(n, m)-Graphs with Maximum Vertex-Degree Function-Index for Convex Functions

Si-Ao Xu, Baoyindureng Wu*
College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
siaoxu24@163.com, baoywu@163.com

(Received September 6, 2023)

Abstract

An (n, m)-graph is a graph with n vertices and m edges. The vertex-degree function-index $H_{f}(G)$ of a graph G is defined as $H_{f}(G)$ $=\sum_{v \in V(G)} f(d(v))$, where f is a real function.

In this paper, we show that if $f(x)$ is strictly convex and strictly monotonically decreasing and satisfies some additional properties, then $H_{f}(G) \leq(n-k-1) f(0)+f(p)+(k-p) f(k-1)+p f(k)$ for any connected (n, m)-graph G with $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. The unique graph that satisfies the above equality is characterized. As an instance, the function $f(x)=(x+q)^{\alpha}$ is such a function when $\alpha \leq-t$, $-1<q \leq 2.038 t-0.038$ and $t \geq 1$ or when $\alpha<0,-1<q \leq 0$.

We also prove that if $f(x)$ is strictly convex and strictly monotonically decreasing and satisfies some additional properties, then $H_{f}(G) \leq(n-k-1) f(0)+f(p)+(k-p) f(k-1)+p f(k)$ for any (n, m)-graph G with $m=k(k-1) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-1$. The unique graph that satisfies the above equality is characterized. As an instance, the function $f(x)=(x+q)^{\alpha}$ has the properties as described above when $\alpha \leq-t$ and $0<q \leq$ $1.413 t+0.587$ and $t \geq 1$.

[^0]
1 Introduction

In this paper, we only consider simple undirected graphs. For undetermined notations and terminologies, see the book by Bondy and Murty [5]. We use $V(G)$ and $E(G)$ to denote the vertex-set and edge-set of a graph G, respectively. Let $G[S]$ denote an induced subgraph of G whose vertex set is S and whose edge set consists of all edges of G which have both end-vertices in S. We denote a complete graph with n vertices by K_{n}.

Let n and m be two positive integers with $n \geq 2$ and $1 \leq m \leq n(n-$ 1)/2. An (n, m)-graph is a graph $G=(V(G), E(G))$, where $m=|E(G)|$ and $n=|V(G)|$. Let $\mathcal{G}_{c}(n, m)$ be the family of all (n, m)-graphs G satisfying that $d(v) \in\left\{\left\lfloor\frac{2 m}{n}\right\rfloor,\left\lceil\frac{2 m}{n}\right\rceil\right\}$ for all $v \in V(G)$.

In 1972, Gutman and Trinajstić [9] introduced the first Zagreb index:

$$
M_{1}(G)=\sum_{u \in V} d(v)^{2},
$$

where $d(v)$ denotes the degree of v in G. The zeroth-order general Randić index ${ }^{0} R_{\alpha}(G)$ of a graph G, was defined by Li and Zheng in [15] as

$$
{ }^{0} R_{\alpha}(G)=\sum_{u \in V} d(v)^{\alpha},
$$

where α is a real number and $\alpha \notin\{0,1\}$. In particular, ${ }^{0} R_{-1}(G)$ is called the inverse degree $I D(G)$ of $G[8],{ }^{0} R_{2}(G)$ is just equal to $M_{1}(G)$, and ${ }^{0} R_{-\frac{1}{2}}(G)$ in [10] is called the Randić index $R(G)$ of G. Some extremal results concerning the zeroth-order general Randić index were deduced in $[2,12-15,17]$.

A more general graph invariant was introduced in [1]:

$$
{ }^{0} R_{\alpha, q}(G)=\sum_{v \in V}(d(v)+q)^{\alpha},
$$

where α and q are real numbers and $\alpha \neq 0$ or 1 . The invariant ${ }^{0} R_{\alpha, q}(G)$ is a modified form of the zeroth-order general Randić index. In particular,
${ }^{0} R_{\alpha, 0}(G)={ }^{0} R_{\alpha}(G)$ and ${ }^{0} R_{2,0}(G)=M_{1}(G)$. In addition,

$$
{ }^{0} R_{-1,1}(G)=\sum_{v \in V} \frac{1}{d(v)+1}
$$

are known to be Caro-Wei index of a graph $[6,20]$. It is well known that

$$
\alpha(G) \geq{ }^{0} R_{-1,1}(G)
$$

where $\alpha(G)$ is the independence number of G for any graph G.
Recall some specific graphs defined in [4]. A pineapple with parameters $n, k(k \leq n)$, denoted by $P A(n, k)$, is a graph on n vertices consisting of a clique on k vertices and a stable set on the remaining $n-k$ vertices in which each vertex of the stable set is adjacent to a unique and the same vertex of the clique.

A fanned pineapple of type 1 with parameters $n, k, p(n \geq k \geq p)$, denoted by $F P A_{1}(n, k, p)$, is a graph (on n vertices) obtained from a pineapple $P A(n, k)$ by connecting a vertex from the stable set by edges to p vertices of the clique, with $0 \leq p \leq k-2 . F P A_{1}(7,4,1)$ is represented in Figure 1.

Figure 1. $F P A_{1}(7,4,1)$.

In [12], the authors characterized the connected (n, m)-graphs with extremal maximum zeroth-order general Randić index for $\alpha<-1$.

Theorem $1(\mathrm{Hu}, \mathrm{Li}$, Shi and $\mathrm{Xu}[12])$. Let $\alpha \leq-1$ be a real number, and n, m, k, p be nonnegative integers satisfying $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n, m)-graph, then

$$
\begin{aligned}
{ }^{0} R_{\alpha}(G) \leq & (n-k-1) \cdot 1^{\alpha}+(p+1)^{\alpha}+(k-p-1)(k-1)^{\alpha} \\
& +p \cdot k^{\alpha}+(n-1)^{\alpha}
\end{aligned}
$$

the equality holds if and only if $G=F P A_{1}(n, k, p)$.
Li and Shi [14], independently Pavlović, Lazić and Aleksić [17] extended the above result to the case when $\alpha<0$.

Theorem 2 (Li and Shi [14], Pavlović, Lazić and Aleksić [17]). Let $\alpha<0$ be a real number, and n, m, k, p be nonnegative integers satisfying $m=$ $n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n, m)-graph, then

$$
\begin{aligned}
{ }^{0} R_{\alpha}(G) \leq & (n-k-1) \cdot 1^{\alpha}+(p+1)^{\alpha}+(k-p-1)(k-1)^{\alpha} \\
& +p \cdot k^{\alpha}+(n-1)^{\alpha}
\end{aligned}
$$

the equality holds if and only if $G=F P A_{1}(n, k, p)$.
In [21], Yao, Liu, Belardo and Yang introduced the vertex-degree function-index $H_{f}(G)$ of a graph G with a real-valued function $f(x)$ as follows:

$$
H_{f}(G)=\sum_{v \in V(G)} f(d(v))
$$

Some properties about the vertex-degree function-index have been studied, see $[3,7,11,18,19,21,22]$.

Recently, Ali, Gutman, Saber and Alanazi [3] gave the following lower bound for $H_{f}(G)$ of a connected (n, m)-graph G with $n \geq 4$ and $n+1 \leq$ $m \leq \frac{3 n}{2}$ under the condition that $f(G)$ is convex.

Theorem 3 (Ali, Gutman, Saber and Alanazi [3]). Let G be a connected (n, m)-graph, where n and m be two integers with $n \geq 4, n+1 \leq m \leq \frac{3 n}{2}$, and let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n$. If $f(x)$ is a strictly convex function, then it holds that

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}_{c}(n, m)$.
Hu, Li and Peng [11] proved that the same lower bound holds among all (n, m)-graphs or all connected (n, m)-graphs.

Theorem $4(\mathrm{Hu}, \mathrm{Li}$ and Peng [11]). Let G be an (n, m)-graph, where n and m be two integers with $n \geq 2$ and $n-1 \leq m \leq n(n-1) / 2$, and let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n$. If $f(x)$ is a strictly convex function, then it holds that

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

and the equality holds if and only if $G \in \mathcal{G}_{c}(n, m)$.
Theorem $5(\mathrm{Hu}, \mathrm{Li}$ and Peng [11]). Let G be a connected (n, m)-graph, where n and m be two integers with $n \geq 2$ and $n-1 \leq m \leq n(n-1) / 2$, and let $k=\lfloor 2 m / n\rfloor$ and $r=2 m-k n$. If $f(x)$ is a strictly convex function, then it holds that

$$
H_{f}(G) \geq r f(k+1)+(n-r) f(k)
$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}_{c}(n, m)$.
Tomescu $[18,19]$ established sharp upper bound for $H_{f}(G)$ of an (n, m) graph G with $m \leq \frac{3 n}{2}$ under the restriction that f is a strictly convex, $f(x)$ is differentiable and its derivative is strictly convex.

Lemma 1 (Tomescu [19]). If G is an (n, m)-graph that maximizes (minimizes) $H_{f}(G)$ for a strictly convex (concave) function $f(x)$, then G has at most one nontrivial connected component C, and C has a vertex of degree $|V(C)|-1$.

Lemma 2 (Tomescu [19]). In the set of connected (n, m)-graphs G having $m \geq n-1$, the graph which maximizes (minimizes) $H_{f}(G)$ for a strictly convex (concave) function $f(x), G$ has a vertex v with degree $n-1$.

Theorem 6 (Tomescu [18]). Let $f(x)$ be a strictly convex function having the property that $f(x)$ is differentiable and its derivative is strictly convex, and let n and m be two integers with $n \geq 2$ and $1 \leq m \leq n-1$. If G is an (n, m)-graph, then $H_{f}(G) \leq f(m)+m f(1)+(n-m-1) f(0)$, with equality if and only if $G=S_{m+1} \cup(n-m-1) K_{1}$.

Theorem 7 (Tomescu [18]). Let $f(x)$ be a strictly convex function having the property that $f(x)$ is differentiable and its derivative is strictly convex,
and let n and m be two integers with $n \geq 3, n \leq m \leq 2 n-3$. If G is a connected (n, m)-graph, then
$H_{f}(G) \leq f(n-1)+f(m-n+2)+(m-n+1) f(2)+(2 n-m-3) f(1)$, with equality if and only if $G=K_{1} \vee\left(K_{1, m-n+1} \cup(2 n-m-3) K_{1}\right)$.

It can be found that Tomescu's result does not apply when the function $f(x)=(x+q)^{\alpha}$, where $\alpha<0$ and $q>0$, because the function $f(x)$ is strictly convex but its derivative is strictly concave. Therefore it is necessary to find a new method to study it.

In this paper, we will further study the maximum values of $H_{f}(G)$ among all connected (n, m)-graphs as well as on all (n, m)-graphs, provided that the function $f(x)$ satisfies the conditions of some or all of the following conditions:
(i) $f(x)$ is a strictly convex function in the range where $H_{f}(G)$ can be defined.
(ii) $f(x)$ is a strictly monotonically decreasing in the range where $H_{f}(G)$ can be defined.
(iii) $(n-p-j-3) f(p+1)-(n-p+j-3) f(p+j+1)+j(n-p-j-$ 1) $f(n-2)-j(n-p-j-3) f(n-1)>0$ for each $p \in\{0,1, \ldots, n-4\}$ and for each $j \in\{1, \ldots, n-p-4\}$.
(iv) $f(1)+(2 r-2) f(r+1)-(2 r-1) f(r) \geq 0$ for $r \geq 2$.
(v) $f(1)+(2 r-2) f(r+1)-(2 r-1) f(r) \geq 0$ for $r \geq 3$ and $f(1)-2 f(2)+$ $f(4) \geq 0$.
(vi) $f(1)+(2 r-2) f(r+1)-(2 r-1) f(r) \geq 0$ for $r \geq 4, f(1)-2 f(2)+f(4) \geq$ 0 and $f(1)-4 f(3)+2 f(4)+f(5) \geq 0$.
(vii) $f(0)+2 f(2)-3 f(1) \geq 0$ and $f(0)-f(1)-2 f(2)+2 f(3) \geq 0$.

We say that a function $f(x)$ satisfies condition (i) if the i-th term of the above holds for $f(x)$.

The proposition below reveals the implication between conditions (iv), (v) and (vi).

Proposition 8. Let $f(x)$ be a function that satisfies condition (i). If $f(x)$ satisfies condition (iv), then it necessarily satisfies condition (v). Additionally, the satisfaction of condition (v), implies that condition (vi) is necessarily fulfilled.

Proof. By observation, it is sufficient to prove $f(1)-2 f(2)+f(4) \geq f(1)+$ $2 f(3)-3 f(2)$ and $f(1)-4 f(3)+2 f(4)+f(5) \geq f(1)+4 f(4)-5 f(3) \geq 0$ and in turn only need to show that $f(2)+f(4) \geq 2 f(3)$ and $f(3)+f(5) \geq 2 f(4)$, and the fact it holds follows from Corollary 2, and so the proposition is proved.

To state our main results, two types of graphs are defined below. Let $\overline{P A}(n, k)$ be a graph denoted as follows: a graph with n vertices, composed of a clique on k vertices and a stable set on the other $n-k$ vertices. Let $\overline{F P A}_{1}(n, k, p)$ be defined as a graph which contains n vertices, constructed from $\overline{P A}(n, k)$ by joining a vertex from the stable set with p vertices of the clique by edges, with $0 \leq p \leq k-1$.

Theorem 9. Assume that a function $f(x)$ satisfy conditions (i), (ii), (iii), and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n, m)-graph, then

$$
\begin{align*}
H_{f}(G) \leq & (n-k-1) f(1)+f(p+1) \\
& +(k-p-1) f(k-1)+p f(k)+f(n-1) \tag{1}
\end{align*}
$$

the equality holds if and only if $G=F P A_{1}(n, k, p)$.
Theorem 10. Assume that a function $f(x)$ satisfy conditions (i), (ii), (iii), (vii) and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that $m=k(k-1) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-1$. If G is an (n, m)-graph, then

$$
\begin{equation*}
H_{f}(G) \leq(n-k-1) f(0)+f(p)+(k-p) f(k-1)+p f(k) \tag{2}
\end{equation*}
$$

the equality holds if and only if $G=\overline{F P A}_{1}(n, k, p)$.

We will show by Lemmas 16-23 in Section 2 that the function $f(x)=$ $(x+q)^{\alpha}$ satisfies the assumption in Theorem 9 when $t \geq 1, \alpha \leq-t$ and $-1<q \leq 2.038 t-0.038$, or $\alpha<0$ and $-1<q \leq 0$. Furthermore, the function $f(x)=(x+q)^{\alpha}$ satisfies the conditions of Theorem 10 for $t \geq 1$, $\alpha \leq-t$ and $0<q \leq 1.413 t+0.587$. Therefore, it is straightforward to obtain the following theorems.

Theorem 11. Let $f(x)=(x+q)^{\alpha}$, where $\alpha \leq-t,-1<q \leq 2.038 t-0.038$ and $t \geq 1$. Let n, m, k, p be integers satisfying that $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n, m)-graph, then

$$
\begin{aligned}
{ }^{0} R_{\alpha, q}(G) \leq & (n-k-1)(1+q)^{\alpha}+(p+1+q)^{\alpha} \\
& +(k-p-1)(k-1+q)^{\alpha}+p(k+q)^{\alpha}+(n-1+q)^{\alpha}
\end{aligned}
$$

the equality holds if and only if $G=F P A_{1}(n, k, p)$.
Theorem 12. Let $f(x)=(x+q)^{\alpha}$, where $\alpha<0,-1<q \leq 0$. Let n, m, k, p be integers satisfying that $m=n+k(k-3) / 2+p$, where $2 \leq k \leq$ $n-1$ and $0 \leq p \leq k-2$. If G is a connected (n, m)-graph, then

$$
\begin{aligned}
{ }^{0} R_{\alpha, q}(G) \leq & (n-k-1)(1+q)^{\alpha}+(p+1+q)^{\alpha} \\
& +(k-p-1)(k-1+q)^{\alpha}+p(k+q)^{\alpha}+(n-1+q)^{\alpha}
\end{aligned}
$$

the equality holds if and only if $G=F P A_{1}(n, k, p)$.
Theorem 13. Let $f(x)=(x+q)^{\alpha}$, where $\alpha \leq-t$ and $0<q \leq 1.413 t+$ 0.587 and $t \geq 1$. Let n, m, k, p be integers satisfying that $m=n+k(k-$ $3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is an (n, m)-graph, then

$$
\begin{aligned}
{ }^{0} R_{\alpha, q}(G) \leq & (n-k-1) \cdot q^{\alpha}+(p+q)^{\alpha} \\
& +(k-p)(k-1+q)^{\alpha}+p \cdot(k+q)^{\alpha},
\end{aligned}
$$

the equality holds if and only if $G=\overline{F P A}_{1}(n, k, p)$.
When $t=1, \alpha=-1$ and $q=1$, Theorem 13 implies the following corollary.

Corollary 1. Let $f(x)=\frac{1}{x+1}$. Let n, m, k, p be integers satisfying that $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is an (n, m)-graph, then

$$
H_{f}(G) \leq(n-k-1)+\frac{1}{p+1}+\frac{k-p}{k}+\frac{p}{k+1}
$$

the equality holds if and only if $G=\overline{F P A}_{1}(n, k, p)$.
Our results extend those obtained by Hu et al. in [12] and Li et al. in [14] on the case of the maximum value of the zeroth-order general Randic index for $\alpha \leq-1$ and $\alpha<0$, respectively. Theorem 11 can deduce Theorem 1 and Theorem 12 can deduce Theorem 2. Moreover, Theorem 13 obtained sharp upper bounds among all (n, m)-graphs, which is not studied in previous works [12], [14], and [17].

2 Proof of main results

Firstly, we introduce some useful lemmas. Let n_{i} be the number of vertices of degree i in a graph G.

Lemma 3 (Tomescu [19]). Let $x \geq y \geq 1$. If $f(x)$ is a strictly convex function, then $f(x+1)+f(y-1)>f(x)+f(y)$.

Corollary 2. If $f(x)$ is a strictly convex function, then $f(s-1)+f(s+1)>$ $2 f(s)$ for any real number $s>1$.

Lemma 4. Let r, s and t be real numbers such that $0<r \leq s \leq t$. If $f(x)$ is a convex function, then

$$
(t-r) f(s) \leq(t-s) f(r)+(s-r) f(t)
$$

with equality if and only if $s=r$ or t.
Proof. If $s=r$ or $s=t$, it is obvious that the equality holds. Set $g(s)=$ $(t-s) f(r)+(s-r) f(t)-(t-r) f(s)$. By a simple computation, $\frac{\partial^{2} g}{\partial s^{2}}=$ $-(t-r) \frac{\partial^{2} f}{\partial s^{2}} \leq 0$ and the upper inequality follows because the function g is concave.

Lemma 5. Let a, b be real numbers such that $a \geq b \geq 0$. If $f(x)$ is a convex function, then

$$
\begin{equation*}
f(a+y)-f(a) \geq y(f(b+1)-f(b)) \tag{3}
\end{equation*}
$$

for any positive integer y.
Proof. Since $f(x)$ is a convex function, $f(x+1)-f(x)$ is an increasing function. Thus, $f(a+y)-f(a)=(f(a+1)-f(a))+(f(a+2)-f(a+$ $1))+\cdots+(f(a+y)-f(a+y-1)) \geq y(f(b+1)-f(b))$.

Lemma 6 (Pavlović [16]). Let G be a graph with n vertex and m edges, where $m<\binom{n}{2}$. If $n_{1} \neq 0$, then $n_{n-1} \leq 1$. If $n_{1}=n_{2}=\cdots=n_{i-1}=0$, $n_{i} \neq 0$, then $n_{n-1} \leq i$.

Lemma 7 (Pavlović [16]). Let G be a graph with n vertex and m edges, where $m<\binom{n}{2}$. If $n_{n-1}=1, n_{1}=l$, where $2 \leq l \leq n-3$, then $n_{n-l}=$ $n_{n-l+1}=\cdots=n_{n-3}=n_{n-2}=0$.

Lemma 8. Let a, b, c, d, e and x all be positive numbers. Let $g(x)=$ $\frac{\ln \left(\frac{b+a x}{c+a x}\right)}{\ln \left(\frac{d+a x}{e+a x}\right)}$. Then $\lim _{x \rightarrow+\infty} g(x)=\frac{b-c}{d-e}$. If $b>c=d>e$, then $g(x)$ is monotonically increasing. If $d>b>c=e$, then $g(x)$ is monotonically decreasing.

Proof. Since $\ln (1+x)=x+o(x)$ for $x \in(-1,1]$, we have

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \frac{\frac{b-c}{c+a x}+o\left(\frac{b-c}{c+a x}\right)}{\frac{d-e}{e+a x}+o\left(\frac{d-e}{e+a x}\right)}=\frac{b-c}{d-e}
$$

By a simple calculation, $\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{a \ln \left(\frac{b+a x}{c+a x}\right)(d-e)}{\ln ^{2}\left(\frac{d+a x}{e+a x}\right)(d+a x)(e+a x)}-\frac{a(b-c)}{\ln \left(\frac{d+a x}{e+a x}\right)(b+a x)(c+a x)}$. Set $h(x)=a \ln \left(\frac{b+a x}{c+a x}\right)(d-e)-\frac{a \ln \left(\frac{d+a x}{e+a x}\right)(b-c)(d+a x)(e+a x)}{(b+a x)(c+a x)}$.

If $b>c=d>e$, then $\frac{\mathrm{d} h}{\mathrm{~d} x}=-\frac{a^{2} \ln \left(\frac{c+a x}{e+a x}\right)(b-c)(b-e)}{(b+a x)^{2}}<0$. Since $\lim _{x \rightarrow+\infty} h(x)=0$, the inequality $h(x)>0$ holds on the interval $(0,+\infty)$. Therefore, $\frac{\mathrm{d} g}{\mathrm{~d} x}>0$ is valid on the interval $(0,+\infty)$ and $g(x)$ is monotonically increasing.

If $d>b>c=e$, then $\frac{\mathrm{d} h}{\mathrm{~d} x}=-\frac{a^{2} \ln \left(\frac{d+a x}{c+a x}\right)(b-c)(b-d)}{(b+a x)^{2}}>0 . \quad$ Since $\lim _{x \rightarrow+\infty} h(x)=0$, the inequality $h(x)<0$ holds on the interval $(0,+\infty)$.

Therefore, $\frac{\mathrm{d} g}{\mathrm{~d} x}<0$ is valid on the interval $(0,+\infty)$ and $g(x)$ is monotonically decreasing.

Lemma 9. Let a, b, c and x all be positive numbers. Let $g(x)=x \ln \left(\frac{b+a x}{c+a x}\right)$ and $h(x)=\left(\frac{b+a x}{c+a x}\right)^{x}$. Then $\lim _{x \rightarrow+\infty} g(x)=\frac{b-c}{a}$ and $\lim _{x \rightarrow+\infty} h(x)=e^{\frac{b-c}{a}}$. If $b>c$, then $g(x)$ and $h(x)$ are monotonically increasing, while $\frac{\mathrm{d} g}{\mathrm{~d} x}$ is positive and monotonically decreasing. If $c>b$, then $g(x)$ and $h(x)$ are monotonically decreasing, while $\frac{\mathrm{d} h}{\mathrm{~d} x}$ is negative and monotonically increasing.

Proof. Since $\ln (1+x)=x+o(x)$ for $x \in(-1,1]$, we have

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} x\left(\frac{b-c}{c+a x}+o\left(\frac{b-c}{c+a x}\right)\right)=\frac{b-c}{a}
$$

By a simple calculation, $\frac{\mathrm{d} g}{\mathrm{~d} x}=\ln \left(\frac{b+a x}{c+a x}\right)-\frac{a x(b-c)}{(b+a x)(c+a x)}$, $\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}=-\frac{a(b-c)(2 b c+a b x+a c x)}{(b+a x)^{2}(c+a x)^{2}}, \frac{\mathrm{~d} h}{\mathrm{~d} x}=e^{g(x)} \frac{\mathrm{d} g}{\mathrm{~d} x}$, and $\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}=e^{g(x)}\left(\left(\frac{\mathrm{d} g}{\mathrm{~d} x}\right)^{2}+\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}\right)$.

If $b>c$, then $\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}<0$. Since $\lim _{x \rightarrow+\infty} \frac{\mathrm{d} g}{\mathrm{~d} x}=0, \frac{\mathrm{~d} g}{\mathrm{~d} x}>0$. Thus, $g(x)$ and $h(x)$ are monotonically increasing, whereas $\frac{\mathrm{d} g}{\mathrm{~d} x}$ is positive and monotonically decreasing.

If $c>b$, then $\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}>0$ and $\frac{\mathrm{d}^{2} h}{\mathrm{~d} x^{2}}>0$. Since $\lim _{x \rightarrow+\infty} \frac{\mathrm{d} g}{\mathrm{~d} x}=0, \frac{\mathrm{~d} g}{\mathrm{~d} x}<0$. Thus, $g(x)$ and $h(x)$ are monotonically decreasing, while $\frac{\mathrm{d} h}{\mathrm{~d} x}$ is negative and monotonically increasing.

Lemma 10. Let $g(x)=(x+1) \ln \left(\frac{b+a x}{c+a x}\right)$, where $a>0, b>c>0$ and $2 a^{2}-a b-a c<0$. If $a b+a c-2 b c<0$, then $g(x) \geq g(1)$ for any $x \geq 1$. When $a b+a c-2 b c>0$, if $\frac{\mathrm{d} g}{\mathrm{~d} x}$ has no root on the interval $(1, \infty)$, then $g(x) \geq g(1)$ for any $x \geq 1$; otherwise, $\frac{\mathrm{d} g}{\mathrm{~d} x}$ has a unique root x_{1} on the interval $(1, \infty)$, we have $g(x) \geq g\left(x_{1}\right)$ for any $x \geq 1$.

Proof. Since $\frac{\mathrm{d} g}{\mathrm{~d} x}=\ln \left(\frac{b+a x}{c+a x}\right)-\frac{a(b-c)(x+1)}{(b+a x)(c+a x)}$ and $\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}=\frac{a(b-c)\left(\left(2 a^{2}-a b-a c\right) x+a b+a c-2 b c\right)}{(b+a x)^{2}(c+a x)^{2}}, \frac{\mathrm{~d}^{2} g}{\mathrm{~d} x^{2}}<0$ if $x>-\frac{a b+a c-2 b c}{2 a^{2}-a b-a c}$ and $\frac{\mathrm{d}^{2} g}{\mathrm{~d} x^{2}}>0$ if $x<-\frac{a b+a c-2 b c}{2 a^{2}-a b-a c}$. Since $\lim _{x \rightarrow+\infty} \frac{\mathrm{d} g}{\mathrm{~d} x}=0, \frac{\mathrm{~d} g}{\mathrm{~d} x}>0$ on the interval $\left(-\frac{a b+a c-2 b c}{2 a^{2}-a b-a c},+\infty\right)$.

If $a b+a c-2 b c<0$, then $-\frac{a b+a c-2 b c}{2 a^{2}-a b-a c}<0$, so $g(x) \geq g(1)$ for any $x \geq 1$. When $a b+a c-2 b c>0$, we have $-\frac{a b+a c-2 b c}{2 a^{2}-a b-a c}>0$. If $\frac{\mathrm{d} g}{\mathrm{~d} x}$ has no root in $(1, \infty)$, then $\frac{\mathrm{d} g}{\mathrm{~d} x}>0$ on the interval $(1, \infty)$ and $g(x) \geq g(1)$ for any $x \geq 1$. Otherwise, $\frac{\mathrm{d} g}{\mathrm{~d} x}$ has a unique root x_{1} in $(1, \infty), \frac{\mathrm{d} g}{\mathrm{~d} x}<0$ on the interval $\left(1, x_{1}\right)$ and $\frac{\mathrm{d} g}{\mathrm{~d} x}>0$ on the interval $\left(x_{1}, \infty\right)$. Thus, $g(x) \geq g\left(x_{1}\right)$ for any $x \geq 1$.
Lemma 11. Let $g(x)=\frac{\ln \left(\frac{b+a x}{c+a x}\right)}{\ln \left(\frac{c+a x}{d+a x}\right)}\left(\frac{d+a x}{b+a x}\right)^{x}$, where a, b, c and d be real numbers with $a>0, b>c>d>0$. For any $x \geq 1, g(x) \leq \frac{(b-c)(a+d)}{(c-d)(a+b)}$.

Proof. Let $h_{1}(x)=\frac{\ln \left(\frac{b+a x}{c+a x}\right)}{\ln \left(\frac{c+a x}{d+a x}\right)}$ and $h_{2}(x)=\left(\frac{d+a x}{b+a x}\right)^{x}$. By Lemmas 8 and 9, $\lim _{x \rightarrow+\infty} h_{1}(x)=\frac{b-c}{c-d}$, the function $h_{1}(x)$ is monotonically increasing and the function $h_{2}(x)$ is monotonically decreasing. Thus, $g(x)=h_{1}(x) \cdot h_{2}(x) \leq$ $h_{1}(\infty) \cdot h_{2}(1)=\frac{b-c}{c-d} \cdot \frac{a+d}{a+b}=\frac{(b-c)(a+d)}{(c-d)(a+b)}$.

For convenience, we call a graph G a maximum connected (n, m)-graph if it has the maximum vertex-degree function-index among all connected (n, m)-graphs, and respectively, a maximum (n, m)-graph if it has the maximum vertex-degree function-index among all (n, m)-graphs.

Next, we are going to prove Theorem 9 that the fanned pineapple of type 1 graph has the maximum H_{f}-value among (n, m)-connected graphs. This implies that the maximum connected (n, m)-graph should have $n_{1}=$ $n-k-1, n_{p+1}=1, n_{k-1}=k-1-p, n_{k}=p$ and $n_{n-1}=1$.

Theorem 9 describes the solution of the following problem (P) :

$$
\max n_{1} \cdot f(1)+n_{2} \cdot f(2)+\cdots+n_{n-1} \cdot f(n-1)
$$

under two graph constraints

$$
\begin{aligned}
& n_{1}+n_{2}+n_{3}+\cdots+n_{n-1}=n \\
& n_{1}+2 n_{2}+3 n_{3}+\cdots+(n-1) n_{n-1}=2 m
\end{aligned}
$$

By Lemma 2, we have the following corollary, implying the assertion of Theorem 9 for the case when $m=n-1$.

Corollary 3. Let $f(x)$ be a strictly convex function. If $m=n-1$, the function H_{f} reaches its maximum among (n, m)-connected graphs at the star.

Thus, it remains to show that Theorem 9 holds for $n \leq m \leq\binom{ n}{2}-2$.
Since $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$, we handle two cases in terms of $k=n-1$ and $2 \leq k \leq n-2$. We shall start by proving the theorem for $k=n-1$.

Lemma 12. Let G be a connected (n, m)-graph, where $m \leq\binom{ n}{2}-2$, $m=n+k(k-3) / 2+p, k=n-1$ and $0 \leq p \leq n-4$. Inequality (1) holds for the graph G.

Proof. Since $k=n-1, m=\left(n^{2}-3 n+4+2 p\right) / 2=(n-1)(n-2) / 2+p+1$, where $0 \leq p \leq n-3$. Then the minimum degree of G must be greater than or equal to $\mathrm{p}+1$. In contrast, if G contains a vertex whose degree is p (or less), then the deletion of a vertex of degree p results a graph G^{\prime} (without necessarily connected) with more edges than the complete graph on $n-1$ vertices.

Let the minimum degree of G be $p+j+1$, where j is a nonnegative integer. Since $m \leq\binom{ n}{2}-2, j \leq n-p-4$. Otherwise, $j=n-p-3$, then the degree of the vertex in G is either $n-2$ or $n-1$. Thus there are four distinct vertices v_{1}, v_{2}, v_{3} and v_{4} of degree $n-2$ such that v_{1} and v_{2} are nonadjacent, v_{3} and v_{4} are nonadjacent in G. Now, construct a new graph $G^{\prime}=G-v_{2} v_{3}+v_{3} v_{4}$. By Corollary 2, we have $H_{f}\left(G^{\prime}\right)-H_{f}(G)=$ $f(n-1)+f(n-3)-2 f(n-2)>0$, which contradicts the maximality of G.

Denote by $P^{(p, p+j+1)}$ the problem for given p when the minimum degree of G is $p+j+1$, and by $H_{f}^{(p, p+j+1)}$ the optimal value of H_{f} for the problem $P^{(p, p+j+1)}$. The optimal value of H_{f} for a given p is $H_{f}^{p}=\max _{0 \leq j \leq n-p-4} H_{f}^{(p, p+j+1)}$. Since the minimum degree of G is $p+j+1$, it follows from Lemma 6 that we have $n_{n-1} \leq p+j+1$. Let us solve the problem $P^{(p, p+j+1)}, 0 \leq p \leq n-4,0 \leq j \leq n-p-4$.

$$
\max n_{p+j+1} f(p+j+1)+n_{p+j+2} f(p+j+2)+\cdots+n_{n-1} f(n-1)
$$

under the constraints:

$$
\begin{aligned}
& n_{p+j+1}+n_{p+j+2}+n_{p+j+3}+\cdots+n_{n-1}=n \\
& \begin{aligned}
(p+j+1) n_{p+j+1}+(p+j+2) n_{p+j+2}+\cdots+ & (n-1) n_{n-1} \\
& =n^{2}-3 n+4+2 p
\end{aligned} \\
& n_{n-1}=p+j+1-\xi
\end{aligned}
$$

where $0 \leq \xi \leq p+j$. Let us solve the system of the latter three equalities in n_{n-1}, n_{n-2} and n_{p+j+1} :

$$
\begin{aligned}
n_{n-2}= & \frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j+6}{n-p-j-3} \\
& -\frac{n_{p+j+2}}{n-p-j-3}-\frac{2 n_{p+j+3}}{n-p-j-3}-\frac{3 n_{p+j+4}}{n-p-j-3} \\
& -\cdots-\frac{(n-p-j-4) n_{n-3}}{n-p-j-3}+\frac{(n-p-j-2) \xi}{n-p-j-3}, \\
n_{p+j+1}= & \frac{n-p+j-3}{n-p-j-3}-\left(1-\frac{1}{n-p-j-3}\right) n_{p+j+2} \\
& -\left(1-\frac{2}{n-p-j-3}\right) n_{p+j+3}-\left(1-\frac{3}{n-p-j-3}\right) n_{p+j+4} \\
& -\cdots-\left(1-\frac{n-p-j-4}{n-p-j-3}\right) n_{n-3}+\left(1-\frac{n-p-j-2}{n-p-j-3}\right) \xi
\end{aligned}
$$

By replacing $n_{p+j+1}, n_{n-2}, n_{n-1}$ in H_{f}, we obtain

$$
\begin{aligned}
H_{f}= & \frac{n-p+j-3}{n-p-j-3} f(p+j+1)+(p+j+1) f(n-1) \\
& +\frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j+6}{n-p-j-3} f(n-2) \\
& +\sum_{i=p+j+2}^{n-3} n_{i}\left(f(i)-\frac{n-i-2}{n-p-j-3} f(p+j+1)-\frac{i-p-j-1}{n-p-j-3} f(n-2)\right) \\
& +\xi\left(-f(n-1)-\frac{1}{n-p-j-3} f(p+j+1)+\frac{n-p-j-2}{n-p-j-3} f(n-2)\right) .
\end{aligned}
$$

Following Lemma 4, it holds that

$$
\begin{equation*}
(n-p-j-3) f(i) \leq(n-i-2) f(p+j+1)+(i-p-j-1) f(n-2) \tag{4}
\end{equation*}
$$

for $p+j+1 \leq i \leq n-2$ and

$$
\begin{equation*}
(n-p-j-2) f(i) \leq(n-i-1) f(p+j+1)+(i-p-j-1) f(n-1) \tag{5}
\end{equation*}
$$

for $p+j+1 \leq i \leq n-1$.
After taking the value of i in the inequity (5) to be $n-2$, we get the following equation

$$
\begin{equation*}
(n-p-j-2) f(n-2) \leq f(p+j+1)+(n-p-j-3) f(n-1) \tag{6}
\end{equation*}
$$

Inequalities (4) and (6) means that if we take $n_{p+j+2}=n_{p+j+3}=\cdots=$ $n_{n-3}=\xi=0$ then we can get an upper bound $\tilde{H}_{f}^{(p, p+j+1)}$ for $H_{f}^{(p, p+j+1)}$, where

$$
\begin{aligned}
\tilde{H}_{f}^{(p, p+j+1)}= & \frac{n-p+j-3}{n-p-j-3} f(p+j+1)+(p+j+1) f(n-1) \\
& +\frac{n^{2}-n(2 p+2 j+5)+p^{2}+2 p j+5 p+j^{2}+3 j+6}{n-p-j-3} f(n-2)
\end{aligned}
$$

for $p \in\{0,1, \ldots, n-4\}$ and $j \in\{0,1, \ldots, n-p-4\}$. Keep in mind that the upper bound $\tilde{H}_{f}^{(p, p+j+1)}$ may not always correspond to a graph (except for $\left.j=0, \tilde{H}_{f}^{(p, p+1)}=H_{f}^{(p, p+1)}\right)$.

Now we show that for a given number $p, H_{f}^{(p, p+1)}$ is the maximum value of H_{f}, that is, $H_{f}^{(p, p+1)}>H_{f}^{(p, p+j+1)}$ for $j \in\{1,2, \ldots, n-p-4\}$. Since $H_{f}^{(p, p+j+1)} \leq \tilde{H}_{f}^{(p, p+j+1)}$, it is enough to show that $H_{f}^{(p, p+1)}>\tilde{H}_{f}^{(p, p+j+1)}$ for $j \in\{1,2, \ldots, n-p-4\}$. Therefore, we are required to prove the following inequality:

$$
\begin{equation*}
\tilde{H}_{f}^{(p, p+j+1)}<f(p+1)+(n-p-2) f(n-2)+(p+1) f(n-1) \tag{7}
\end{equation*}
$$

for $p \in\{0,1, \ldots, n-4\}$ and $j \in\{1, \ldots, n-p-4\}$. Since $j \leq n-p-4$, $n-p-j-3 \geq 1$. We transform inequality (7) into (8)

$$
\begin{align*}
& (n-p-j-3) f(p+1)-(n-p+j-3) f(p+j+1) \\
& \quad+j(n-p-j-1) f(n-2)-j(n-p-j-3) f(n-1)>0 \tag{8}
\end{align*}
$$

for $p \in\{0,1, \ldots, n-4\}$ and $j \in\{1,2, \ldots, n-p-4\}$. Observe that under
known conditions, $f(x)$ satisfies the inequality (8).
We have shown that for a given number p, the maximum value of H_{f} is $H_{f}^{(p, p+1)}$:

$$
H_{f}^{(p, p+1)}=f(p+1)+(n-p-2) f(n-2)+(p+1) f(n-1)
$$

for $p \in\{0,1, \ldots, n-4\}$. This value is attained by a graph with $n_{n-1}=$ $p+1, n_{n-2}=n-p-2$ and $n_{p+1}=1$.

For $k=n-1$, in which case $m \geq(n-1)(n-2) / 2+1$, Theorem 9 has been proved. It remains to prove the theorem for $n \leq m \leq\left(n^{2}-3 n+2\right) / 2$.

Lemma 13 (Hu, Li, Shi and Xu [12]). Let G^{*} be a maximum connected (n, m)-graph. If a function $f(x)$ is strictly convex and the maximum graph G^{*} has $r(r \leq n-3)$ vertices of degree $n-1$, then the minimum degree of G^{*} is r.

Lemma 14. Assume that a function $f(x)$ satisfy conditions (i), (ii), (iii), and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that $m=n+k(k-3) / 2+p$ and $n \leq m \leq\left(n^{2}-3 n+2\right) / 2$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G^{*} is a maximum connected (n, m)-graph, then $n_{1} \neq 0$.

Proof. Note that according to Proposition 8, the function $f(x)$ must satisfy condition (vi). Toward a contradiction, suppose $n_{1}=0$. Let r be the minimum degree of G^{*}, in other words, $n_{1}=n_{2}=\cdots=n_{r-1}=0$ and $n_{r} \neq 0$, where $r \geq 2$. Then $n_{n-1}=r$. Otherwise, if $n_{n-1}=k$, where $k \neq r$, then by Lemma 13 the minimum degree of G^{*} is k, not r, a contradiction. Let u be a vertex of degree r. Then u is adjacent to all the r vertices $w_{1}, w_{2}, \ldots, w_{r}$ of degree $n-1$.

Let $S=V(G)^{*} \backslash\left\{u, w_{1}, w_{2}, \ldots, w_{r}\right\}$, and $K(S)$ be the complete graph on S. Then

$$
\begin{aligned}
|E(K(S))|-|E(G[S])| & =\binom{n-r-1}{2}-\left(m-r(n-r)-\binom{r}{2}\right) \\
& \geq\binom{ n-r-1}{2}-\frac{n^{2}-3 n+2}{2}+r(n-r)+\binom{r}{2} \\
& =r
\end{aligned}
$$

This implies that we can add to $G[S]$ at least $r-1$ edges, and these vertices still do not form a complete graph after adding these edges. Furthermore, $|S| \geq 3$, which leads to $n \geq r+4$.

For $r \geq 2$, denote by G^{\prime} a connected graph obtained from G^{*} when we delete $r-1$ edges between vertex u and vertices w_{1}, \ldots, w_{r-1} and add $r-1$ new edges between t vertices in S. Without loss of generality we can assume that these t vertices are $v_{1}, v_{2}, \ldots, v_{t}$ with degrees $j_{1}, j_{2}, \ldots, j_{t}$ in G^{*}, and the degree of v_{i} is $j_{i}+x_{i}$ in G^{\prime} for $i \in\{1,2, \ldots, t\}$. Then $j_{i} \geq r$ and $x_{i} \geq 1$ for $i \in\{1,2, \ldots, t\}$ and $\sum_{i=1}^{t} x_{i}=2(r-1)$. Therefore, applying Lemma 5 , we have

$$
\begin{aligned}
H_{f}\left(G^{\prime}\right)-H_{f}\left(G^{*}\right)= & f(1)-f(r)+(r-1) f(n-2)-(r-1) f(n-1) \\
& +\sum_{i=1}^{t}\left(f\left(j_{i}+x_{i}\right)-f\left(j_{i}\right)\right) \\
> & f(1)-f(r)+\sum_{i=1}^{t} x_{i}(f(r+1)-f(r)) \\
= & f(1)-f(r)+2(r-1)(f(r+1)-f(r)) \\
= & f(1)+(2 r-2) f(r+1)-(2 r-1) f(r) \\
\geq & 0
\end{aligned}
$$

for $r \geq 4$, which contradicts the maximality of G^{*}.
Next, we show that the minimum degree of G^{*} cannot be 2 or 3 . Since $f(x)$ is a convex function, $f(x+1)-f(x)$ is an increasing function.
Case 1. $r=2$
In this case the maximum graph G^{*} has only two vertices of degree $n-1$, denoted by w_{1} and w_{2}. Since $|E(K(S))|-|E(G[S])| \geq r=2, n \geq 6$. We consider the number n_{2} of vertices with degree 2 .
Subcase 1.1. $1 \leq n_{2} \leq n-3$.
Let u be a vertex of degree 2 . Clearly, u is adjacent to w_{1}, w_{2}. We claim that there exists a vertex v in S with degree j, where $3 \leq j \leq n-3$. Since $1 \leq n_{2} \leq n-3$, there exists a vertex v_{1} in S with degree j_{1} greater than 2. If $j_{1} \leq n-3$, then v_{1} is the desired vertex. Otherwise, $j_{1}=n-2$ and v_{1} is adjacent to all vertices in S. So all the vertices in S have degrees
greater than 2 , then there must exist a vertex in S whose degree is less than or equal to $n-3$, this is because $|E(K(S))|-|E(G[S])| \geq r$.

Thus we can find two nonadjacent vertices v_{1} and v_{2} in S with degree $j_{1} \geq 2$ and $j_{2} \geq 3$. Construct a new graph $G^{\prime \prime}=G^{*}-u w_{1}+v_{1} v_{2}$. We have

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right)= & f(1)-f(2)+f(n-2)-f(n-1)+f\left(j_{1}+1\right) \\
& -f\left(j_{1}\right)+f\left(j_{2}+1\right)-f\left(j_{2}\right) \\
> & f(1)-f(2)+f(3)-f(2)+f(4)-f(3) \\
= & f(1)-2 f(2)+f(4) \\
\geq & 0
\end{aligned}
$$

a contradiction.
Subcase 1.2. $n_{2}=n-2$.
Let $u_{1}, u_{2}, \ldots, u_{n-2}$ be the vertices of degree 2. Clearly, u_{i} is adjacent to w_{1}, w_{2} for $1 \leq i \leq n-2$.

If $n=6$, then $G^{*}=K_{2,4}$. Let $G^{\prime \prime}=F P A_{1}(6,4,0)$. Thus,

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right) & =f(5)+3 f(3)+2 f(1)-4 f(2)-2 f(4) \\
& =f(3)-2 f(4)+f(5)+2(f(1)-2 f(2)+f(3)) \\
& >0
\end{aligned}
$$

a contradiction. The last inequality can be derived from Lemma 2. If $n=7$, then $G^{*}=K_{2,5}$. Let $G^{\prime \prime}=F P A_{1}(7,4,1)$. Hence,

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right) & =2 f(1)+f(2)+2 f(3)+f(4)+f(6)-5 f(2)-2 f(5) \\
& =f(4)-2 f(5)+f(6)+2(f(1)-2 f(2)+f(3)) \\
& >0
\end{aligned}
$$

a contradiction. The last inequality can be derived from Lemma 2.
Thus $n \geq 8$ and $n_{2}=n-2 \geq 6$. Construct a new graph $G^{\prime \prime}=$
$G^{*}-u_{1} w_{1}-u_{2} w_{1}-u_{3} w_{1}+u_{4} u_{5}+u_{5} u_{6}+u_{4} u_{6}$. We have

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right) & =3(f(1)-f(2))+f(n-4)-f(n-1)+3(f(4)-f(2)) \\
& >3(f(1)-2 f(2)+f(4)) \\
& \geq 0
\end{aligned}
$$

a contradiction.
Case 2. $r=3$
In this case the maximum graph G^{*} has only three vertices with degree $n-1$, denoted by w_{1}, w_{2} and w_{3}. Since $|E(K(S))|-|E(G[S])| \geq r=3$, $n \geq 7$. We consider the number n_{3} of vertices with degree 3 .
Subcase 2.1. $1 \leq n_{3} \leq n-4$.
Let u be a vertex of degree 3. Clearly, u is adjacent to w_{1}, w_{2}, w_{3}. With a similar approach to Subcase 1.1, we can find two pairs of nonadjacent vertices v_{1} and v_{2}, v_{3} and v_{4} in S whose degrees are j_{1}, j_{2}, j_{3} and j_{4}, where $j_{1} \geq 4$ and $j_{i} \geq 3$ for $i \in\{2,3,4\}$. Note that these four vertices are not necessarily distinct.

If all these four vertices are distinct, we construct a new graph $G^{\prime \prime}=$ $G^{*}-u w_{1}-u w_{2}+v_{1} v_{2}+v_{3} v_{4}$. We have

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right)= & f(1)-f(3)+2(f(n-2)-f(n-1)) \\
& +\sum_{i=1}^{4}\left(f\left(j_{i}+1\right)-f\left(j_{i}\right)\right) \\
> & f(1)-f(3)+f(5)-f(4)+3(f(4)-f(3)) \\
= & f(1)-4 f(3)+2 f(4)+f(5) \\
\geq & 0
\end{aligned}
$$

a contradiction.
Next, assume that some vertices in $v_{1}, v_{2}, v_{3}, v_{4}$ are same. By symmetry, it suffices to consider two possibilities: $v_{1}=v_{3}$ or $v_{2}=v_{3}$.

If $v_{1}=v_{3}$, we use v to denote v_{1}. Clearly, v has degree $j \geq 4$. We construct a new graph $G^{\prime \prime}=G^{*}-u w_{1}-u w_{2}+v v_{2}+v v_{4}$. Therefore,

$$
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right)=f(1)-f(3)+2(f(n-2)-f(n-1))+f(j+2)
$$

$$
\begin{aligned}
& -f(j)+\left(f\left(j_{2}+1\right)-f\left(j_{2}\right)\right)+\left(f\left(j_{4}+1\right)-f\left(j_{4}\right)\right) \\
> & f(1)-f(3)+f(6)-f(4)+2(f(4)-f(3))
\end{aligned}
$$

By taking the values of a, b and y in Inequality (3) to be 4,4 and 2 , respectively, we have

$$
f(6)-f(4) \geq 2(f(5)-f(4))
$$

Thus,

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right) & >f(1)-f(3)+f(6)-f(4)+2(f(4)-f(3)) \\
& >f(1)-f(3)+2(f(5)-f(4))+2(f(4)-f(3)) \\
& >f(1)-f(3)+(f(5)-f(4))+3(f(4)-f(3)) \\
& =f(1)-4 f(3)+2 f(4)+f(5) \\
& \geq 0
\end{aligned}
$$

a contradiction.
If $v_{2}=v_{3}$, we use v to denote v_{2}. Clearly, v has degree $j \geq 3$. Construct a new graph $G^{\prime \prime}=G^{*}-u w_{1}-u w_{2}+v v_{1}+v v_{4}$. Hence,

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right)= & f(1)-f(3)+2(f(n-2)-f(n-1))+f(j+2) \\
& -f(j)+\left(f\left(j_{1}+1\right)-f\left(j_{1}\right)\right)+\left(f\left(j_{4}+1\right)-f\left(j_{4}\right)\right) \\
> & f(1)-f(3)+f(5)-f(3)+f(5)-f(4) \\
& +f(4)-f(3)
\end{aligned}
$$

By taking the values of a, b and y in Inequality (3) to be 3,3 and 2 , respectively, we have

$$
f(5)-f(3) \geq 2(f(4)-f(3))
$$

Thus,

$$
\begin{aligned}
& H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right) \\
& \quad>f(1)-f(3)+f(5)-f(3)+f(5)-f(4)+f(4)-f(3)
\end{aligned}
$$

$$
\begin{aligned}
& >f(1)-f(3)+2(f(4)-f(3))+f(5)-f(4)+f(4)-f(3) \\
& =f(1)-4 f(3)+2 f(4)+f(5) \\
& \geq 0
\end{aligned}
$$

a contradiction.
Subcase 2.2. $n_{3}=n-3$.
Let $u_{1}, u_{2}, \ldots, u_{n-3}$ be the vertices of degree 3. Clearly, u_{i} is adjacent to w_{1}, w_{2} and w_{3} for $1 \leq i \leq n-3$. Since $n \geq 7, n_{3}=n-3 \geq 4$. Construct a new graph $G^{\prime \prime}=G^{*}-u_{1} w_{1}-u_{1} w_{2}+u_{2} u_{3}+u_{3} u_{4}$. We have

$$
\begin{aligned}
H_{f}\left(G^{\prime \prime}\right)-H_{f}\left(G^{*}\right)= & f(1)-f(3)+2(f(n-2)-f(n-1)) \\
& +f(5)-f(3)+2(f(4)-f(3)) \\
> & f(1)-4 f(3)+2 f(4)+f(5) \\
\geq & 0
\end{aligned}
$$

a contradiction.

Hence, we only need to consider maximum graphs which have $n_{1} \neq 0$, for $2 \leq k \leq n-2$. Then $n_{n-1}=1$ (by Lemmas 1 and 6) and all vertices of degree 1 must be adjacent to this unique vertex of degree $n-1$. Here we do not consider the case $n_{1}=n-1$, since it is equivalent to the case $m=n-1$, which has been proved before. When $n_{1}<n-1$, it is readily obtained that $n_{1} \leq n-3$.

When $n_{n-1}=1$ and $n_{1}=l$, where $1 \leq l \leq n-3$, according to Lemma 7 , problem (P) can be transformed into the subsequent problem $\left(P^{l}\right)$:

$$
\max l \cdot f(1)+n_{2} \cdot f(2)+\cdots+n_{n-l-1} f(n-l-1)+f(n-1)
$$

under the constraints:

$$
\begin{align*}
& n_{2}+n_{3}+n_{4}+\cdots+n_{n-l-1}=n-1-l \tag{9}\\
& n_{2}+2 n_{3}+3 n_{4}+\cdots+(n-l-2) n_{n-l-1}=2(m-n+1) \tag{10}
\end{align*}
$$

To prove the following lemma, it is necessary to use mathematical induction. It is straightforward to verify that Theorem 9 is true for $n=4$ and $3 \leq m \leq 6$. We assume that Theorem 9 is true for every connected graph G in $G(i, j)$ when $4 \leq i \leq n-1$ and $i-1 \leq j \leq\binom{ i}{2}$.

Lemma 15. Let G be a connected (n, m)-graph, where $m=n+k(k-$ $3) / 2+p, m \geq n, 2 \leq k \leq n-2$ and $0 \leq p \leq k-2$. If $n_{n-1}=1$ and $1 \leq n_{1} \leq n-3$, then Inequality (1) holds for G.

Proof. Inequality (1) will be valid for G with $n_{n-1}=1$ and $n_{1}=l$, if the following inequality holds:

$$
\begin{gather*}
l \cdot f(1)+n_{2} \cdot f(2)+n_{3} \cdot f(3)+\cdots+n_{n-l-1} f(n-l-1)+f(n-1) \\
\leq(n-k-1) f(1)+f(p+1)+(k-p-1) f(k-1)+p f(k)+f(n-1) \tag{11}
\end{gather*}
$$

under constraints (9) and (10).
We first prove (11) for $l \geq 2$. Since $n_{1}=l$, by Lemma 7 we have $n_{n-l}=n_{n-l+1}=\cdots=n_{n-2}=0$. Consider the graph G^{\prime}, which is obtained from G, when we delete one vertex of degree 1 . The graph G^{\prime} has $n_{1}^{\prime}=l-1$ and one vertex of degree $n-2$ (because the other vertices can have a degree at most $n-1-l$), and $n_{i}^{\prime}=n_{i}$ for $i \in\{2, \ldots, n-3\}$. Then $n_{n-l}^{\prime}=n_{n-l+1}^{\prime}=\cdots=n_{n-3}^{\prime}=0$ and the same constraints (9) and (10) hold (because $n-1-(l-1)=n-l)$. Since G^{\prime} has $n-1$ vertices and $n-1+k(k-3) / 2+p$ edges, it satisfies the inductive hypothesis, and so,

$$
\begin{align*}
n_{2} \cdot f(2) & +n_{3} \cdot f(3)+\cdots+n_{n-l-1} f(n-l-1) \\
= & n_{2}^{\prime} \cdot f(2)+n_{3}^{\prime} \cdot f(3)+\cdots+n_{n-l-1}^{\prime} f(n-l-1) \\
\leq & (n-1-k-1-(l-1)) \cdot f(1)+f(p+1) \\
& +(k-p-1) f(k-1)+p f(k) \tag{12}
\end{align*}
$$

for every $2 \leq k \leq n-2$ and $0 \leq p \leq k-2$. Inequality (12) is equivalent to (11), which is now proved because the constraints are the same.

Now we show that (11) holds for $l=1$, that is, the graph G^{\prime} has no vertex of degree one. We have $n_{i}^{\prime}=n_{i}$ for $i\left\{2, \ldots, n-3\right.$ and $n_{n-2}^{\prime}=$
$\left.n_{n-2}+1\right\}$. By the inductive hypothesis for the graph G^{\prime} holds

$$
\begin{align*}
n_{2} \cdot f(2)+ & n_{3} \cdot f(3)+\cdots+n_{n-3} \cdot f(n-3)+\left(n_{n-2}+1\right) f(n-2) \\
= & n_{2}^{\prime} \cdot f(2)+n_{3}^{\prime} \cdot f(3)+\cdots+n_{n-3}^{\prime} \cdot f(n-3)+n_{n-2}^{\prime} f(n-2) \\
\leq & (n-1-k-1) \cdot f(1)+f(p+1)+(k-p-1) f(k-1) \\
& +p f(k)+f(n-1-1) \tag{13}
\end{align*}
$$

under the constraints

$$
\begin{aligned}
& n_{2}^{\prime}+n_{3}^{\prime}+n_{4}^{\prime}+\cdots+n_{n-2}^{\prime}=n-1 \\
& 2 n_{2}^{\prime}+3 n_{3}^{\prime}+4 n_{4}^{\prime}+\cdots+(n-2) n_{n-2}^{\prime}=2(m-1)
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
& n_{2} \cdot f(2)+n_{3} \cdot f(3)+\cdots+n_{n-3} f(n-3)+n_{n-2} f(n-2) \\
& \quad \leq(n-k-2) f(1)+f(p+1)+(k-p-1) f(k-1)+p \cdot f(k) \tag{14}
\end{align*}
$$

under the constraints

$$
\begin{align*}
& n_{2}+n_{3}+\cdots+n_{n-3}+n_{n-2}=n-2 \\
& n_{2}+2 n_{3}+\cdots+(n-3) n_{n-3}+(n-2) n_{n-2}=2 m-n \tag{15}
\end{align*}
$$

Equalities (15) are just the constraints (9) and (10), and inequality (14) is equivalent to inequality (11) for $l=1$. Thus the lemma is proved.

Proof of Theorem 9. We need to show that Theorem 9 holds for $n-1 \leq$ $m \leq\binom{ n}{2}$. The case $m=n-1$ has already been proved in Corollary 3 , and cases $m=\binom{n}{2}$ and $\binom{n}{2}-1$ are disregarded because they all correspond to unique graphs.

Since $m=n+k(k-3) / 2+p$, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$, we distinguish two cases $k=n-1$ and $2 \leq k \leq n-2$. The case $k=n-1$ has already been proved in 12 . The case $2 \leq k \leq n-2$ can be proved by combining Lemmas 14 and 15. Thus, Theorem 9 is proved.

Theorem 9 characterizes the maximum value of $H_{f}(G)$ among all con-
nected (n, m)-graphs. Applying Theorem 9 , we can also determine the maximum value of $H_{f}(G)$ among all (n, m)-graphs, as stated in Theorem 10.

Proof of Theorem 10. Let G be the maximum (n, m)-graph. By Lemma $1, G$ consists of a set I_{1} of isolated vertices, together with a connected graph G_{1}, which has n^{\prime} vertices m edges. Note that G_{1} is a maximum connected $\left(n^{\prime}, m\right)$-graph, otherwise, we can find a connected $\left(n^{\prime}, m\right)$-graph G_{2}, such that $H_{f}\left(G_{2}\right)>H_{f}\left(G_{1}\right)$, then the graph $G^{\prime}:=G_{2}+I_{1}$ is an (n, m)-graph satisfying that $H_{f}\left(G^{\prime}\right)>H_{f}(G)$ holds, a contradiction.

If $m=\binom{n^{\prime}}{2}$, then $G=\overline{F P A}_{1}\left(n, n^{\prime}, 0\right)$, which proves the theorem.
If $m<\binom{n^{\prime}}{2}$. Assume that $m=n^{\prime}+k^{\prime}\left(k^{\prime}-3\right) / 2+p^{\prime}$, where $2 \leq k^{\prime} \leq$ $n^{\prime}-1$ and $0 \leq p^{\prime} \leq k^{\prime}-2$. By Theorem $9, G_{1}$ is a fanned pineapple of type 1 with parameters $n^{\prime}, k^{\prime}, p^{\prime}$, that is $G_{1}=F P A_{1}\left(n^{\prime}, k^{\prime}, p^{\prime}\right)$. Let K be a copy of a clique of k^{\prime} vertices of G_{1}. Let l be the number of vertices in $V\left(G_{1}\right) \backslash V(K)$ with degree 1 . It is easily seen that p^{\prime} and l cannot both be 0 simultaneously. Next, we differ the subsequent proof into the following four cases.
Case 1. $p^{\prime}=0, l=1$.
In this case, $k^{\prime}=n^{\prime}-l=n^{\prime}-1, G_{1}=F P A_{1}\left(n^{\prime}, n^{\prime}-1,0\right)$, then $G=\overline{F P A}_{1}\left(n, n^{\prime}-1,1\right)$, the theorem is proved.
Case 2. $1 \leq p^{\prime} \leq k^{\prime}-2, l=0$.
In this case, $k^{\prime}=n^{\prime}-l-1=n^{\prime}-1, G_{1}=F P A_{1}\left(n^{\prime}, n^{\prime}-1, p^{\prime}\right)$, then $G=\overline{F P A}_{1}\left(n, n^{\prime}-1, p^{\prime}+1\right)$, which proves the theorem.
Case 3. $p^{\prime}=0, l \geq 2$.
In this case, $k^{\prime} \geq 2, G_{1}=F P A_{1}\left(n^{\prime}, k^{\prime}, 0\right)$. Let w be a vertex of degree $n^{\prime}-1$. Let u and v be two vertices in $V\left(G_{1}\right) \backslash V(K)$ with degree 1 . Let $z \in V(K) \backslash w$. Then $d(z)=k^{\prime}-1$. Construct a new graph $G^{\prime}=G-u w+v z$. Thus,

$$
\begin{aligned}
H_{f}\left(G^{\prime}\right) & -H_{f}(G) \\
& =f(0)+f(2)+f\left(n^{\prime}-2\right)+f\left(k^{\prime}\right)-2 f(1)-f\left(n^{\prime}-1\right)-f\left(k^{\prime}-1\right) \\
& =f(0)+f(2)-2 f(1)+f\left(n^{\prime}-2\right)-f\left(n^{\prime}-1\right)+f\left(k^{\prime}\right)-f\left(k^{\prime}-1\right) \\
& >f(0)+f(2)-2 f(1)+f(2)-f(2-1)
\end{aligned}
$$

$$
\begin{aligned}
& =f(0)+2 f(2)-3 f(1) \\
& \geq 0
\end{aligned}
$$

which contradicts the maximality of G.
Case 4. $1 \leq p^{\prime} \leq k^{\prime}-2, l \geq 1$.
In this case, $k^{\prime} \geq 3, G_{1}=F P A_{1}\left(n^{\prime}, k^{\prime}, p^{\prime}\right)$. Let w be a vertex of degree $n^{\prime}-1$. Let u be a vertex in $V\left(G_{1}\right) \backslash V(K)$ with degree 1 . Let v be the vertex of degree $p^{\prime}+1$ in $V\left(G_{1}\right) \backslash V(K)$. Let z be a vertex in $V(K)$ which is not adjacent to v. Then $d(z)=k^{\prime}-1$. Construct a new graph $G^{\prime}=G-u w+v z$. Therefore,

$$
\begin{aligned}
H_{f}\left(G^{\prime}\right)-H_{f}(G)= & f(0)+f\left(p^{\prime}+2\right)+f\left(n^{\prime}-2\right)+f\left(k^{\prime}\right)-f(1) \\
& -f\left(p^{\prime}+1\right)-f\left(n^{\prime}-1\right)-f\left(k^{\prime}-1\right) \\
= & f(0)-f(1)+f\left(n^{\prime}-2\right)+f\left(n^{\prime}-1\right)+f\left(p^{\prime}+2\right) \\
& -f\left(p^{\prime}+1\right)+f\left(k^{\prime}\right)-f\left(k^{\prime}-1\right) \\
> & f(0)-f(1)+f(1+2)-f(1+1)+f(3)-f(3-1) \\
= & f(0)-f(1)+2 f(3)-2 f(2) \\
\geq & 0
\end{aligned}
$$

which contradicts the maximality of G.
Next, we show by Lemmas 16-23 that the function $f(x)=(x+q)^{\alpha}$ satisfies the assumption in Theorem 9 when $t \geq 1, \alpha \leq-t$ and $-1<$ $q \leq 2.038 t-0.038$, or $\alpha<0$ and $-1<q \leq 0$. Furthermore, the function $f(x)=(x+q)^{\alpha}$ satisfies the conditions of Theorem 10 for $t \geq 1, \alpha \leq-t$ and $0<q \leq 1.413 t+0.587$.

Lemma 16. Let n, p, j be integers with $n \geq 5$. Let $f(x)=(x+q)^{\alpha}$. If $\alpha<0$ and $q>-1$, then

$$
\begin{aligned}
g(p, j)= & (n-p-j-3) f(p+1)-(n-p+j-3) f(p+j+1) \\
& +j(n-p-j-1) f(n-2)-j(n-p-j-3) f(n-1)>0
\end{aligned}
$$

for each $p \in\{0,1, \ldots, n-4\}$ and for each $j \in\{1, \ldots, n-p-4\}$.

Proof. In the following, we prove that the partial derivative of $g(p, j)$ with respect to p is less than 0 . Firstly,

$$
\begin{aligned}
\frac{\partial g(p, j)}{\partial p}= & -(p+1+q)^{\alpha}+\alpha(n-p-j-3)(p+1+q)^{\alpha-1} \\
& +(p+j+1+q)^{\alpha}-\alpha(n-p+j-3)(p+j+1+q)^{\alpha-1} \\
& -j(n-2+q)^{\alpha}+j(n-1+q)^{\alpha}
\end{aligned}
$$

Since $\alpha(\alpha-1)(n-p-j-3)\left((p+1+q)^{\alpha-2}-(p+j+1+q)^{\alpha-2}\right) \geq 0$ for $\alpha<0$, we have

$$
\begin{aligned}
& \frac{\partial^{2} g(p, j)}{\partial p^{2}} \\
&=-2 \alpha(p+1+q)^{\alpha-1}+2 \alpha(p+j+1+q)^{\alpha-1} \\
&+\alpha(\alpha-1)(n-p-j-3)(p+1+q)^{\alpha-2} \\
&-\alpha(\alpha-1)(n-p+j-3)(p+j+1+q)^{\alpha-2} \\
&=-2 \alpha(p+1+q)^{\alpha-1}+2 \alpha(p+j+1+q)^{\alpha-1} \\
&+\alpha(\alpha-1)(n-p-j-3)\left((p+1+q)^{\alpha-2}-(p+j+1+q)^{\alpha-2}\right) \\
&-\alpha(\alpha-1) \cdot 2 j \cdot(p+j+1+q)^{\alpha-2} \\
& \geq-2 \alpha\left((p+1+q)^{\alpha-1}-(p+j+1+q)^{\alpha-1}\right) \\
&-2 \alpha(\alpha-1) j(p+j+1+q)^{\alpha-2} \\
&=-2 j \alpha(\alpha-1)\left(-\xi^{\alpha-2}+(p+j+1+q)^{\alpha-2}\right) \geq 0
\end{aligned}
$$

where $\xi \in(p+1+q, p+j+1+q)$. Since $p \leq n-j-3$,

$$
\begin{aligned}
\frac{\partial g(p, j)}{\partial p} \leq & -(n-j-2+q)^{\alpha}+(n-2+q)^{\alpha}-2 j \alpha(n-2+q)^{\alpha-1} \\
& -j\left((n-2+q)^{\alpha}-(n-1+q)^{\alpha}\right)
\end{aligned}
$$

Define a function $h(j)=-(n-j-2+q)^{\alpha}+(n-2+q)^{\alpha}-2 j \alpha(n-2+$ $q)^{\alpha-1}-j\left((n-2+q)^{\alpha}-(n-1+q)^{\alpha}\right)$. Since $\frac{\partial^{2} h(j)}{\partial j^{2}}=-\alpha(\alpha-1)(n-j-$ $2+q)^{\alpha-2} \leq 0,\left[(n-1+q)^{\alpha-1}+(n-3+q)^{\alpha-1}-2(n-2+q)^{\alpha-1}\right]>0$
(by Corollary 2) and $j \geq 1$, we have

$$
\begin{aligned}
\frac{\partial h(j)}{\partial j}= & \alpha(n-j-2+q)^{\alpha-1}-2 \alpha(n-2+q)^{\alpha-1} \\
& -\left((n-2+q)^{\alpha}-(n-1+q)^{\alpha}\right) \\
\leq & \alpha(n-3+q)^{\alpha-1}-2 \alpha(n-2+q)^{\alpha-1} \\
& -\left((n-2+q)^{\alpha}-(n-1+q)^{\alpha}\right) \\
= & \alpha\left[(n-1+q)^{\alpha-1}+(n-3+q)^{\alpha-1}-2(n-2+q)^{\alpha-1}\right] \\
& -\left((n-2+q)^{\alpha}-(n-1+q)^{\alpha}\right)-\alpha(n-1+q)^{\alpha-1} \\
\leq & \alpha \eta^{\alpha-1}-\alpha(n-1+q)^{\alpha-1} \leq 0
\end{aligned}
$$

where $\eta \in(n-2+q, n-1+q)$. Thus, $\frac{\partial g(p, j)}{\partial p} \leq h(j) \leq h(1)$.
Since for any $x, x_{0} \in[a, b]$, where a and b are real numbers, there exists $\xi \in(a, b)$ such that $f(x)=f\left(x_{0}\right)+\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{x=x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2!} \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}\right|_{x=\xi}\left(x-x_{0}\right)^{2}$, so we have

$$
\begin{aligned}
& (n-1+q)^{\alpha}=(n-2+q)^{\alpha}+\alpha(n-2+q)^{\alpha-1}+\frac{\alpha(\alpha-1)}{2!}\left(n-2+\xi_{1}+q\right)^{\alpha-2} \\
& (n-3+q)^{\alpha}=(n-2+q)^{\alpha}-\alpha(n-2+q)^{\alpha-1}+\frac{\alpha(\alpha-1)}{2!}\left(n-2-\xi_{2}+q\right)^{\alpha-2}
\end{aligned}
$$

where $0<\xi_{1}<1$ and $0<\xi_{2}<1$. Then

$$
\begin{aligned}
h(1)= & (n-1+q)^{\alpha}-(n-3+q)^{\alpha}-2 \alpha(n-2+q)^{\alpha-1} \\
= & (n-2+q)^{\alpha}+\alpha(n-2+q)^{\alpha-1}+\frac{\alpha(\alpha-1)}{2}\left(n-2+\xi_{1}+q\right)^{\alpha-2} \\
& -(n-2+q)^{\alpha}+\alpha(n-2+q)^{\alpha-1}-\frac{\alpha(\alpha-1)}{2}\left(n-2-\xi_{2}+q\right)^{\alpha-2} \\
& -2 \alpha(n-2+q)^{\alpha-1} \\
= & \frac{\alpha(\alpha-1)}{2}\left(\left(n-2+\xi_{1}+q\right)^{\alpha-2}-\left(n-2-\xi_{2}+q\right)^{\alpha-2}\right)<0
\end{aligned}
$$

Consequently, $\frac{\partial g(p, j)}{\partial p} \leq h(j) \leq h(1)<0$. Thus, $g(p, j) \geq g(n-j-4, j)>$ $g(n-j-3, j)=0$.

Lemma 17. Let $f(x)=(x+q)^{\alpha}$. If $\alpha \leq-t,-1<q \leq 2.038 t-0.038$,
$t \geq 1$ and $r \geq 3$, then

$$
f(1)+(2 r-2) f(r+1)-(2 r-1) f(r) \geq 0
$$

Proof. Let $f_{1}(\alpha, q, r)=f(1)+(2 r-2) f(r+1)-(2 r-1) f(r)=(1+$ $q)^{\alpha}+(2 r-2)(r+1+q)^{\alpha}-(2 r-1)(r+q)^{\alpha}$ and $g(\alpha, q, r)=\frac{f_{1}(\alpha, q, r)}{(r+q)^{\alpha}}=$ $\left(\frac{1+q}{r+q}\right)^{\alpha}+(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha}-(2 r-1)$. Firstly,

$$
\frac{\partial g}{\partial q}=\frac{\alpha}{(r+q)^{2}}\left[(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}-(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}\right]
$$

Let $g_{1}(t)=(t+1) \ln \left(\frac{2.038 t+3.962}{2.038 t+0.962}\right)-\ln 2$. According to Lemma 10, Since $2 \times 2.038^{2}-2.038 \times 3.962-2.038 \times 0.962<0,2.038 \times 3.962+2.038 \times$ $0.962-2 \times 3.962 \times 0.962>0$ and $\frac{\mathrm{d} g_{1}}{\mathrm{~d} t}$ has no root on the interval $(1, \infty)$, it follows that $g_{1}(t) \geq g_{1}(1) \approx 0.69>0$. Thus,

$$
\begin{aligned}
\frac{(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}}{(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}} & =\frac{1}{2}\left(\frac{1+q}{r+1+q}\right)^{\alpha-1} \geq \frac{1}{2}\left(\frac{r+1+q}{1+q}\right)^{t+1} \\
& \geq \frac{1}{2}\left(1+\frac{r}{1+q}\right)^{t+1} \\
& \geq \frac{1}{2}\left(1+\frac{3}{1+2.038 t-0.038}\right)^{t+1} \\
& =\frac{1}{2}\left(\frac{2.038 t+3.962}{2.038 t+0.962}\right)^{t+1} \\
& >1
\end{aligned}
$$

and $\frac{\partial g}{\partial q}<0$.
We now prove that the partial derivative of the function $g(\alpha, q, r)$ with respect to α is less than or equal to 0 . By Lemmas 8 and 11, $\frac{\ln \left(\frac{2.038 t+r+0.962}{2.038 t+-0.038}\right)}{\ln \left(\frac{2.038 t+r-0.038}{2.038 t+0.962}\right)}\left(\frac{2.038 t+0.962}{2.038 t+r+0.962}\right)^{t} \leq \frac{3}{(r-1)(r+3)}$ and $\frac{\ln \left(\frac{q+r+1}{q+r}\right)}{\ln \left(\frac{q+r}{q+1}\right)}$ is monotonically increasing with respect to q. We have $\frac{(2 r-2) \ln \left(\frac{q+r+1}{q+r}\right)\left(\frac{q+r+1}{q+r}\right)^{a}}{\ln \left(\frac{q+r}{q+1}\right)\left(\frac{q+1}{q+r}\right)^{a}}=$ $(2 r-2) \frac{\ln \left(\frac{q+r+1}{q+r}\right)}{\ln \left(\frac{q+r}{q+1}\right)}\left(\frac{q+r+1}{q+1}\right)^{a} \leq(2 r-2) \frac{\ln \left(\frac{q+r+1}{q+r}\right)}{\ln \left(\frac{q+r}{q+1}\right)}\left(\frac{q+1}{q+r+1}\right)^{t}$
$\leq(2 r-2) \frac{\ln \left(\frac{2.038 t+r+0.962}{2.038 t+r-0.038}\right)}{\ln \left(\frac{2.038 t+r-0.038}{2.038 t+0.962}\right)}\left(\frac{2.038 t+0.962}{2.038 t+r+0.962}\right)^{t} \leq(2 r-2) \frac{3}{(r-1)(r+3)} \leq 1$. Since $\frac{\partial g}{\partial \alpha}=(2 r-2) \ln \left(\frac{q+r+1}{q+r}\right)\left(\frac{q+r+1}{q+r}\right)^{a}-\ln \left(\frac{q+r}{q+1}\right)\left(\frac{q+1}{q+r}\right)^{a}, \frac{\partial g}{\partial \alpha} \leq 0$.

Since $\frac{\partial g}{\partial q}<0$ and $\frac{\partial g}{\partial \alpha} \leq 0, g(\alpha, q, r) \geq g(-t, 2.038 t-0.038, r)=$ $g_{2}(t, r)$, where $g_{2}(t, r)=\left(\frac{2.038 t+r-0.038}{2.038 t+0.962}\right)^{t}+(2 r-2)\left(\frac{2.038 t+r-0.038}{2.038 t+r+0.962}\right)^{t}-$ $(2 r-1)$. The partial derivative of $g_{2}(t, r)$ with respect to r is given by: $\frac{\partial g_{2}}{\partial r}=2\left(\frac{2.038 t+r-0.038}{2.038 t+r+0.962}\right)^{t}+\frac{t\left(\frac{2.038 t+r-0.038}{2.038 t+0.962}\right)^{t-1}}{2.038 t+0.962}+\frac{t(2 r-2)\left(\frac{2.038 t+r-0.038}{2.038 t+r+0.962}\right)^{t-1}}{(2.038 t+r+0.962)^{2}}-$
$2 \geq 2 h_{1}(t)+h_{2}(t) h_{3}(t)+\frac{t(2 r-2)\left(\frac{2.038 t+r-0.038}{2.038 t+r+0.962}\right)^{t-1}}{(2.038 t+r+0.962)^{2}}-2$, where $h_{1}(t)=$ $\left(\frac{2.038 t+2.962}{2.038 t+3.962}\right)^{t}, h_{2}(t)=\frac{t}{2.038 t+2.962}$ and $h_{3}(t)=\left(\frac{2.038 t+2.962}{2.038 t+0.962}\right)^{t}$. Let $h_{4}(t)=t \ln \left(\frac{2.038 t+2.962}{2.038 t+0.962}\right)$ and $h(t)=2 h_{1}(t)+h_{2}(t) h_{3}(t)-2$. By Lemma 9 , we have $h_{1}(t), \frac{\mathrm{d} h_{2}}{\mathrm{~d} t}$ and $\frac{\mathrm{d} h_{4}}{\mathrm{~d} t}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty), h_{2}(t), h_{3}(t)$ and $h_{4}(t)$ are positive monotonically increasing functions, while $\frac{\mathrm{d} h_{1}}{\mathrm{~d} t}$ is a negative monotonically increasing function. For two constants a and b, let $h_{5}(a, b)=$ $\left.2 \frac{\mathrm{~d} h_{1}}{\mathrm{~d} t}\right|_{t=a}+\left.\frac{\mathrm{d} h_{2}}{\mathrm{~d} t}\right|_{t=b} h_{3}(a)+\left.h_{2}(a) e^{h_{4}(a)} \frac{\mathrm{d} h_{4}}{\mathrm{~d} t}\right|_{t=b}$, where $1 \leq a \leq b$. When $t \in[a, b], \frac{\mathrm{d} h}{\mathrm{~d} t}=2 \frac{\mathrm{~d} h_{1}}{\mathrm{~d} t}+\frac{\mathrm{d} h_{2}}{\mathrm{~d} t} h_{3}(t)+h_{2}(t) e^{h_{4}(t)} \frac{\mathrm{d} h_{4}}{\mathrm{~d} t} \geq h_{5}(a, b)$. If $h_{5}(a, b) \geq 0$, then $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ on the interval $[a, b]$. One can verify that $h_{5}(a, b)>0$ when $a=1+0.4 i$ and $b=a+0.4$ for $i \in\{0,1, \ldots, 7\}$. Thus, $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ and $h(t) \geq h(1)=0$ on the interval [1,4]. When $t \geq 4, h(t)=2 h_{1}(t)+$ $h_{2}(t) h_{3}(t)-2 \geq 2 h_{1}(\infty)+h_{2}(4) h_{3}(4)-2>0$. Thus, $\frac{\partial g_{2}}{\partial r}>h(t) \geq 0$ and $g_{2}(t, r) \geq g_{2}(t, 3)=h_{6}(t)+4 h_{7}(t)-5$, where $h_{6}(t)=\left(\frac{2.038 t+2.962}{2.038 t+0.962}\right)^{t}$ and $h_{7}(t)=\left(\frac{2.038 t+2.962}{2.038 t+3.962}\right)^{t}$.
Let $h_{8}(t)=t \ln \left(\frac{2.038 t+2.962}{2.038 t+0.962}\right)$ and $h_{9}(t)=h_{6}(t)+4 h_{7}(t)-5$. By Lemma 9 , we have $h_{7}(t)$ and $\frac{\mathrm{d} h_{8}}{\mathrm{~d} t}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty), h_{6}(t)$ and $h_{8}(t)$ are positive monotonically increasing functions, while $\frac{\mathrm{d} h_{7}}{\mathrm{~d} t}$ is a negative monotonically increasing function. For two constants a and b, let $h_{10}(a, b)=$ $\left.e^{h_{8}(a)} \frac{\mathrm{d} h_{8}}{\mathrm{~d} t}\right|_{t=b}+\left.4 \frac{\mathrm{~d} h_{7}}{\mathrm{~d} t}\right|_{t=a}$, where $1 \leq a \leq b$. When $t \in[a, b], \frac{\mathrm{d} h_{9}}{\mathrm{~d} t}=$ $e^{h_{8}(t)} \frac{\mathrm{d} h_{8}}{\mathrm{~d} t}+4 \frac{\mathrm{~d} h_{7}}{\mathrm{~d} t} \geq h_{10}(a, b)$. If $h_{10}(a, b) \geq 0$, then $\frac{\mathrm{d} h_{9}}{\mathrm{~d} t} \geq 0$ on the interval $[a, b]$. It can be verified that $h_{10}(a, b)>0$ when $a=1+0.04 i$ and $b=a+0.04$ for $i \in\{0,1, \ldots, 500\}$. Thus, $\frac{\mathrm{d} h_{9}}{\mathrm{~d} t} \geq 0$ and $h_{9}(t) \geq h_{9}(1)=0$ on the interval $[1,21]$. When $t \geq 21, h_{9}(t) \geq h_{6}(21)+4 h_{7}(\infty)-5>0$.

Hence, $g(\alpha, q, r) \geq g_{2}(t, r) \geq g_{2}(t, 3)=h_{9}(t) \geq 0$ and $f(\alpha, q, r)=$ $g(\alpha, q, r)(r+q)^{\alpha} \geq 0$.

Lemma 18. Let $f(x)=(x+q)^{\alpha}$. If $\alpha \leq-t,-1<q \leq 2.038 t-0.038$ and $t \geq 1$, then

$$
f(1)-2 f(2)+f(4) \geq 0
$$

Proof. Let $f(\alpha, q)=f(1)-2 f(2)+f(4)=(1+q)^{\alpha}-2(2+q)^{\alpha}+(4+q)^{\alpha}$ and $g(\alpha, q)=\frac{f(\alpha, q)}{(2+q)^{\alpha}}=\left(\frac{1+q}{2+q}\right)^{\alpha}+\left(\frac{4+q}{2+q}\right)^{\alpha}-2$. Firstly,

$$
\frac{\partial g}{\partial q}=\frac{\alpha}{(2+q)^{2}}\left[\left(\frac{1+q}{2+q}\right)^{\alpha-1}-2\left(\frac{4+q}{2+q}\right)^{\alpha-1}\right]
$$

Let $g_{1}(t)=(t+1) \ln \left(\frac{2.038 t+3.962}{2.038 t+0.962}\right)-\ln 2$. According to Lemma 10, since $2 \times 2.038^{2}-2.038 \times 3.962-2.038 \times 0.962<0,2.038 \times 3.962+2.038 \times 0.962-$ $2 \times 3.962 \times 0.962>0$ and $\frac{\mathrm{d} g_{1}}{\mathrm{~d} t}>0$ has no root on the interval $(1, \infty)$, it follows that $g_{1}(t) \geq g_{1}(1) \approx 0.693>0$. Thus, $\frac{\left(\frac{1+q}{2+q}\right)^{\alpha-1}}{2\left(\frac{4+q}{2+q}\right)^{\alpha-1}}=\frac{1}{2}\left(\frac{1+q}{4+q}\right)^{\alpha-1} \geq$ $\frac{1}{2}\left(\frac{4+q}{1+q}\right)^{t+1} \geq \frac{1}{2}\left(\frac{2.038 t+3.962}{2.038 t+0.962}\right)^{t+1}>1$ and $\frac{\partial g}{\partial q}<0$.

We now prove that the partial derivative of the function $g(\alpha, q)$ with respect to α is less than or equal to 0 . By Lemmas 8 and 11, $\frac{\ln \left(\frac{2.038 t+3.962}{2.038 t+1.962}\right)}{\ln \left(\frac{2.038 t+1.62}{2.038 t+0.962}\right)}\left(\frac{2.038 t+0.962}{2.038 t+3.962}\right)^{t} \leq 1$ and $\frac{\ln \left(\frac{q+4}{q+2}\right)}{\ln \left(\frac{q+2}{q+1}\right)}$ is monotonically increasing with respect to q, we have

$$
\begin{aligned}
\frac{\ln \left(\frac{q+4}{q+2}\right)\left(\frac{q+4}{q+2}\right)^{a}}{\ln \left(\frac{q+2}{q+1}\right)\left(\frac{q+1}{q+2}\right)^{a}} & =\frac{\ln \left(\frac{q+4}{q+2}\right)}{\ln \left(\frac{q+2}{q+1}\right)}\left(\frac{q+4}{q+1}\right)^{a} \\
& \leq \frac{\ln \left(\frac{q+4}{q+2}\right)}{\ln \left(\frac{q+2}{q+1}\right)}\left(\frac{q+1}{q+4}\right)^{t} \\
& \leq \frac{\ln \left(\frac{2.038 t+3.962}{2.038 t+1.962}\right)}{\ln \left(\frac{2.038 t+1.962}{2.038 t+0.962}\right)}\left(\frac{2.038 t+0.962}{2.038 t+3.962}\right)^{t} \\
& \leq 1
\end{aligned}
$$

Since $\frac{\partial g}{\partial \alpha}=\ln \left(\frac{q+4}{q+2}\right)\left(\frac{q+4}{q+2}\right)^{a}-\ln \left(\frac{q+2}{q+1}\right)\left(\frac{q+1}{q+2}\right)^{a}, \frac{\partial g}{\partial \alpha}<0$.

Since $\frac{\partial g}{\partial q}<0$ and $\frac{\partial g}{\partial \alpha}<0, g(\alpha, q) \geq g(-t, 2.038 t-0.038)=h_{1}(t)+$ $h_{2}(t)-2$, where $h_{1}(t)=\left(\frac{2.038 t+1.962}{2.038 t+0.962}\right)^{t}$ and $h_{2}(t)=\left(\frac{2.038 t+1.962}{2.038 t+3.962}\right)^{t}$. Let $h_{3}(t)=t \ln \left(\frac{2.038 t+1.962}{2.038 t+0.962}\right)$ and $h(t)=h_{1}(t)+h_{2}(t)-2$. By Lemma 9, we have $h_{2}(t)$ and $\frac{\mathrm{d} h_{3}}{\mathrm{~d} t}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty), h_{1}(t)$ and $h_{3}(t)$ are positive monotonically increasing functions, while $\frac{\mathrm{d} h_{2}}{\mathrm{~d} t}$ is a negative monotonically increasing function. For two constants a and b, let $h_{4}(a, b)=\left.e^{h_{3}(a)} \frac{\mathrm{d} h_{3}}{\mathrm{~d} t}\right|_{t=b}+\left.\frac{\mathrm{d} h_{2}}{\mathrm{~d} t}\right|_{t=a}$, where $1 \leq a \leq b$. When $t \in[a, b], \frac{\mathrm{d} h}{\mathrm{~d} t}=e^{h_{3}(t)} \frac{\mathrm{d} h_{3}}{\mathrm{~d} t}+\frac{\mathrm{d} h_{2}}{\mathrm{~d} t} \geq h_{4}(a, b)$. If $h_{4}(a, b) \geq 0$, then $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ on the interval $[a, b]$. It can be verified that $h_{4}(a, b)>0$ when $a=1+0.0002 i$ and $b=a+0.0002$ for $i \in\{0,1, \ldots, 3000\}$, as well as when $a=1.6+0.01 i$ and $b=a+0.01$ for $i \in\{0,1, \ldots, 6740\}$. Thus, $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ and $h(t) \geq h(1)=0$ on the interval [1, 69]. When $t \geq 69$, $h(t) \geq h_{1}(69)+h_{2}(\infty)-2>0$.

Hence, $g(\alpha, q) \geq h(t) \geq 0$ and $f(\alpha, q)=g(\alpha, q)(2+q)^{\alpha} \geq 0$.
Lemma 19. Let $f(x)=(x+q)^{\alpha}$. If $\alpha<0,-1<q \leq 0$ and $r \geq 4$, then

$$
f(1)+(2 r-2) f(r+1)-(2 r-1) f(r)>0
$$

Proof. Let $f(\alpha, q)=f(1)+(2 r-2) f(r+1)-(2 r-1) f(r)=(1+q)^{\alpha}+$ $(2 r-2)(r+1+q)^{\alpha}-(2 r-1)(r+q)^{\alpha}$ and $g(\alpha, q)=\frac{f(\alpha, q)}{(r+q)^{\alpha}}=\left(\frac{1+q}{r+q}\right)^{\alpha}+$ $(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha}-(2 r-1)$. Firstly,

$$
\frac{\partial g}{\partial q}=\frac{\alpha}{(r+q)^{2}}\left[(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}-(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}\right]
$$

Since $\frac{(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}}{(2 r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}}=\frac{1}{2}\left(\frac{1+q}{r+1+q}\right)^{\alpha-1} \geq \frac{1}{2}\left(\frac{r+1+q}{1+q}\right) \geq \frac{1}{2}\left(1+\frac{r}{1+q}\right) \geq$ $\frac{1}{2}\left(1+\frac{4}{1+0}\right)=\frac{5}{2}>1, \frac{\partial g}{\partial q}<0$. Thus, $g(\alpha, q) \geq g(\alpha, 0)=\left(\frac{1}{r}\right)^{\alpha}+(2 r-$ 2) $\left(\frac{r+1}{r}\right)^{\alpha}-(2 r-1)$.

We now prove that the partial derivative of $g(\alpha, 0)$ with respect to α is less than 0 . Set $g_{1}(r)=(2 r-2) \ln (r+1)-(2 r-1) \ln r$. Consider the derivative of $g_{1}(r)$ with respect to r, we have $\frac{\mathrm{d} g_{1}}{\mathrm{~d} r}=2 \ln \frac{r+1}{r}+\frac{1-3 r}{r(r+1)}$. Set $g_{2}(r)=\frac{3 r-1}{2 r(r+1) \ln \frac{r+1}{r}}$. Then $\frac{\mathrm{d} g_{2}}{\mathrm{~d} r}=\frac{3 r-1-\ln \left(1+\frac{1}{r}\right)\left(3 r^{2}-2 r-1\right)}{2 r^{2} \ln ^{2}\left(1+\frac{1}{r}\right)(r+1)^{2}}$. Since
$\frac{\ln \left(1+\frac{1}{r}\right)\left(3 r^{2}-2 r-1\right)}{3 r-1}=\ln \left(1+\frac{1}{r}\right) \frac{\left(3 r^{2}-2 r-1\right)}{3 r-1}=\frac{(3 r-1)\left(r-\frac{1}{3}\right)-\frac{4}{3}}{3 r-1} \ln \left(1+\frac{1}{r}\right)<r$. $\ln \left(1+\frac{1}{r}\right)=\ln \left(1+\frac{1}{r}\right)^{r},\left(1+\frac{1}{r}\right)^{r}$ is monotonically increasing in $(0,+\infty)$ and $\lim _{r \rightarrow+\infty}\left(1+\frac{1}{r}\right)^{r}=\mathrm{e}, \frac{\ln \left(1+\frac{1}{r}\right)\left(3 r^{2}-2 r-1\right)}{3 r-1}<\ln \left(1+\frac{1}{r}\right)^{r}<\ln \mathrm{e}=1$. Thus, $\frac{\mathrm{d} g_{2}}{\mathrm{~d} r}>0$ and $g_{2}(r) \geq g_{2}(4)=\frac{11}{40 \ln \frac{5}{4}}>1$, it implies that $\frac{3 r-1}{r(r+1)}>2 \ln \frac{r+1}{r}$ and $\frac{\mathrm{d} g_{1}}{\mathrm{~d} r}=2 \ln \frac{r+1}{r}+\frac{1-3 r}{r(r+1)}<0$. Thus, $g_{1}(r) \leq g_{1}(4)=6 \ln (5)-7 \ln 4<0$ and $\frac{(2 r-2) \ln \frac{r+1}{r} \cdot\left(\frac{r+1}{r}\right)^{\alpha}}{\ln r \cdot\left(\frac{1}{r}\right)^{\alpha}}=\frac{(2 r-2) \ln \frac{r+1}{r}}{\ln r} \cdot(r+1)^{\alpha} \leq \frac{(2 r-2)(\ln (r+1)-\ln r)}{\ln r}=$ $\frac{g_{1}(r)+\ln r}{\ln r}<1$. Since $\frac{\partial g(\alpha, 0)}{\partial \alpha}=(2 r-2) \ln \frac{r+1}{r} \cdot\left(\frac{r+1}{r}\right)^{\alpha}-\ln r \cdot\left(\frac{1}{r}\right)^{\alpha}, \frac{\partial g(\alpha, 0)}{\partial \alpha}<$ 0. Consequently, $g(\alpha, q) \geq g(\alpha, 0)>g(0,0)=1+(2 r-2)-(2 r-1)=0$. Thus $f(\alpha, q)=g(\alpha, q)(r+q)^{\alpha}>0$.

Lemma 20. Let $f(x)=(x+q)^{\alpha}$. If $\alpha<0$ and $-1<q \leq 0$, then

$$
f(1)-2 f(2)+f(4)>0
$$

Proof. Let $f(\alpha, q)=f(1)-2 f(2)+f(4)=(1+q)^{\alpha}-2(2+q)^{\alpha}+(4+q)^{\alpha}$ and $g(\alpha, q)=\frac{f(\alpha, q)}{(2+q)^{\alpha}}=\left(\frac{1+q}{2+q}\right)^{\alpha}+\left(\frac{4+q}{2+q}\right)^{\alpha}-2$. Firstly,

$$
\frac{\partial g}{\partial q}=\frac{\alpha}{(2+q)^{2}}\left[\left(\frac{1+q}{2+q}\right)^{\alpha-1}-2\left(\frac{4+q}{2+q}\right)^{\alpha-1}\right]
$$

Since $\frac{\left(\frac{1+q}{2+q}\right)^{\alpha-1}}{2\left(\frac{4+q}{2+q}\right)^{\alpha-1}}=\frac{1}{2}\left(\frac{1+q}{4+q}\right)^{\alpha-1} \geq \frac{1}{2}\left(1-\frac{3}{4+q}\right)^{-1} \geq \frac{1}{2}\left(1-\frac{3}{4}\right)^{-1}=2>1$, $\frac{\partial g}{\partial q}<0$. Thus, $g(\alpha, q) \geq g(\alpha, 0)=\left(\frac{1}{2}\right)^{\alpha}+2^{\alpha}-2$. Since $\frac{\mathrm{d} g(\alpha, 0)}{\mathrm{d} \alpha}=\ln 2$. $2^{\alpha}-\ln 2 \cdot\left(\frac{1}{2}\right)^{\alpha}<0, g(\alpha, q) \geq g(\alpha, 0)>g(0,0)=0$. Thus $f(\alpha, q)=$ $g(\alpha, q)(2+q)^{\alpha}>0$.

Lemma 21. Let $f(x)=(x+q)^{\alpha}$. If $\alpha<0$ and $-1<q \leq 0$, then

$$
f(1)+2 f(4)+f(5)-4 f(3)>0
$$

Proof. Let $f(\alpha, q)=f(1)+2 f(4)+f(5)-4 f(3)=(1+q)^{\alpha}+2(4+q)^{\alpha}+(5+$ $q)^{\alpha}-4(3+q)^{\alpha}$ and $f_{1}(\alpha, q)=\frac{f(\alpha, q)}{(3+q)^{\alpha}}=\left(\frac{1+q}{3+q}\right)^{\alpha}+2\left(\frac{4+q}{3+q}\right)^{\alpha}+\left(\frac{5+q}{3+q}\right)^{\alpha}-$ 4. Firstly, $\frac{\partial f_{1}}{\partial q}=\frac{\alpha}{(3+q)^{2}}\left[2\left(\frac{1+q}{3+q}\right)^{\alpha-1}-2\left(\frac{4+q}{3+q}\right)^{\alpha-1}-2\left(\frac{5+q}{3+q}\right)^{\alpha-1}\right]$. Set $f_{2}(\alpha, q)=2\left(\frac{1+q}{3+q}\right)^{\alpha-1}-2\left(\frac{4+q}{3+q}\right)^{\alpha-1}-2\left(\frac{5+q}{3+q}\right)^{\alpha-1}$ and $f_{3}(\alpha, q)=\frac{f_{2}(\alpha, q)}{2\left(\frac{5+q}{3+q}\right)^{\alpha-1}}$
$=\left(\frac{1+q}{5+q}\right)^{\alpha-1}-\left(\frac{4+q}{5+q}\right)^{\alpha-1}-1$.
Since $\frac{\partial f_{3}}{\partial q}=\frac{\alpha-1}{(5+q)^{2}}\left[4\left(\frac{1+q}{5+q}\right)^{\alpha-2}-\left(\frac{4+q}{5+q}\right)^{\alpha-2}\right]$ and $4 \frac{\left(\frac{1+q}{5+q}\right)^{\alpha-2}}{\left(\frac{4+q}{5+q}\right)^{\alpha-2}}=4\left(\frac{1+q}{4+q}\right)^{\alpha-2}$ $\geq 4\left(1-\frac{3}{4+q}\right)^{-2} \geq 4\left(1-\frac{3}{4}\right)^{-2}=64>1, \frac{\partial f_{3}}{\partial q}<0$. Thus, $f_{3}(\alpha, q) \geq$ $f_{3}(\alpha, 0)=\left(\frac{1}{5}\right)^{\alpha-1}-\left(\frac{4}{5}\right)^{\alpha-1}-1$. Since $\frac{\mathrm{d} f_{3}(\alpha, 0)}{\mathrm{d} \alpha}=\ln \frac{5}{4} \cdot\left(\frac{4}{5}\right)^{\alpha-1}-\ln 5 \cdot\left(\frac{1}{5}\right)^{\alpha-1}$ and $\frac{\ln \frac{5}{4} \cdot\left(\frac{4}{5}\right)^{\alpha-1}}{\ln 5 \cdot\left(\frac{1}{5}\right)^{\alpha-1}}=\frac{\ln \frac{5}{4}}{\ln 5} \cdot 4^{\alpha-1} \leq \frac{\ln \frac{5}{4}}{\ln 5} \cdot 4^{-1}<1, \frac{\mathrm{~d} f_{3}(\alpha, 0)}{\mathrm{d} \alpha}<0$. Thus, $f_{3}(\alpha, q) \geq$ $f_{3}(\alpha, 0)>f_{3}(0,0)=5-\frac{5}{4}-1>0, \frac{\partial f_{1}}{\partial q}=\frac{\alpha}{(3+q)^{2}} f_{2}(\alpha, q)=\frac{\alpha}{(3+q)^{2}} f_{3}(\alpha, q)$. $2\left(\frac{5+q}{3+q}\right)^{\alpha-1}<0$ and $f_{1}(\alpha, q) \geq f_{1}(\alpha, 0)=\left(\frac{1}{3}\right)^{\alpha}+2\left(\frac{4}{3}\right)^{\alpha}+\left(\frac{5}{3}\right)^{\alpha}-4$.

Set $f_{4}(\alpha)=\frac{\mathrm{d} f_{1}(\alpha, 0)}{\mathrm{d} \alpha} /\left(\frac{5}{3}\right)^{\alpha}=\ln \frac{5}{3}+2 \ln \frac{4}{3} \cdot\left(\frac{4}{5}\right)^{\alpha}-\ln 3 \cdot\left(\frac{1}{5}\right)^{\alpha}$. Since $\frac{\mathrm{d} f_{4}}{\mathrm{~d} \alpha}=\ln 3 \cdot \ln 5 \cdot\left(\frac{1}{5}\right)^{\alpha}-2 \ln \frac{4}{3} \cdot \ln \frac{5}{4} \cdot\left(\frac{4}{5}\right)^{\alpha}$ and $\frac{\ln 3 \cdot \ln 5 \cdot\left(\frac{1}{5}\right)^{\alpha}}{2 \ln \frac{4}{3} \cdot \ln \frac{5}{4} \cdot\left(\frac{4}{5}\right)^{\alpha}}=\frac{\ln 3 \cdot \ln 5}{2 \ln \frac{4}{3} \cdot \ln \frac{5}{4}}$. $\left(\frac{1}{4}\right)^{\alpha} \geq \frac{\ln 3 \cdot \ln 5}{2 \ln \frac{4}{3} \cdot \ln \frac{5}{4}} \cdot\left(\frac{1}{4}\right)^{0}>1, \frac{\mathrm{~d} f_{4}}{\mathrm{~d} \alpha}>0$. Consequently, $f_{4}(\alpha)<f_{4}(0)=$ $\ln \frac{5}{3}+2 \ln \frac{4}{3}-\ln 3<0$ and $\frac{\mathrm{d} f_{1}(\alpha, 0)}{\mathrm{d} \alpha}=f_{4}(\alpha)\left(\frac{5}{3}\right)^{\alpha}<0$. Thus, $f_{1}(\alpha, q) \geq$ $f_{1}(\alpha, 0)>f_{1}(0,0)=0$ and $f(\alpha, q)=f_{1}(\alpha, q)(3+q)^{\alpha}>0$.

Lemma 22. Let $f(x)=(x+q)^{\alpha}$. If $\alpha \leq-t, 0<q \leq 1.413 t+0.587$ and $t \geq 1$, then

$$
f(0)+2 f(2)-3 f(1) \geq 0
$$

Proof. Let $f(\alpha, q)=f(0)+2 f(2)-3 f(1)=q^{\alpha}+2(2+q)^{\alpha}-3(1+q)^{\alpha}$ and $g(\alpha, q)=\frac{f(\alpha, q)}{(1+q)^{\alpha}}=\left(\frac{q}{1+q}\right)^{\alpha}+2\left(\frac{2+q}{1+q}\right)^{\alpha}-3$. Firstly,

$$
\frac{\partial g}{\partial q}=\frac{\alpha}{(1+q)^{2}}\left[\left(\frac{q}{1+q}\right)^{\alpha-1}-2\left(\frac{2+q}{1+q}\right)^{\alpha-1}\right]
$$

Let $g_{1}(t)=(t+1) \ln \left(\frac{1.413 t+2.587}{1.413 t+0.587}\right)-\ln 2$. According to Lemma 10, since $2 \times 1.413^{2}-1.413 \times 2.587-1.413 \times 0.587<0,1.413 \times 2.587+1.413 \times$ $0.587-2 \times 2.587 \times 0.587>0$ and $\frac{\mathrm{d} g_{1}}{\mathrm{~d} t}>0$ has a unique root t_{1} on the interval $(1, \infty)$, where $t_{1} \approx 1.625$, it follows that $g_{1}(t) \geq g_{1}\left(t_{1}\right) \approx 0.69>0$. Thus, $\frac{\left(\frac{q}{1+q}\right)^{\alpha-1}}{2\left(\frac{2+q}{1+q}\right)^{\alpha-1}}=\frac{1}{2}\left(\frac{q}{2+q}\right)^{\alpha-1} \geq \frac{1}{2}\left(\frac{2+q}{q}\right)^{t+1} \geq \frac{1}{2}\left(\frac{1.413 t+2.587}{1.413 t+0.587}\right)^{t+1}>1$ and $\frac{\partial g}{\partial q}<0$.

We now prove that the partial derivative of the function $g(\alpha, q)$ with respect to α is less than or equal to 0 . By Lemmas 8 and 11, $\frac{2 \ln \left(\frac{1.413 t+2.587}{1.413 t+1.57}\right)}{\ln \left(\frac{1.413 t+1.587}{1.413 t+0.587}\right)}\left(\frac{1.413 t+0.587}{1.413 t+2.587}\right)^{t} \leq 1$ and $\frac{\ln \left(\frac{q+2}{q+1}\right)}{\ln \left(\frac{q+1}{q}\right)}$ is monotonically increasing
with respect to q, we have

$$
\frac{2 \ln \left(\frac{q+2}{q+1}\right)\left(\frac{q+2}{q+1}\right)^{a}}{\ln \left(\frac{q+1}{q}\right)\left(\frac{q}{q+1}\right)^{a}} \leq \frac{2 \ln \left(\frac{q+2}{q+1}\right)}{\ln \left(\frac{q+1}{q}\right)}\left(\frac{q}{q+2}\right)^{t} \leq \frac{2 \ln \left(\frac{1.413 t+2.587}{1.413+1.587}\right)}{\ln \left(\frac{1.413 t+1.57}{1.413 t+0.587}\right)}\left(\frac{1.413 t+0.587}{1.413 t+2.587}\right)^{t} \leq 1
$$

Since $\frac{\partial g}{\partial \alpha}=2 \ln \left(\frac{q+2}{q+1}\right)\left(\frac{q+2}{q+1}\right)^{a}-\ln \left(\frac{q+1}{q}\right)\left(\frac{q}{q+1}\right)^{a} \leq 0, \frac{\partial g}{\partial \alpha} \leq 0$.
Since $\frac{\partial g}{\partial q} \leq 0$ and $\frac{\partial g}{\partial \alpha} \leq 0, g(\alpha, q) \geq g(-t, 1.413 t+0.587)=h_{1}(t)$ $+2 h_{2}(t)-3$, where $h_{1}(t)=\left(\frac{1.413 t+1.587}{1.413 t+0.587}\right)^{t}$ and $h_{2}(t)=\left(\frac{1.413 t+1.587}{1.413 t+2.587}\right)^{t}$. Let $h_{3}(t)=t \ln \left(\frac{1.413 t+1.587}{1.413 t+0.587}\right)$ and $h(t)=h_{1}(t)+2 h_{2}(t)-3$. By Lemma 9, we have $h_{2}(t)$ and $\frac{\mathrm{d} h_{3}}{\mathrm{~d} t}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty), h_{1}(t)$ and $h_{3}(t)$ are positive monotonically increasing functions, while $\frac{\mathrm{d} h_{2}}{\mathrm{~d} t}$ is a negative monotonically increasing function. For two constants a and b, let $h_{4}(a, b)=\left.e^{h_{3}(a)} \frac{\mathrm{d} h_{3}}{\mathrm{~d} t}\right|_{t=b}+$ $\left.2 \frac{\mathrm{~d} h_{2}}{\mathrm{~d} t}\right|_{t=a}$, where $1 \leq a \leq b$. When $t \in[a, b], \frac{\mathrm{d} h}{\mathrm{~d} t}=e^{h_{3}(t) \frac{\mathrm{d} h_{3}}{\mathrm{~d} t}+2 \frac{\mathrm{~d} h_{2}}{\mathrm{~d} t} \geq}$ $h_{4}(a, b)$. If $h_{4}(a, b) \geq 0$, then $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ on the interval $[a, b]$. It can be verified that $h_{4}(a, b)>0$ when $a=1+0.0001 i$ and $b=a+0.0001$ for $i \in\{0,1, \ldots, 6000\}$, as well as when $a=1.6+0.01 i$ and $b=a+0.01$ for $i \in\{0,1, \ldots, 7240\}$. Thus, $\frac{\mathrm{d} h}{\mathrm{~d} t} \geq 0$ and $h(t) \geq h(1)=0$ on the interval $[1,74]$. When $t \geq 74, h(t)=h_{1}(t)+2 h_{2}(t)-3 \geq h_{1}(74)+2 h_{2}(\infty)-3>0$. Hence, $g(\alpha, q) \geq h(t) \geq 0$ and $f(\alpha, q)=g(\alpha, q)(1+q)^{\alpha} \geq 0$.

Lemma 23. Let $f(x)=(x+q)^{\alpha}$. If $\alpha \leq-t, 0<q \leq 1.413 t+0.587$ and $t \geq 1$, then

$$
f(0)-f(1)-2 f(2)+2 f(3)>0
$$

Proof. Let $f(\alpha, q)=f(0)-f(1)-2 f(2)+2 f(3)=q^{\alpha}-(1+q)^{\alpha}-2(2+$ $q)^{\alpha}+2(3+q)^{\alpha}$ and $f_{1}(\alpha, q)=\frac{f(\alpha, q)}{q^{\alpha}}=1-\left(\frac{1+q}{q}\right)^{\alpha}-2\left(\frac{2+q}{q}\right)^{\alpha}+2\left(\frac{3+q}{q}\right)^{\alpha}$. Firstly,

$$
\frac{\partial f_{1}}{\partial q}=\frac{\alpha}{q^{2}}\left[-6\left(\frac{3+q}{q}\right)^{\alpha-1}+\left(\frac{1+q}{q}\right)^{\alpha-1}+4\left(\frac{2+q}{q}\right)^{\alpha-1}\right]
$$

Let $f_{2}(\alpha, q)=-6\left(\frac{3+q}{q}\right)^{\alpha-1}+\left(\frac{1+q}{q}\right)^{\alpha-1}+4\left(\frac{2+q}{q}\right)^{\alpha-1}$ and $f_{3}(\alpha, q)=$ $\frac{f_{2}(\alpha, q)}{\left(\frac{3+q}{q}\right)^{\alpha-1}}=\left(\frac{1+q}{3+q}\right)^{\alpha-1}+4\left(\frac{2+q}{3+q}\right)^{\alpha-1}-6$.

Since $\frac{\partial f_{3}}{\partial q}=\frac{\alpha-1}{(3+q)^{2}}\left[4\left(\frac{2+q}{3+q}\right)^{\alpha-2}+2\left(\frac{1+q}{3+q}\right)^{\alpha-2}\right]<0$ and
$\frac{\partial f_{3}}{\partial \alpha}=\ln \left(\frac{1+q}{3+q}\right)\left(\frac{1+q}{3+q}\right)^{\alpha-1}+4 \ln \left(\frac{2+q}{3+q}\right)\left(\frac{2+q}{3+q}\right)^{\alpha-1}<0$,
$f_{3}(\alpha, q) \geq f_{3}(-t, 1.413 t+0.587)=e^{h_{1}(t)}+4 e^{h_{2}(t)}-6$, where $h_{1}(t)=$ $(t+1) \ln \left(\frac{1.413 t+3.587}{1.413 t+1.587}\right)$ and $h_{2}(t)=(t+1) \ln \left(\frac{1.413 t+3.587}{1.413 t+2.587}\right)$. According to Lemma 10 , since $2 \times 1.413^{2}-1.413 \times 3.587-1.413 \times 1.587<0,1.413 \times$ $3.587+1.413 \times 1.587-2 \times 3.587 \times 1.587<0,2 \times 1.413^{2}-1.413 \times 3.587-$ $1.413 \times 2.587<0$ and $1.413 \times 3.587+1.413 \times 2.587-2 \times 3.587 \times 2.587<0$, it follows that $h_{1}(t) \geq h_{1}(1)$ and $h_{2}(t) \geq h_{2}(1)$. Thus, $f_{3}(\alpha, q) \geq e^{h_{1}(t)}+$ $4 e^{h_{2}(t)}-6 \geq e^{h_{1}(1)}+4 e^{h_{2}(1)}-6=\frac{109}{36}>0$. Since $\frac{\partial f_{1}}{\partial q}=\frac{\alpha}{q^{2}} f_{2}(\alpha, q)=$ $\frac{\alpha}{q^{2}} f_{3}(\alpha, q) \cdot\left(\frac{3+q}{q}\right)^{\alpha-1}, \frac{\partial f_{1}}{\partial q}<0$.

The partial derivative of $f_{1}(\alpha, q)$ with respect to α is given by:
$\frac{\partial f_{1}}{\partial \alpha}=2 \ln \left(\frac{3+q}{q}\right)\left(\frac{3+q}{q}\right)^{\alpha}-2 \ln \left(\frac{2+q}{q}\right)\left(\frac{2+q}{q}\right)^{\alpha}-\ln \left(\frac{1+q}{q}\right)\left(\frac{1+q}{q}\right)^{\alpha}$. Set $f_{4}(\alpha, q)=\frac{\frac{\partial f_{1}}{\partial \alpha}}{\left(\frac{3+q}{q}\right)^{\alpha}}=2 \ln \left(\frac{3+q}{q}\right)-2 \ln \left(\frac{2+q}{q}\right)\left(\frac{2+q}{3+q}\right)^{\alpha}-\ln \left(\frac{1+q}{q}\right)\left(\frac{1+q}{3+q}\right)^{\alpha}$. Then $\frac{\partial f_{4}}{\partial \alpha}=2 \ln \left(\frac{2+q}{q}\right) \ln \left(\frac{3+q}{2+q}\right)\left(\frac{2+q}{3+q}\right)^{\alpha}+\ln \left(\frac{1+q}{q}\right) \ln \left(\frac{3+q}{1+q}\right)\left(\frac{1+q}{3+q}\right)^{\alpha}>0$ and $\frac{\partial f_{4}}{\partial q}=\frac{\left(\frac{q+1}{q+3}\right)^{a}}{q(q+1)}-\frac{6}{q(q+3)}+\frac{4\left(\frac{q+2}{q+3}\right)^{a}}{q(q+2)}-\frac{2 a \ln \left(\frac{q+1}{q}\right)\left(\frac{q+1}{q+3}\right)^{a}}{q^{2}+4 q+3}-\frac{2 a \ln \left(\frac{q+2}{q}\right)\left(\frac{q+2}{q+3}\right)^{a}}{q^{2}+5 q+6} \geq$ $\frac{1}{q(q+3)}\left(\left(\frac{q+1}{q+3}\right)^{a}+4\left(\frac{q+2}{q+3}\right)^{a}-6\right) \geq \frac{1}{q(q+3)}\left(\left(\frac{q+3}{q+1}\right)^{t}+4\left(\frac{q+3}{q+2}\right)^{t}-6\right)$
$\geq \frac{1}{q(q+3)}\left(g_{1}(t)+4 g_{2}(t)-6\right)$, where $g_{1}(t)=\left(\frac{1.413 t+3.587}{1.413 t+1.587}\right)^{t}$ and $g_{2}(t)=$ $\left(\frac{1.413 t+3.587}{1.413 t+2.587}\right)^{t}$. By Lemma $9, g_{1}(t)$ and $g_{2}(t)$ are both monotonically increasing. Thus, $g_{1}(t)+4 g_{2}(t)-6 \geq g_{1}(1)+4 g_{2}(1)-6=\frac{2}{3}>0$ and $\frac{\partial f_{4}}{\partial q} \geq \frac{1}{q(q+3)}\left(g_{1}(t)+4 g_{2}(t)-6\right)>0$.
Let $g_{3}(t)=2 \ln \left(\frac{1.413 t+3.587}{1.413 t+0.587}\right)-2 \ln \left(\frac{1.413 t+2.587}{1.413 t+0.587}\right)\left(\frac{1.413 t+3.587}{1.413 t+2.587}\right)^{t}$, $g_{4}(t)=\ln \left(\frac{1.413 t+1.587}{1.413 t+0.587}\right)\left(\frac{1.413 t+3.587}{1.413 t+1.587}\right)^{t}, g_{5}(t)=\ln \left(\frac{1.413 t+3.587}{1.413 t+0.587}\right)$, $g_{6}(t)=\ln \left(\frac{1.413 t+2.587}{1.413 t+0.587}\right), g_{7}(t)=\left(\frac{1.413 t+3.587}{1.413 t+2.587}\right)^{t}, g_{8}(t)=\ln \left(\frac{1.413 t+1.587}{1.413 t+0.587}\right)$, $g_{9}(t)=\left(\frac{1.413 t+3.587}{1.413 t+1.587}\right)^{t}$ and $g_{10}(t)=\frac{g_{6}(t)}{g_{5}(t)}=\frac{\ln \left(\frac{1.413 t+2.587}{1.413 t+0.587}\right)}{\ln \left(\frac{1.413 t+3.587}{1.413 t+0.587}\right)}$. By Lemmas 8 and $9, \lim _{t \rightarrow+\infty} g_{10}(t)=\frac{2}{3}, g_{5}(t), g_{6}(t), g_{7}(t), g_{8}(t), g_{9}(t)$ and $g_{10}(t)$ are all positive functions, where $g_{7}(t)$ and $g_{9}(t)$ are monotonically increasing while the others are monotonically decreasing. For two constants a and b, let $g_{11}(a, b)=2 g_{5}(a)-2 g_{6}(b) g_{7}(a)-g_{8}(b) g_{9}(a)$, where $1 \leq a \leq b$. When
$t \in[a, b], g_{3}(t)-g_{4}(t)=2 g_{5}(t)-2 g_{6}(t) g_{7}(t)-g_{8}(t) g_{9}(t) \leq g_{11}(a, b)$. If $g_{11}(a, b) \leq 0$, then $g_{3}(t)-g_{4}(t) \leq 0$ on the interval [a, b]. It can be verified that $g_{11}(a, b)<0$ when $a=1+0.5 i$ and $b=a+0.5$ for $i \in\{0,1,2,3\}$. Thus, $g_{3}(t)-g_{4}(t)<0$ on the interval [1,3]. When $t \geq 3, \frac{g_{6}(t) g_{7}(t)}{g_{5}(t)}=g_{7}(t) g_{10}(t) \geq g_{7}(3) g_{10}(\infty)=\frac{2}{3} g_{7}(3)>1, g_{3}(t)<0$ and $g_{3}(t)-g_{4}(t)<0$.
Since $\frac{\partial f_{4}}{\partial q}>0$ and $\frac{\partial f_{4}}{\partial \alpha}>0, f_{4}(\alpha, q) \leq f_{4}(-t, 1.413 t+0.587)=g_{3}(t)-$ $g_{4}(t)<0$ and $\frac{\partial f_{1}}{\partial \alpha}=f_{4}(\alpha, q)\left(\frac{3+q}{q}\right)^{\alpha}<0$.

Since $\frac{\partial f_{1}}{\partial q}<0$ and $\frac{\partial f_{1}}{\partial \alpha}<0, f_{1}(\alpha, q) \geq f_{1}(-t, 1.413 t+0.587)=$ $1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t)$, where $g_{12}(t)=\left(\frac{1.413 t+0.587}{1.413 t+1.587}\right)^{t}, g_{13}(t)=$ $\left(\frac{1.413 t+0.587}{1.413 t+2.587}\right)^{t}$ and $g_{14}(t)=\left(\frac{1.413 t+0.587}{1.413 t+3.587}\right)^{t}$. By Lemma $9, \lim _{t \rightarrow+\infty} g_{14}(t)$
$=e^{\frac{-3}{1.413}}$, the functions $g_{12}(t), g_{13}(t)$ and $g_{14}(t)$ are all monotonically decreasing. For two constants a and b, let $g_{15}(a, b)=1-g_{12}(a)-2 g_{13}(a)+$ $2 g_{14}(b)$, where $1 \leq a \leq b$. When $t \in[a, b], 1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t) \geq$ $g_{15}(a, b)$. If $g_{15}(a, b) \geq 0$, then $1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t) \geq 0$ on the interval $[a, b]$. It can be verified that $g_{15}(a, b)>0$ when $a=1+0.4 i$ and $b=a+0.4$ for $i \in\{0,1, \ldots, 7\}$. Thus, $1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t)>0$ on the interval $[1,4]$. When $t \geq 4,1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t) \geq 1-g_{12}(4)-$ $2 g_{13}(4)+2 g_{14}(\infty)>0$, so the function $1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t)>0$ on the interval $[1,+\infty)$.

Thus, $f_{1}(\alpha, q) \geq 1-g_{12}(t)-2 g_{13}(t)+2 g_{14}(t)>0$ and $f(\alpha, q)=$ $f_{1}(\alpha, q) q^{\alpha}>0$.

Acknowledgment: The research was supported by NSFC (No. 12061073).

References

[1] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index (χ_{α}) with given cyclomatic number when $\alpha>1$, Discr. Appl. Math. 257 (2019) 19-30.
[2] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5-84.
[3] A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89-96.
[4] M. Aouchiche, F. K. Bell, D. Cvetković, P. Hansen, P. Rowlinson, S. K. Simić, D. Stevanović, Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph, Eur. J. Oper. Res. 191 (2008) 661-676.
[5] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.
[6] Y. Caro, New results on the independence number, Tech. Report, Tel-Aviv Univ., 1979.
[7] X. Cheng, X. Li, Some bounds for the vertex degree function index of connected graphs with given minimum and maximum degrees, MATCH Commun. Math. Comput. Chem. 90 (2023) 175-186.
[8] S. Fajtlowicz, On conjectures of graffiti II, Congr. Num. 60 (1987) 189-197.
[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[10] L. H. Hall, L. B. Kier, The nature of structure-activity relationships and their relation to molecular connectivity, Eur. J. Med. Chem. 12 (1977) 307-312.
[11] Z. Hu, X. Li, D. Peng, Graphs with minimum vertex-degree functionindex for convex functions, MATCH Commun. Math. Comput. Chem. 88 (2022) 521-533.
[12] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discr. Appl. Math. 155 (2007) 1044-1054.
[13] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425-434.
[14] X. Li, Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for $\alpha \in(-1,0)$, MATCH Commun. Math. Comput. Chem. 62 (2009) 163-170.
[15] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[16] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math. 127 (2003) 615-626.
[17] L. Pavlović, M. Lazić, T. Aleksić, More on "Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index", Discr. Appl. Math. 157 (2009) 2938-2944.
[18] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109-114.
[19] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294.
[20] V. K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum, 81-11217-9, Murray Hill, 1981.
[21] Y. Yao, M. Liu, F. Belardo, C. Yang, Unified extremal results of topological indices and spectral invariants of graphs, Discr. Appl. Math. 271 (2019) 218-232.
[22] Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degreebased graph invariants with given diameter, MATCH Commun. Math. Comput. Chem. 82 (2019) 699-714.

[^0]: *Corresponding author.

