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Abstract

An (n,m)-graph is a graph with n vertices and m edges. The
vertex-degree function-index H¢(G) of a graph G is defined as H¢(G)
=Y vev(c) f(d(v)), where f is a real function.

In this paper, we show that if f(z) is strictly convex and strictly
monotonically decreasing and satisfies some additional properties,
then Hy(G) < (n —k —1)f(0) + f(p) + (k —p)f(k — 1) + pf(k)
for any connected (n,m)-graph G with m = n + k(k — 3)/2 + p,
where 2 < k < n—1and 0 < p < k — 2. The unique graph
that satisfies the above equality is characterized. As an instance,
the function f(z) = (z + ¢)® is such a function when a < —t,
—1<¢<2.038—0.038 and t > 1 or when a < 0, -1 < ¢ <0.

We also prove that if f(z) is strictly convex and strictly mono-
tonically decreasing and satisfies some additional properties, then
Hy(G) < (n— k — 1)£(0) + f(p) + (h — p) f(k — 1) + pf (k) for any
(n,m)-graph G with m = k(k — 1)/2 + p, where 2 < k <n —1 and
0 < p < k—1. The unique graph that satisfies the above equal-
ity is characterized. As an instance, the function f(z) = (z + ¢)¢
has the properties as described above when a@ < —t and 0 < ¢ <
1.413t + 0.587 and t > 1.
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1 Introduction

In this paper, we only consider simple undirected graphs. For undeter-
mined notations and terminologies, see the book by Bondy and Murty [5].
We use V(G) and E(G) to denote the vertex-set and edge-set of a graph
G, respectively. Let G[S] denote an induced subgraph of G whose vertex
set is S and whose edge set consists of all edges of G which have both
end-vertices in S. We denote a complete graph with n vertices by K,,.

Let n and m be two positive integers with n > 2 and 1 < m < n(n —
1)/2. An (n,m)-graph is a graph G = (V(G), E(G)), where m = |E(G)|
and n = |V(G)|. Let G.(n,m) be the family of all (n, m)-graphs G satis-
fying that d(v) € {[Z2],[22]} for all v € V(G).

In 1972, Gutman and Trinajsti¢ [9] introduced the first Zagreb index:

M(G) =) d(v)?,

ueV

where d(v) denotes the degree of v in G. The zeroth-order general Randié
index °R,(G) of a graph G, was defined by Li and Zheng in [15] as

"Ra(G) =) d(v)?,

ueV

where « is a real number and « ¢ {0,1}. In particular, °R_;(G) is called
the inverse degree ID(G) of G [8], °Ra(G) is just equal to M;(G), and
OR_%(G) in [10] is called the Randi¢ index R(G) of G. Some extremal
results concerning the zeroth-order general Randi¢ index were deduced
in [2,12-15,17.

A more general graph invariant was introduced in [1]:

"Raq(G) =) (d(v) +a)",

veV

where  and ¢ are real numbers and « # 0 or 1. The invariant °R, ,(G)

is a modified form of the zeroth-order general Randi¢ index. In particular,
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ORa O(G) e ORQ(G) and 0R270(G) = M, (G) In addition,

)

1
OR_l,l(G) = Z W

veV

are known to be Caro-Wei index of a graph [6,20]. It is well known that
Oé(G) > OR_Ll(G),

where a(G) is the independence number of G for any graph G.

Recall some specific graphs defined in [4]. A pineapple with parameters
n,k (k < n), denoted by PA(n,k), is a graph on n vertices consisting of
a clique on k vertices and a stable set on the remaining n — k vertices in
which each vertex of the stable set is adjacent to a unique and the same
vertex of the clique.

A fanned pineapple of type 1 with parameters n,k,p (n > k > p), de-
noted by FPA;(n,k,p), is a graph (on n vertices) obtained from a pineap-
ple PA(n,k) by connecting a vertex from the stable set by edges to p
vertices of the clique, with 0 < p <k —2. FPA;(7,4,1) is represented in
Figure 1.

Figure 1. FPA(7,4,1).

In [12], the authors characterized the connected (n,m)-graphs with

extremal maximum zeroth-order general Randi¢ index for a < —1.

Theorem 1 (Hu, Li, Shi and Xu [12]). Let o < —1 be a real number, and
n,m, k,p be nonnegative integers satisfying m = n+k(k —3)/2 + p, where
2<k<n—-1and0<p<k-—2. If G is a connected (n, m)-graph, then

"Ro(G) < (n—k—=1)- 1%+ (p+1)* + (k —p— 1)(k - 1)
+p-k*+(n—-1)7
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the equality holds if and only if G = FPA(n,k,p).

Li and Shi [14], independently Pavlovié, Lazié¢ and Aleksié [17] extended

the above result to the case when o < 0.

Theorem 2 (Li and Shi [14], Pavlovié, Lazi¢ and Aleksié¢ [17]). Let a <0
be a real number, and n,m,k,p be nonnegative integers satisfying m =
n+k(k—3)/2+p, where2<k<n—-1and0<p<k—-2 IfGisa

connected (n, m)-graph, then

"‘Ro(G)<(n—k—-1)-1+(p+1)*+(k—p—1)(k-1)*
+p- k% 4+ (n—-1)7

the equality holds if and only if G = FPA 1 (n,k,p).

In [21], Yao, Liu, Belardo and Yang introduced the vertex-degree
function-index H¢(G) of a graph G with a real-valued function f(z) as
follows:

Hy(G) = Y [f(dv)).
veV(G)
Some properties about the vertex-degree function-index have been studied,
see [3,7,11,18,19,21,22].

Recently, Ali, Gutman, Saber and Alanazi [3] gave the following lower

bound for Hy(G) of a connected (n, m)-graph G withn >4 and n+ 1 <

m < 32 under the condition that f(G) is convex.

Theorem 3 (Ali, Gutman, Saber and Alanazi [3]). Let G be a connected
(n,m)-graph, where n and m be two integers withn >4, n+1<m < 37",
and letk = [2m/n| and r = 2m—kn. If f(z) is a strictly convex function,
then it holds that

Hy(G) Zrf(k+1) + (n—r)f(k),

and the equality holds if and only if G is connected and G € G.(n,m).

Hu, Li and Peng [11] proved that the same lower bound holds among

all (n, m)-graphs or all connected (n,m)-graphs.
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Theorem 4 (Hu, Li and Peng [11]). Let G be an (n,m)-graph, where n
and m be two integers withm > 2 and n —1 < m < n(n —1)/2, and let

k=[2m/n| and r =2m — kn. If f(z) is a strictly convex function, then
it holds that

Hy(G) Zrf(k+1)+ (n—r)f(k),
and the equality holds if and only if G € G.(n,m).

Theorem 5 (Hu, Li and Peng [11]). Let G be a connected (n, m)-graph,
where n and m be two integers withn > 2 andn —1<m <n(n—1)/2,

and let k = |2m/n| and r = 2m—kn. If f(z) is a strictly convex function,
then it holds that

Hy(G) zrf(k+1)+ (n—7)f(k),

and the equality holds if and only if G is connected and G € G.(n,m).

Tomescu [18,19] established sharp upper bound for Hy(G) of an (n, m)-
graph G with m < 37” under the restriction that f is a strictly convex, f(x)

is differentiable and its derivative is strictly convex.

Lemma 1 (Tomescu [19]). If G is an (n,m)-graph that mazimizes (mini-
mizes) Hy(G) for a strictly convex (concave) function f(x), then G has at

most one nontrivial connected component C, and C' has a vertex of degree
V() -1

Lemma 2 (Tomescu [19]). In the set of connected (n, m)-graphs G having
m > n — 1, the graph which mazimizes (minimizes) Hp(G) for a strictly

convex (concave) function f(x), G has a vertex v with degree n — 1.

Theorem 6 (Tomescu [18]). Let f(z) be a strictly convex function having
the property that f(x) is differentiable and its derivative is strictly conver,
and let n and m be two integers with n > 2 and 1 < m <n-—1. IfG
is an (n,m)-graph, then Hf(G) < f(m) + mf(1) + (n —m — 1) f(0), with
equality if and only if G = Syp1 U (n—m — 1) K.

Theorem 7 (Tomescu [18]). Let f(x) be a strictly convex function having

the property that f(x) is differentiable and its derivative is strictly convetz,
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and let n and m be two integers withn >3, n <m <2n—3. IfG is a

connected (n,m)-graph, then
Hy(G) < fln=1)+ f(m—n+2)+ (m—n+1)f(2)+ (2n —m — 3)f(1),

with equality if and only if G = K1V (K1,m-n+1 U (2n —m — 3)K}).

It can be found that Tomescu’s result does not apply when the function
f(x) = (x + q)®, where @ < 0 and ¢ > 0, because the function f(r)
is strictly convex but its derivative is strictly concave. Therefore it is
necessary to find a new method to study it.

In this paper, we will further study the maximum values of H;(G)
among all connected (n, m)-graphs as well as on all (n, m)-graphs, provided
that the function f(x) satisfies the conditions of some or all of the following

conditions:

(i) f(z) is a strictly convex function in the range where H;(G) can be
defined.

(ii) f(x) is a strictly monotonically decreasing in the range where H(G)
can be defined.

(i) (n—p—j=3)flp+1)—(n—p+j=3)fp+j+1)+jn—p—j-
fn—2)—jn—p—j—3)f(n—1) >0 foreachp € {0,1,...,n—4}
and for each j € {1,...,n —p —4}.

(iv) f)+@2r—=2)f(r+1)—(2r—=1)f(r) >0 for r > 2.
(v) f(1)+ (2r— Df(r+1)—2r—=1)f(r) > 0forr >3 and f(1)—2f(2)+
f(4) =

(vi) F(1)+@r—2) f(r+1)—@r—1)f(r) > Oforr > 4, F(1)=2f(2)+F(4) >
0 and f(1) —4f(3) +2f(4) + f(5) = 0
(vii) f(0)+2f(2) =3/(1) = 0 and f(0) — f(1) = 2f(2) +2f(3) 2 0
We say that a function f(x) satisfies condition (z) if the i-th term of the

above holds for f(x).
The proposition below reveals the implication between conditions (iv),

(v) and (vi).
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Proposition 8. Let f(x) be a function that satisfies condition (i). If f(x)

satisfies condition (iv), then it necessarily satisfies condition (v). Addi-

tionally, the satisfaction of condition (v), implies that condition (vi) is

necessarily fulfilled.

Proof. By observation, it is sufficient to prove f(1)—2f(2)+ f(4) > f(1)+
27(3)~3£(2) and f(1)—4f(3)+2f(4)+ £(5) > F(1)+4f(4)~5f(3) > 0 and
in turn only need to show that f(2)+f(4) > 2f(3) and f(3)+f(5) > 2f(4),
and the fact it holds follows from Corollary 2, and so the proposition is

proved. |

To state our main results, two types of graphs are defined below. Let
PA(n, k) be a graph denoted as follows: a graph with n vertices, composed
of a clique on k vertices and a stable set on the other n — k vertices. Let
FPA;(n,k,p) be defined as a graph which contains n vertices, constructed
from PA(n, k) by joining a vertex from the stable set with p vertices of
the clique by edges, with 0 < p <k — 1.

Theorem 9. Assume that a function f(x) satisfy conditions (i), (ii), (i),
and at least one of the conditions (iv), (v) and (vi). Let n,m,k,p be
integers satisfying that m =n + k(k — 3)/2 + p, where 2 <k <n—1 and
0<p<k-—2.If G is a connected (n,m)-graph, then

Hy(G) < (n—k-=1)f(1)+ f(p+1)
+(k—p—1f(k=1)+pf(k)+ f(n—1), (1)
the equality holds if and only if G = FPA (n,k,p).

Theorem 10. Assume that a function f(x) satisfy conditions (i), (i),
(i), (vii) and at least one of the conditions (iv), (v) and (vi). Letn,m,k,p
be integers satisfying that m = k(k —1)/2 4+ p, where 2 < k <n—1 and
0<p<k-—1.IfG is an (n,m)-graph, then

Hy(G) < (n=k=1f(0)+ f(p) + (k—p)f(k=1) +pf(k), (2)

the equality holds if and only if G = FPA(n,k,p).
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We will show by Lemmas 16-23 in Section 2 that the function f(x) =
(x + q)* satisfies the assumption in Theorem 9 when ¢t > 1, o < —t and
—1 < q <£2.038 —0.038, or @« < 0 and —1 < ¢ < 0. Furthermore, the
function f(x) = (x + q)“ satisfies the conditions of Theorem 10 for ¢ > 1,
a < —tand 0 < ¢ < 1.413t 4 0.587. Therefore, it is straightforward to

obtain the following theorems.

Theorem 11. Let f(z) = (z+4q)%, where a < —t, —1 < ¢ < 2.038t—0.038
andt > 1. Let n,m,k,p be integers satisfying that m = n+k(k—3)/2+p,
where2<k<n—1and0<p<k—2. IfG is a connected (n, m)-graph,
then

“Rag(G) < (n— k= 1)(1+9)" + (p+1+0)°
+k=p-Dk =149 +pk+9" +(n -1+

the equality holds if and only if G = FPA (n,k,p).

Theorem 12. Let f(z) = (z + q), where & < 0, —1 < ¢ < 0. Let
n,m, k,p be integers satisfying that m = n+k(k—3)/2+p, where 2 < k <
n—1and 0<p<k-—2. If G is a connected (n,m)-graph, then

ORa,q(G) <nh-k-1)14+¢%+(p+1+¢)"°
+(k—p=1)(k =1+ +p(k+0)° + (n—1+q)",

the equality holds if and only if G = FPA;(n,k,p).

Theorem 13. Let f(z) = (x + q)*, where a < —t and 0 < g < 1.413t +
0.587 and t > 1. Let n,m,k,p be integers satisfying that m = n + k(k —
3)/24+p, where2<k<n-—1and0<p<k—2. If G is an (n,m)-graph,
then
"Raq(G) < (n—k—1)-¢+(p+q)*°
+(k=p)k-1+¢"+p-(k+q)",
the equality holds if and only if G = FPA 1 (n,k,p).

When ¢t = 1, = —1 and ¢ = 1, Theorem 13 implies the following

corollary.
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Corollary 1. Let f(x) = a%&-l Let n,m, k,p be integers satisfying that

m=n-+k(k—3)/2+p, where2<k<n—-1and0<p<k—2. IfG is
an (n, m)-graph, then
1 k—p p

HA(G) < (n—k—1
(@)= (n e I A A

the equality holds if and only if G = FPA(n,k,p).

Our results extend those obtained by Hu et al. in [12] and Li et al.
in [14] on the case of the maximum value of the zeroth-order general Randi¢
index for o < —1 and « < 0, respectively. Theorem 11 can deduce The-
orem 1 and Theorem 12 can deduce Theorem 2. Moreover, Theorem 13
obtained sharp upper bounds among all (n, m)-graphs, which is not stud-

ied in previous works [12], [14], and [17].

2 Proof of main results

Firstly, we introduce some useful lemmas. Let n; be the number of vertices

of degree i in a graph G.

Lemma 3 (Tomescu [19]). Let x > y > 1. If f(z) is a strictly convex
function, then f(x + 1)+ f(y—1) > f(z) + f(y).

Corollary 2. If f(x) is a strictly convex function, then f(s—1)+f(s+1) >

2f(s) for any real number s > 1.

Lemma 4. Let r, s and t be real numbers such that 0 < r < s < t. If

f(x) is a convex function, then

(t—7)f(s) < (t=s)f(r)+ (s —7)f (1),

with equality if and only if s =1 ort.

Proof. If s = r or s = t, it is obvious that the equality holds. Set g(s) =
(t— s)f(r2) +(s—=7r)f(t)— (t —r)f(s). By a simple computation, % =
—(t— r)% < 0 and the upper inequality follows because the function g

is concave. [ |
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Lemma 5. Let a, b be real numbers such that a > b > 0. If f(x) is a

convez function, then

flat+y) = fla) > y(f0+1) — f(b) (3)

for any positive integer y.

Proof. Since f(x) is a convex function, f(x + 1) — f(z) is an increasing
function. Thus, f(a+y) — f(a) = (f(a +1) = f(a)) + (f(a +2) — fla+
D)+ +(flaty) = flaty—1)) 2 y(f(b+1) = f(b)). u

Lemma 6 (Pavlovi¢ [16]). Let G be a graph with n vertex and m edges,
where m < (Z) Ifny #0, thenn, 1 <1. Ifny=ng=---=n;_1 =0,
n; # 0, then ny,_q <.

Lemma 7 (Pavlovi¢ [16]). Let G be a graph with n vertex and m edges,
where m < (g) Ifn,_1=1,n =1, where2 <1l <n-—3, then n,_; =
Np—j41 =" =Npn-3 =Np_-2 = 0.

Lemma 8. Let a,b,c,d,e and x all be positive numbers. Let g(x) =
ln( cjrrcw) : _
m(iezy Then lim g(z) =

ically increasing. If d > b > ¢ = e, then g(x) is monotonically decreasing.

b=c Ifb>c=d > e, then g(x) is monoton-

Proof. Since In(1 + z) = z + o(x) for z € (—1, 1], we have

c+acz +0(c+am) o b— C

lim g(z) = lim

T—400 r—+00 d—e d—e N d—e
- - e+ax t+o (e+a3:) c
. . dg _ aln(FEE)(d—e) a(b—c)
By a simple calculation, dz = In2 (gig:)(d-&-ax)(e-‘rax) ln(gigi)(bﬂ-am)(cﬁ-aw)'
ax aln ‘;H'Z: (b—c)(d+azx)(etax)
Set h(z) = aln (—Ziaz) (d—e)— (& (b)jLaz)(chM) .
a? In( &2 (b—c)(b—e
b >c=d> e thn # = ~CMESICI0D g g

lim h(z) = 0, the inequality h(z) > 0 holds on the interval (0,+00).

T—+00
Therefore, g—g > 0 is valid on the interval (0,4o00) and g(x) is monotoni-

cally increasing.
a2 In( 4tz ) (p—c)(b—
£d>b>c=c thn 8 = “HEE)OAD o ginee

lim h(z) = 0, the inequality h(z) < 0 holds on the interval (0,+00).

r—+00
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Therefore, g—i < 0 is valid on the interval (0,4o00) and g(x) is monotoni-

cally decreasing. [ |

Lemma 9. Let a,b,c and x all be positive numbers. Let g(x) = zln (M)

ctax
b—c

_ btazx v 3 — b—c 1 = a
and h(x) = ( ) . Then IETOOQ(JJ) = 2= and Tll)IJ'I_lDO h(z) = ea .

ctax

If b > ¢, then g(x) and h(xz) are monotonically increasing, while % is
positive and monotonically decreasing. If ¢ > b, then g(x) and h(z) are
monotonically decreasing, while % 1s negative and monotonically increas-

mg.

Proof. Since In(1 + z) = x + o(z) for z € (—1, 1], we have

. . b—c b—c b—rc
lim g(z)= lim =z +o = .
T—+00 z—400 c+ax c+ ax a

. . d btax b—
By a simple calculation, % = In (J_Z;) - (b+a(1a:m()(cj-)az)’
d?g _  a(b—c)(2bctabztacz) dh _ g z) dg d2h _ g(= dg\2 d?g
= e e T =Wt and Tk = ((§2)°+ 52).
d? . . d d
If b > ¢, then .- < 0. Since Igrfooﬁ =0, 32 > 0. Thus, g(x) and
h(z) are monotonically increasing, whereas S—g is positive and monotoni-

cally decreasing.

It ¢ > b, then §§ > 0 and §# > 0. Since lim 42 =0, §¢ < 0.
Thus, g(z) and h(z) are monotonically decreasing, while §% is negative
and monotonically increasing. |
Lemma 10. Let g(z) = (z + l)ln(gigi), where a > 0, b > ¢ > 0 and
2a® — ab — ac < 0. If ab+ ac — 2bc < 0, then g(z) > g(1) for any x > 1.
When ab + ac — 2bc > 0, if S—g has no root on the interval (1,00), then

g(z) > g(1) for any x > 1; otherwise, g—g has a unique root x1 on the

interval (1,00), we have g(x) > g(x1) for any x > 1.

Proof. Since dg _1p <b+a$> _ alb=o)(@+l) .4

dz ctazx (b+azx)(ctazx)
d%2g a(bfc)((2a27ab7ac)w+ab+acf2bc) d%g . ab+ac—2be
£y e (erasy? v @ < 0if @ > —gEhElt and
d%g

foH

. __ab+ac—2bc : : dg __ dg :
-5 > 0if z < T By Since xgrfoo o= 0, T > 0 on the interval

_ abtac—2bc
2a2—ab—ac’ +OO) :

—~
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If ab + ac — 2bc < 0, then —grac=2be < (0 g0 g(x) > ¢(1) for any

z > 1. When ab + ac — 2bc > 0, we have —% > 0. If g—g has no
dg

root in (1,00), then 32 > 0 on the interval (1,00) and g(z) > g(1) for

any z > 1. Otherwise, % has a unique root x; in (1, 00), g—g < 0 on the
interval (1,21) and g—g > 0 on the interval (z1,00). Thus, g(z) > g(x1) for
any © > 1. |

btax x
Lemma 11. Let g(z) = % (gigi) , where a,b,c and d be real

numbers with a >0, b >c¢>d > 0. For any x > 1, g(x) < %.

n( ez z
Proof. Let hy(x) = ;Eg%ﬁg and hs(x) = (ZIT—Z;) . By Lemmas 8 and 9,
n( Trar
liril hi(z) = 2=¢, the function hi(z) is monotonically increasing and the
r—r+00
function hs(x) is monotonically decreasing. Thus, g(x) = hy(z) - he(x) <

_ b—c)(a+d
hi(00) - ha(1) = L=5 . atd = [bodlerd) u

For convenience, we call a graph G a mazimum connected (n, m)-graph
if it has the maximum vertex-degree function-index among all connected
(n, m)-graphs, and respectively, a mazimum (n, m)-graph if it has the max-
imum vertex-degree function-index among all (n, m)-graphs.

Next, we are going to prove Theorem 9 that the fanned pineapple of
type 1 graph has the maximum H y-value among (n, m)-connected graphs.
This implies that the maximum connected (n, m)-graph should have n; =
n—k—-1np1=1ng_1=k—-1-—pn,=pandn,_ =1.

Theorem 9 describes the solution of the following problem (P) :

maxny - f(1)+n2- f(2)+- 4+ np_1-f(n—1)
under two graph constraints

ny+no+ng+---+np_1=mn,

ny+2ne+3ng +---+ (n* 1)”17,—1 = 2m.

By Lemma 2, we have the following corollary, implying the assertion

of Theorem 9 for the case when m =n — 1.
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Corollary 3. Let f(x) be a strictly convex function. If m = n — 1, the
function Hy reaches its mazimum among (n,m)-connected graphs at the

star.

Thus, it remains to show that Theorem 9 holds for n < m < () — 2.
Sincem =n+k(k—3)/2+p, where2<k<n—1land 0<p<k-—2,
we handle two cases in terms of k =n—1and 2 < k < n — 2. We shall

start by proving the theorem for k =n — 1.

Lemma 12. Let G be a connected (n,m)-graph, where m < (g‘) -2,
m=n+k(k—3)/2+p, k=n—1and0<p<n—4. Inequality (1) holds

for the graph G.

Proof. Since k =n—1,m = (n>-3n+4+2p)/2 = (n—1)(n—2)/2+p+1,
where 0 < p < n — 3. Then the minimum degree of G must be greater
than or equal to p + 1. In contrast, if G' contains a vertex whose degree
is p (or less), then the deletion of a vertex of degree p results a graph G’
(without necessarily connected) with more edges than the complete graph
on n — 1 vertices.

Let the minimum degree of G be p + j + 1, where j is a nonnegative

n
2

then the degree of the vertex in G is either n — 2 or n — 1. Thus there are

integer. Since m < ( ) — 2,75 <n—p—4. Otherwise, j = n —p— 3,
four distinct vertices vq, v, v3 and vy of degree n — 2 such that vy and v
are nonadjacent, vs and vy are nonadjacent in G. Now, construct a new
graph G’ = G — vav3 + v3vs. By Corollary 2, we have H;(G') — Hf(G) =
fn—=1)+ f(n—3) —2f(n—2) > 0, which contradicts the maximality of
G.

Denote by P®P+it1) the problem for given p when the minimum
degree of G is p+ j + 1, and by H}p’pHH) the optimal value of Hjy
for the problem P®»+i+tl)  The optimal value of Hy for a given p is
Hﬁf = MaXg<j<n_p—4 H)(cp’pﬂﬂ). Since the minimum degree of G is
p+ 7+ 1, it follows from Lemma 6 that we have n,,_1 < p-+j+ 1. Let us
solve the problem P@P+it1) 0 <p<n—4,0<j<n—p—4.

maxnprj1 f(P+J+1) +nprjrofe+7i+2)+ -+ np_1f(n—1)
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under the constraints:

Nptj+1 F Nptj2 T Mppjrs3 + -+ Mp1 =1

(P+7+Dnprjrr+@+7+2)nprjre+ -+ (n—1n,
=n?—3n+4+2p,

Np—1 :p+]+1_57
where 0 < £ < p+j. Let us solve the system of the latter three equalities

in np_1, np—g and npqj g1 :

n?—n2p+2j+5)+p*+2pj +5p+j2+3j+6

2 = n—p-—j—3
o Mpyjre 2Mpygas 3Mpyjig
n—-p—j—3 n-p—j—-3 n-p—j—3
C(n=p—j—n.3 (n-—p—j—2)¢
n—p—j—3 n—-p—j-3°
noooonzpty=3 (1 N
p+j+1 n—p—j—3 n—p—j—3 p+j+2
1 2 1 3
— e ——————— n . o — B —————— n .
n—p—j—3 p+7+3 n—p—j—3 p+j+4
—p—j—4 —p—j—2
SR e At I (N S )
n—p—j—3 n—-p—j—3

By replacing np4j+1, -2, Np—1 in Hy, we obtain

wf(p+j+l)+(p+j+1)f(n*1)

Hr =
s n—-p—j7—3
n?—n(2p+2j+5)+p*+2pj+5p+j2+3j+6
- fn—2)
n=3 n—1i—2 i—p—j—1
+ > fif————f—fp+j+1*4‘4‘?‘f”*2>
i=p+j+2 <() ”*p*]*?)( ) ”7177]*3( :
) n—p—j—2
1 _— -2)].
flo+i+ %%n_p_j_gﬂn ﬂ

1
+§<*f(”*1)*m
Following Lemma 4, it holds that

m—p—j=3)f))<(n—i=2)f(p+j+1)+(i-p—j—1)f(n—-2) (4
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forp+j+1<i<n-—2and
(n—p—j=2)fO) <(n—i-1fp+j+1)+(i-p—j—1)f(n—1) (5)

forp+j+1<i<n-—1.
After taking the value of ¢ in the inequity (5) to be n — 2, we get the

following equation
m—p=j=2)fn=2)<flp+i+)+n—p—-3j—3)f(n—-1). (6)

Inequalities (4) and (6) means that if we take npy 10 = npipjys = -+ =

nn—3 = & = 0 then we can get an upper bound fI}p’pHH) for H;-p’p+j+1)7

where

- n—p+j—3 . .
ATy :ﬁ_;_gﬂpﬁ-]-*—l)#— p+i+1f(n-1)

+n2—n(2p+2j+5)+p2+2pj+5p+j2+3j+6
n—p—j—3

fln=2)

forpe {0,1,...,n—4}and j € {0,1,...,n—p—4}. Keep in mind that the
upper bound H (PpFit+1) may not always correspond to a graph (except for
j= O,f[}p’pﬂ) - Hj(vpﬁerl)).

Now we show that for a given number p,
of Hy, that is, H¥"*) > HPPHHD for j e {1,2,...,n—p — 4}. Since
H](cp,erjJrl) < g}p,p+j+1) Hj(cp>p+1) > ﬁj(cp,p+j+1)

H J(cp PHL) is the maximum value

, it is enough to show that
for j € {1,2,...,n — p — 4}. Therefore, we are required to prove the

following inequality:
HPPTD < fp+ 1)+ (n—p=2)f(n=2) + (p+ Df(n—1)  (7)

forpe {0,1,...,.n—4}and j € {1,...,n—p—4}. Since j <n —p —4,
n—p—j—3>1. We transform inequality (7) into (8)

n—p—j=3)fp+1)—(—-p+j-3)flp+j+1)
+jn—p—j—-1)f(n—-2)—jn—-p—3j—-3)f(n—-1)>0 (8)

for pe {0,1,...,n—4} and j € {1,2,...,n — p — 4}. Observe that under
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known conditions, f(z) satisfies the inequality (8).

We have shown that for a given number p, the maximum value of Hj
is Hj(cp P

H;p7p+1) =flp+)+n—p-2)f(n—-2)+(p+1)f(n—-1)

for p € {0,1,...,n —4}. This value is attained by a graph with n,_; =
p+17nn—2=n—p—23ndnp+1:1, ]

For k = n—1, in which case m > (n—1)(n—2)/2+1, Theorem 9 has been
proved. It remains to prove the theorem for n < m < (n2 —3n+ 2) /2.

Lemma 13 (Hu, Li, Shi and Xu [12]). Let G* be a mazimum connected
(n,m)-graph. If a function f(x) is strictly convex and the maximum graph
G* has r (r <n—3) vertices of degree n — 1, then the minimum degree of
G* isr.

Lemma 14. Assume that a function f(z) satisfy conditions (i), (i), (i),
and at least one of the conditions (iv), (v) and (vi). Let n,m,k,p be
integers satisfying that m = n+k(k—3)/2+p andn < m < (n?=3n+2)/2,
where 2 <k<n—1and 0<p<k—2. If G* is a mazimum connected
(n,m)-graph, then ny # 0.

Proof. Note that according to Proposition 8, the function f(x) must satisfy
condition (vi). Toward a contradiction, suppose n; = 0. Let r be the
minimum degree of G*, in other words, ny = ng = --- = n,_; = 0 and
n, # 0, where r > 2. Then n,,_1 = r. Otherwise, if n,,_1 = k, where k # r,
then by Lemma 13 the minimum degree of G* is k, not r, a contradiction.
Let w be a vertex of degree r. Then u is adjacent to all the r vertices
w1, Wa, . . ., w, of degree n — 1.

Let S = V(G)* \ {u, w1, wa, ..., w,}, and K(S) be the complete graph
on S. Then

ps) - 1EGis) = ("7 ) - (im0 - ()
()

= 7.
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This implies that we can add to G[S] at least r—1 edges, and these vertices
still do not form a complete graph after adding these edges. Furthermore,
|S| > 3, which leads to n > r + 4.

For r > 2, denote by G’ a connected graph obtained from G* when
we delete r — 1 edges between vertex u and vertices wy, ..., w,_1 and add
r — 1 new edges between t vertices in S. Without loss of generality we
can assume that these t vertices are vy, va, ..., v; with degrees ji1, j2,..., J¢
in G*, and the degree of v; is j; + x; in G’ for ¢ € {1,2,...,t}. Then
ji>rand x; > 1forie{l1,2,...,t} and 22:1 x; = 2(r — 1). Therefore,

applying Lemma 5, we have
Hy(G') = Hy(G") = f(1) = f(r) + (r =) f(n—2) = (r = )f(n— 1)

+ > (Ui + i) = f(4:)
i=1

> f(1) = f(r)+ Y (f(r+1) = f(r))

) = fr)+20r = D(f(r +1) = f(r))
f)+@r=2)f(r+1) = (2r =1)f(r)
0

Y

for r > 4, which contradicts the maximality of G*.

Next, we show that the minimum degree of G* cannot be 2 or 3. Since
f(x) is a convex function, f(xz + 1) — f(z) is an increasing function.
Case 1. r=2

In this case the maximum graph G* has only two vertices of degree
n—1, denoted by w; and ws. Since |E(K(S))|—|E(G[S])| > r=2,n > 6.
We consider the number ny of vertices with degree 2.

Subcase 1.1. 1 < ny, <n-—3.

Let u be a vertex of degree 2. Clearly, u is adjacent to wi, wy. We
claim that there exists a vertex v in S with degree j, where 3 < j <n —3.
Since 1 < ny < n — 3, there exists a vertex vy in S with degree j; greater
than 2. If j; < n — 3, then vy is the desired vertex. Otherwise, j; =n — 2

and v is adjacent to all vertices in S. So all the vertices in S have degrees
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greater than 2, then there must exist a vertex in S whose degree is less
than or equal to n — 3, this is because |E(K(S))| — |[E(G[S])| > r.

Thus we can find two nonadjacent vertices v; and vy in S with degree
j1 > 2 and j > 3. Construct a new graph G” = G* — uw; + vivs. We

have

Hp(G") = He(G") = f(1) = f(D) + f(n=2) = f(n =) + f(jr + 1)
=[G+ fG2+1) = f(h2)

> ) = f2)+fB) - F2)+F4) - f3)
fQ) =2f2) + f(4)

%
=

a contradiction.
Subcase 1.2. no =n — 2.

Let uy,ug,...,u,—o be the vertices of degree 2. Clearly, u; is adjacent
to wy,ws for 1 <i<n—2.

If n =6, then G* = K3 4. Let G” = FPA;(6,4,0). Thus,

Hp(G") = Hy(G") = f(5) +3f(3) + 2f (1) — 4f(2) — 2f(4)
= fB3) = 2f(4) + f(5) +2(f(1) = 2f(2) + f(3))

>0,

a contradiction. The last inequality can be derived from Lemma 2.
If n="7, then G* = Ky 5. Let G” = FPA;(7,4,1). Hence,

Hp(G") = Hy(G") = 2f(1) + f(2) + 2f(3) + f(4) + f(6) — 5£(2) — 2f(5)
= f(4) =2f(5) + f(6) +2(f (1) — 2f(2) + f(3))

>0,

a contradiction. The last inequality can be derived from Lemma 2.

Thus n > 8 and ny, = n — 2 > 6. Construct a new graph G’ =
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G* — ugwy — uswy — uswy + ugus + usug + ugg. We have

Hy(G") = Hy(G") = 3(f(1) = f(2)) + f(n = 4) = f(n = 1) +3(F(4) = f(2))
>3(f(1) = 2f(2) + f(4))
>0,

a contradiction.
Case 2. r=3

In this case the maximum graph G* has only three vertices with degree
n — 1, denoted by wy, wy and ws. Since |E(K(S))| — |E(G[S])| > r =3,
n > 7. We consider the number ng of vertices with degree 3.
Subcase 2.1. 1 <ng <n—4.

Let u be a vertex of degree 3. Clearly, u is adjacent to wy, ws, ws. With
a similar approach to Subcase 1.1, we can find two pairs of nonadjacent
vertices vy and vs, v3 and v4 in S whose degrees are ji, jo, j3 and js, where
j1 >4 and j; > 3 for i € {2,3,4}. Note that these four vertices are not
necessarily distinct.

If all these four vertices are distinct, we construct a new graph G =

G* — uwy — uwy + v1v9 + v3v4. We have
Hy(G") = Hy(G") = f(1) = f3) +2(f(n—2) = f(n — 1))

a contradiction.

Next, assume that some vertices in vy, v9, v3,v4 are same. By symme-
try, it suffices to consider two possibilities: v; = v3 or vy = vs3.

If v1 = v, we use v to denote vy. Clearly, v has degree 7 > 4. We

construct a new graph G” = G* — uwy — wwy + vvy + vvy. Therefore,

Hy(G") = Hp(G") = f(1) = fB3) +2(f(n = 2) = f(n = 1)) + f(j + 2)
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—fG) +(fU2+1) = f(2) + (fUa+1) = F(a))
> f(1) = fB) + F(6) = f(4) +2(f(4) = f(3)).

By taking the values of a, b and y in Inequality (3) to be 4, 4 and 2,

respectively, we have

Thus,
Hy(G") = Hp(G") > f(1) = f(3) + [(6) = f(4) + 2(f(4) — f(3))
> (1) = fB)+2(f(5) — f(4) +2(f(4) = f(3))
> f(1) = fB)+ (f(5) — f(4) +3(f(4) — f(3))
=f(1) —4f(3) +2f(4) + f(5)
>0,

a contradiction.
If v, = v3, we use v to denote vy. Clearly, v has degree j > 3. Construct

a new graph G" = G* — uw; — uws + vv; + vvy. Hence,

= f(1) +2(f(n=2) = fln-1))+ f(G+2)
—fG)+ G +1) = f0) + (fUa+1) = F(a))
> () = fB)+F0B) = FB)+f5) — f(4)
+f(4) - F(3).

Hy(G") — Hy(G") - /(3

By taking the values of a, b and y in Inequality (3) to be 3, 3 and 2,
respectively, we have

f(5) = f(3) = 2(f(4) — f(3)).
Thus,

Hy(G") ~ H{(G")
> (1) = £3) + £(5) — £(3) + F(5) — F(4) + F(4) = £(3)
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> (1) = fB)+2(f(4) = f3) + f(5) = F(4) + F(4) = F(3)
= (1) —4f3) +2f(4) + f(5)
>0,

a contradiction.
Subcase 2.2. nzg =n — 3.

Let w1, usg, ..., u,—3 be the vertices of degree 3. Clearly, u; is adjacent
to wy,we and ws for 1 <7 <n—3. Sincen > 7, ng = n—3 > 4. Construct

a new graph G" = G* — uywy — uyws + usuz + uzuy. We have

Hp(G") = He(G") = f(1) = f(3) +2(f(n = 2) = f(n— 1))

)
(

+ f(5) = f(3) +2(f(4) — f(3))
> f(1) —4f(3) +2f(4) + f(5)
Z Oa
a contradiction. |

Hence, we only need to consider maximum graphs which have n; # 0,
for 2 < k <n—2. Then n,_; =1 (by Lemmas 1 and 6) and all vertices
of degree 1 must be adjacent to this unique vertex of degree n — 1. Here
we do not consider the case n; = n — 1, since it is equivalent to the case
m = n — 1, which has been proved before. When n; < n — 1, it is readily
obtained that ny < n — 3.

When n,_1 =1 and n; =1, where 1 <[ <n — 3, according to Lemma

7, problem (P) can be transformed into the subsequent problem (P!) :
max!- f(1)+no- f(2)+ -+ npym1f(n—1—-1)+ f(n—1)
under the constraints:

no+mng+na+-+n,_1=n—1-1, 9)
no+2n3+3ng+--+n—101—2)nu_—1 =2(m—n+1). (10)
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To prove the following lemma, it is necessary to use mathematical
induction. It is straightforward to verify that Theorem 9 is true for n =4
and 3 < m < 6. We assume that Theorem 9 is true for every connected
graph G in G(i,j) when4 <i<n-—landi—1<j< ().

Lemma 15. Let G be a connected (n,m)-graph, where m = n + k(k —
3)/2+p, m>n,2<k<n—-2and0<p<k-2. Ifn,.1 =1 and
1 <ny <n—3, then Inequality (1) holds for G.

Proof. Inequality (1) will be valid for G with n,_; = 1 and ny = [, if the
following inequality holds:

Lf() +mn2-f(2)+n3- fB)+ - +npyaf(n—1-1)+ f(n—1)
Sm—k-1Df)+fp+)+(k-—p-1f(k—1)+pf(k)+ f(n—-1)
(11)

under constraints (9) and (10).

We first prove (11) for I > 2. Since ny = [, by Lemma 7 we have
Np_| = NMp_ye1 = -+ = ny_o = 0. Consider the graph G’, which is
obtained from G, when we delete one vertex of degree 1. The graph G’
has nf =1 — 1 and one vertex of degree n — 2 (because the other vertices
can have a degree at most n — 1 —1), and n} = n; for i € {2,...,n — 3}.
Then n;,_; =n;,_;,, =---=mn;,_3 = 0 and the same constraints (9) and
(10) hold (because n —1— (I —1) = n—1). Since G’ has n — 1 vertices and

n—14 k(k—3)/2+ p edges, it satisfies the inductive hypothesis, and so,

na- f(2)+n3- f3)+-- -+ np 1 f(n—1-1)
=ny- f(2)+ns- fB)+-+n,_ f(n—1-1)
<Sn—-1-k—1-(1-1) f(1)+fp+1)
+(k—p—1)f(k 1) +pf(k) (12)

for every 2 < k <nm—2and 0 <p < k — 2. Inequality (12) is equivalent
to (11), which is now proved because the constraints are the same.
Now we show that (11) holds for I = 1, that is, the graph G’ has no

vertex of degree one. We have n} = n; for i{2,...,n — 3 and n},_, =
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np—2 + 1}. By the inductive hypothesis for the graph G’ holds

ng - f(2) +n3- f3) 4+ +nn-z-f(n—=3)+ (nno+1)f(n—2)
=ny - f(2) +n5- fB)+ -+ g3 f(n—3)+n,_of(n—2)
S—-1-k-=1)-f()+flp+1)+(k-p-1f(k-1)
+pf(k)+ f(n—1-1) (13)

under the constraints

/ / ! /
Ny +ng gt n, o =n—1,

2nhy +3ns +4ny + -+ (n—2)nl,_5 =2(m —1).

Thus, we have

no- f(2)+ng- f3)+ - +np_sf(n—3)+n,_of(n—2)
<n-k=2)f()+flp+1)+(k-—p-1)f(k-1)+p- f(k) (14)

under the constraints

ng+n3g+-+Np_g+Np2=n—2

no+2ng+ -+ —3)nu_3+ (n—2)ny_2 =2m —n. (15)

Equalities (15) are just the constraints (9) and (10), and inequality (14) is
equivalent to inequality (11) for [ = 1. Thus the lemma is proved. |

Proof of Theorem 9. We need to show that Theorem 9 holds for n—1 <
m < (g) The case m = n — 1 has already been proved in Corollary 3, and
cases m = (5) and () — 1 are disregarded because they all correspond to
unique graphs.

Sincem=n+k(k—3)/2+p, where2<k<n—1land0<p<k-2
we distinguish two cases k =n—1and 2 <k <n—2. Thecase k =n—1
has already been proved in 12. The case 2 < k < n — 2 can be proved by
combining Lemmas 14 and 15. Thus, Theorem 9 is proved.

]

Theorem 9 characterizes the maximum value of Hy(G) among all con-



220

nected (n,m)-graphs. Applying Theorem 9, we can also determine the
maximum value of Hf(G) among all (n, m)-graphs, as stated in Theorem
10.

Proof of Theorem 10. Let G be the maximum (n, m)-graph. By Lem-
ma 1, G consists of a set I; of isolated vertices, together with a connected
graph G1, which has n’ vertices m edges. Note that G; is a maximum
connected (n', m)-graph, otherwise, we can find a connected (n’, m)-graph
Ga, such that Hy(G2) > H;(G1), then the graph G’ := Gy + I; is an
(n, m)-graph satisfying that H¢(G") > Hy(G) holds, a contradiction.

If m= (’g), then G = FPA;(n,n’,0), which proves the theorem.

Ifm< (7;/) Assume that m =n' + k' (k' — 3)/2 + p/, where 2 < k' <
n’ —1and 0 < p’ <k’ —2. By Theorem 9, GG; is a fanned pineapple of
type 1 with parameters n', k', p’, that is G; = FPA,(n',k’,p’). Let K be
a copy of a clique of k' vertices of G1. Let I be the number of vertices in
V(G1)\ V(K) with degree 1. It is easily seen that p’ and [ cannot both be
0 simultaneously. Next, we differ the subsequent proof into the following
four cases.
Case 1. p' =0,1=1.

In this case, ¥ = n' —1 =n'—1, Gy = FPA;(n/,n’ — 1,0), then
G = FPA;(n,n' —1,1), the theorem is proved.
Case 2. 1 <p' <k'—2,1=0.

In this case, ¥ =n' =1l —1=n'—1, Gy = FPA;(n',n' — 1,p’), then
G = FPA,(n,n' —1,p’ + 1), which proves the theorem.
Case 3. p' =0,1> 2.

In this case, k' > 2, G; = FPA;(n',k’,0). Let w be a vertex of degree
n' — 1. Let w and v be two vertices in V(G1) \ V(K) with degree 1. Let
z € V(K)\w. Then d(z) = k'—1. Construct a new graph G’ = G—uw+wvz.
Thus,

Hy(G') — Hy(G)
=fO)+ Q)+ (' =2+ f(E) = 2f(1) = f(n' = 1) = f(K' = 1)
=f0) + f(2) =2f(1) + f(n' = 2) = f(n' = 1) + f(K) = f(K = 1)
> f0)+f(2) =2f() + F(2) - F2-1)
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= f(0) +2f(2) - 3f(1)
>0,

which contradicts the maximality of G.
Case 4. 1<p' <k'—2,1>1.

In this case, ¥ > 3, G; = FPA;(n',k',p'). Let w be a vertex of
degree n’ — 1. Let u be a vertex in V(G;) \ V(K) with degree 1. Let v be
the vertex of degree p’ + 1 in V(G;1) \ V(K). Let z be a vertex in V(K)
which is not adjacent to v. Then d(z) = k¥’ — 1. Construct a new graph
G' = G — vw + vz. Therefore,

T +2)+ f(n =2)+ f(K) - (1)
p+1)—f(n' 1) - f(K' - 1)
—fM+f' =2) + f(n' = 1)+ f(0' +2)
1)+ f(K) - f( —1)

Hy(G') — Hy(G) = (0
f

/\
=}
= O = =D =

>f0) = fM)+f1+2)-fA+1)+fB) - fB-1)
= f(0) = f(1) +2f(3) — 2f(2)
>0,
which contradicts the maximality of G. |

Next, we show by Lemmas 16-23 that the function f(z) = (x + ¢)¢
satisfies the assumption in Theorem 9 when ¢ > 1, @ < —t and —1 <
q < 2.038t —0.038, or @« < 0 and —1 < ¢ < 0. Furthermore, the function
f(z) = (z + q)* satisfies the conditions of Theorem 10 for ¢t > 1, o < —¢
and 0 < ¢ < 1.413t + 0.587.

Lemma 16. Let n,p,j be integers with n > 5. Let f(x) = (x + q)*. If
a <0 and qg> —1, then

gp,j)=(n—p—j=3)fp+1)—(n—-p+j-3)flp+j+1)
+jn—p—j—-1)f(n-2)—jn—p—3j—-3)f(n—-1)>0,

for each p € {0,1,...,n — 4} and for each j € {1,...,n —p—4}.
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Proof. In the following, we prove that the partial derivative of g(p, j) with
respect to p is less than 0. Firstly,

dg(p, j : -
%:—(p+1+q)°*+a(n—p—9—3)(P+1+Q)a 1
+(p+it+1+9*—an—p+i=3)p+j+1+9*"

—jn—24¢)%+jn—14q)*.

Since (@ —1)(n—p—35—-3) (p+1+¢)* 2= (p+j+14+¢*?) >0for
a < 0, we have

*g(p, )
Op?

=—2a(p+1+q)*  +2ap+j+1+9)"
+ala—1)(n—p—j—-3)p+1+q¢*?
—ala=1)(n—p+j=3)p+j+1+¢*>

=—2a(p+1+q)* ' +2a(p+j+1+q*"
tal@-)n-p—j-3)(p+1+q)* 2= (p+j+1+¢°7?)
—ala—1)-2j-(p+j+1+q)°2

>—2a((p+14+9)* ' —(p+ji+1+9*")
—2a(a—1)j(p+j+1+q)*2

=—2ja(a—1) (—€* 2+ (p+j+1+¢)°2) >0,

where £ € (p+1+4+¢,p+j+1+¢q). Sincep<n-—j—3,

dg(p,7)

oy ST (mim24 Q)+ (n—2+49)" ~ 2aln — 24 )

—j((n=24+¢)% —(n—-1+¢)%).

Define a function h(j) =—(n—j7—24¢)*+ (n— 24 ¢)* — 2ja(n — 2+
2 .
Q) t—j((n—24¢*—(n—1+¢)*). Since 88';(2” =—ala—1)(n—7j—

24¢)*2<0, [(n—14+* ' +(n-3+¢* ' =2(n—24¢)*'] >0
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(by Corollary 2) and j > 1, we have

WD) — an—j 2+ ~20(n -2+
J

—((n=2+¢)" = (n—-1+q)%)
<an—3+¢* ' —2a(n—2+q¢>*
—((n=2+¢)*=(n—1+4q)%)
=a[n—1+¢)"" + -3+ —2(n—2+¢)"]
—(n=24¢)*—(n—14+¢9% —a(n—1+¢)**
<an®t—aln—1+¢)*7" <0,

where n € (n — 2+ ¢,n — 1+ ¢). Thus, %’;’j) < h(j) < h(1).
Since for any z, 29 € [a,b], where a and b are real numbers, there exists
2
€ € (a,b) such that () = f(ro) + ¥| _ (@—a0)+ 4 34| (-2,

so we have

1
(n—1+q)a:(n—2+q)“+a(n—2+q)a*1+O‘(O‘Z, )

(n—3—|—q)°‘:(n—2+q)a—a(n—2+q)a_l+a(o;!_l)

(n—2+&+q* 2

(n -2- £2 + Q)a_27

where 0 < £ < 1and 0 < & < 1. Then

h(1) =(n—1+q)* = (n =3 +¢)* —2a(n —2+¢)* "

a—1 O[(Ol — 1)

=(n =249 +an-2+q)" "+ =L -2+& +9)"
_ ala—1 o
“-2t 9 a2+ - MO g g g
—2a(n —2+¢)**
ala—1 _ _
=%((n—2+fl+q)“ P—(n—2-&+¢) %) <.
Consequently, 2% < h(j) < h(1) < 0. Thus, g(p,j) > g(n—j —4,j) >
gn—j—3,j)=0. u

Lemma 17. Let f(z) = (z +q)*. Ifa < —t, =1 < ¢ < 2.038t — 0.038,
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t>1 andr > 3, then

F) + @ —2)f(r+1) = 2r = )f(r) > 0.

Proof. Let fi(a,q,r) = f(1)+ (2r —2)f(r+1) — 2r = 1)f(r) = (1 +
Q%+ 2r —2)(r+1+4+ ¢ — (2r — 1)(r + @) and g(a, q,7) = % =

(B2) +2r—2) (=252) - (2r - 1). Firstly,

o) en(i) )

Let g1(t) = (t+1)In (%) —In2. According to Lemma 10, Since
2 x 2.038% — 2.038 x 3.962 — 2.038 x 0.962 < 0, 2.038 x 3.962 + 2.038 x
0.962 — 2 x 3.962 x 0.962 > 0 and %1 has no root on the interval (1, 00),

it follows that g1(¢) > ¢1(1) ~ 0.69 > 0. Thus,

@_ «

g (r+q)?

a—1
1+
(r—l)(T—Jrg) _1( 144 >a1>1(T+1+q>t+1
(2r72)<vv+i+q)“‘1 2\r+1+gq 2\ 1+¢
r+q
1 t+1
_<1+ - )
2 1+g¢
1 3 i
>-(1+
2 1+ 2.038¢ — 0.038
1 (/2.038t +3.962\ "
— 2 \2.038t + 0.962
>1

and g—g <0.
We now prove that the partial derivative of the function g(«,q,7)

with respect to « is less than or equal to 0. By Lemmas 8 and 11,

In( 30350008 ) ( 2.038t+0.962 ) 3 q )
e - - < and —-47<* is monoton-
2.038t+r—0.038 — — +r

In( 223800038 ) | 2.038(+7+0.962 =) NEED

. . . . (2r—2) In( Lty (abrtl)e
ically increasing with respect to ¢. We have ! (((Hf«s(ng)f .

n
a1 )i

() (i) () g !
(2r —2) ey () < Cr -2 iy ()
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In( 39350052 ) [ 2.038t+0.962 " 3 .
< (2r —2) pEmEIENE) (2osero06 ) (9r —9) 8 <1 Since

In( 20330038 \ 2.038¢+7+0.962
— +r+1 +r+1 g+ 41 a g
90 = (2 — 2y () (22t1)" g (27) (22)", 22 <,
> g(—t,2.038¢ — 0.038,7) =

)+

. dg dg
Since g5 <0 and 72 < 0, g(a,q,r
t t
_ [ 2.038t4r—0.038 2.038t+r—0.038
g2(t, 1), where ga(t,7) = ( 2.038(+0.962 (2r —2) (24038t+r+0.962) -
(2r — 1). The partial derivative of ga(t,r) with respect to r is given by:
t . —0. t—1 X . 0. t—1
992 _ o ((2.038t4r—0.038 _ﬁ(%) #(2r—2) (3538F 0503 )
or = “\ 2.038t+r+0.962 2.038(+0.962 (2.038t+r+0.962)2

2.038t47—0.038 \t—1
t(2r—2)(5538F rrro 00z )

2 = 2hi(t) + ho(t)hs(t) + (2.038t4740.962)2
t ¢

2.038t+2.962 _ t _ [ 2.038t+2.962

<2.038t+3.962> » ha(t) = sozmiraaes and hs(t) = (2.038t+0.962) - Let

ha(t) = tIn (%) and h(t) = 2h1(t) + ha(t)hs(t) — 2. By Lemma

)

— 2, where hi(t) =

9, we have hy(t), % and % are positive and monotonically decreasing
on the interval [1,00). On the interval [1,00), ha(t), hs(t) and hy(t) are
positive monotonically increasing functions, while % is a negative mono-
tonically increasing function. For two constants a and b, let hs(a,b) =
2 dhl ’t LT dh?| , ha(a) + ha(a)eh+(®) dd%h:b, where 1 < a <b. When
te [a,b], dh — 2dh1 + 92 o (£) + ho(t)e 1 4 > ho(a,b). If hs(a,b) > 0,
then 9% > 0 on the mterval [a,b]. One can verify that hs(a,b) > 0 when

a=1+404iand b = a+ 04 for i € {0,1,...,7}. Thus, 9 > 0 and

h(t) > h(1) = 0 on the interval [1,4]. When t > 4, h(t) = 2hq(t) +

ha(t)hs(t) — 2 > 2hi(00) + ha(4)ha(4) — 2 > 0. Thus, %2 > h(t) > 0 and

t

g2(t,7) > ga(t,3) = he(t) + 4hz(t) — 5, where hg(t) = (%) and
t

i) = (3853e838)

Let hs(t) = tIn (%) and ho(t) = he(t) + 4h7(t) — 5. By Lemma

9, we have h7(t) and dh8 are positive and monotonically decreasing on

the interval [1,00). On the interval [1,00), hg(t) and hg(t) are posi-

tive monotonically increasing functions, while % is a negative mono-

tonically increasing function. For two constants a and b, let hig(a,b) =
ehs(a) dhg|t b—|—4dh7|t , where 1 < a < b. When t € [a,b], dh9 =
ehs(®) dhs + 4dh7 > hio(a,b). If hig(a,b) > 0, then % > 0 on the 1nter—
val [a7b}. It can be verified that hio(a,b) > 0 when a = 1 4 0.04¢ and
b=a+0.04 fori € {0,1,...,500}. Thus, 422 >0 and hg(t) > ho(1) =0

on the interval [1,21]. When ¢t > 21, ho(t) > he(21) 4+ 4h7(c0) — 5 > 0.
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Hencea g(Ol, q, 7’) Z 92(t7 T) Z g2 (t7 3) = h9 (t) Z 0 and f(aa q, T) =
g(a,q,r)(r+¢)* = 0. ]

Lemma 18. Let f(z) = (x +¢q)*. If a < —t, =1 < ¢ < 2.038¢t — 0.038
andt > 1, then

f)=2f2)+f(4) =0

Proof. Let f(a,q) = f(1) =2f(2)+ f(4) = (1 +¢)* =2(2+¢)* + (4 + )

and g(a, q) = (’;(fr"(;’)’l = (éig) + (%) — 2. Firstly,

<1+q)a12(4+q)o¢1
2+q 2+q '

Let g1(t) = (t+1)In (%) —1In2. According to Lemma 10, since

2x2.038% —2.038 x 3.962 —2.038 x 0.962 < 0, 2.038 x 3.962+2.038 x 0.962 —
2 % 3.962 x 0.962 > 0 and % > 0 has no root on the interval (1, 00), it

14qg\a—1 a—1
follows that gy (£) > g1 (1) ~ 0.693 > 0. Thus, % GO
2+q

t+1 t+1
1 (44q 1 (2.038¢+3.962 dg
2 <1+q> 23 (24038t+04962) >1and 5, <0.

We now prove that the partial derivative of the function g(«,q) with

@7 o
oq  (2+4q)?

respect to « is less than or equal to 0. By Lemmas 8 and 11,
ln( 2.038t—-3.962) 2.03840.962 ( +2) . . . .

22 (2'038t+3'962> < 1 and &3¢ is monotonically increasing
1 (2.038t—70.962) ! ! (q+1)

with respect to ¢, we have

44 +4\¢ 44
n(25) (45)  m() <q+4>“
2 1\ +2 1
m (i) (s3) w(s) Mt
+4
o (Zﬁ) <q+ 1>t
- +2 +4
In (£2) \4
2.038¢43.962
1“(2 038§i1 962) 2.038¢ 4+ 0.962\ *
In (2.038t+1.962) 2.038t + 3.962
2.038£+0.962
<1
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Since 2 <0 and §2 <0, g(a,q) > g(—t,2.038 — 0.038) = hy(t) +

¢ ¢
_ (2.038t+1.962 _ (2.038¢+1.962
ha(t) — 2, where hy(t) = (2.038t+0‘962> and ha(t) = (2.038t+3.962) - Let

hs(t) = tln (%ﬂ)ggg) and h(t) = hq1(t) + ha(t) — 2. By Lemma 9, we

have hs(t) and dh3 are positive and monotonically decreasing on the inter-

val [1,00). On the interval [1,00), hq(t) and hs3(t) are positive monotoni-

dh2 is a negative monotonically increasing

hs(a) dhg‘f b+ dha

cally increasing functions, while
function. For two constants a and b let h4(a, b)=e ‘t o
where 1 < a < b. When t € [a,b], 3 = ehs()dhs 4 dho > h4(a, b).
If hy(a,b) > 0, then 4% > 0 on the interval [a,b]. It can be verified that
ha(a,b) > 0 when a = 14+0.0002¢ and b = a+0.0002 for ¢ € {0,1,...,3000},
as well as when @ = 1.6 + 0.01¢ and b = a + 0.01 for ¢ € {0,1,...,6740}.

Thus, 4 > 0 and h(t) > h(1 ) = 0 on the interval [1,69]. When ¢t > 69,

h(t) ; 2t1(69) + ha(o0) =2 >
Hence, g(,q) > h(t) > 0 and f(a,q) = g(a,q)(2+ ¢)* > 0. |

Lemma 19. Let f(z) =(x+¢)*. Ifa <0, —1<qg<0andr >4, then

fO)+@2r—=2)f(r+1)—2r—-1)f(r) > 0.

Proof. Let f(a,q) = f(1) + 2r =2)f(r+1) = 2r = Df(r) = (1 + )% +
@2r—=2)(r+1+¢*—2r—1)(r+q)* and g(o,q) = (J;(fé‘)li = (iig) +
(2r —2) (M)a — (2r —1). Firstly,

() e ()

Since (r71)(3¢3)‘“17 = %( it )a_l 2 %(T+1+q> 2 %(1+L) >

(@r-2)(thte)* r+ite
%(1—&-%) = g > 1, g—g < 0. Thus, g(o,q) > g(a,0) = (%)a + (2r —
2) (=) - (2r —1).

We now prove that the partial derivative of g(«,0) with respect to «
is less than 0. Set g1(r) = (2r — 2)In(r + 1) — (2r — 1) Inr. Consider the
derivative of g;(r) with respect to r, we have %} = 2In le + Tl(;_i’l)

- _ 3r—1 dgp _ 3r—1-In(14+3)(3r?—2r—1)
Set g2(r) = B D WL Then G = " smrr e

@_ o
g (r+q)?

Since
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In(14+1)(3r2—2r—1 r2—op— 3r—1)(r
OBl = (14 el = Gl 4+ ) <

In(1+ 1) = In(1 4 )", (1 + 1) is monotonically increasing in (07—1—00)

and lim (14 1) = % <In(l1+4 1)" <Ine =1. Thus,

r—+00
4% > 0 and g2( ) > ( ) = 401115 > 1, it implies that TP(’::) > 2In
and dg1 +1 r(r+1) < 0. Thus 91( ) < 91( ) = 61H(5) —T7ln4d <0
(2r 2)In 2L (Tt « 2r—2)In == o r—2)(In(r+1)—Inr
and nr (L )( L Ir)lr - ‘(T+1) < GrAlnlal-hn)

1 o Bg(ao) <

791(7131':1m < 1. Since ag((azo) (2r—2)In =t (ZE) " —Ing(
(

0. Consequently, g(a, q) > g(a,0) > g(0, 0) =14+ (2r—2)— (27“ - 1) 0.
Thus f(e. q) = g(e, g)(r +q)* > 0. u

Lemma 20. Let f(z) = (x4 ¢)*. Ifa <0 and =1 < ¢ <0, then
f(1) =2f(2) + f(4) > 0.

Proof. Let f(a,q) = £(1) = 2£(2) + /(1) = (1+ @)% —2(2+0)° + (4+ 9)°
and g(a,q) = L2 = (ﬂ) + (ﬂ) — 2. Firstly,

2+q)* 2+q 2+q

@_ a <1+q>a12<4+q)0¢1

dg  (2+¢q)? |\2+¢ 2+gq '
. (€= I S T I R T W AR I
Since 2(axa) T 2 \Trg > 5 (1= 15 >5(1-3) =2>1,

%‘Z < 0. Thus, g(a,q) > g(a,0) = (%) + 2% — 2. Since % =In2-
2 —In2- (3)* < 0, g(a,q) > g(a,0) > g(0,0) = 0. Thus f(a,q) =
9(@,q)(2+¢)* > 0. =

Lemma 21. Let f(z) = (z+¢)*. Ifa <0 and —1 < ¢ <0, then

F)+27(4) + f(5) —4£(3) > 0.

Proof. Let f(a,q) = f(1)+2f(4)+f(5)—4f( )f (14+¢)* +2(4+q) +(5+
0" — 43+ and filovg) = A = (F2) 2 (332)" + (3 )
4. Firstly, 2 = o [2 (ﬂ)a_l —9 (%g)a_l —9 (g%g) ] Set

(3+9)?
a—1 a—1 a—1
pleo=2(51) -2(51)  -2(5H)  ed falona) =5kt
q
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—2
1-2)7" =64 >1, 9 <0 Thus, fs(e,q) >

f3(,0) = (%)10‘71—5( o1 Ssince df‘”’d(z’o) In%-($)*"t—In5-(3)~!
and 71;;(( ))a - = 1;;—?46‘*1 < 11211—?4*1 <1, dfz(z 0) < 0. Thus, f3(a,q) >
fs(a,0) > fS(Ovo) =5-5-1>0, % = gofola,q) = gigp fala,q) -

2 (§T+g) <0and fi(a,q) > fi(a,0) = (3)* +2(4)* + (2)> —4.
5o ) = SER/E) = Ing 4 2hg - (G~ (3)°. Since
_ 5 4\a no-no-{y _ _In3:Inb
do =W3-l5.(5)* =2z -3 () and grrretns = hihg -
(He > H (10 > 1, 41 5 0. Consequently, fi(a) < fi(0) =

In2+2Ing —In3 < 0 and % = fa(a)(3)* < 0. Thus, fi(a,q)
f1(@,0) > f1(0,0) = 0 and f(a, q) = fi(e, )3+ @)% > 0.

Lemma 22. Let f(z) = (x +¢)*. Ifa < —t, 0 < g <1.413t+ 0.587 and
t>1, then

V

F0)+27(2)=3f(1) 20

Proof. Let f(a,q) = f(0 —|—2f )=3f(1)=q¢*+2(2+q)*—3(14+¢)* and
g(a,q) = % = (%) (ﬁ> — 3. Firstly,

(1+q) (ﬁ?])w] |

Let g1(t) = (t+1)In (%) —In2. According to Lemma 10, since
2 x 1.413% — 1.413 x 2.587 — 1.413 x 0.587 < 0, 1.413 x 2.587 + 1.413 x
0.587 — 2 x 2.587 x 0.587 > 0 and % > 0 has a unique root ¢; on the

interval (1, 00), where ¢; =~ 1.625, it follows that g1 (t) > ¢1(¢1) ~ 0.69 > 0.

at1 1 P i1
Thus, o) 1 (e V"7 s 1 (20a) T S 1 (Lasserasst) T g
'3 2 {234 Z 32\ Z 2 \ T.413t70.587

@_ «
dq (14 q)2

We now prove that the partial derivative of the function g(«,q) with

respect to « is less than or equal to 0. By Lemmas 8 and 11,

2In(F5ETET) (1413040587 " In(&3) .
. t . . . q
In( LAIStE 1587 (1.413#2.587) <1and (1) is monotonically increasing
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with respect to ¢, we have

+2\a +2 t 1.413t+2.587 t
(&) < 2n(#7) (4 2in(FESEERT) (1.413t+0.587 <1
a = g+2) = n(LEBELET) \T41842587 ) =
1.413t+0.587

dg +2 +2\¢ +1 @ 3
Since 52 —21n(g+1) (m) —1In (qT) (#) <0, 52 <0.
Since g—g < 0 and g—g <0, gla,q) > g(—t,1.413t + 0.587) = hy(t)

t t
+2ha(t) = 3, where hy(t) = (RIS ) and ha(t) = (FHERE) -

Let hs(t) = tIn (%ﬁ)gg;) and h(t) = hy(t) + 2ha(t) — 3. By Lemma 9,

we have ho(t) and are positive and monotonically decreasing on the in-

terval [1,00). On the interval [1,00), hy(t) and hg(t) are positive monoton-

ically increasing functions, while 92 is a negative monotonically increas-

dt
ing function. For two constants a and b, let hy(a,b) = e3(®) dh?’

2 dh2

i
where 1 < a < b. When t € [a,b], 9 = ehs(Vdhs 4 2‘2{? >

|t a’
h4(a, b). If hy(a,b) > 0, then §¢ > 0 on the 1nterval [a, b} It can be

verified that hy(a,b) > 0 when a = 1 + 0.0001¢ and b = a + 0.0001 for
1€ {0,1,...,6000}, as well as when a = 1.6 4+ 0.01% and b = a + 0.01 for
i€ {0,1,...,7240}. Thus, 9% > 0 and h(t) > h(1) = 0 on the interval

b dt jutil
[1,74]. When t > 74, h(t) = hl( )+2h2( )—3 > h1(74) +2h2(00) -3 >0.
Hence, g(a, q) > h(t) > 0 and f(a,q) = g(a,q)(1 +q)* > 0. u

Lemma 23. Let f(z) = (z+q)*. Ifa < —t,0< q < 1.413t + 0.587 and
t > 1, then

fFO)=f(1)=2£(2)+2f(3) >0

Proof. Let f(a,q) = f(0) = f(1) =2f(2) +2f(3) =¢" = (1 +¢ 2
9)*+2(34+¢)* and fi(a,q) = f(o’q) =1- (12’1) —Q(QJ +2(3i> :
Firstly,

a—1 a—1 a—1
O _ o l_ﬁ(w) L ()T (2 ]
9q  q q q q
a—1 a—1 a—1
Let fa(a,q) = —6 (3#) + (%) +4({%) and fs3(a,q) =
a—1

faea) (1447 244"
(%ﬁf(ﬁ) +a(3e) -o
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Ofs _ a—1 214\ "2 144\ 72
Since e = G [4 (ﬁ) +2 (3—_‘_Z> < 0 and

=i (552) (550)" am (3) (322)" <o
fg(a q) > f3(—t,1.413t + 0.587) = eM®) 4 4eh2() — 6 where hy(t) =
(t+1)In (%ﬁ’:ggg) and ha(t) = (t+1)In (%ﬁ’ggg). According to
Lemma 10, since 2 x 1.413% — 1.413 x 3.587 — 1.413 x 1.587 < 0, 1.413 x
3.587 4 1.413 x 1.587 — 2 x 3.587 x 1.587 < 0, 2 x 1.413% — 1.413 x 3.587 —
1.413 x 2.587 < 0 and 1.413 x 3.58741.413 x 2.587 — 2 x 3.587 x 2.587 < 0,
it follows that hy(t) > hy(1) and ha(t) > ho(1). Thus, fs(a,q) > eM® +
geh2() — 6 > hi(D) 4 geh2() _ g = 109 5 (. Since qul = ;%fg(oz,q) =

36 d
a—1
apen) - (22)" 58 <o
The partial derivative of f1

with r
8L = 2In (;r) (3+q) ( )( : ) (%rq)< 2)" s
fulova) = liye = 2 (%51) - 2 (30) (5) - (432) (1)
Then 8—{; =2In (%) In (g%g (LE)Q+1 (l%;q)ln (?Tg) 1+g
( : (

8f4 — (Z%) _ 6 +4 ﬁ)a _2a1n(ﬂ)(q7+é)a 2aln
dq q(q+2) q

B
— aqlg+l)  a(g+3) q+ iq 3 q
a t
1 +1 +2 13 +3
4(q+3) ((3TS) +4<Zﬁ) _6) 2 s ((31) +4(3T2) —6
> ke (@1(0) + 4ga(0) — 6), where gy (1) = (HIE3350) and g, (1) =

¢
(%ﬁ:gg;) . By Lemma 9, g1(¢) and g2(t) are both monotonically in-

creasing. Thus, g1(t) + 4g2(t) — 6 > g1(1) +4g2(1) — 6 = 2 > 0 and

83];4 > q(q+3) ( ( )+492(t) - 6) > 0.

_ 1.413143.587 ) _ 1.413¢42.587 ) ( L.413¢43.587
Let g(t) = 2In (1.413t+0.587) 2In (1 413t+0.587 (1 A13t+2. 587) ’

t
1y ((L413t41.587 ) (1.413143.587 1.413(+3.587
94(t) =In (1.413t+0.587> (1.413t+1.587) , 95(t) = In (1 413t+0. 587)

1 [ L413t42.587 _ [ 1.413t43.587 1.413t+1.587
96(t) = In (1.413t+0‘587>’ g7(t) = (1 413042, 587) » 9s(t) = In (1.413t+0.587)’

spect to « is given by

=

q+3

and

t In( L413t+2.587
_ 1.413t4-3.587 _ ge(t) _ (1 413t+0. 587)
go(t) = <1.413t+1.5g7> and gio(t) = g,(t) = In( LAL3t43.587\ - By Lemmas
° (1.413#»0,587)

8 and 9, t_l)iinoo g10(t) = %7 g5(t), g6(t), g7(t), gs(t), go(t) and g1o(t) are
all positive functions, where g7(t) and go(t) are monotonically increasing
while the others are monotonically decreasing. For two constants a and b,
let g11(a,b) = 2g5(a) — 2g6(b)g7(a) — gs(b)ge(a), where 1 < a < b. When
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t € [a,b], gs(t) — ga(t) = 2g5(t) — 296(t)g7(t) — gs(t)go(t) < g11(a,b).
If gi1(a,b) < 0, then g3(t) — ga(t) < 0 on the interval [a,b]. It can
be verified that g11(a,b) < 0 when @ = 1+ 0.5 and b = a + 0.5 for

i € {0,1,2,3}. Thus, g3(t) — g4(t) < 0 on the interval [1,3]. When
t >3, 2050 — gr(t)g10(t) 2 97(3)910(00) = 397(3) > 1, ga(t) < 0 and

93(t) — ga(t) <O.
Since 9t > 0 and G > 0, fy(a,q) < fa(—t,1.413t + 0.587) = gs(t) —

a

ga(t) < 0 and G = fi(a,q)(39)> < 0.
Since 4 < 0 and G < 0, fila,q) > fi(—t,1.413t + 0.587) =

¢
L — g12(t) — 2913(t) + 2914(t), where g12(t) = (%ﬂ;?i@;) , qi3(t) =

t ¢
1.413¢+0.587 _ ( L.413t40.587 :
(1.413t+2.587) and g14(t) = (1.413t+3.587) - By Lemma 9, t_1§+m00 g14(t)

= eta3, the functions g12(t), g13(t) and g14(t) are all monotonically de-
creasing. For two constants a and b, let g15(a,b) =1 — g12(a) — 2g13(a) +
2g14(b), where 1 < a <b. When t € [a,b], 1 — g12(t) — 2915(¢) + 2914(t) >
g15(a,b). If gi5(a,b) > 0, then 1 — g12(¢t) — 2g13(t) + 2¢14(t) > 0 on the
interval [a,b]. It can be verified that gi5(a,b) > 0 when @ = 1 + 0.4¢ and
b=a+04forie{0,1,...,7}. Thus, 1 —g12(t) — 2g13(t) + 2¢14(t) > 0 on
the interval [1,4]. When ¢t > 4, 1 — g12(t) — 2915(t) +2g14(t) > 1 —g12(4) —
2g13(4) 4+ 2g14(00) > 0, so the function 1 — g12(t) — 2¢13(t) + 2¢14(¢) > 0
on the interval [1, 4+00).

Thus, fi(e,q) > 1= g12(t) — 2g13(t) + 2g14(t) > 0 and f(a,q) =
fi(a, q)g* > 0. n

Acknowledgment: The research was supported by NSFC (No. 12061073).

References

[1] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for
general sum-connectivity index (,) with given cyclomatic number

when « > 1, Discr. Appl. Math. 257 (2019) 19-30.



233

[2]

3]

6]

[11]

[12]

[13]

[14]

A. Ali, I. Gutman, E. Milovanovié, I. Milovanovié¢, Sum of powers of
the degrees of graphs: extremal results and bounds, MATCH Com-
mun. Math. Comput. Chem. 80 (2018) 5-84.

A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree
indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem.
87 (2022) 89-96.

M. Aouchiche, F. K. Bell, D. Cvetkovi¢, P. Hansen, P. Rowlinson, S.
K. Simié¢, D. Stevanovié¢, Variable neighborhood search for extremal
graphs. 16. Some conjectures related to the largest eigenvalue of a
graph, Fur. J. Oper. Res. 191 (2008) 661-676.

J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, London, 2008.

Y. Caro, New results on the independence number, Tech. Report,
Tel-Aviv Univ., 1979.

X. Cheng, X. Li, Some bounds for the vertex degree function in-
dex of connected graphs with given minimum and maximum degrees,
MATCH Commun. Math. Comput. Chem. 90 (2023) 175-186.

S. Fajtlowicz, On conjectures of graffiti II, Congr. Num. 60 (1987)
189-197.

[. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals. Total
m-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17
(1972) 535-538.

L. H. Hall, L. B. Kier, The nature of structure-activity relationships
and their relation to molecular connectivity, Fur. J. Med. Chem. 12
(1977) 307-312.

Z. Hu, X. Li, D. Peng, Graphs with minimum vertex-degree function-
index for convex functions, MATCH Commun. Math. Comput. Chem.
88 (2022) 521-533.

Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum
and maximum zeroth-order general Randié¢ index, Discr. Appl. Math.
155 (2007) 1044-1054.

Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with
smallest and greatest zeroth-order general Randi¢ index, MATCH
Commun. Math. Comput. Chem. 54 (2005) 425-434.

X. Li, Y. Shi, (n,m)-graphs with maximum zeroth-order general
Randi¢ index for o € (—1,0), MATCH Commun. Math. Comput.
Chem. 62 (2009) 163-170.



234

[15]

[16]

[17]

[18]

[19]

[20]

X. Li, J. Zheng, A unified approach to the extremal trees for different
indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.

L. Pavlovi¢, Maximal value of the zeroth-order Randi¢ index, Discr.
Appl. Math. 127 (2003) 615-626.

L. Pavlovié¢, M. Lazi¢, T. Aleksi¢, More on “Connected (n,m)-graphs
with minimum and maximum zeroth-order general Randi¢ index”,
Discr. Appl. Math. 157 (2009) 2938-2944.

I. Tomescu, Graphs with given cyclomatic number extremal relatively
to vertex degree function index for convex functions, MATCH Com-
mun. Math. Comput. Chem. 87 (2022) 109-114.

I. Tomescu, Properties of connected (n, m)-graphs extremal relatively
to vertex degree function index for convex functions, MATCH Com-
mun. Math. Comput. Chem. 85 (2021) 285-294.

V. K. Wei, A lower bound on the stability number of a simple graph,
Bell Laboratories Technical Memorandum, 81-11217-9, Murray Hill,
1981.

Y. Yao, M. Liu, F. Belardo, C. Yang, Unified extremal results of topo-
logical indices and spectral invariants of graphs, Discr. Appl. Math.
271 (2019) 218-232.

Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degree-
based graph invariants with given diameter, MATCH Commun. Math.
Comput. Chem. 82 (2019) 699-714.



	Introduction
	Proof of main results

