given in Figure 1,

while chemical trees with maximal σ-irregularity that satisfy Corollary 1

and are of order 14, . . . , 26 are depicted in Figure 2. Observe that for

a given n ≥ 14, the chemical trees with maximal σ-irregularity are not

unique. An example in Figure 3 shows all three non-isomorphic chemical

trees of order 15 with maximal σ-irregularity.

n = 4 n = 5 n = 6 n = 7

n = 8 n = 9 n = 10

n = 11 n = 12 n = 13

Figure 1. Extremal chemical trees of order 4 ≤ n ≤ 13 obtained by a
computer-based search.



271

n = 14 n = 15 n = 16

n = 17 n = 18

n = 19 n = 20

n = 21 n = 22

n = 23 n = 24

n = 25 n = 26

Figure 2. Extremal chemical trees of order 14 ≤ n ≤ 26.

The following transformation will be frequently used in the rest of the

paper. Let T be a chemical tree, uv ∈ E(T ) and w ∈ V (T ) such that

d(w) < 4, w ̸= u, v, and uw /∈ E(T ). By T ′ we denote the chemical tree
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Figure 3. All non-isomorphic extremal chemical trees of order 15.
They all satisfy Corollary 1, and therefore, have the same
number of vertices of degree 1, 2, and 4.

obtained from T by deleting the edge uv and by adding the edge uw, i.e.,

T ′ = T − uv + uw. We denote this transformation by [uv
u−→ w].

2 Results

In this section, we first prove some auxiliary results needed for the proof

of Theorem 1. The proofs of these results (Lemmas 1-3) will be derived

for chemical trees of order n ≥ 14. The extremal chemical trees with

4 ≤ n ≤ 13 vertices can be easily computed by a computer-based search,

and they are shown in Figure 1. The extremal trees with less than 4

vertices are self-evident and are omitted here.

Lemma 1. Let T be an extremal chemical tree. Then m12 = 0.

Proof. Firstly, we prove the following properties:

(i) there is no path uvw in T such that d(u) = 1, d(v) = d(w) = 2;

(ii) there is no path uvw in T such that d(u) = 1, d(v) = 2 and

d(w) = 3;

(iii) if T has a path uvw such that d(u) = 1, d(v) = 2 and d(w) = 4,

then v is the unique 2-vertex of T , i.e., n2 = 1, and there is no 3-vertex

in T , i.e., n3 = 0.

We proceed by the assumption thatm12 ̸= 0 and obtain a contradiction

to the extremality of T .

(i) Assume that there is a such path uvw in T with d(u) = 1, and

d(v) = d(w) = 2. Let x ∈ V (T ) be a neighbor of w, different from v,

and let T ′ be the chemical tree obtained by applying the transformation
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[uv
u−→ w]. Then,

σ(T ′)− σ(T ) = 4 + 4 + (d(x)− 3)2 − 1− (d(x)− 2)2 = 12− 2d(x) > 0,

since d(x) ≤ 4. It follows that T is not extremal, which contradicts the

initial assumption.

(ii) Again, assume the opposite, that there is a path uvw in T such

that d(u) = 1, d(v) = 2, and d(w) = 3. Let x, y be the neighbors of w,

different from v. Denote by T ′ the chemical tree obtained by [uv
u−→ w]

transformation of T . Then,

σ(T ′)− σ(T ) = 9 + 9 + (d(x)− 4)2 + (d(y)− 4)2

− 2− (d(x)− 3)2 − (d(y)− 3)2

= 30− 2d(x)− 2d(y) > 0,

since d(x), d(y) ≤ 4. Thus, T is not extremal, which leads to a contradic-

tion.

(iii) Let us prove the first part of the claim. Assume that there is a

path uvw in T such that d(u) = 1, d(v) = 2 and d(w) = 4, and there exists

a vertex a ̸= v of degree 2. Let x, y be the neighbors of a. Applying the

transformation [uv
u−→ a] on T , we obtain the chemical tree T ′. We have

that

σ(T ′)− σ(T ) = 4 + 9 + (d(x)− 3)2 + (d(y)− 3)2

− 1− 4− (d(x)− 2)2 − (d(y)− 2)2

= 18− 2d(x)− 2d(y) > 0,

since d(x), d(y) ≤ 4, that is, T is not extremal.

To prove the second part of the claim, suppose that there exists a

vertex a of degree 3 in T and let x, y, z be the neighbors of a. Let T ′ be

the chemical tree obtained by [uv
u−→ a] transformation of T . Then,

σ(T ′)− σ(T ) = 9 + 9 + (d(x)− 4)2 + (d(y)− 4)2 + (d(z)− 4)2

− 1− 4− (d(x)− 3)2 − (d(y)− 3)2 − (d(z)− 3)2
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= 34− 2d(x)− 2d(y)− 2d(z) > 0,

since d(x), d(y), d(z) ≤ 4, so T is not extremal.

From assertions (i), (ii), and (iii), we may conclude that if T is an

extremal chemical tree with m12 ̸= 0, then T has only one 2-vertex and all

other vertices of T are of degree 1 or 4. Denote by u the pendant neighbor

of this unique 2-vertex and by w its non-pendant neighbor. We have that

d(w) = 4 and since n ≥ 14, at least one neighbor of w is a 4-vertex. Denote

it by a. Let T ′ = T − {vu,wa}+ {wu, ua}. Then,

σ(T ′)− σ(T ) = 9 + 4 + 4− 1− 4 = 12 > 0.

Thus, we obtain a contradiction, and we conclude that m12 = 0.

Lemma 2. Let T be an extremal chemical tree. Then m22 = 0.

Proof. We prove that if T is an extremal chemical tree, then T satisfies

the following properties:

(i) there is no path v1v2v3 in T with d(vi) = 2, i = 1, 2, 3;

(ii) there is no path v1v2 . . . v3v4 in T with d(vi) = 2, i = 1, 2, 3, 4;

(iii) there is no path v1v2 . . . v3v4 in T with d(v1) = d(v2) = 2, and

d(v3), d(v4) ≥ 3.

We prove all the above claims again by a contradiction.

(i) Assume that there is a path xv1v2v3y such that d(vi) = 2, i = 1, 2, 3.

We apply the transformation depicted in Figure 4, obtaining a chemical

tree T ′ = T − {xv1, v1v2}+ {xv3, v3v1}. It holds that

v1 v2

T

v3x y v1 v2

T ′

v3x y

Figure 4. The transformation from the assertion (i) of the proof of
Lemma 2. The dotted segment lines are optional.

σ(T ′)− σ(T ) = (d(x)− 4)2 + (d(y)− 4)2 + 18− (d(x)− 2)2 − (d(y)− 2)2

= 42− 4d(x)− 4d(y) > 0,
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since d(x), d(y) ≤ 4, and therefore, T is not extremal.

(ii) To prove this claim, suppose that there is a path uv1v2w . . . xv3v4y

with d(vi) = 2, i = 1, 2, 3, 4. Let T ′ be the chemical tree obtained from T

by applying the transformation [v1v2
v1−→ v3]. Then,

σ(T ′)− σ(T ) = (d(w)− 1)2 + (d(x)− 3)2 + 1 + 1

− (d(w)− 2)2 − (d(x)− 2)2

= 4 + 2d(w)− 2d(x) > 0,

since d(x) ≤ 4 and d(w) ≥ 3. Again, we obtain that T is not extremal.

Note that w could be equal to x.

(iii) Suppose that there is a path v1v2 . . . v3v4 with d(v1) = d(v2) = 2,

and d(v3), d(v4) ≥ 3 and let T ′ = T − {v1v2, v3v4} + {v1v3, v2v4} (see

Figure 5 for an illustration).

v1 v2

T

v3 v4 v1 v2

T ′

v3 v4

Figure 5. The transformation from the assertion (iii) of the proof of
Lemma 2.

It holds that

σ(T ′)− σ(T ) = (d(v3)− 2)2 + (d(v4)− 2)2 − (d(v3)− d(v4))
2

= 2(d(v3)− 2))(d(v4)− 2)) > 0,

since d(v3), d(v4) ∈ {3, 4}, which means that T is not extremal.

If T is an extremal chemical tree with m22 ̸= 0, then by the assertions

(i) and (ii) it follows that m22 = 1. Let v1v2 ∈ E(T ), d(v1) = d(v2) = 2.

Consider a path xv1v2yv3z in T . By assertions (i), (ii), and (iii), it follows

that d(x), d(y), d(z) are 3 or 4 and d(v3) = 2. Observe that such a path

in T exists, since we consider chemical trees of order n ≥ 14. Let T ′ =

T − {xv1, v1v2, v2y}+ {xy, v1v3, v2v3} (see Figure 6 for an illustration).
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v1 v2

T

v3x y z v1 v2

T ′

v3x y z

Figure 6. The final transformation from the proof of Lemma 2.

Then,

σ(T ′)− σ(T ) = 18 + (d(x)− d(y))2 + (d(y)− 4)2 + (d(z)− 4)2

− (d(x)− 2)2 − 2(d(y)− 2)2 − (d(z)− 2)2

= 34− 2(d(x)d(y) + 2d(z)− 2d(x)) ≥ 34− 32 = 2 > 0,

and hence, T is not extremal.

Lemma 3. If T is an extremal chemical tree, then n3 = 0.

Proof. Firstly, we prove the following assertion.

Claim 1. An extremal chemical tree cannot have more than one 3-vertex.

Proof of Claim 1. Assume that the claim is false and that an extremal

chemical tree T has at least two 3-vertices. Denote two of them by v1

and v2. Regarding the neighborhood relation between v1 and v2, one can

distinguish the following three cases.

Case 1.1. v1 are v2 adjacent. Let vertices a1 and b1 be adjacent to v1,

and a2 and b2 be adjacent to v2. We may assume that d(a1) ≥ d(b1),

d(a2) ≥ d(b2) and d(a1) ≥ d(a2). Let T ′ be obtained from T by applying

the transformation [b1v1
b1−→ v2]. It holds that

σ(T ′)− σ(T ) = (2− d(a1))
2 + (4− d(b1))

2 + (4− d(a2))
2

+ (4− d(b2))
2 + 4− (3− d(a1))

2 − (3− d(b1))
2

− (3− d(a2))
2 − (3− d(b2))

2

= 2(10 + d(a1)− d(a2)− d(b1)− d(b2))

≥ 2(10− d(b1)− d(b2)) > 0,

which is a contradiction of the optimality of T .
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Case 1.2. v1 and v2 are not adjacent and they share a common neighbor.

Let vertices a1 and b1 be adjacent to v1, and a2 and b2 be adjacent to v2.

By c, we denote the common neighbor of v1 and v2. We may assume that

d(a1) ≥ d(a2). After applying the transformation [b1v1
b1−→ v2] on T , we

get a chemical tree T ′. It holds that

σ(T ′)− σ(T ) = (2− d(a1))
2 + (4− d(b1))

2 + (2− d(c))2

+ (4− d(a2))
2 + (4− d(b2))

2 + (4− d(c))2

− (3− d(a1))
2 − (3− d(b1))

2 − (3− d(c))2

− (3− d(a2))
2 − (3− d(b2))

2 − (3− d(c))2

= 2(9 + d(a1)− d(a2)− d(b1)− d(b2))

≥ 2(9− d(b1)− d(b2)) > 0,

which is again a contradiction of the optimality of T .

Case 1.3. v1 and v2 are not adjacent and they do not share a common

neighbor. Let vertices a1, b1 and c1 be adjacent to v1, and a2, b2 and c2 be

adjacent to v2. It will be assumed that the degrees of a1, b1, c1, a2, b2 and

c2 are not equal to 3, otherwise we proceed with Case 1.1. We may assume

also that d(a1) ≥ d(b1) ≥ d(c1), d(a2) ≥ d(b2) ≥ d(c2) and d(a1) ≥ d(a2).

In the case when c1 is not on the path v1 . . . v2 apply the transformation

[c1v1
c1−→ v2] to T obtaining a chemical tree T ′. It holds that

σ(T ′)− σ(T ) = (2− d(a1))
2 + (2− d(b1))

2 + (4− d(c1))
2

+ (4− d(a2))
2 + (4− d(b2))

2 + (4− d(c2))
2

− (3− d(a1))
2 − (3− d(b1))

2 − (3− d(c1))
2

− (3− d(a2))
2 − (3− d(b2))

2 − (3− d(c2))
2

= 2(9 + d(a1)− d(a2) + d(b1)− d(b2)− d(c1)− d(c2))

≥ 2(9− d(b2)− d(c2)) > 0.

If c1 is on the path v1 . . . v2, then we have two possibilities: d(c1) =

d(b1) and d(c1) < d(b1). In the first case, d(c1) = d(b1), we swap the labels

of the vertices b1 and c1 such that now c1 is not on the path v1 . . . v2, and

we proceed with the previous transformation. If d(c1) < d(b1), then it must
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hold that d(c1) = 2 and d(a1) = d(b1) = 4. Denote by x the neighbor of

c1 different than v1. By applying the transformation [c1x
x−→ v1] to T , we

obtain the chemical tree T ′. It holds that σ(T ′)− σ(T ) = 18− 4d(x) > 0,

and therefore, T is not optimal. This concludes the proof of Claim 1.

Now, we assume that an extremal tree T has one 3-vertex. We denoted

it by v.

Next, we claim that if there is a 2-vertex in T , then its both neighbors

cannot be v and a 4-vertex. Assume the opposite, that both neighbors of a

2-vertex w are v and a 4-vertex u. Let denote by a and b the two vertices

adjacent to v, which are different from w. By applying transformation

[wu
u−→ v] to T , we obtain the chemical tree T ′. It holds that

σ(T ′)− σ(T ) = 9 + (d(a)− 4)2 + (d(b)− 4)2

− 1− 4− (d(a)− 3)2 − (d(b)− 3)2

= 2(9− d(a)− d(b)) > 0,

which is a contradiction of the maximality of T . This establish the claim.

In addition, having by Lemmas 1 and 2 that m12 = 0 and m22 = 0,

it follows that the 3-vertex v can be adjacent only to a pendant vertex

or to a 4-vertex. Concerning the number of pendant neighbors to v three

different cases can be distinguished.

Case 1. v has no pendant neighbors. In this case, all neighbors of v are 4-

vertices. Let P : avx . . . uz be a path in T such that d(u) = 4 and d(z) = 1.

Such a path exists due to Lemma 1 and previously proved claims. Let b be

a neighbor of v not in P . Denote by T ′ the tree obtained by transformation

[vb
b−→ z] of T . Then, σ(T ′) − σ(T ) = 16 − 12 = 4 > 0, and therefore, T

is not extremal.

Case 2. v has one pendant neighbor. Let a be the pendant vertex and u one

4-vertex adjacent to v. Consider the tree T ′ obtained from T by applying

the transformation [uv
u−→ a]. The change of the σ-irregularity after this

transformation is σ(T ′)− σ(T ) = 2 > 0. Thus, T is not extremal.

Case 3. v has two pendant neighbors. Let x and y be the two pendant

neighbors of v and z be the 4-vertex adjacent to v. Consider a path vzwu

of T . Observe that, such a path exists since n ≥ 14 . We distinguish two
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possible cases regarding the degree of w. When d(w) = 4, then d(z) = 4,

and we consider the tree T ′ = T − {xv, yv, zw,wu} + {zx, xw,wy, yu},
depicted in Figure 7. It holds that

v z

T

w u

x

y

v z

T ′

w u

x

y

Figure 7. The transformation from the proof of Lemma 3, Case 3 when
d(w) = 4.

σ(T ′)− σ(T ) = (d(u)− 2)2 + 4 + 4 + 4 + 9− (d(u)− 4)2 − 1− 4− 4

= 4d(u) > 0.

Therefore, T is not extremal.

When d(w) = 2, then, by Lemma 2 we have that d(u) = 4 and d(z) = 4.

Let now T ′ = T − {zw,wu} + {zu,wv} (see Figure 8 for an illustration).

Then,

v z

T

w u

x

y

v z

T ′

w u

x

y

Figure 8. The transformation from the proof of Lemma 3, Case 3 when
d(w) = 2.

σ(T ′)− σ(T ) = 27− 17 = 10,

and thus, again T is not extremal, and we may finally conclude that n3 =

0.

Now, we are ready to prove the main result.
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Proof of Theorem 1. The extremal trees with n = 8, 9, 11, 12, 13 vertices,

obtained by computer-based search and presented in Figure 1, satisfy the

theorem. Therefore, we proceed with the proof for n ≥ 14.

Since by Lemma 3 n3 = 0, an extremal chemical tree T of order n

satisfies the following two equations:

n1 + n2 + n4 = n, (1)

n1 + 2n2 + 4n4 = 2(n− 1). (2)

Lemmas 1-3 assert that in any extremal chemical tree T , m12 = m13 =

m22 = m23 = m33 = m34 = 0. It follows that

σ(T ) =
∑

uv∈E(T )

(d(u)− d(v))2 = 9m14 + 4m24.

Moreover, each 2-vertex in T is adjacent to two 4-vertices, and thus, 2n2 =

m24, and

σ(T ) = 9m14 + 8n2. (3)

Note that n1 = m14. From (1) and (2), we obtain 3n1 = 2n− 2n2 + 2, or

3m14 = 2n− 2n2 + 2, and therefore, (3) can be rewritten as

σ(T ) = 6n+ 2n2 + 6.

It follows that the maximal value of σ(T ) is achieved when n2 is maximal.

Now if T is an extremal chemical tree, let H be the chemical tree

obtained from T using the following transformation: (i) remove every 2-

vertex (if there is any), (ii) add an edge between the 4-vertices, which were

adjacent to a removed 2-vertex. Note that H ∈ H(n− n2). For the order

of H it can be deduced that the relation n− n2 ≡ 2 (mod 3) must hold.

Let mH
44 be the number of edges in H with end-vertices of degree 4. Then,

mH
44 = (n− n2 − 5)/3 also holds. Since n2 ≤ mH

44, we obtain

4n2 ≤ n− 5.

Thus, the number of 2-vertices, for which the maximal σ-irregularity is
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obtained is

n∗
2 = max{k ∈ N0 | 4k ≤ n− 5 and n− k ≡ 2 (mod 3)}.
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