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Abstract

An (n,m)-graph is a graph with n vertices and m edges. The
vertex-degree function-indexHf (G) of a graphG is defined asHf (G)
=

∑
v∈V (G) f(d(v)), where f is a real function.

In this paper, we show that if f(x) is strictly convex and strictly
monotonically decreasing and satisfies some additional properties,
then Hf (G) ≤ (n − k − 1)f(0) + f(p) + (k − p)f(k − 1) + pf(k)
for any connected (n,m)-graph G with m = n + k(k − 3)/2 + p,
where 2 ≤ k ≤ n − 1 and 0 ≤ p ≤ k − 2. The unique graph
that satisfies the above equality is characterized. As an instance,
the function f(x) = (x + q)α is such a function when α ≤ −t,
−1 < q ≤ 2.038t− 0.038 and t ≥ 1 or when α < 0, −1 < q ≤ 0.

We also prove that if f(x) is strictly convex and strictly mono-
tonically decreasing and satisfies some additional properties, then
Hf (G) ≤ (n − k − 1)f(0) + f(p) + (k − p)f(k − 1) + pf(k) for any
(n,m)-graph G with m = k(k − 1)/2 + p, where 2 ≤ k ≤ n− 1 and
0 ≤ p ≤ k − 1. The unique graph that satisfies the above equal-
ity is characterized. As an instance, the function f(x) = (x + q)α

has the properties as described above when α ≤ −t and 0 < q ≤
1.413t+ 0.587 and t ≥ 1.

∗Corresponding author.
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1 Introduction

In this paper, we only consider simple undirected graphs. For undeter-

mined notations and terminologies, see the book by Bondy and Murty [5].

We use V (G) and E(G) to denote the vertex-set and edge-set of a graph

G, respectively. Let G[S] denote an induced subgraph of G whose vertex

set is S and whose edge set consists of all edges of G which have both

end-vertices in S. We denote a complete graph with n vertices by Kn.

Let n and m be two positive integers with n ≥ 2 and 1 ≤ m ≤ n(n −
1)/2. An (n,m)-graph is a graph G = (V (G), E(G)), where m = |E(G)|
and n = |V (G)|. Let Gc(n,m) be the family of all (n,m)-graphs G satis-

fying that d(v) ∈
{⌊

2m
n

⌋
,
⌈
2m
n

⌉}
for all v ∈ V (G).

In 1972, Gutman and Trinajstić [9] introduced the first Zagreb index:

M1(G) =
∑
u∈V

d(v)2,

where d(v) denotes the degree of v in G. The zeroth-order general Randić

index 0Rα(G) of a graph G, was defined by Li and Zheng in [15] as

0Rα(G) =
∑
u∈V

d(v)α,

where α is a real number and α /∈ {0, 1}. In particular, 0R−1(G) is called

the inverse degree ID(G) of G [8], 0R2(G) is just equal to M1(G), and
0R− 1

2
(G) in [10] is called the Randić index R(G) of G. Some extremal

results concerning the zeroth-order general Randić index were deduced

in [2, 12–15,17].

A more general graph invariant was introduced in [1]:

0Rα,q(G) =
∑
v∈V

(d(v) + q)α,

where α and q are real numbers and α ̸= 0 or 1. The invariant 0Rα,q(G)

is a modified form of the zeroth-order general Randić index. In particular,
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0Rα,0(G) = 0Rα(G) and 0R2,0(G) = M1(G). In addition,

0R−1,1(G) =
∑
v∈V

1

d(v) + 1

are known to be Caro-Wei index of a graph [6, 20]. It is well known that

α(G) ≥ 0R−1,1(G),

where α(G) is the independence number of G for any graph G.

Recall some specific graphs defined in [4]. A pineapple with parameters

n, k (k ≤ n), denoted by PA(n, k), is a graph on n vertices consisting of

a clique on k vertices and a stable set on the remaining n − k vertices in

which each vertex of the stable set is adjacent to a unique and the same

vertex of the clique.

A fanned pineapple of type 1 with parameters n, k, p (n ≥ k ≥ p), de-

noted by FPA1(n, k, p), is a graph (on n vertices) obtained from a pineap-

ple PA(n, k) by connecting a vertex from the stable set by edges to p

vertices of the clique, with 0 ≤ p ≤ k − 2. FPA1(7, 4, 1) is represented in

Figure 1.

Figure 1. FPA1(7, 4, 1).

In [12], the authors characterized the connected (n,m)-graphs with

extremal maximum zeroth-order general Randić index for α < −1.

Theorem 1 (Hu, Li, Shi and Xu [12]). Let α ≤ −1 be a real number, and

n,m, k, p be nonnegative integers satisfying m = n+ k(k− 3)/2+ p, where

2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k − 2. If G is a connected (n,m)-graph, then

0Rα(G) ≤ (n− k − 1) · 1α + (p+ 1)α + (k − p− 1)(k − 1)α

+ p · kα + (n− 1)α,
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the equality holds if and only if G = FPA1(n, k, p).

Li and Shi [14], independently Pavlović, Lazić and Aleksić [17] extended

the above result to the case when α < 0.

Theorem 2 (Li and Shi [14], Pavlović, Lazić and Aleksić [17]). Let α < 0

be a real number, and n,m, k, p be nonnegative integers satisfying m =

n + k(k − 3)/2 + p, where 2 ≤ k ≤ n − 1 and 0 ≤ p ≤ k − 2. If G is a

connected (n,m)-graph, then

0Rα(G) ≤ (n− k − 1) · 1α + (p+ 1)α + (k − p− 1)(k − 1)α

+ p · kα + (n− 1)α,

the equality holds if and only if G = FPA1(n, k, p).

In [21], Yao, Liu, Belardo and Yang introduced the vertex-degree

function-index Hf (G) of a graph G with a real-valued function f(x) as

follows:

Hf (G) =
∑

v∈V (G)

f(d(v)).

Some properties about the vertex-degree function-index have been studied,

see [3, 7, 11,18,19,21,22].

Recently, Ali, Gutman, Saber and Alanazi [3] gave the following lower

bound for Hf (G) of a connected (n,m)-graph G with n ≥ 4 and n + 1 ≤
m ≤ 3n

2 under the condition that f(G) is convex.

Theorem 3 (Ali, Gutman, Saber and Alanazi [3]). Let G be a connected

(n,m)-graph, where n and m be two integers with n ≥ 4, n+1 ≤ m ≤ 3n
2 ,

and let k = ⌊2m/n⌋ and r = 2m−kn. If f(x) is a strictly convex function,

then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G is connected and G ∈ Gc(n,m).

Hu, Li and Peng [11] proved that the same lower bound holds among

all (n,m)-graphs or all connected (n,m)-graphs.
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Theorem 4 (Hu, Li and Peng [11]). Let G be an (n,m)-graph, where n

and m be two integers with n ≥ 2 and n − 1 ≤ m ≤ n(n − 1)/2, and let

k = ⌊2m/n⌋ and r = 2m− kn. If f(x) is a strictly convex function, then

it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G ∈ Gc(n,m).

Theorem 5 (Hu, Li and Peng [11]). Let G be a connected (n,m)-graph,

where n and m be two integers with n ≥ 2 and n − 1 ≤ m ≤ n(n − 1)/2,

and let k = ⌊2m/n⌋ and r = 2m−kn. If f(x) is a strictly convex function,

then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G is connected and G ∈ Gc(n,m).

Tomescu [18,19] established sharp upper bound forHf (G) of an (n,m)-

graph G with m ≤ 3n
2 under the restriction that f is a strictly convex, f(x)

is differentiable and its derivative is strictly convex.

Lemma 1 (Tomescu [19]). If G is an (n,m)-graph that maximizes (mini-

mizes) Hf (G) for a strictly convex (concave) function f(x), then G has at

most one nontrivial connected component C, and C has a vertex of degree

|V (C)| − 1.

Lemma 2 (Tomescu [19]). In the set of connected (n,m)-graphs G having

m ≥ n − 1, the graph which maximizes (minimizes) Hf (G) for a strictly

convex (concave) function f(x), G has a vertex v with degree n− 1.

Theorem 6 (Tomescu [18]). Let f(x) be a strictly convex function having

the property that f(x) is differentiable and its derivative is strictly convex,

and let n and m be two integers with n ≥ 2 and 1 ≤ m ≤ n − 1. If G

is an (n,m)-graph, then Hf (G) ≤ f(m) +mf(1) + (n−m− 1)f(0), with

equality if and only if G = Sm+1 ∪ (n−m− 1)K1.

Theorem 7 (Tomescu [18]). Let f(x) be a strictly convex function having

the property that f(x) is differentiable and its derivative is strictly convex,
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and let n and m be two integers with n ≥ 3, n ≤ m ≤ 2n − 3. If G is a

connected (n,m)-graph, then

Hf (G) ≤ f(n− 1) + f(m− n+ 2) + (m− n+ 1)f(2) + (2n−m− 3)f(1),

with equality if and only if G = K1 ∨ (K1,m−n+1 ∪ (2n−m− 3)K1).

It can be found that Tomescu’s result does not apply when the function

f(x) = (x + q)α, where α < 0 and q > 0, because the function f(x)

is strictly convex but its derivative is strictly concave. Therefore it is

necessary to find a new method to study it.

In this paper, we will further study the maximum values of Hf (G)

among all connected (n,m)-graphs as well as on all (n,m)-graphs, provided

that the function f(x) satisfies the conditions of some or all of the following

conditions:

(i) f(x) is a strictly convex function in the range where Hf (G) can be

defined.

(ii) f(x) is a strictly monotonically decreasing in the range where Hf (G)

can be defined.

(iii) (n− p− j − 3)f(p+ 1)− (n− p+ j − 3)f(p+ j + 1) + j(n− p− j −
1)f(n−2)− j(n−p− j−3)f(n−1) > 0 for each p ∈ {0, 1, . . . , n−4}
and for each j ∈ {1, . . . , n− p− 4}.

(iv) f(1) + (2r − 2)f(r + 1)− (2r − 1)f(r) ≥ 0 for r ≥ 2.

(v) f(1)+(2r−2)f(r+1)−(2r−1)f(r) ≥ 0 for r ≥ 3 and f(1)−2f(2)+

f(4) ≥ 0.

(vi) f(1)+(2r−2)f(r+1)−(2r−1)f(r) ≥ 0 for r ≥ 4, f(1)−2f(2)+f(4) ≥
0 and f(1)− 4f(3) + 2f(4) + f(5) ≥ 0.

(vii) f(0) + 2f(2)− 3f(1) ≥ 0 and f(0)− f(1)− 2f(2) + 2f(3) ≥ 0.

We say that a function f(x) satisfies condition (i) if the i-th term of the

above holds for f(x).

The proposition below reveals the implication between conditions (iv),

(v) and (vi).



203

Proposition 8. Let f(x) be a function that satisfies condition (i). If f(x)

satisfies condition (iv), then it necessarily satisfies condition (v). Addi-

tionally, the satisfaction of condition (v), implies that condition (vi) is

necessarily fulfilled.

Proof. By observation, it is sufficient to prove f(1)−2f(2)+f(4) ≥ f(1)+

2f(3)−3f(2) and f(1)−4f(3)+2f(4)+f(5) ≥ f(1)+4f(4)−5f(3) ≥ 0 and

in turn only need to show that f(2)+f(4) ≥ 2f(3) and f(3)+f(5) ≥ 2f(4),

and the fact it holds follows from Corollary 2, and so the proposition is

proved.

To state our main results, two types of graphs are defined below. Let

PA(n, k) be a graph denoted as follows: a graph with n vertices, composed

of a clique on k vertices and a stable set on the other n− k vertices. Let

FPA1(n, k, p) be defined as a graph which contains n vertices, constructed

from PA(n, k) by joining a vertex from the stable set with p vertices of

the clique by edges, with 0 ≤ p ≤ k − 1.

Theorem 9. Assume that a function f(x) satisfy conditions (i), (ii), (iii),

and at least one of the conditions (iv), (v) and (vi). Let n,m, k, p be

integers satisfying that m = n+ k(k − 3)/2 + p, where 2 ≤ k ≤ n− 1 and

0 ≤ p ≤ k − 2. If G is a connected (n,m)-graph, then

Hf (G) ≤ (n− k − 1)f(1) + f(p+ 1)

+ (k − p− 1)f(k − 1) + pf(k) + f(n− 1), (1)

the equality holds if and only if G = FPA1(n, k, p).

Theorem 10. Assume that a function f(x) satisfy conditions (i), (ii),

(iii), (vii) and at least one of the conditions (iv), (v) and (vi). Let n,m, k, p

be integers satisfying that m = k(k − 1)/2 + p, where 2 ≤ k ≤ n − 1 and

0 ≤ p ≤ k − 1. If G is an (n,m)-graph, then

Hf (G) ≤ (n− k − 1)f(0) + f(p) + (k − p)f(k − 1) + pf(k), (2)

the equality holds if and only if G = FPA1(n, k, p).
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We will show by Lemmas 16–23 in Section 2 that the function f(x) =

(x + q)α satisfies the assumption in Theorem 9 when t ≥ 1, α ≤ −t and

−1 < q ≤ 2.038t − 0.038, or α < 0 and −1 < q ≤ 0. Furthermore, the

function f(x) = (x+ q)α satisfies the conditions of Theorem 10 for t ≥ 1,

α ≤ −t and 0 < q ≤ 1.413t + 0.587. Therefore, it is straightforward to

obtain the following theorems.

Theorem 11. Let f(x) = (x+q)α, where α ≤ −t, −1 < q ≤ 2.038t−0.038

and t ≥ 1. Let n,m, k, p be integers satisfying that m = n+k(k−3)/2+p,

where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k − 2. If G is a connected (n,m)-graph,

then

0Rα,q(G) ≤ (n− k − 1)(1 + q)α + (p+ 1 + q)α

+ (k − p− 1)(k − 1 + q)α + p(k + q)α + (n− 1 + q)α,

the equality holds if and only if G = FPA1(n, k, p).

Theorem 12. Let f(x) = (x + q)α, where α < 0, −1 < q ≤ 0. Let

n,m, k, p be integers satisfying that m = n+k(k−3)/2+p, where 2 ≤ k ≤
n− 1 and 0 ≤ p ≤ k − 2. If G is a connected (n,m)-graph, then

0Rα,q(G) ≤ (n− k − 1)(1 + q)α + (p+ 1 + q)α

+ (k − p− 1)(k − 1 + q)α + p(k + q)α + (n− 1 + q)α,

the equality holds if and only if G = FPA1(n, k, p).

Theorem 13. Let f(x) = (x + q)α, where α ≤ −t and 0 < q ≤ 1.413t +

0.587 and t ≥ 1. Let n,m, k, p be integers satisfying that m = n + k(k −
3)/2+ p, where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k− 2. If G is an (n,m)-graph,

then
0Rα,q(G) ≤ (n− k − 1) · qα + (p+ q)α

+ (k − p)(k − 1 + q)α + p · (k + q)α,

the equality holds if and only if G = FPA1(n, k, p).

When t = 1, α = −1 and q = 1, Theorem 13 implies the following

corollary.
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Corollary 1. Let f(x) = 1
x+1 . Let n,m, k, p be integers satisfying that

m = n+ k(k − 3)/2 + p, where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k − 2. If G is

an (n,m)-graph, then

Hf (G) ≤ (n− k − 1) +
1

p+ 1
+

k − p

k
+

p

k + 1
,

the equality holds if and only if G = FPA1(n, k, p).

Our results extend those obtained by Hu et al. in [12] and Li et al.

in [14] on the case of the maximum value of the zeroth-order general Randić

index for α ≤ −1 and α < 0, respectively. Theorem 11 can deduce The-

orem 1 and Theorem 12 can deduce Theorem 2. Moreover, Theorem 13

obtained sharp upper bounds among all (n,m)-graphs, which is not stud-

ied in previous works [12], [14], and [17].

2 Proof of main results

Firstly, we introduce some useful lemmas. Let ni be the number of vertices

of degree i in a graph G.

Lemma 3 (Tomescu [19]). Let x ≥ y ≥ 1. If f(x) is a strictly convex

function, then f(x+ 1) + f(y − 1) > f(x) + f(y).

Corollary 2. If f(x) is a strictly convex function, then f(s−1)+f(s+1) >

2f(s) for any real number s > 1.

Lemma 4. Let r, s and t be real numbers such that 0 < r ≤ s ≤ t. If

f(x) is a convex function, then

(t− r)f(s) ≤ (t− s)f(r) + (s− r)f(t),

with equality if and only if s = r or t.

Proof. If s = r or s = t, it is obvious that the equality holds. Set g(s) =

(t − s)f(r) + (s − r)f(t) − (t − r)f(s). By a simple computation, ∂2g
∂s2 =

−(t − r)∂
2f

∂s2 ≤ 0 and the upper inequality follows because the function g

is concave.



206

Lemma 5. Let a, b be real numbers such that a ≥ b ≥ 0. If f(x) is a

convex function, then

f(a+ y)− f(a) ≥ y(f(b+ 1)− f(b)) (3)

for any positive integer y.

Proof. Since f(x) is a convex function, f(x + 1) − f(x) is an increasing

function. Thus, f(a + y) − f(a) = (f(a + 1) − f(a)) + (f(a + 2) − f(a +

1)) + · · ·+ (f(a+ y)− f(a+ y − 1)) ≥ y(f(b+ 1)− f(b)).

Lemma 6 (Pavlović [16]). Let G be a graph with n vertex and m edges,

where m <
(
n
2

)
. If n1 ̸= 0, then nn−1 ≤ 1. If n1 = n2 = · · · = ni−1 = 0,

ni ̸= 0, then nn−1 ≤ i.

Lemma 7 (Pavlović [16]). Let G be a graph with n vertex and m edges,

where m <
(
n
2

)
. If nn−1 = 1, n1 = l, where 2 ≤ l ≤ n − 3, then nn−l =

nn−l+1 = · · · = nn−3 = nn−2 = 0.

Lemma 8. Let a, b, c, d, e and x all be positive numbers. Let g(x) =
ln( b+ax

c+ax )
ln( d+ax

e+ax )
. Then lim

x→+∞
g(x) = b−c

d−e . If b > c = d > e, then g(x) is monoton-

ically increasing. If d > b > c = e, then g(x) is monotonically decreasing.

Proof. Since ln(1 + x) = x+ o(x) for x ∈ (−1, 1], we have

lim
x→+∞

g(x) = lim
x→+∞

b−c
c+ax + o

(
b−c
c+ax

)
d−e
e+ax + o

(
d−e
e+ax

) =
b− c

d− e
.

By a simple calculation, dg
dx =

a ln( b+ax
c+ax )(d−e)

ln2( d+ax
e+ax )(d+ax)(e+ax)

− a(b−c)

ln( d+ax
e+ax )(b+ax)(c+ax)

.

Set h(x) = a ln
(

b+ax
c+ax

)
(d− e)− a ln( d+ax

e+ax )(b−c)(d+ax)(e+ax)

(b+ax)(c+ax) .

If b > c = d > e, then dh
dx = −a2 ln( c+ax

e+ax )(b−c)(b−e)

(b+ax)2
< 0. Since

lim
x→+∞

h(x) = 0, the inequality h(x) > 0 holds on the interval (0,+∞).

Therefore, dg
dx > 0 is valid on the interval (0,+∞) and g(x) is monotoni-

cally increasing.

If d > b > c = e, then dh
dx = −a2 ln( d+ax

c+ax )(b−c)(b−d)

(b+ax)2
> 0. Since

lim
x→+∞

h(x) = 0, the inequality h(x) < 0 holds on the interval (0,+∞).
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Therefore, dg
dx < 0 is valid on the interval (0,+∞) and g(x) is monotoni-

cally decreasing.

Lemma 9. Let a, b, c and x all be positive numbers. Let g(x) = x ln
(

b+ax
c+ax

)
and h(x) =

(
b+ax
c+ax

)x

. Then lim
x→+∞

g(x) = b−c
a and lim

x→+∞
h(x) = e

b−c
a .

If b > c, then g(x) and h(x) are monotonically increasing, while dg
dx is

positive and monotonically decreasing. If c > b, then g(x) and h(x) are

monotonically decreasing, while dh
dx is negative and monotonically increas-

ing.

Proof. Since ln(1 + x) = x+ o(x) for x ∈ (−1, 1], we have

lim
x→+∞

g(x) = lim
x→+∞

x

(
b− c

c+ ax
+ o

(
b− c

c+ ax

))
=

b− c

a
.

By a simple calculation, dg
dx = ln

(
b+ax
c+ax

)
− ax(b−c)

(b+ax)(c+ax) ,

d2g
dx2 = −a(b−c)(2bc+abx+acx)

(b+ax)2(c+ax)2
, dh

dx = eg(x) dgdx , and
d2h
dx2 = eg(x)

(
( dgdx )

2 + d2g
dx2

)
.

If b > c, then d2g
dx2 < 0. Since lim

x→+∞
dg
dx = 0, dg

dx > 0. Thus, g(x) and

h(x) are monotonically increasing, whereas dg
dx is positive and monotoni-

cally decreasing.

If c > b, then d2g
dx2 > 0 and d2h

dx2 > 0. Since lim
x→+∞

dg
dx = 0, dg

dx < 0.

Thus, g(x) and h(x) are monotonically decreasing, while dh
dx is negative

and monotonically increasing.

Lemma 10. Let g(x) = (x + 1) ln( b+ax
c+ax ), where a > 0, b > c > 0 and

2a2 − ab − ac < 0. If ab + ac − 2bc < 0, then g(x) ≥ g(1) for any x ≥ 1.

When ab + ac − 2bc > 0, if dg
dx has no root on the interval (1,∞), then

g(x) ≥ g(1) for any x ≥ 1; otherwise, dg
dx has a unique root x1 on the

interval (1,∞), we have g(x) ≥ g(x1) for any x ≥ 1.

Proof. Since dg
dx = ln

(
b+ax
c+ax

)
− a(b−c)(x+1)

(b+ax)(c+ax) and

d2g
dx2 =

a(b−c)((2a2−ab−ac)x+ab+ac−2bc)
(b+ax)2(c+ax)2

, d2g
dx2 < 0 if x > − ab+ac−2bc

2a2−ab−ac and

d2g
dx2 > 0 if x < − ab+ac−2bc

2a2−ab−ac . Since lim
x→+∞

dg
dx = 0, dg

dx > 0 on the interval

(− ab+ac−2bc
2a2−ab−ac ,+∞).
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If ab + ac − 2bc < 0, then − ab+ac−2bc
2a2−ab−ac < 0, so g(x) ≥ g(1) for any

x ≥ 1. When ab + ac − 2bc > 0, we have − ab+ac−2bc
2a2−ab−ac > 0. If dg

dx has no

root in (1,∞), then dg
dx > 0 on the interval (1,∞) and g(x) ≥ g(1) for

any x ≥ 1. Otherwise, dg
dx has a unique root x1 in (1,∞), dg

dx < 0 on the

interval (1, x1) and
dg
dx > 0 on the interval (x1,∞). Thus, g(x) ≥ g(x1) for

any x ≥ 1.

Lemma 11. Let g(x) =
ln( b+ax

c+ax )
ln( c+ax

d+ax )

(
d+ax
b+ax

)x

, where a, b, c and d be real

numbers with a > 0, b > c > d > 0. For any x ≥ 1, g(x) ≤ (b−c)(a+d)
(c−d)(a+b) .

Proof. Let h1(x) =
ln( b+ax

c+ax )
ln( c+ax

d+ax )
and h2(x) =

(
d+ax
b+ax

)x

. By Lemmas 8 and 9,

lim
x→+∞

h1(x) =
b−c
c−d , the function h1(x) is monotonically increasing and the

function h2(x) is monotonically decreasing. Thus, g(x) = h1(x) · h2(x) ≤
h1(∞) · h2(1) =

b−c
c−d · a+d

a+b = (b−c)(a+d)
(c−d)(a+b) .

For convenience, we call a graph G a maximum connected (n,m)-graph

if it has the maximum vertex-degree function-index among all connected

(n,m)-graphs, and respectively, a maximum (n,m)-graph if it has the max-

imum vertex-degree function-index among all (n,m)-graphs.

Next, we are going to prove Theorem 9 that the fanned pineapple of

type 1 graph has the maximum Hf -value among (n,m)-connected graphs.

This implies that the maximum connected (n,m)-graph should have n1 =

n− k − 1, np+1 = 1, nk−1 = k − 1− p, nk = p and nn−1 = 1.

Theorem 9 describes the solution of the following problem (P ) :

maxn1 · f(1) + n2 · f(2) + · · ·+ nn−1 · f(n− 1)

under two graph constraints

n1 + n2 + n3 + · · ·+ nn−1 = n,

n1 + 2n2 + 3n3 + · · ·+ (n− 1)nn−1 = 2m.

By Lemma 2, we have the following corollary, implying the assertion

of Theorem 9 for the case when m = n− 1.
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Corollary 3. Let f(x) be a strictly convex function. If m = n − 1, the

function Hf reaches its maximum among (n,m)-connected graphs at the

star.

Thus, it remains to show that Theorem 9 holds for n ≤ m ≤
(
n
2

)
− 2.

Since m = n+ k(k− 3)/2 + p, where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k− 2,

we handle two cases in terms of k = n − 1 and 2 ≤ k ≤ n − 2. We shall

start by proving the theorem for k = n− 1.

Lemma 12. Let G be a connected (n,m)-graph, where m ≤
(
n
2

)
− 2,

m = n+ k(k− 3)/2+ p, k = n− 1 and 0 ≤ p ≤ n− 4. Inequality (1) holds

for the graph G.

Proof. Since k = n−1, m = (n2−3n+4+2p)/2 = (n−1)(n−2)/2+p+1,

where 0 ≤ p ≤ n − 3. Then the minimum degree of G must be greater

than or equal to p + 1. In contrast, if G contains a vertex whose degree

is p (or less), then the deletion of a vertex of degree p results a graph G′

(without necessarily connected) with more edges than the complete graph

on n− 1 vertices.

Let the minimum degree of G be p + j + 1, where j is a nonnegative

integer. Since m ≤
(
n
2

)
− 2, j ≤ n − p − 4. Otherwise, j = n − p − 3,

then the degree of the vertex in G is either n− 2 or n− 1. Thus there are

four distinct vertices v1, v2, v3 and v4 of degree n− 2 such that v1 and v2

are nonadjacent, v3 and v4 are nonadjacent in G. Now, construct a new

graph G′ = G− v2v3 + v3v4. By Corollary 2, we have Hf (G
′)−Hf (G) =

f(n− 1) + f(n− 3)− 2f(n− 2) > 0, which contradicts the maximality of

G.

Denote by P (p,p+j+1) the problem for given p when the minimum

degree of G is p + j + 1, and by H
(p,p+j+1)
f the optimal value of Hf

for the problem P (p,p+j+1). The optimal value of Hf for a given p is

Hp
f = max0≤j≤n−p−4 H

(p,p+j+1)
f . Since the minimum degree of G is

p+ j + 1, it follows from Lemma 6 that we have nn−1 ≤ p+ j + 1. Let us

solve the problem P (p,p+j+1), 0 ≤ p ≤ n− 4, 0 ≤ j ≤ n− p− 4.

maxnp+j+1f(p+ j + 1) + np+j+2f(p+ j + 2) + · · ·+ nn−1f(n− 1)
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under the constraints:

np+j+1 + np+j+2 + np+j+3 + · · ·+ nn−1 = n,

(p+ j + 1)np+j+1 + (p+ j + 2)np+j+2 + · · ·+ (n− 1)nn−1

= n2 − 3n+ 4 + 2p,

nn−1 = p+ j + 1− ξ,

where 0 ≤ ξ ≤ p+ j. Let us solve the system of the latter three equalities

in nn−1, nn−2 and np+j+1 :

nn−2 =
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j + 6

n− p− j − 3

− np+j+2

n− p− j − 3
− 2np+j+3

n− p− j − 3
− 3np+j+4

n− p− j − 3

− · · · − (n− p− j − 4)nn−3

n− p− j − 3
+

(n− p− j − 2)ξ

n− p− j − 3
,

np+j+1 =
n− p+ j − 3

n− p− j − 3
−
(
1− 1

n− p− j − 3

)
np+j+2

−
(
1− 2

n− p− j − 3

)
np+j+3 −

(
1− 3

n− p− j − 3

)
np+j+4

− · · · −
(
1− n− p− j − 4

n− p− j − 3

)
nn−3 +

(
1− n− p− j − 2

n− p− j − 3

)
ξ.

By replacing np+j+1, nn−2, nn−1 in Hf , we obtain

Hf =
n− p+ j − 3

n− p− j − 3
f(p+ j + 1) + (p+ j + 1)f(n− 1)

+
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j + 6

n− p− j − 3
f(n− 2)

+

n−3∑
i=p+j+2

ni

(
f(i)− n− i− 2

n− p− j − 3
f(p+ j + 1)− i− p− j − 1

n− p− j − 3
f(n− 2)

)

+ ξ

(
−f(n− 1)− 1

n− p− j − 3
f(p+ j + 1) +

n− p− j − 2

n− p− j − 3
f(n− 2)

)
.

Following Lemma 4, it holds that

(n− p− j − 3)f(i) ≤ (n− i− 2)f(p+ j +1)+ (i− p− j − 1)f(n− 2) (4)
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for p+ j + 1 ≤ i ≤ n− 2 and

(n− p− j − 2)f(i) ≤ (n− i− 1)f(p+ j +1)+ (i− p− j − 1)f(n− 1) (5)

for p+ j + 1 ≤ i ≤ n− 1.

After taking the value of i in the inequity (5) to be n − 2, we get the

following equation

(n− p− j − 2)f(n− 2) ≤ f(p+ j + 1) + (n− p− j − 3)f(n− 1). (6)

Inequalities (4) and (6) means that if we take np+j+2 = np+j+3 = · · · =
nn−3 = ξ = 0 then we can get an upper bound H̃

(p,p+j+1)
f for H

(p,p+j+1)
f ,

where

H̃
(p,p+j+1)
f =

n− p+ j − 3

n− p− j − 3
f(p+ j + 1) + (p+ j + 1)f(n− 1)

+
n2 − n(2p+ 2j + 5) + p2 + 2pj + 5p+ j2 + 3j + 6

n− p− j − 3
f(n− 2)

for p ∈ {0, 1, . . . , n−4} and j ∈ {0, 1, . . . , n−p−4}. Keep in mind that the

upper bound H̃
(p,p+j+1)
f may not always correspond to a graph (except for

j = 0, H̃
(p,p+1)
f = H

(p,p+1)
f ).

Now we show that for a given number p, H
(p,p+1)
f is the maximum value

of Hf , that is, H
(p,p+1)
f > H

(p,p+j+1)
f for j ∈ {1, 2, . . . , n − p − 4}. Since

H
(p,p+j+1)
f ≤ H̃

(p,p+j+1)
f , it is enough to show that H

(p,p+1)
f > H̃

(p,p+j+1)
f

for j ∈ {1, 2, . . . , n − p − 4}. Therefore, we are required to prove the

following inequality:

H̃
(p,p+j+1)
f < f(p+ 1) + (n− p− 2)f(n− 2) + (p+ 1)f(n− 1) (7)

for p ∈ {0, 1, . . . , n − 4} and j ∈ {1, . . . , n − p − 4}. Since j ≤ n − p − 4,

n− p− j − 3 ≥ 1. We transform inequality (7) into (8)

(n− p− j − 3)f(p+ 1)− (n− p+ j − 3)f(p+ j + 1)

+ j(n− p− j − 1)f(n− 2)− j(n− p− j − 3)f(n− 1) > 0 (8)

for p ∈ {0, 1, . . . , n− 4} and j ∈ {1, 2, . . . , n− p− 4}. Observe that under
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known conditions, f(x) satisfies the inequality (8).

We have shown that for a given number p, the maximum value of Hf

is H
(p,p+1)
f :

H
(p,p+1)
f = f(p+ 1) + (n− p− 2)f(n− 2) + (p+ 1)f(n− 1)

for p ∈ {0, 1, . . . , n − 4}. This value is attained by a graph with nn−1 =

p+ 1, nn−2 = n− p− 2 and np+1 = 1.

For k = n−1, in which casem ≥ (n−1)(n−2)/2+1, Theorem 9 has been

proved. It remains to prove the theorem for n ≤ m ≤
(
n2 − 3n+ 2

)
/2.

Lemma 13 (Hu, Li, Shi and Xu [12]). Let G∗ be a maximum connected

(n,m)-graph. If a function f(x) is strictly convex and the maximum graph

G∗ has r (r ≤ n− 3) vertices of degree n− 1, then the minimum degree of

G∗ is r.

Lemma 14. Assume that a function f(x) satisfy conditions (i), (ii), (iii),

and at least one of the conditions (iv), (v) and (vi). Let n,m, k, p be

integers satisfying that m = n+k(k−3)/2+p and n ≤ m ≤ (n2−3n+2)/2,

where 2 ≤ k ≤ n − 1 and 0 ≤ p ≤ k − 2. If G∗ is a maximum connected

(n,m)-graph, then n1 ̸= 0.

Proof. Note that according to Proposition 8, the function f(x) must satisfy

condition (vi). Toward a contradiction, suppose n1 = 0. Let r be the

minimum degree of G∗, in other words, n1 = n2 = · · · = nr−1 = 0 and

nr ̸= 0, where r ≥ 2. Then nn−1 = r. Otherwise, if nn−1 = k, where k ̸= r,

then by Lemma 13 the minimum degree of G∗ is k, not r, a contradiction.

Let u be a vertex of degree r. Then u is adjacent to all the r vertices

w1, w2, . . . , wr of degree n− 1.

Let S = V (G)∗ \ {u,w1, w2, . . . , wr}, and K(S) be the complete graph

on S. Then

|E(K(S))| − |E(G[S])| =
(
n− r − 1

2

)
−
(
m− r(n− r)−

(
r

2

))
≥

(
n− r − 1

2

)
− n2 − 3n+ 2

2
+ r(n− r) +

(
r

2

)
= r.
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This implies that we can add to G[S] at least r−1 edges, and these vertices

still do not form a complete graph after adding these edges. Furthermore,

|S| ≥ 3, which leads to n ≥ r + 4.

For r ≥ 2, denote by G′ a connected graph obtained from G∗ when

we delete r− 1 edges between vertex u and vertices w1, . . . , wr−1 and add

r − 1 new edges between t vertices in S. Without loss of generality we

can assume that these t vertices are v1, v2, . . . , vt with degrees j1, j2, . . . , jt

in G∗, and the degree of vi is ji + xi in G′ for i ∈ {1, 2, . . . , t}. Then

ji ≥ r and xi ≥ 1 for i ∈ {1, 2, . . . , t} and
∑t

i=1 xi = 2(r − 1). Therefore,

applying Lemma 5, we have

Hf (G
′)−Hf (G

∗) = f(1)− f(r) + (r − 1)f(n− 2)− (r − 1)f(n− 1)

+

t∑
i=1

(f(ji + xi)− f(ji))

> f(1)− f(r) +

t∑
i=1

xi(f(r + 1)− f(r))

= f(1)− f(r) + 2(r − 1)(f(r + 1)− f(r))

= f(1) + (2r − 2)f(r + 1)− (2r − 1)f(r)

≥ 0

for r ≥ 4, which contradicts the maximality of G∗.

Next, we show that the minimum degree of G∗ cannot be 2 or 3. Since

f(x) is a convex function, f(x+ 1)− f(x) is an increasing function.

Case 1. r = 2

In this case the maximum graph G∗ has only two vertices of degree

n−1, denoted by w1 and w2. Since |E(K(S))|− |E(G[S])| ≥ r = 2, n ≥ 6.

We consider the number n2 of vertices with degree 2.

Subcase 1.1. 1 ≤ n2 ≤ n− 3.

Let u be a vertex of degree 2. Clearly, u is adjacent to w1, w2. We

claim that there exists a vertex v in S with degree j, where 3 ≤ j ≤ n− 3.

Since 1 ≤ n2 ≤ n− 3, there exists a vertex v1 in S with degree j1 greater

than 2. If j1 ≤ n− 3, then v1 is the desired vertex. Otherwise, j1 = n− 2

and v1 is adjacent to all vertices in S. So all the vertices in S have degrees



214

greater than 2, then there must exist a vertex in S whose degree is less

than or equal to n− 3, this is because |E(K(S))| − |E(G[S])| ≥ r.

Thus we can find two nonadjacent vertices v1 and v2 in S with degree

j1 ≥ 2 and j2 ≥ 3. Construct a new graph G′′ = G∗ − uw1 + v1v2. We

have

Hf (G
′′)−Hf (G

∗) = f(1)− f(2) + f(n− 2)− f(n− 1) + f(j1 + 1)

− f(j1) + f(j2 + 1)− f(j2)

> f(1)− f(2) + f(3)− f(2) + f(4)− f(3)

= f(1)− 2f(2) + f(4)

≥ 0,

a contradiction.

Subcase 1.2. n2 = n− 2.

Let u1, u2, . . . , un−2 be the vertices of degree 2. Clearly, ui is adjacent

to w1, w2 for 1 ≤ i ≤ n− 2.

If n = 6, then G∗ = K2,4. Let G
′′ = FPA1(6, 4, 0). Thus,

Hf (G
′′)−Hf (G

∗) = f(5) + 3f(3) + 2f(1)− 4f(2)− 2f(4)

= f(3)− 2f(4) + f(5) + 2(f(1)− 2f(2) + f(3))

> 0,

a contradiction. The last inequality can be derived from Lemma 2.

If n = 7, then G∗ = K2,5. Let G
′′ = FPA1(7, 4, 1). Hence,

Hf (G
′′)−Hf (G

∗) = 2f(1) + f(2) + 2f(3) + f(4) + f(6)− 5f(2)− 2f(5)

= f(4)− 2f(5) + f(6) + 2(f(1)− 2f(2) + f(3))

> 0,

a contradiction. The last inequality can be derived from Lemma 2.

Thus n ≥ 8 and n2 = n − 2 ≥ 6. Construct a new graph G′′ =
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G∗ − u1w1 − u2w1 − u3w1 + u4u5 + u5u6 + u4u6. We have

Hf (G
′′)−Hf (G

∗) = 3(f(1)− f(2)) + f(n− 4)− f(n− 1) + 3(f(4)− f(2))

> 3(f(1)− 2f(2) + f(4))

≥ 0,

a contradiction.

Case 2. r = 3

In this case the maximum graph G∗ has only three vertices with degree

n − 1, denoted by w1, w2 and w3. Since |E(K(S))| − |E(G[S])| ≥ r = 3,

n ≥ 7. We consider the number n3 of vertices with degree 3.

Subcase 2.1. 1 ≤ n3 ≤ n− 4.

Let u be a vertex of degree 3. Clearly, u is adjacent to w1, w2, w3. With

a similar approach to Subcase 1.1, we can find two pairs of nonadjacent

vertices v1 and v2, v3 and v4 in S whose degrees are j1, j2, j3 and j4, where

j1 ≥ 4 and ji ≥ 3 for i ∈ {2, 3, 4}. Note that these four vertices are not

necessarily distinct.

If all these four vertices are distinct, we construct a new graph G′′ =

G∗ − uw1 − uw2 + v1v2 + v3v4. We have

Hf (G
′′)−Hf (G

∗) = f(1)− f(3) + 2(f(n− 2)− f(n− 1))

+

4∑
i=1

(f(ji + 1)− f(ji))

> f(1)− f(3) + f(5)− f(4) + 3(f(4)− f(3))

= f(1)− 4f(3) + 2f(4) + f(5)

≥ 0,

a contradiction.

Next, assume that some vertices in v1, v2, v3, v4 are same. By symme-

try, it suffices to consider two possibilities: v1 = v3 or v2 = v3.

If v1 = v3, we use v to denote v1. Clearly, v has degree j ≥ 4. We

construct a new graph G′′ = G∗ − uw1 − uw2 + vv2 + vv4. Therefore,

Hf (G
′′)−Hf (G

∗) = f(1)− f(3) + 2(f(n− 2)− f(n− 1)) + f(j + 2)
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− f(j) + (f(j2 + 1)− f(j2)) + (f(j4 + 1)− f(j4))

> f(1)− f(3) + f(6)− f(4) + 2(f(4)− f(3)).

By taking the values of a, b and y in Inequality (3) to be 4, 4 and 2,

respectively, we have

f(6)− f(4) ≥ 2(f(5)− f(4)).

Thus,

Hf (G
′′)−Hf (G

∗) > f(1)− f(3) + f(6)− f(4) + 2(f(4)− f(3))

> f(1)− f(3) + 2(f(5)− f(4)) + 2(f(4)− f(3))

> f(1)− f(3) + (f(5)− f(4)) + 3(f(4)− f(3))

= f(1)− 4f(3) + 2f(4) + f(5)

≥ 0,

a contradiction.

If v2 = v3, we use v to denote v2. Clearly, v has degree j ≥ 3. Construct

a new graph G′′ = G∗ − uw1 − uw2 + vv1 + vv4. Hence,

Hf (G
′′)−Hf (G

∗) = f(1)− f(3) + 2(f(n− 2)− f(n− 1)) + f(j + 2)

− f(j) + (f(j1 + 1)− f(j1)) + (f(j4 + 1)− f(j4))

> f(1)− f(3) + f(5)− f(3) + f(5)− f(4)

+ f(4)− f(3).

By taking the values of a, b and y in Inequality (3) to be 3, 3 and 2,

respectively, we have

f(5)− f(3) ≥ 2(f(4)− f(3)).

Thus,

Hf (G
′′)−Hf (G

∗)

> f(1)− f(3) + f(5)− f(3) + f(5)− f(4) + f(4)− f(3)



217

> f(1)− f(3) + 2(f(4)− f(3)) + f(5)− f(4) + f(4)− f(3)

= f(1)− 4f(3) + 2f(4) + f(5)

≥ 0,

a contradiction.

Subcase 2.2. n3 = n− 3.

Let u1, u2, . . . , un−3 be the vertices of degree 3. Clearly, ui is adjacent

to w1, w2 and w3 for 1 ≤ i ≤ n−3. Since n ≥ 7, n3 = n−3 ≥ 4. Construct

a new graph G′′ = G∗ − u1w1 − u1w2 + u2u3 + u3u4. We have

Hf (G
′′)−Hf (G

∗) = f(1)− f(3) + 2(f(n− 2)− f(n− 1))

+ f(5)− f(3) + 2(f(4)− f(3))

> f(1)− 4f(3) + 2f(4) + f(5)

≥ 0,

a contradiction.

Hence, we only need to consider maximum graphs which have n1 ̸= 0,

for 2 ≤ k ≤ n − 2. Then nn−1 = 1 (by Lemmas 1 and 6) and all vertices

of degree 1 must be adjacent to this unique vertex of degree n − 1. Here

we do not consider the case n1 = n − 1, since it is equivalent to the case

m = n− 1, which has been proved before. When n1 < n− 1, it is readily

obtained that n1 ≤ n− 3.

When nn−1 = 1 and n1 = l, where 1 ≤ l ≤ n− 3, according to Lemma

7, problem (P ) can be transformed into the subsequent problem (P l) :

max l · f(1) + n2 · f(2) + · · ·+ nn−l−1f(n− l − 1) + f(n− 1)

under the constraints:

n2 + n3 + n4 + · · ·+ nn−l−1 = n− 1− l, (9)

n2 + 2n3 + 3n4 + · · ·+ (n− l − 2)nn−l−1 = 2(m− n+ 1). (10)
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To prove the following lemma, it is necessary to use mathematical

induction. It is straightforward to verify that Theorem 9 is true for n = 4

and 3 ≤ m ≤ 6. We assume that Theorem 9 is true for every connected

graph G in G(i, j) when 4 ≤ i ≤ n− 1 and i− 1 ≤ j ≤
(
i
2

)
.

Lemma 15. Let G be a connected (n,m)-graph, where m = n + k(k −
3)/2 + p, m ≥ n, 2 ≤ k ≤ n − 2 and 0 ≤ p ≤ k − 2. If nn−1 = 1 and

1 ≤ n1 ≤ n− 3, then Inequality (1) holds for G.

Proof. Inequality (1) will be valid for G with nn−1 = 1 and n1 = l, if the

following inequality holds:

l · f(1) + n2 · f(2) + n3 · f(3) + · · ·+ nn−l−1f(n− l − 1) + f(n− 1)

≤ (n− k − 1)f(1) + f(p+ 1) + (k − p− 1)f(k − 1) + pf(k) + f(n− 1)

(11)

under constraints (9) and (10).

We first prove (11) for l ≥ 2. Since n1 = l, by Lemma 7 we have

nn−l = nn−l+1 = · · · = nn−2 = 0. Consider the graph G′, which is

obtained from G, when we delete one vertex of degree 1. The graph G′

has n′
1 = l − 1 and one vertex of degree n− 2 (because the other vertices

can have a degree at most n − 1 − l), and n′
i = ni for i ∈ {2, . . . , n − 3}.

Then n′
n−l = n′

n−l+1 = · · · = n′
n−3 = 0 and the same constraints (9) and

(10) hold (because n− 1− (l− 1) = n− l). Since G′ has n− 1 vertices and

n− 1 + k(k − 3)/2 + p edges, it satisfies the inductive hypothesis, and so,

n2 · f(2) + n3 · f(3) + · · ·+ nn−l−1f(n− l − 1)

= n′
2 · f(2) + n′

3 · f(3) + · · ·+ n′
n−l−1f(n− l − 1)

≤ (n− 1− k − 1− (l − 1)) · f(1) + f(p+ 1)

+ (k − p− 1)f(k − 1) + pf(k) (12)

for every 2 ≤ k ≤ n − 2 and 0 ≤ p ≤ k − 2. Inequality (12) is equivalent

to (11), which is now proved because the constraints are the same.

Now we show that (11) holds for l = 1, that is, the graph G′ has no

vertex of degree one. We have n′
i = ni for i{2, . . . , n − 3 and n′

n−2 =
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nn−2 + 1}. By the inductive hypothesis for the graph G′ holds

n2 · f(2) + n3 · f(3) + · · ·+ nn−3 · f(n− 3) + (nn−2 + 1)f(n− 2)

= n′
2 · f(2) + n′

3 · f(3) + · · ·+ n′
n−3 · f(n− 3) + n′

n−2f(n− 2)

≤ (n− 1− k − 1) · f(1) + f(p+ 1) + (k − p− 1)f(k − 1)

+ pf(k) + f(n− 1− 1) (13)

under the constraints

n′
2 + n′

3 + n′
4 + · · ·+ n′

n−2 = n− 1,

2n′
2 + 3n′

3 + 4n′
4 + · · ·+ (n− 2)n′

n−2 = 2(m− 1).

Thus, we have

n2 · f(2) + n3 · f(3) + · · ·+ nn−3f(n− 3) + nn−2f(n− 2)

≤ (n− k − 2)f(1) + f(p+ 1) + (k − p− 1)f(k − 1) + p · f(k) (14)

under the constraints

n2 + n3 + · · ·+ nn−3 + nn−2 = n− 2,

n2 + 2n3 + · · ·+ (n− 3)nn−3 + (n− 2)nn−2 = 2m− n. (15)

Equalities (15) are just the constraints (9) and (10), and inequality (14) is

equivalent to inequality (11) for l = 1. Thus the lemma is proved.

Proof of Theorem 9. We need to show that Theorem 9 holds for n−1 ≤
m ≤

(
n
2

)
. The case m = n− 1 has already been proved in Corollary 3, and

cases m =
(
n
2

)
and

(
n
2

)
− 1 are disregarded because they all correspond to

unique graphs.

Since m = n+ k(k− 3)/2 + p, where 2 ≤ k ≤ n− 1 and 0 ≤ p ≤ k− 2,

we distinguish two cases k = n− 1 and 2 ≤ k ≤ n− 2. The case k = n− 1

has already been proved in 12. The case 2 ≤ k ≤ n− 2 can be proved by

combining Lemmas 14 and 15. Thus, Theorem 9 is proved.

Theorem 9 characterizes the maximum value of Hf (G) among all con-
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nected (n,m)-graphs. Applying Theorem 9, we can also determine the

maximum value of Hf (G) among all (n,m)-graphs, as stated in Theorem

10.

Proof of Theorem 10. Let G be the maximum (n,m)-graph. By Lem-

ma 1, G consists of a set I1 of isolated vertices, together with a connected

graph G1, which has n′ vertices m edges. Note that G1 is a maximum

connected (n′,m)-graph, otherwise, we can find a connected (n′,m)-graph

G2, such that Hf (G2) > Hf (G1), then the graph G′ := G2 + I1 is an

(n,m)-graph satisfying that Hf (G
′) > Hf (G) holds, a contradiction.

If m =
(
n′

2

)
, then G = FPA1(n, n

′, 0), which proves the theorem.

If m <
(
n′

2

)
. Assume that m = n′ + k′(k′ − 3)/2 + p′, where 2 ≤ k′ ≤

n′ − 1 and 0 ≤ p′ ≤ k′ − 2. By Theorem 9, G1 is a fanned pineapple of

type 1 with parameters n′, k′, p′, that is G1 = FPA1(n
′, k′, p′). Let K be

a copy of a clique of k′ vertices of G1. Let l be the number of vertices in

V (G1) \V (K) with degree 1. It is easily seen that p′ and l cannot both be

0 simultaneously. Next, we differ the subsequent proof into the following

four cases.

Case 1. p′ = 0, l = 1.

In this case, k′ = n′ − l = n′ − 1, G1 = FPA1(n
′, n′ − 1, 0), then

G = FPA1(n, n
′ − 1, 1), the theorem is proved.

Case 2. 1 ≤ p′ ≤ k′ − 2, l = 0.

In this case, k′ = n′ − l − 1 = n′ − 1, G1 = FPA1(n
′, n′ − 1, p′), then

G = FPA1(n, n
′ − 1, p′ + 1), which proves the theorem.

Case 3. p′ = 0, l ≥ 2.

In this case, k′ ≥ 2, G1 = FPA1(n
′, k′, 0). Let w be a vertex of degree

n′ − 1. Let u and v be two vertices in V (G1) \ V (K) with degree 1. Let

z ∈ V (K)\w. Then d(z) = k′−1. Construct a new graphG′ = G−uw+vz.

Thus,

Hf (G
′)−Hf (G)

= f(0) + f(2) + f(n′ − 2) + f(k′)− 2f(1)− f(n′ − 1)− f(k′ − 1)

= f(0) + f(2)− 2f(1) + f(n′ − 2)− f(n′ − 1) + f(k′)− f(k′ − 1)

> f(0) + f(2)− 2f(1) + f(2)− f(2− 1)
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= f(0) + 2f(2)− 3f(1)

≥ 0,

which contradicts the maximality of G.

Case 4. 1 ≤ p′ ≤ k′ − 2, l ≥ 1.

In this case, k′ ≥ 3, G1 = FPA1(n
′, k′, p′). Let w be a vertex of

degree n′ − 1. Let u be a vertex in V (G1) \ V (K) with degree 1. Let v be

the vertex of degree p′ + 1 in V (G1) \ V (K). Let z be a vertex in V (K)

which is not adjacent to v. Then d(z) = k′ − 1. Construct a new graph

G′ = G− uw + vz. Therefore,

Hf (G
′)−Hf (G) = f(0) + f(p′ + 2) + f(n′ − 2) + f(k′)− f(1)

− f(p′ + 1)− f(n′ − 1)− f(k′ − 1)

= f(0)− f(1) + f(n′ − 2) + f(n′ − 1) + f(p′ + 2)

− f(p′ + 1) + f(k′)− f(k′ − 1)

> f(0)− f(1) + f(1 + 2)− f(1 + 1) + f(3)− f(3− 1)

= f(0)− f(1) + 2f(3)− 2f(2)

≥ 0,

which contradicts the maximality of G.

Next, we show by Lemmas 16–23 that the function f(x) = (x + q)α

satisfies the assumption in Theorem 9 when t ≥ 1, α ≤ −t and −1 <

q ≤ 2.038t − 0.038, or α < 0 and −1 < q ≤ 0. Furthermore, the function

f(x) = (x + q)α satisfies the conditions of Theorem 10 for t ≥ 1, α ≤ −t

and 0 < q ≤ 1.413t+ 0.587.

Lemma 16. Let n, p, j be integers with n ≥ 5. Let f(x) = (x + q)α. If

α < 0 and q > −1, then

g(p, j) =(n− p− j − 3)f(p+ 1)− (n− p+ j − 3)f(p+ j + 1)

+ j(n− p− j − 1)f(n− 2)− j(n− p− j − 3)f(n− 1) > 0,

for each p ∈ {0, 1, . . . , n− 4} and for each j ∈ {1, . . . , n− p− 4}.
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Proof. In the following, we prove that the partial derivative of g(p, j) with

respect to p is less than 0. Firstly,

∂g(p, j)

∂p
=− (p+ 1 + q)α + α(n− p− j − 3)(p+ 1 + q)α−1

+ (p+ j + 1 + q)α − α(n− p+ j − 3)(p+ j + 1 + q)α−1

− j(n− 2 + q)α + j(n− 1 + q)α.

Since α(α−1)(n−p− j−3)
(
(p+ 1 + q)α−2 − (p+ j + 1 + q)α−2

)
≥ 0 for

α < 0, we have

∂2g(p, j)

∂p2

=− 2α(p+ 1 + q)α−1 + 2α(p+ j + 1 + q)α−1

+ α(α− 1)(n− p− j − 3)(p+ 1 + q)α−2

− α(α− 1)(n− p+ j − 3)(p+ j + 1 + q)α−2

=− 2α(p+ 1 + q)α−1 + 2α(p+ j + 1 + q)α−1

+ α(α− 1)(n− p− j − 3)
(
(p+ 1 + q)α−2 − (p+ j + 1 + q)α−2

)
− α(α− 1) · 2j · (p+ j + 1 + q)α−2

≥− 2α
(
(p+ 1 + q)α−1 − (p+ j + 1 + q)α−1

)
− 2α(α− 1)j(p+ j + 1 + q)α−2

=− 2jα(α− 1)
(
−ξα−2 + (p+ j + 1 + q)α−2

)
≥ 0,

where ξ ∈ (p+ 1 + q, p+ j + 1 + q). Since p ≤ n− j − 3,

∂g(p, j)

∂p
≤− (n− j − 2 + q)α + (n− 2 + q)α − 2jα(n− 2 + q)α−1

− j ((n− 2 + q)α − (n− 1 + q)α) .

Define a function h(j) = −(n− j − 2 + q)α + (n− 2 + q)α − 2jα(n− 2 +

q)α−1 − j ((n− 2 + q)α − (n− 1 + q)α) . Since ∂2h(j)
∂j2 = −α(α− 1)(n− j−

2 + q)α−2 ≤ 0,
[
(n− 1 + q)α−1 + (n− 3 + q)α−1 − 2(n− 2 + q)α−1

]
> 0
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(by Corollary 2) and j ≥ 1, we have

∂h(j)

∂j
= α(n− j − 2 + q)α−1 − 2α(n− 2 + q)α−1

− ((n− 2 + q)α − (n− 1 + q)α)

≤ α(n− 3 + q)α−1 − 2α(n− 2 + q)α−1

− ((n− 2 + q)α − (n− 1 + q)α)

= α
[
(n− 1 + q)α−1 + (n− 3 + q)α−1 − 2(n− 2 + q)α−1

]
− ((n− 2 + q)α − (n− 1 + q)α)− α(n− 1 + q)α−1

≤ αηα−1 − α(n− 1 + q)α−1 ≤ 0,

where η ∈ (n− 2 + q, n− 1 + q). Thus, ∂g(p,j)
∂p ≤ h(j) ≤ h(1).

Since for any x, x0 ∈ [a, b], where a and b are real numbers, there exists

ξ ∈ (a, b) such that f(x) = f(x0)+
df
dx

∣∣∣
x=x0

(x−x0)+
1
2!

d2f
dx2

∣∣∣
x=ξ

(x−x0)
2,

so we have

(n− 1 + q)α = (n− 2 + q)α + α(n− 2 + q)α−1 +
α(α− 1)

2!
(n− 2 + ξ1 + q)α−2,

(n− 3 + q)α = (n− 2 + q)α − α(n− 2 + q)α−1 +
α(α− 1)

2!
(n− 2− ξ2 + q)α−2,

where 0 < ξ1 < 1 and 0 < ξ2 < 1. Then

h(1) =(n− 1 + q)α − (n− 3 + q)α − 2α(n− 2 + q)α−1

=(n− 2 + q)α + α(n− 2 + q)α−1 +
α(α− 1)

2
(n− 2 + ξ1 + q)α−2

− (n− 2 + q)α + α(n− 2 + q)α−1 − α(α− 1)

2
(n− 2− ξ2 + q)α−2

− 2α(n− 2 + q)α−1

=
α(α− 1)

2

(
(n− 2 + ξ1 + q)α−2 − (n− 2− ξ2 + q)α−2

)
< 0.

Consequently, ∂g(p,j)
∂p ≤ h(j) ≤ h(1) < 0. Thus, g(p, j) ≥ g(n− j − 4, j) >

g(n− j − 3, j) = 0.

Lemma 17. Let f(x) = (x + q)α. If α ≤ −t, −1 < q ≤ 2.038t − 0.038,
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t ≥ 1 and r ≥ 3, then

f(1) + (2r − 2)f(r + 1)− (2r − 1)f(r) ≥ 0.

Proof. Let f1(α, q, r) = f(1) + (2r − 2)f(r + 1) − (2r − 1)f(r) = (1 +

q)α + (2r − 2)(r + 1 + q)α − (2r − 1)(r + q)α and g(α, q, r) = f1(α,q,r)
(r+q)α =(

1+q
r+q

)α

+ (2r − 2)
(

r+1+q
r+q

)α

− (2r − 1). Firstly,

∂g

∂q
=

α

(r + q)2

[
(r − 1)

(
1 + q

r + q

)α−1

− (2r − 2)

(
r + 1 + q

r + q

)α−1
]
.

Let g1(t) = (t+ 1) ln
(

2.038t+3.962
2.038t+0.962

)
− ln 2. According to Lemma 10, Since

2 × 2.0382 − 2.038 × 3.962 − 2.038 × 0.962 < 0, 2.038 × 3.962 + 2.038 ×
0.962− 2× 3.962× 0.962 > 0 and dg1

dt has no root on the interval (1,∞),

it follows that g1(t) ≥ g1(1) ≈ 0.69 > 0. Thus,

(r − 1)
(

1+q
r+q

)α−1

(2r − 2)
(

r+1+q
r+q

)α−1 =
1

2

(
1 + q

r + 1 + q

)α−1

≥ 1

2

(
r + 1 + q

1 + q

)t+1

≥ 1

2

(
1 +

r

1 + q

)t+1

≥ 1

2

(
1 +

3

1 + 2.038t− 0.038

)t+1

=
1

2

(
2.038t+ 3.962

2.038t+ 0.962

)t+1

> 1

and ∂g
∂q < 0.

We now prove that the partial derivative of the function g(α, q, r)

with respect to α is less than or equal to 0. By Lemmas 8 and 11,
ln( 2.038t+r+0.962

2.038t+r−0.038 )
ln( 2.038t+r−0.038

2.038t+0.962 )

(
2.038t+0.962

2.038t+r+0.962

)t

≤ 3
(r−1)(r+3) and

ln( q+r+1
q+r )

ln( q+r
q+1 )

is monoton-

ically increasing with respect to q. We have
(2r−2) ln( q+r+1

q+r )( q+r+1
q+r )

a

ln( q+r
q+1 )(

q+1
q+r )

a =

(2r − 2)
ln( q+r+1

q+r )
ln( q+r

q+1 )

(
q+r+1
q+1

)a

≤ (2r − 2)
ln( q+r+1

q+r )
ln( q+r

q+1 )

(
q+1

q+r+1

)t
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≤ (2r − 2)
ln( 2.038t+r+0.962

2.038t+r−0.038 )
ln( 2.038t+r−0.038

2.038t+0.962 )

(
2.038t+0.962

2.038t+r+0.962

)t

≤(2r − 2) 3
(r−1)(r+3) ≤1. Since

∂g
∂α = (2r − 2) ln

(
q+r+1
q+r

)(
q+r+1
q+r

)a

− ln
(

q+r
q+1

)(
q+1
q+r

)a

, ∂g
∂α ≤ 0.

Since ∂g
∂q < 0 and ∂g

∂α ≤ 0, g(α, q, r) ≥ g(−t, 2.038t − 0.038, r) =

g2(t, r), where g2(t, r) =
(

2.038t+r−0.038
2.038t+0.962

)t

+ (2r − 2)
(

2.038t+r−0.038
2.038t+r+0.962

)t

−
(2r − 1). The partial derivative of g2(t, r) with respect to r is given by:

∂g2
∂r = 2

(
2.038t+r−0.038
2.038t+r+0.962

)t

+
t( 2.038t+r−0.038

2.038t+0.962 )
t−1

2.038t+0.962 +
t(2r−2)( 2.038t+r−0.038

2.038t+r+0.962 )
t−1

(2.038t+r+0.962)2 −

2 ≥ 2h1(t) + h2(t)h3(t) +
t(2r−2)( 2.038t+r−0.038

2.038t+r+0.962 )
t−1

(2.038t+r+0.962)2 − 2, where h1(t) =(
2.038t+2.962
2.038t+3.962

)t

, h2(t) = t
2.038t+2.962 and h3(t) =

(
2.038t+2.962
2.038t+0.962

)t

. Let

h4(t) = t ln
(

2.038t+2.962
2.038t+0.962

)
and h(t) = 2h1(t) + h2(t)h3(t) − 2. By Lemma

9, we have h1(t),
dh2

dt and dh4

dt are positive and monotonically decreasing

on the interval [1,∞). On the interval [1,∞), h2(t), h3(t) and h4(t) are

positive monotonically increasing functions, while dh1

dt is a negative mono-

tonically increasing function. For two constants a and b, let h5(a, b) =

2 dh1

dt

∣∣
t=a

+ dh2

dt

∣∣
t=b

h3(a) + h2(a)e
h4(a) dh4

dt

∣∣
t=b

, where 1 ≤ a ≤ b. When

t ∈ [a, b], dh
dt = 2dh1

dt + dh2

dt h3(t)+h2(t)e
h4(t) dh4

dt ≥ h5(a, b). If h5(a, b) ≥ 0,

then dh
dt ≥ 0 on the interval [a, b]. One can verify that h5(a, b) > 0 when

a = 1 + 0.4i and b = a + 0.4 for i ∈ {0, 1, . . . , 7}. Thus, dh
dt ≥ 0 and

h(t) ≥ h(1) = 0 on the interval [1, 4]. When t ≥ 4, h(t) = 2h1(t) +

h2(t)h3(t)− 2 ≥ 2h1(∞) + h2(4)h3(4)− 2 > 0. Thus, ∂g2
∂r > h(t) ≥ 0 and

g2(t, r) ≥ g2(t, 3) = h6(t) + 4h7(t) − 5, where h6(t) =
(

2.038t+2.962
2.038t+0.962

)t

and

h7(t) =
(

2.038t+2.962
2.038t+3.962

)t

.

Let h8(t) = t ln
(

2.038t+2.962
2.038t+0.962

)
and h9(t) = h6(t) + 4h7(t)− 5. By Lemma

9, we have h7(t) and dh8

dt are positive and monotonically decreasing on

the interval [1,∞). On the interval [1,∞), h6(t) and h8(t) are posi-

tive monotonically increasing functions, while dh7

dt is a negative mono-

tonically increasing function. For two constants a and b, let h10(a, b) =

eh8(a) dh8

dt

∣∣
t=b

+ 4 dh7

dt

∣∣
t=a

, where 1 ≤ a ≤ b. When t ∈ [a, b], dh9

dt =

eh8(t) dh8

dt + 4dh7

dt ≥ h10(a, b). If h10(a, b) ≥ 0, then dh9

dt ≥ 0 on the inter-

val [a, b]. It can be verified that h10(a, b) > 0 when a = 1 + 0.04i and

b = a + 0.04 for i ∈ {0, 1, . . . , 500}. Thus, dh9

dt ≥ 0 and h9(t) ≥ h9(1) = 0

on the interval [1, 21]. When t ≥ 21, h9(t) ≥ h6(21) + 4h7(∞)− 5 > 0.
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Hence, g(α, q, r) ≥ g2(t, r) ≥ g2(t, 3) = h9(t) ≥ 0 and f(α, q, r) =

g(α, q, r)(r + q)α ≥ 0.

Lemma 18. Let f(x) = (x + q)α. If α ≤ −t, −1 < q ≤ 2.038t − 0.038

and t ≥ 1, then

f(1)− 2f(2) + f(4) ≥ 0.

Proof. Let f(α, q) = f(1)− 2f(2) + f(4) = (1+ q)α − 2(2+ q)α + (4+ q)α

and g(α, q) = f(α,q)
(2+q)α =

(
1+q
2+q

)α

+
(

4+q
2+q

)α

− 2. Firstly,

∂g

∂q
=

α

(2 + q)2

[(
1 + q

2 + q

)α−1

− 2

(
4 + q

2 + q

)α−1
]
.

Let g1(t) = (t+ 1) ln
(

2.038t+3.962
2.038t+0.962

)
− ln 2. According to Lemma 10, since

2×2.0382−2.038×3.962−2.038×0.962 < 0, 2.038×3.962+2.038×0.962−
2 × 3.962 × 0.962 > 0 and dg1

dt > 0 has no root on the interval (1,∞), it

follows that g1(t) ≥ g1(1) ≈ 0.693 > 0. Thus,
( 1+q

2+q )
α−1

2( 4+q
2+q )

α−1 = 1
2

(
1+q
4+q

)α−1

≥

1
2

(
4+q
1+q

)t+1

≥ 1
2

(
2.038t+3.962
2.038t+0.962

)t+1

> 1 and ∂g
∂q < 0.

We now prove that the partial derivative of the function g(α, q) with

respect to α is less than or equal to 0. By Lemmas 8 and 11,
ln( 2.038t+3.962

2.038t+1.962 )
ln( 2.038t+1.962

2.038t+0.962 )

(
2.038t+0.962
2.038t+3.962

)t

≤ 1 and
ln( q+4

q+2 )
ln( q+2

q+1 )
is monotonically increasing

with respect to q, we have

ln
(

q+4
q+2

)(
q+4
q+2

)a

ln
(

q+2
q+1

)(
q+1
q+2

)a =
ln
(

q+4
q+2

)
ln
(

q+2
q+1

) (
q + 4

q + 1

)a

≤
ln
(

q+4
q+2

)
ln
(

q+2
q+1

) (
q + 1

q + 4

)t

≤
ln
(

2.038t+3.962
2.038t+1.962

)
ln
(

2.038t+1.962
2.038t+0.962

) (
2.038t+ 0.962

2.038t+ 3.962

)t

≤ 1.

Since ∂g
∂α = ln

(
q+4
q+2

)(
q+4
q+2

)a

− ln
(

q+2
q+1

)(
q+1
q+2

)a

, ∂g
∂α < 0.
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Since ∂g
∂q < 0 and ∂g

∂α < 0, g(α, q) ≥ g(−t, 2.038t − 0.038) = h1(t) +

h2(t) − 2, where h1(t) =
(

2.038t+1.962
2.038t+0.962

)t

and h2(t) =
(

2.038t+1.962
2.038t+3.962

)t

. Let

h3(t) = t ln
(

2.038t+1.962
2.038t+0.962

)
and h(t) = h1(t) + h2(t) − 2. By Lemma 9, we

have h2(t) and
dh3

dt are positive and monotonically decreasing on the inter-

val [1,∞). On the interval [1,∞), h1(t) and h3(t) are positive monotoni-

cally increasing functions, while dh2

dt is a negative monotonically increasing

function. For two constants a and b, let h4(a, b) = eh3(a) dh3

dt

∣∣
t=b

+ dh2

dt

∣∣
t=a

,

where 1 ≤ a ≤ b. When t ∈ [a, b], dh
dt = eh3(t) dh3

dt + dh2

dt ≥ h4(a, b).

If h4(a, b) ≥ 0, then dh
dt ≥ 0 on the interval [a, b]. It can be verified that

h4(a, b) > 0 when a = 1+0.0002i and b = a+0.0002 for i ∈ {0, 1, . . . , 3000},
as well as when a = 1.6 + 0.01i and b = a + 0.01 for i ∈ {0, 1, . . . , 6740}.
Thus, dh

dt ≥ 0 and h(t) ≥ h(1) = 0 on the interval [1, 69]. When t ≥ 69,

h(t) ≥ h1(69) + h2(∞)− 2 > 0.

Hence, g(α, q) ≥ h(t) ≥ 0 and f(α, q) = g(α, q)(2 + q)α ≥ 0.

Lemma 19. Let f(x) = (x+ q)α. If α < 0, −1 < q ≤ 0 and r ≥ 4, then

f(1) + (2r − 2)f(r + 1)− (2r − 1)f(r) > 0.

Proof. Let f(α, q) = f(1) + (2r − 2)f(r + 1) − (2r − 1)f(r) = (1 + q)α +

(2r − 2)(r + 1 + q)α − (2r − 1)(r + q)α and g(α, q) = f(α,q)
(r+q)α =

(
1+q
r+q

)α

+

(2r − 2)
(

r+1+q
r+q

)α

− (2r − 1). Firstly,

∂g

∂q
=

α

(r + q)2

[
(r − 1)

(
1 + q

r + q

)α−1

− (2r − 2)

(
r + 1 + q

r + q

)α−1
]
.

Since
(r−1)( 1+q

r+q )
α−1

(2r−2)( r+1+q
r+q )

α−1 = 1
2

(
1+q

r+1+q

)α−1

≥ 1
2

(
r+1+q
1+q

)
≥ 1

2

(
1 + r

1+q

)
≥

1
2

(
1 + 4

1+0

)
= 5

2 > 1, ∂g
∂q < 0. Thus, g(α, q) ≥ g(α, 0) =

(
1
r

)α
+ (2r −

2)
(
r+1
r

)α − (2r − 1).

We now prove that the partial derivative of g(α, 0) with respect to α

is less than 0. Set g1(r) = (2r − 2) ln(r + 1) − (2r − 1) ln r. Consider the

derivative of g1(r) with respect to r, we have dg1
dr = 2 ln r+1

r + 1−3r
r(r+1) .

Set g2(r) = 3r−1
2r(r+1) ln r+1

r

. Then dg2
dr =

3r−1−ln(1+ 1
r )(3r

2−2r−1)

2r2 ln2(1+ 1
r )(r+1)2

. Since
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ln(1+ 1
r )(3r

2−2r−1)

3r−1 = ln(1 + 1
r )

(3r2−2r−1)
3r−1 =

(3r−1)(r− 1
3 )−

4
3

3r−1 ln(1 + 1
r ) < r ·

ln(1 + 1
r ) = ln(1 + 1

r )
r, (1 + 1

r )
r is monotonically increasing in (0,+∞)

and lim
r→+∞

(1 + 1
r )

r = e,
ln(1+ 1

r )(3r
2−2r−1)

3r−1 < ln(1 + 1
r )

r < ln e = 1. Thus,

dg2
dr > 0 and g2(r) ≥ g2(4) =

11
40 ln 5

4

> 1, it implies that 3r−1
r(r+1) > 2 ln r+1

r

and dg1
dr = 2 ln r+1

r + 1−3r
r(r+1) < 0. Thus, g1(r) ≤ g1(4) = 6 ln(5)− 7 ln 4 < 0

and
(2r−2) ln r+1

r ·( r+1
r )

α

ln r·( 1
r )

α =
(2r−2) ln r+1

r

ln r · (r + 1)α ≤ (2r−2)(ln(r+1)−ln r)
ln r =

g1(r)+ln r
ln r < 1. Since ∂g(α,0)

∂α = (2r−2) ln r+1
r ·

(
r+1
r

)α− ln r ·( 1r )
α, ∂g(α,0)

∂α <

0. Consequently, g(α, q) ≥ g(α, 0) > g(0, 0) = 1 + (2r − 2)− (2r − 1) = 0.

Thus f(α, q) = g(α, q)(r + q)α > 0.

Lemma 20. Let f(x) = (x+ q)α. If α < 0 and −1 < q ≤ 0, then

f(1)− 2f(2) + f(4) > 0.

Proof. Let f(α, q) = f(1)− 2f(2) + f(4) = (1+ q)α − 2(2+ q)α + (4+ q)α

and g(α, q) = f(α,q)
(2+q)α =

(
1+q
2+q

)α

+
(

4+q
2+q

)α

− 2. Firstly,

∂g

∂q
=

α

(2 + q)2

[(
1 + q

2 + q

)α−1

− 2

(
4 + q

2 + q

)α−1
]
.

Since
( 1+q

2+q )
α−1

2( 4+q
2+q )

α−1 = 1
2

(
1+q
4+q

)α−1

≥ 1
2

(
1− 3

4+q

)−1

≥ 1
2

(
1− 3

4

)−1
= 2 > 1,

∂g
∂q < 0. Thus, g(α, q) ≥ g(α, 0) =

(
1
2

)α
+ 2α − 2. Since dg(α,0)

dα = ln 2 ·
2α − ln 2 · ( 12 )

α < 0, g(α, q) ≥ g(α, 0) > g(0, 0) = 0. Thus f(α, q) =

g(α, q)(2 + q)α > 0.

Lemma 21. Let f(x) = (x+ q)α. If α < 0 and −1 < q ≤ 0, then

f(1) + 2f(4) + f(5)− 4f(3) > 0.

Proof. Let f(α, q) = f(1)+2f(4)+f(5)−4f(3) = (1+q)α+2(4+q)α+(5+

q)α − 4(3 + q)α and f1(α, q) =
f(α,q)
(3+q)α =

(
1+q
3+q

)α

+ 2
(

4+q
3+q

)α

+
(

5+q
3+q

)α

−

4. Firstly, ∂f1
∂q = α

(3+q)2

[
2
(

1+q
3+q

)α−1

− 2
(

4+q
3+q

)α−1

− 2
(

5+q
3+q

)α−1
]
. Set

f2(α, q)=2
(

1+q
3+q

)α−1

−2
(

4+q
3+q

)α−1

−2
(

5+q
3+q

)α−1

and f3(α, q)=
f2(α,q)

2( 5+q
3+q )

α−1
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=
(

1+q
5+q

)α−1

−
(

4+q
5+q

)α−1

− 1.

Since ∂f3
∂q = α−1

(5+q)2

[
4
(

1+q
5+q

)α−2

−
(

4+q
5+q

)α−2
]
and 4

( 1+q
5+q )

α−2

( 4+q
5+q )

α−2 =4
(

1+q
4+q

)α−2

≥ 4
(
1− 3

4+q

)−2

≥ 4
(
1− 3

4

)−2
= 64 > 1 , ∂f3

∂q < 0. Thus, f3(α, q) ≥

f3(α, 0) =
(
1
5

)α−1−
(
4
5

)α−1−1. Since df3(α,0)
dα = ln 5

4 ·(
4
5 )

α−1− ln 5 ·( 15 )
α−1

and
ln 5

4 ·(
4
5 )

α−1

ln 5·( 1
5 )

α−1 =
ln 5

4

ln 5 ·4
α−1 ≤ ln 5

4

ln 5 ·4
−1 < 1, df3(α,0)

dα < 0. Thus, f3(α, q) ≥
f3(α, 0) > f3(0, 0) = 5− 5

4 − 1 > 0, ∂f1
∂q = α

(3+q)2 f2(α, q) =
α

(3+q)2 f3(α, q) ·

2
(

5+q
3+q

)α−1

< 0 and f1(α, q) ≥ f1(α, 0) = (13 )
α + 2( 43 )

α + ( 53 )
α − 4.

Set f4(α) = df1(α,0)
dα /( 53 )

α = ln 5
3 + 2 ln 4

3 · ( 45 )
α − ln 3 · ( 15 )

α. Since
df4
dα = ln 3 · ln 5 · ( 15 )

α − 2 ln 4
3 · ln 5

4 · ( 45 )
α and

ln 3·ln 5·( 1
5 )

α

2 ln 4
3 ·ln

5
4 ·(

4
5 )

α = ln 3·ln 5
2 ln 4

3 ·ln
5
4

·
( 14 )

α ≥ ln 3·ln 5
2 ln 4

3 ·ln
5
4

· ( 14 )
0 > 1, df4

dα > 0. Consequently, f4(α) < f4(0) =

ln 5
3 + 2 ln 4

3 − ln 3 < 0 and df1(α,0)
dα = f4(α)(

5
3 )

α < 0. Thus, f1(α, q) ≥
f1(α, 0) > f1(0, 0) = 0 and f(α, q) = f1(α, q)(3 + q)α > 0.

Lemma 22. Let f(x) = (x+ q)α. If α ≤ −t, 0 < q ≤ 1.413t+ 0.587 and

t ≥ 1, then

f(0) + 2f(2)− 3f(1) ≥ 0.

Proof. Let f(α, q) = f(0)+2f(2)−3f(1) = qα+2(2+ q)α−3(1+ q)α and

g(α, q) = f(α,q)
(1+q)α =

(
q

1+q

)α

+ 2
(

2+q
1+q

)α

− 3. Firstly,

∂g

∂q
=

α

(1 + q)2

[(
q

1 + q

)α−1

− 2

(
2 + q

1 + q

)α−1
]
.

Let g1(t) = (t+ 1) ln
(

1.413t+2.587
1.413t+0.587

)
− ln 2. According to Lemma 10, since

2 × 1.4132 − 1.413 × 2.587 − 1.413 × 0.587 < 0, 1.413 × 2.587 + 1.413 ×
0.587 − 2 × 2.587 × 0.587 > 0 and dg1

dt > 0 has a unique root t1 on the

interval (1,∞), where t1 ≈ 1.625, it follows that g1(t) ≥ g1(t1) ≈ 0.69 > 0.

Thus,
( q

1+q )
α−1

2( 2+q
1+q )

α−1 = 1
2

(
q

2+q

)α−1

≥ 1
2

(
2+q
q

)t+1

≥ 1
2

(
1.413t+2.587
1.413t+0.587

)t+1

> 1

and ∂g
∂q < 0.

We now prove that the partial derivative of the function g(α, q) with

respect to α is less than or equal to 0. By Lemmas 8 and 11,
2 ln( 1.413t+2.587

1.413t+1.587 )
ln( 1.413t+1.587

1.413t+0.587 )

(
1.413t+0.587
1.413t+2.587

)t

≤ 1 and
ln( q+2

q+1 )
ln( q+1

q )
is monotonically increasing
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with respect to q, we have

2 ln( q+2
q+1 )(

q+2
q+1 )

a

ln( q+1
q )( q

q+1 )
a ≤ 2 ln( q+2

q+1 )
ln( q+1

q )

(
q

q+2

)t

≤ 2 ln( 1.413t+2.587
1.413t+1.587 )

ln( 1.413t+1.587
1.413t+0.587 )

(
1.413t+0.587
1.413t+2.587

)t

≤ 1.

Since ∂g
∂α = 2 ln

(
q+2
q+1

)(
q+2
q+1

)a

− ln
(

q+1
q

)(
q

q+1

)a

≤ 0, ∂g
∂α ≤ 0.

Since ∂g
∂q ≤ 0 and ∂g

∂α ≤ 0, g(α, q) ≥ g(−t, 1.413t + 0.587) = h1(t)

+2h2(t) − 3, where h1(t) =
(

1.413t+1.587
1.413t+0.587

)t

and h2(t) =
(

1.413t+1.587
1.413t+2.587

)t

.

Let h3(t) = t ln
(

1.413t+1.587
1.413t+0.587

)
and h(t) = h1(t)+2h2(t)− 3. By Lemma 9,

we have h2(t) and
dh3

dt are positive and monotonically decreasing on the in-

terval [1,∞). On the interval [1,∞), h1(t) and h3(t) are positive monoton-

ically increasing functions, while dh2

dt is a negative monotonically increas-

ing function. For two constants a and b, let h4(a, b) = eh3(a) dh3

dt

∣∣
t=b

+

2 dh2

dt

∣∣
t=a

, where 1 ≤ a ≤ b. When t ∈ [a, b], dh
dt = eh3(t) dh3

dt + 2dh2

dt ≥
h4(a, b). If h4(a, b) ≥ 0, then dh

dt ≥ 0 on the interval [a, b]. It can be

verified that h4(a, b) > 0 when a = 1 + 0.0001i and b = a + 0.0001 for

i ∈ {0, 1, . . . , 6000}, as well as when a = 1.6 + 0.01i and b = a + 0.01 for

i ∈ {0, 1, . . . , 7240}. Thus, dh
dt ≥ 0 and h(t) ≥ h(1) = 0 on the interval

[1, 74]. When t ≥ 74, h(t) = h1(t)+2h2(t)− 3 ≥ h1(74)+2h2(∞)− 3 > 0.

Hence, g(α, q) ≥ h(t) ≥ 0 and f(α, q) = g(α, q)(1 + q)α ≥ 0.

Lemma 23. Let f(x) = (x+ q)α. If α ≤ −t, 0 < q ≤ 1.413t+ 0.587 and

t ≥ 1, then

f(0)− f(1)− 2f(2) + 2f(3) > 0.

Proof. Let f(α, q) = f(0)− f(1)− 2f(2) + 2f(3) = qα − (1 + q)α − 2(2 +

q)α+2(3+q)α and f1(α, q) =
f(α,q)
qα = 1−

(
1+q
q

)α

−2
(

2+q
q

)α

+2
(

3+q
q

)α

.

Firstly,

∂f1
∂q

=
α

q2

[
−6

(
3 + q

q

)α−1

+

(
1 + q

q

)α−1

+ 4

(
2 + q

q

)α−1
]
.

Let f2(α, q) = −6
(

3+q
q

)α−1

+
(

1+q
q

)α−1

+ 4
(

2+q
q

)α−1

and f3(α, q) =

f2(α,q)

( 3+q
q )

α−1 =
(

1+q
3+q

)α−1

+ 4
(

2+q
3+q

)α−1

− 6.
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Since ∂f3
∂q = α−1

(3+q)2

[
4
(

2+q
3+q

)α−2

+ 2
(

1+q
3+q

)α−2
]
< 0 and

∂f3
∂α = ln

(
1+q
3+q

)(
1+q
3+q

)α−1

+ 4 ln
(

2+q
3+q

)(
2+q
3+q

)α−1

< 0,

f3(α, q) ≥ f3(−t, 1.413t + 0.587) = eh1(t) + 4eh2(t) − 6, where h1(t) =

(t+ 1) ln
(

1.413t+3.587
1.413t+1.587

)
and h2(t) = (t+ 1) ln

(
1.413t+3.587
1.413t+2.587

)
. According to

Lemma 10, since 2 × 1.4132 − 1.413 × 3.587 − 1.413 × 1.587 < 0, 1.413 ×
3.587+ 1.413× 1.587− 2× 3.587× 1.587 < 0, 2× 1.4132 − 1.413× 3.587−
1.413×2.587 < 0 and 1.413×3.587+1.413×2.587−2×3.587×2.587 < 0,

it follows that h1(t) ≥ h1(1) and h2(t) ≥ h2(1). Thus, f3(α, q) ≥ eh1(t) +

4eh2(t) − 6 ≥ eh1(1) + 4eh2(1) − 6 = 109
36 > 0. Since ∂f1

∂q = α
q2 f2(α, q) =

α
q2 f3(α, q) ·

(
3+q
q

)α−1

, ∂f1
∂q < 0.

The partial derivative of f1(α, q) with respect to α is given by:
∂f1
∂α = 2 ln

(
3+q
q

)(
3+q
q

)α

− 2 ln
(

2+q
q

)(
2+q
q

)α

− ln
(

1+q
q

)(
1+q
q

)α

. Set

f4(α, q) =
∂f1
∂α

( 3+q
q )

α = 2 ln
(

3+q
q

)
− 2 ln

(
2+q
q

)(
2+q
3+q

)α

− ln
(

1+q
q

)(
1+q
3+q

)α

.

Then ∂f4
∂α = 2 ln

(
2+q
q

)
ln
(

3+q
2+q

)(
2+q
3+q

)α

+ ln
(

1+q
q

)
ln
(

3+q
1+q

)(
1+q
3+q

)α

> 0

and ∂f4
∂q =

( q+1
q+3 )

a

q(q+1) −
6

q(q+3) +
4( q+2

q+3 )
a

q(q+2) − 2a ln( q+1
q )( q+1

q+3 )
a

q2+4q+3 − 2a ln( q+2
q )( q+2

q+3 )
a

q2+5q+6 ≥
1

q(q+3)

((
q+1
q+3

)a

+ 4
(

q+2
q+3

)a

− 6
)
≥ 1

q(q+3)

((
q+3
q+1

)t

+ 4
(

q+3
q+2

)t

− 6

)
≥ 1

q(q+3) (g1(t) + 4g2(t)− 6), where g1(t) =
(

1.413t+3.587
1.413t+1.587

)t

and g2(t) =(
1.413t+3.587
1.413t+2.587

)t

. By Lemma 9, g1(t) and g2(t) are both monotonically in-

creasing. Thus, g1(t) + 4g2(t) − 6 ≥ g1(1) + 4g2(1) − 6 = 2
3 > 0 and

∂f4
∂q ≥ 1

q(q+3) (g1(t) + 4g2(t)− 6) > 0.

Let g3(t) = 2 ln
(

1.413t+3.587
1.413t+0.587

)
− 2 ln

(
1.413t+2.587
1.413t+0.587

)(
1.413t+3.587
1.413t+2.587

)t

,

g4(t) = ln
(

1.413t+1.587
1.413t+0.587

)(
1.413t+3.587
1.413t+1.587

)t

, g5(t) = ln
(

1.413t+3.587
1.413t+0.587

)
,

g6(t) = ln
(

1.413t+2.587
1.413t+0.587

)
, g7(t) =

(
1.413t+3.587
1.413t+2.587

)t

, g8(t) = ln
(

1.413t+1.587
1.413t+0.587

)
,

g9(t) =
(

1.413t+3.587
1.413t+1.587

)t

and g10(t) = g6(t)
g5(t)

=
ln( 1.413t+2.587

1.413t+0.587 )
ln( 1.413t+3.587

1.413t+0.587 )
. By Lemmas

8 and 9, lim
t→+∞

g10(t) = 2
3 , g5(t), g6(t), g7(t), g8(t), g9(t) and g10(t) are

all positive functions, where g7(t) and g9(t) are monotonically increasing

while the others are monotonically decreasing. For two constants a and b,

let g11(a, b) = 2g5(a) − 2g6(b)g7(a) − g8(b)g9(a), where 1 ≤ a ≤ b. When
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t ∈ [a, b], g3(t) − g4(t) = 2g5(t) − 2g6(t)g7(t) − g8(t)g9(t) ≤ g11(a, b).

If g11(a, b) ≤ 0, then g3(t) − g4(t) ≤ 0 on the interval [a, b]. It can

be verified that g11(a, b) < 0 when a = 1 + 0.5i and b = a + 0.5 for

i ∈ {0, 1, 2, 3}. Thus, g3(t) − g4(t) < 0 on the interval [1, 3]. When

t ≥ 3, g6(t)g7(t)
g5(t)

= g7(t)g10(t) ≥ g7(3)g10(∞) = 2
3g7(3) > 1, g3(t) < 0 and

g3(t)− g4(t) < 0.

Since ∂f4
∂q > 0 and ∂f4

∂α > 0, f4(α, q) ≤ f4(−t, 1.413t + 0.587) = g3(t) −
g4(t) < 0 and ∂f1

∂α = f4(α, q)(
3+q
q )α < 0.

Since ∂f1
∂q < 0 and ∂f1

∂α < 0, f1(α, q) ≥ f1(−t, 1.413t + 0.587) =

1 − g12(t) − 2g13(t) + 2g14(t), where g12(t) =
(

1.413t+0.587
1.413t+1.587

)t

, g13(t) =(
1.413t+0.587
1.413t+2.587

)t

and g14(t) =
(

1.413t+0.587
1.413t+3.587

)t

. By Lemma 9, lim
t→+∞

g14(t)

= e
−3

1.413 , the functions g12(t), g13(t) and g14(t) are all monotonically de-

creasing. For two constants a and b, let g15(a, b) = 1− g12(a)− 2g13(a) +

2g14(b), where 1 ≤ a ≤ b. When t ∈ [a, b], 1− g12(t)− 2g13(t) + 2g14(t) ≥
g15(a, b). If g15(a, b) ≥ 0, then 1 − g12(t) − 2g13(t) + 2g14(t) ≥ 0 on the

interval [a, b]. It can be verified that g15(a, b) > 0 when a = 1 + 0.4i and

b = a+0.4 for i ∈ {0, 1, . . . , 7}. Thus, 1− g12(t)− 2g13(t)+ 2g14(t) > 0 on

the interval [1, 4]. When t ≥ 4, 1− g12(t)−2g13(t)+2g14(t) ≥ 1− g12(4)−
2g13(4) + 2g14(∞) > 0, so the function 1 − g12(t) − 2g13(t) + 2g14(t) > 0

on the interval [1,+∞).

Thus, f1(α, q) ≥ 1 − g12(t) − 2g13(t) + 2g14(t) > 0 and f(α, q) =

f1(α, q)q
α > 0.
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