(n,m)-Graphs with Maximum Vertex–Degree Function–Index for Convex Functions

Si-Ao Xu, Baoyindureng Wu*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China siaoxu240163.com, baoywu0163.com

(Received September 6, 2023)

Abstract

An (n, m)-graph is a graph with n vertices and m edges. The vertex-degree function-index $H_f(G)$ of a graph G is defined as $H_f(G) = \sum_{v \in V(G)} f(d(v))$, where f is a real function.

In this paper, we show that if f(x) is strictly convex and strictly monotonically decreasing and satisfies some additional properties, then $H_f(G) \leq (n - k - 1)f(0) + f(p) + (k - p)f(k - 1) + pf(k)$ for any connected (n, m)-graph G with m = n + k(k - 3)/2 + p, where $2 \leq k \leq n - 1$ and $0 \leq p \leq k - 2$. The unique graph that satisfies the above equality is characterized. As an instance, the function $f(x) = (x + q)^{\alpha}$ is such a function when $\alpha \leq -t$, $-1 < q \leq 2.038t - 0.038$ and $t \geq 1$ or when $\alpha < 0, -1 < q \leq 0$.

We also prove that if f(x) is strictly convex and strictly monotonically decreasing and satisfies some additional properties, then $H_f(G) \leq (n-k-1)f(0) + f(p) + (k-p)f(k-1) + pf(k)$ for any (n,m)-graph G with m = k(k-1)/2 + p, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-1$. The unique graph that satisfies the above equality is characterized. As an instance, the function $f(x) = (x+q)^{\alpha}$ has the properties as described above when $\alpha \leq -t$ and $0 < q \leq 1.413t + 0.587$ and $t \geq 1$.

^{*}Corresponding author.

1 Introduction

In this paper, we only consider simple undirected graphs. For undetermined notations and terminologies, see the book by Bondy and Murty [5]. We use V(G) and E(G) to denote the vertex-set and edge-set of a graph G, respectively. Let G[S] denote an induced subgraph of G whose vertex set is S and whose edge set consists of all edges of G which have both end-vertices in S. We denote a complete graph with n vertices by K_n .

Let *n* and *m* be two positive integers with $n \ge 2$ and $1 \le m \le n(n-1)/2$. An (n,m)-graph is a graph G = (V(G), E(G)), where m = |E(G)| and n = |V(G)|. Let $\mathcal{G}_c(n,m)$ be the family of all (n,m)-graphs *G* satisfying that $d(v) \in \left\{ \lfloor \frac{2m}{n} \rfloor, \lceil \frac{2m}{n} \rceil \right\}$ for all $v \in V(G)$.

In 1972, Gutman and Trinajstić [9] introduced the first Zagreb index:

$$M_1(G) = \sum_{u \in V} d(v)^2,$$

where d(v) denotes the degree of v in G. The zeroth-order general Randić index ${}^{0}R_{\alpha}(G)$ of a graph G, was defined by Li and Zheng in [15] as

$${}^{0}R_{\alpha}(G) = \sum_{u \in V} d(v)^{\alpha},$$

where α is a real number and $\alpha \notin \{0,1\}$. In particular, ${}^{0}R_{-1}(G)$ is called the inverse degree ID(G) of G [8], ${}^{0}R_{2}(G)$ is just equal to $M_{1}(G)$, and ${}^{0}R_{-\frac{1}{2}}(G)$ in [10] is called the Randić index R(G) of G. Some extremal results concerning the zeroth-order general Randić index were deduced in [2, 12–15, 17].

A more general graph invariant was introduced in [1]:

$${}^{0}R_{\alpha,q}(G) = \sum_{v \in V} (d(v) + q)^{\alpha},$$

where α and q are real numbers and $\alpha \neq 0$ or 1. The invariant ${}^{0}R_{\alpha,q}(G)$ is a modified form of the zeroth-order general Randić index. In particular,

 ${}^{0}R_{\alpha,0}(G) = {}^{0}R_{\alpha}(G)$ and ${}^{0}R_{2,0}(G) = M_{1}(G)$. In addition,

$${}^{0}R_{-1,1}(G) = \sum_{v \in V} \frac{1}{d(v) + 1}$$

are known to be Caro-Wei index of a graph [6, 20]. It is well known that

$$\alpha(G) \ge {}^{0}R_{-1,1}(G),$$

where $\alpha(G)$ is the independence number of G for any graph G.

Recall some specific graphs defined in [4]. A pineapple with parameters $n, k \ (k \leq n)$, denoted by PA(n, k), is a graph on n vertices consisting of a clique on k vertices and a stable set on the remaining n - k vertices in which each vertex of the stable set is adjacent to a unique and the same vertex of the clique.

A fanned pineapple of type 1 with parameters n, k, p $(n \ge k \ge p)$, denoted by $FPA_1(n, k, p)$, is a graph (on *n* vertices) obtained from a pineapple PA(n, k) by connecting a vertex from the stable set by edges to *p* vertices of the clique, with $0 \le p \le k - 2$. $FPA_1(7, 4, 1)$ is represented in Figure 1.

Figure 1. $FPA_1(7, 4, 1)$.

In [12], the authors characterized the connected (n, m)-graphs with extremal maximum zeroth-order general Randić index for $\alpha < -1$.

Theorem 1 (Hu, Li, Shi and Xu [12]). Let $\alpha \leq -1$ be a real number, and n, m, k, p be nonnegative integers satisfying m = n + k(k-3)/2 + p, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n,m)-graph, then

$${}^{0}R_{\alpha}(G) \le (n-k-1) \cdot 1^{\alpha} + (p+1)^{\alpha} + (k-p-1)(k-1)^{\alpha} + p \cdot k^{\alpha} + (n-1)^{\alpha},$$

the equality holds if and only if $G = FPA_1(n, k, p)$.

Li and Shi [14], independently Pavlović, Lazić and Aleksić [17] extended the above result to the case when $\alpha < 0$.

Theorem 2 (Li and Shi [14], Pavlović, Lazić and Aleksić [17]). Let $\alpha < 0$ be a real number, and n, m, k, p be nonnegative integers satisfying m = n + k(k-3)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-2$. If G is a connected (n, m)-graph, then

$${}^{0}R_{\alpha}(G) \le (n-k-1) \cdot 1^{\alpha} + (p+1)^{\alpha} + (k-p-1)(k-1)^{\alpha} + p \cdot k^{\alpha} + (n-1)^{\alpha},$$

the equality holds if and only if $G = FPA_1(n, k, p)$.

In [21], Yao, Liu, Belardo and Yang introduced the vertex-degree function-index $H_f(G)$ of a graph G with a real-valued function f(x) as follows:

$$H_f(G) = \sum_{v \in V(G)} f(d(v)).$$

Some properties about the vertex-degree function-index have been studied, see [3,7,11,18,19,21,22].

Recently, Ali, Gutman, Saber and Alanazi [3] gave the following lower bound for $H_f(G)$ of a connected (n, m)-graph G with $n \ge 4$ and $n + 1 \le m \le \frac{3n}{2}$ under the condition that f(G) is convex.

Theorem 3 (Ali, Gutman, Saber and Alanazi [3]). Let G be a connected (n,m)-graph, where n and m be two integers with $n \ge 4$, $n+1 \le m \le \frac{3n}{2}$, and let $k = \lfloor 2m/n \rfloor$ and r = 2m-kn. If f(x) is a strictly convex function, then it holds that

$$H_f(G) \ge rf(k+1) + (n-r)f(k),$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}_c(n,m)$.

Hu, Li and Peng [11] proved that the same lower bound holds among all (n, m)-graphs or all connected (n, m)-graphs.

Theorem 4 (Hu, Li and Peng [11]). Let G be an (n,m)-graph, where n and m be two integers with $n \ge 2$ and $n-1 \le m \le n(n-1)/2$, and let $k = \lfloor 2m/n \rfloor$ and r = 2m - kn. If f(x) is a strictly convex function, then it holds that

$$H_f(G) \ge rf(k+1) + (n-r)f(k),$$

and the equality holds if and only if $G \in \mathcal{G}_c(n, m)$.

Theorem 5 (Hu, Li and Peng [11]). Let G be a connected (n,m)-graph, where n and m be two integers with $n \ge 2$ and $n-1 \le m \le n(n-1)/2$, and let $k = \lfloor 2m/n \rfloor$ and r = 2m-kn. If f(x) is a strictly convex function, then it holds that

$$H_f(G) \ge rf(k+1) + (n-r)f(k),$$

and the equality holds if and only if G is connected and $G \in \mathcal{G}_c(n, m)$.

Tomescu [18,19] established sharp upper bound for $H_f(G)$ of an (n, m)graph G with $m \leq \frac{3n}{2}$ under the restriction that f is a strictly convex, f(x) is differentiable and its derivative is strictly convex.

Lemma 1 (Tomescu [19]). If G is an (n,m)-graph that maximizes (minimizes) $H_f(G)$ for a strictly convex (concave) function f(x), then G has at most one nontrivial connected component C, and C has a vertex of degree |V(C)| - 1.

Lemma 2 (Tomescu [19]). In the set of connected (n,m)-graphs G having $m \ge n-1$, the graph which maximizes (minimizes) $H_f(G)$ for a strictly convex (concave) function f(x), G has a vertex v with degree n-1.

Theorem 6 (Tomescu [18]). Let f(x) be a strictly convex function having the property that f(x) is differentiable and its derivative is strictly convex, and let n and m be two integers with $n \ge 2$ and $1 \le m \le n - 1$. If Gis an (n,m)-graph, then $H_f(G) \le f(m) + mf(1) + (n - m - 1)f(0)$, with equality if and only if $G = S_{m+1} \cup (n - m - 1)K_1$.

Theorem 7 (Tomescu [18]). Let f(x) be a strictly convex function having the property that f(x) is differentiable and its derivative is strictly convex, and let n and m be two integers with $n \ge 3$, $n \le m \le 2n - 3$. If G is a connected (n,m)-graph, then

$$H_f(G) \le f(n-1) + f(m-n+2) + (m-n+1)f(2) + (2n-m-3)f(1),$$

with equality if and only if $G = K_1 \vee (K_{1,m-n+1} \cup (2n-m-3)K_1)$.

It can be found that Tomescu's result does not apply when the function $f(x) = (x + q)^{\alpha}$, where $\alpha < 0$ and q > 0, because the function f(x) is strictly convex but its derivative is strictly concave. Therefore it is necessary to find a new method to study it.

In this paper, we will further study the maximum values of $H_f(G)$ among all connected (n, m)-graphs as well as on all (n, m)-graphs, provided that the function f(x) satisfies the conditions of some or all of the following conditions:

- (i) f(x) is a strictly convex function in the range where $H_f(G)$ can be defined.
- (ii) f(x) is a strictly monotonically decreasing in the range where $H_f(G)$ can be defined.
- (iii) (n-p-j-3)f(p+1) (n-p+j-3)f(p+j+1) + j(n-p-j-1)f(n-2) j(n-p-j-3)f(n-1) > 0 for each $p \in \{0, 1, \dots, n-4\}$ and for each $j \in \{1, \dots, n-p-4\}$.

(iv)
$$f(1) + (2r-2)f(r+1) - (2r-1)f(r) \ge 0$$
 for $r \ge 2$.

- (v) $f(1) + (2r-2)f(r+1) (2r-1)f(r) \ge 0$ for $r \ge 3$ and $f(1) 2f(2) + f(4) \ge 0$.
- $\begin{array}{l} (\mathrm{vi}) \ \ f(1) + (2r-2)f(r+1) (2r-1)f(r) \geq 0 \ \mathrm{for} \ r \geq 4, \ f(1) 2f(2) + f(4) \geq \\ 0 \ \mathrm{and} \ \ f(1) 4f(3) + 2f(4) + f(5) \geq 0. \end{array}$

(vii)
$$f(0) + 2f(2) - 3f(1) \ge 0$$
 and $f(0) - f(1) - 2f(2) + 2f(3) \ge 0$.

We say that a function f(x) satisfies condition (i) if the *i*-th term of the above holds for f(x).

The proposition below reveals the implication between conditions (iv), (v) and (vi).

Proposition 8. Let f(x) be a function that satisfies condition (i). If f(x) satisfies condition (iv), then it necessarily satisfies condition (v). Additionally, the satisfaction of condition (v), implies that condition (vi) is necessarily fulfilled.

Proof. By observation, it is sufficient to prove $f(1) - 2f(2) + f(4) \ge f(1) + 2f(3) - 3f(2)$ and $f(1) - 4f(3) + 2f(4) + f(5) \ge f(1) + 4f(4) - 5f(3) \ge 0$ and in turn only need to show that $f(2) + f(4) \ge 2f(3)$ and $f(3) + f(5) \ge 2f(4)$, and the fact it holds follows from Corollary 2, and so the proposition is proved.

To state our main results, two types of graphs are defined below. Let $\overline{PA}(n,k)$ be a graph denoted as follows: a graph with n vertices, composed of a clique on k vertices and a stable set on the other n-k vertices. Let $\overline{FPA}_1(n,k,p)$ be defined as a graph which contains n vertices, constructed from $\overline{PA}(n,k)$ by joining a vertex from the stable set with p vertices of the clique by edges, with $0 \le p \le k-1$.

Theorem 9. Assume that a function f(x) satisfy conditions (i), (ii), (iii), and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that m = n + k(k-3)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-2$. If G is a connected (n,m)-graph, then

$$H_f(G) \le (n-k-1)f(1) + f(p+1) + (k-p-1)f(k-1) + pf(k) + f(n-1),$$
(1)

the equality holds if and only if $G = FPA_1(n, k, p)$.

Theorem 10. Assume that a function f(x) satisfy conditions (i), (ii), (iii), (iii), (vii) and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that m = k(k-1)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-1$. If G is an (n,m)-graph, then

$$H_f(G) \le (n-k-1)f(0) + f(p) + (k-p)f(k-1) + pf(k), \qquad (2)$$

the equality holds if and only if $G = \overline{FPA}_1(n, k, p)$.

We will show by Lemmas 16–23 in Section 2 that the function $f(x) = (x+q)^{\alpha}$ satisfies the assumption in Theorem 9 when $t \ge 1$, $\alpha \le -t$ and $-1 < q \le 2.038t - 0.038$, or $\alpha < 0$ and $-1 < q \le 0$. Furthermore, the function $f(x) = (x+q)^{\alpha}$ satisfies the conditions of Theorem 10 for $t \ge 1$, $\alpha \le -t$ and $0 < q \le 1.413t + 0.587$. Therefore, it is straightforward to obtain the following theorems.

Theorem 11. Let $f(x) = (x+q)^{\alpha}$, where $\alpha \leq -t$, $-1 < q \leq 2.038t - 0.038$ and $t \geq 1$. Let n, m, k, p be integers satisfying that m = n + k(k-3)/2 + p, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n,m)-graph, then

$${}^{0}R_{\alpha,q}(G) \le (n-k-1)(1+q)^{\alpha} + (p+1+q)^{\alpha} + (k-p-1)(k-1+q)^{\alpha} + p(k+q)^{\alpha} + (n-1+q)^{\alpha},$$

the equality holds if and only if $G = FPA_1(n, k, p)$.

Theorem 12. Let $f(x) = (x + q)^{\alpha}$, where $\alpha < 0$, $-1 < q \leq 0$. Let n, m, k, p be integers satisfying that m = n + k(k-3)/2 + p, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is a connected (n,m)-graph, then

$${}^{0}R_{\alpha,q}(G) \le (n-k-1)(1+q)^{\alpha} + (p+1+q)^{\alpha} + (k-p-1)(k-1+q)^{\alpha} + p(k+q)^{\alpha} + (n-1+q)^{\alpha},$$

the equality holds if and only if $G = FPA_1(n, k, p)$.

Theorem 13. Let $f(x) = (x+q)^{\alpha}$, where $\alpha \leq -t$ and $0 < q \leq 1.413t + 0.587$ and $t \geq 1$. Let n, m, k, p be integers satisfying that m = n + k(k - 3)/2 + p, where $2 \leq k \leq n-1$ and $0 \leq p \leq k-2$. If G is an (n,m)-graph, then

$${}^{0}R_{\alpha,q}(G) \le (n-k-1) \cdot q^{\alpha} + (p+q)^{\alpha} + (k-p)(k-1+q)^{\alpha} + p \cdot (k+q)^{\alpha},$$

the equality holds if and only if $G = \overline{FPA}_1(n, k, p)$.

When $t = 1, \alpha = -1$ and q = 1, Theorem 13 implies the following corollary.

Corollary 1. Let $f(x) = \frac{1}{x+1}$. Let n, m, k, p be integers satisfying that m = n + k(k-3)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-2$. If G is an (n,m)-graph, then

$$H_f(G) \le (n-k-1) + \frac{1}{p+1} + \frac{k-p}{k} + \frac{p}{k+1},$$

the equality holds if and only if $G = \overline{FPA}_1(n, k, p)$.

Our results extend those obtained by Hu et al. in [12] and Li et al. in [14] on the case of the maximum value of the zeroth-order general Randić index for $\alpha \leq -1$ and $\alpha < 0$, respectively. Theorem 11 can deduce Theorem 1 and Theorem 12 can deduce Theorem 2. Moreover, Theorem 13 obtained sharp upper bounds among all (n, m)-graphs, which is not studied in previous works [12], [14], and [17].

2 Proof of main results

Firstly, we introduce some useful lemmas. Let n_i be the number of vertices of degree i in a graph G.

Lemma 3 (Tomescu [19]). Let $x \ge y \ge 1$. If f(x) is a strictly convex function, then f(x+1) + f(y-1) > f(x) + f(y).

Corollary 2. If f(x) is a strictly convex function, then f(s-1)+f(s+1) > 2f(s) for any real number s > 1.

Lemma 4. Let r, s and t be real numbers such that $0 < r \le s \le t$. If f(x) is a convex function, then

$$(t-r)f(s) \le (t-s)f(r) + (s-r)f(t),$$

with equality if and only if s = r or t.

Proof. If s = r or s = t, it is obvious that the equality holds. Set g(s) = (t-s)f(r) + (s-r)f(t) - (t-r)f(s). By a simple computation, $\frac{\partial^2 g}{\partial s^2} = -(t-r)\frac{\partial^2 f}{\partial s^2} \leq 0$ and the upper inequality follows because the function g is concave.

Lemma 5. Let a, b be real numbers such that $a \ge b \ge 0$. If f(x) is a convex function, then

$$f(a+y) - f(a) \ge y(f(b+1) - f(b))$$
(3)

for any positive integer y.

Proof. Since f(x) is a convex function, f(x + 1) - f(x) is an increasing function. Thus, $f(a + y) - f(a) = (f(a + 1) - f(a)) + (f(a + 2) - f(a + 1)) + \dots + (f(a + y) - f(a + y - 1)) \ge y(f(b + 1) - f(b)).$

Lemma 6 (Pavlović [16]). Let G be a graph with n vertex and m edges, where $m < \binom{n}{2}$. If $n_1 \neq 0$, then $n_{n-1} \leq 1$. If $n_1 = n_2 = \cdots = n_{i-1} = 0$, $n_i \neq 0$, then $n_{n-1} \leq i$.

Lemma 7 (Pavlović [16]). Let G be a graph with n vertex and m edges, where $m < \binom{n}{2}$. If $n_{n-1} = 1$, $n_1 = l$, where $2 \le l \le n-3$, then $n_{n-l} = n_{n-l+1} = \cdots = n_{n-3} = n_{n-2} = 0$.

Lemma 8. Let a, b, c, d, e and x all be positive numbers. Let $g(x) = \frac{\ln\left(\frac{b+ax}{c+ax}\right)}{\ln\left(\frac{d+ax}{c+ax}\right)}$. Then $\lim_{x \to +\infty} g(x) = \frac{b-c}{d-e}$. If b > c = d > e, then g(x) is monoton-ically increasing. If d > b > c = e, then g(x) is monotonically decreasing.

Proof. Since $\ln(1+x) = x + o(x)$ for $x \in (-1,1]$, we have

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{\frac{b-c}{c+ax} + o\left(\frac{b-c}{c+ax}\right)}{\frac{d-e}{e+ax} + o\left(\frac{d-e}{e+ax}\right)} = \frac{b-c}{d-e}.$$

By a simple calculation, $\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{a\ln\left(\frac{b+ax}{c+ax}\right)(d-e)}{\ln^2\left(\frac{d+ax}{c+ax}\right)(d+ax)(e+ax)} - \frac{a(b-c)}{\ln\left(\frac{d+ax}{e+ax}\right)(b+ax)(c+ax)}.$ Set $h(x) = a\ln\left(\frac{b+ax}{c+ax}\right)(d-e) - \frac{a\ln\left(\frac{d+ax}{e+ax}\right)(b-c)(d+ax)(e+ax)}{(b+ax)(c+ax)}.$ If b > c = d > e, then $\frac{\mathrm{d}h}{\mathrm{d}x} = -\frac{a^2\ln\left(\frac{e+ax}{e+ax}\right)(b-c)(b-e)}{(b+ax)^2} < 0.$ Since

If b > c = d > e, then $\frac{dh}{dx} = -\frac{d \ln(\frac{1}{c+ax})(b-c)(b-e)}{(b+ax)^2} < 0$. Since $\lim_{x \to +\infty} h(x) = 0$, the inequality h(x) > 0 holds on the interval $(0, +\infty)$. Therefore, $\frac{dg}{dx} > 0$ is valid on the interval $(0, +\infty)$ and g(x) is monotonically increasing.

If d > b > c = e, then $\frac{dh}{dx} = -\frac{a^2 \ln(\frac{d+ax}{c+ax})(b-c)(b-d)}{(b+ax)^2} > 0$. Since $\lim_{x \to +\infty} h(x) = 0$, the inequality h(x) < 0 holds on the interval $(0, +\infty)$.

Therefore, $\frac{dg}{dx} < 0$ is valid on the interval $(0, +\infty)$ and g(x) is monotonically decreasing.

Lemma 9. Let a, b, c and x all be positive numbers. Let $g(x) = x \ln\left(\frac{b+ax}{c+ax}\right)^x$ and $h(x) = \left(\frac{b+ax}{c+ax}\right)^x$. Then $\lim_{x \to +\infty} g(x) = \frac{b-c}{a}$ and $\lim_{x \to +\infty} h(x) = e^{\frac{b-c}{a}}$. If b > c, then g(x) and h(x) are monotonically increasing, while $\frac{dg}{dx}$ is positive and monotonically decreasing. If c > b, then g(x) and h(x) are monotonically decreasing, while $\frac{dh}{dx}$ is negative and monotonically increasing, while $\frac{dh}{dx}$ is negative and monotonically increasing.

Proof. Since $\ln(1+x) = x + o(x)$ for $x \in (-1, 1]$, we have

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(\frac{b-c}{c+ax} + o\left(\frac{b-c}{c+ax} \right) \right) = \frac{b-c}{a}.$$

By a simple calculation, $\frac{dg}{dx} = \ln\left(\frac{b+ax}{c+ax}\right) - \frac{ax(b-c)}{(b+ax)(c+ax)}$, $\frac{d^2g}{dx^2} = -\frac{a(b-c)(2bc+abx+acx)}{(b+ax)^2(c+ax)^2}$, $\frac{dh}{dx} = e^{g(x)}\frac{dg}{dx}$, and $\frac{d^2h}{dx^2} = e^{g(x)}\left(\left(\frac{dg}{dx}\right)^2 + \frac{d^2g}{dx^2}\right)$. If b > c, then $\frac{d^2g}{dx^2} < 0$. Since $\lim_{x \to +\infty} \frac{dg}{dx} = 0$, $\frac{dg}{dx} > 0$. Thus, g(x) and h(x) are monotonically increasing, whereas $\frac{dg}{dx}$ is positive and monotonically decreasing.

If c > b, then $\frac{d^2g}{dx^2} > 0$ and $\frac{d^2h}{dx^2} > 0$. Since $\lim_{x \to +\infty} \frac{dg}{dx} = 0$, $\frac{dg}{dx} < 0$. Thus, g(x) and h(x) are monotonically decreasing, while $\frac{dh}{dx}$ is negative and monotonically increasing.

Lemma 10. Let $g(x) = (x + 1) \ln(\frac{b+ax}{c+ax})$, where a > 0, b > c > 0 and $2a^2 - ab - ac < 0$. If ab + ac - 2bc < 0, then $g(x) \ge g(1)$ for any $x \ge 1$. When ab + ac - 2bc > 0, if $\frac{dg}{dx}$ has no root on the interval $(1, \infty)$, then $g(x) \ge g(1)$ for any $x \ge 1$; otherwise, $\frac{dg}{dx}$ has a unique root x_1 on the interval $(1, \infty)$, we have $g(x) \ge g(x_1)$ for any $x \ge 1$.

Proof. Since
$$\frac{dg}{dx} = \ln\left(\frac{b+ax}{c+ax}\right) - \frac{a(b-c)(x+1)}{(b+ax)(c+ax)}$$
 and
 $\frac{d^2g}{dx^2} = \frac{a(b-c)\left((2a^2-ab-ac)x+ab+ac-2bc\right)}{(b+ax)^2(c+ax)^2}, \quad \frac{d^2g}{dx^2} < 0 \text{ if } x > -\frac{ab+ac-2bc}{2a^2-ab-ac} \text{ and}$
 $\frac{d^2g}{dx^2} > 0 \text{ if } x < -\frac{ab+ac-2bc}{2a^2-ab-ac}.$ Since $\lim_{x \to +\infty} \frac{dg}{dx} = 0, \quad \frac{dg}{dx} > 0 \text{ on the interval}$
 $\left(-\frac{ab+ac-2bc}{2a^2-ab-ac}, +\infty\right).$

If ab + ac - 2bc < 0, then $-\frac{ab+ac-2bc}{2a^2-ab-ac} < 0$, so $g(x) \ge g(1)$ for any $x \ge 1$. When ab + ac - 2bc > 0, we have $-\frac{ab+ac-2bc}{2a^2-ab-ac} > 0$. If $\frac{dg}{dx}$ has no root in $(1,\infty)$, then $\frac{dg}{dx} > 0$ on the interval $(1,\infty)$ and $g(x) \ge g(1)$ for any $x \ge 1$. Otherwise, $\frac{dg}{dx}$ has a unique root x_1 in $(1,\infty)$, $\frac{dg}{dx} < 0$ on the interval $(1,x_1)$ and $\frac{dg}{dx} > 0$ on the interval (x_1,∞) . Thus, $g(x) \ge g(x_1)$ for any $x \ge 1$.

Lemma 11. Let $g(x) = \frac{\ln\left(\frac{b+ax}{c+ax}\right)}{\ln\left(\frac{c+ax}{d+ax}\right)} \left(\frac{d+ax}{b+ax}\right)^x$, where a, b, c and d be real numbers with a > 0, b > c > d > 0. For any $x \ge 1$, $g(x) \le \frac{(b-c)(a+d)}{(c-d)(a+b)}$.

Proof. Let $h_1(x) = \frac{\ln\left(\frac{b+ax}{c+ax}\right)}{\ln\left(\frac{c+ax}{d+ax}\right)}$ and $h_2(x) = \left(\frac{d+ax}{b+ax}\right)^x$. By Lemmas 8 and 9, $\lim_{x \to +\infty} h_1(x) = \frac{b-c}{c-d}$, the function $h_1(x)$ is monotonically increasing and the function $h_2(x)$ is monotonically decreasing. Thus, $g(x) = h_1(x) \cdot h_2(x) \leq h_1(\infty) \cdot h_2(1) = \frac{b-c}{c-d} \cdot \frac{a+d}{a+b} = \frac{(b-c)(a+d)}{(c-d)(a+b)}$.

For convenience, we call a graph G a maximum connected (n, m)-graph if it has the maximum vertex-degree function-index among all connected (n, m)-graphs, and respectively, a maximum (n, m)-graph if it has the maximum vertex-degree function-index among all (n, m)-graphs.

Next, we are going to prove Theorem 9 that the fanned pineapple of type 1 graph has the maximum H_f -value among (n, m)-connected graphs. This implies that the maximum connected (n, m)-graph should have $n_1 = n - k - 1$, $n_{p+1} = 1$, $n_{k-1} = k - 1 - p$, $n_k = p$ and $n_{n-1} = 1$.

Theorem 9 describes the solution of the following problem (P):

$$\max n_1 \cdot f(1) + n_2 \cdot f(2) + \dots + n_{n-1} \cdot f(n-1)$$

under two graph constraints

$$n_1 + n_2 + n_3 + \dots + n_{n-1} = n,$$

 $n_1 + 2n_2 + 3n_3 + \dots + (n-1)n_{n-1} = 2m.$

By Lemma 2, we have the following corollary, implying the assertion of Theorem 9 for the case when m = n - 1.

Corollary 3. Let f(x) be a strictly convex function. If m = n - 1, the function H_f reaches its maximum among (n,m)-connected graphs at the star.

Thus, it remains to show that Theorem 9 holds for $n \le m \le \binom{n}{2} - 2$.

Since m = n + k(k-3)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-2$, we handle two cases in terms of k = n-1 and $2 \le k \le n-2$. We shall start by proving the theorem for k = n-1.

Lemma 12. Let G be a connected (n,m)-graph, where $m \leq \binom{n}{2} - 2$, m = n + k(k-3)/2 + p, k = n-1 and $0 \leq p \leq n-4$. Inequality (1) holds for the graph G.

Proof. Since k = n-1, $m = (n^2 - 3n + 4 + 2p)/2 = (n-1)(n-2)/2 + p + 1$, where $0 \le p \le n-3$. Then the minimum degree of G must be greater than or equal to p + 1. In contrast, if G contains a vertex whose degree is p (or less), then the deletion of a vertex of degree p results a graph G'(without necessarily connected) with more edges than the complete graph on n-1 vertices.

Let the minimum degree of G be p + j + 1, where j is a nonnegative integer. Since $m \leq \binom{n}{2} - 2$, $j \leq n - p - 4$. Otherwise, j = n - p - 3, then the degree of the vertex in G is either n - 2 or n - 1. Thus there are four distinct vertices v_1, v_2, v_3 and v_4 of degree n - 2 such that v_1 and v_2 are nonadjacent, v_3 and v_4 are nonadjacent in G. Now, construct a new graph $G' = G - v_2v_3 + v_3v_4$. By Corollary 2, we have $H_f(G') - H_f(G) =$ f(n-1) + f(n-3) - 2f(n-2) > 0, which contradicts the maximality of G.

Denote by $P^{(p,p+j+1)}$ the problem for given p when the minimum degree of G is p + j + 1, and by $H_f^{(p,p+j+1)}$ the optimal value of H_f for the problem $P^{(p,p+j+1)}$. The optimal value of H_f for a given p is $H_f^p = \max_{0 \le j \le n-p-4} H_f^{(p,p+j+1)}$. Since the minimum degree of G is p + j + 1, it follows from Lemma 6 that we have $n_{n-1} \le p + j + 1$. Let us solve the problem $P^{(p,p+j+1)}$, $0 \le p \le n-4$, $0 \le j \le n-p-4$.

$$\max n_{p+j+1} f(p+j+1) + n_{p+j+2} f(p+j+2) + \dots + n_{n-1} f(n-1)$$

under the constraints:

$$\begin{split} n_{p+j+1} + n_{p+j+2} + n_{p+j+3} + \cdots + n_{n-1} &= n, \\ (p+j+1)n_{p+j+1} + (p+j+2)n_{p+j+2} + \cdots + (n-1)n_{n-1} \\ &= n^2 - 3n + 4 + 2p, \\ n_{n-1} &= p+j+1-\xi, \end{split}$$

where $0 \le \xi \le p+j$. Let us solve the system of the latter three equalities in n_{n-1} , n_{n-2} and n_{p+j+1} :

$$\begin{split} n_{n-2} &= \frac{n^2 - n(2p + 2j + 5) + p^2 + 2pj + 5p + j^2 + 3j + 6}{n - p - j - 3} \\ &= \frac{n_{p+j+2}}{n - p - j - 3} - \frac{2n_{p+j+3}}{n - p - j - 3} - \frac{3n_{p+j+4}}{n - p - j - 3} \\ &= \cdots - \frac{(n - p - j - 4)n_{n-3}}{n - p - j - 3} + \frac{(n - p - j - 2)\xi}{n - p - j - 3}, \\ n_{p+j+1} &= \frac{n - p + j - 3}{n - p - j - 3} - \left(1 - \frac{1}{n - p - j - 3}\right)n_{p+j+2} \\ &= -\left(1 - \frac{2}{n - p - j - 3}\right)n_{p+j+3} - \left(1 - \frac{3}{n - p - j - 3}\right)n_{p+j+4} \\ &= \cdots - \left(1 - \frac{n - p - j - 4}{n - p - j - 3}\right)n_{n-3} + \left(1 - \frac{n - p - j - 2}{n - p - j - 3}\right)\xi. \end{split}$$

By replacing n_{p+j+1} , n_{n-2} , n_{n-1} in H_f , we obtain

$$\begin{split} H_f = & \frac{n-p+j-3}{n-p-j-3} f(p+j+1) + (p+j+1) f(n-1) \\ & + \frac{n^2 - n(2p+2j+5) + p^2 + 2pj + 5p + j^2 + 3j + 6}{n-p-j-3} f(n-2) \\ & + \sum_{i=p+j+2}^{n-3} n_i \left(f(i) - \frac{n-i-2}{n-p-j-3} f(p+j+1) - \frac{i-p-j-1}{n-p-j-3} f(n-2) \right) \\ & + \xi \left(-f(n-1) - \frac{1}{n-p-j-3} f(p+j+1) + \frac{n-p-j-2}{n-p-j-3} f(n-2) \right). \end{split}$$

Following Lemma 4, it holds that

$$(n-p-j-3)f(i) \le (n-i-2)f(p+j+1) + (i-p-j-1)f(n-2)$$
(4)

for $p + j + 1 \le i \le n - 2$ and

$$(n-p-j-2)f(i) \le (n-i-1)f(p+j+1) + (i-p-j-1)f(n-1)$$
(5)

for $p + j + 1 \le i \le n - 1$.

After taking the value of i in the inequity (5) to be n-2, we get the following equation

$$(n-p-j-2)f(n-2) \le f(p+j+1) + (n-p-j-3)f(n-1).$$
(6)

Inequalities (4) and (6) means that if we take $n_{p+j+2} = n_{p+j+3} = \cdots = n_{n-3} = \xi = 0$ then we can get an upper bound $\tilde{H}_{f}^{(p,p+j+1)}$ for $H_{f}^{(p,p+j+1)}$, where

$$\begin{split} \tilde{H}_{f}^{(p,p+j+1)} = & \frac{n-p+j-3}{n-p-j-3} f(p+j+1) + (p+j+1) f(n-1) \\ & + \frac{n^2 - n(2p+2j+5) + p^2 + 2pj + 5p + j^2 + 3j + 6}{n-p-j-3} f(n-2) \end{split}$$

for $p \in \{0, 1, \ldots, n-4\}$ and $j \in \{0, 1, \ldots, n-p-4\}$. Keep in mind that the upper bound $\tilde{H}_{f}^{(p,p+j+1)}$ may not always correspond to a graph (except for $j = 0, \tilde{H}_{f}^{(p,p+1)} = H_{f}^{(p,p+1)}$).

Now we show that for a given number p, $H_f^{(p,p+1)}$ is the maximum value of H_f , that is, $H_f^{(p,p+1)} > H_f^{(p,p+j+1)}$ for $j \in \{1, 2, ..., n-p-4\}$. Since $H_f^{(p,p+j+1)} \leq \tilde{H}_f^{(p,p+j+1)}$, it is enough to show that $H_f^{(p,p+1)} > \tilde{H}_f^{(p,p+j+1)}$ for $j \in \{1, 2, ..., n-p-4\}$. Therefore, we are required to prove the following inequality:

$$\tilde{H}_{f}^{(p,p+j+1)} < f(p+1) + (n-p-2)f(n-2) + (p+1)f(n-1)$$
(7)

for $p \in \{0, 1, ..., n-4\}$ and $j \in \{1, ..., n-p-4\}$. Since $j \le n-p-4$, $n-p-j-3 \ge 1$. We transform inequality (7) into (8)

$$(n-p-j-3)f(p+1) - (n-p+j-3)f(p+j+1) + j(n-p-j-1)f(n-2) - j(n-p-j-3)f(n-1) > 0 \quad (8)$$

for $p \in \{0, 1, \dots, n-4\}$ and $j \in \{1, 2, \dots, n-p-4\}$. Observe that under

known conditions, f(x) satisfies the inequality (8).

We have shown that for a given number p, the maximum value of ${\cal H}_f$ is ${\cal H}_f^{(p,p+1)}$:

$$H_f^{(p,p+1)} = f(p+1) + (n-p-2)f(n-2) + (p+1)f(n-1)$$

for $p \in \{0, 1, \dots, n-4\}$. This value is attained by a graph with $n_{n-1} = p+1$, $n_{n-2} = n-p-2$ and $n_{p+1} = 1$.

For k = n-1, in which case $m \ge (n-1)(n-2)/2+1$, Theorem 9 has been proved. It remains to prove the theorem for $n \le m \le (n^2 - 3n + 2)/2$.

Lemma 13 (Hu, Li, Shi and Xu [12]). Let G^* be a maximum connected (n,m)-graph. If a function f(x) is strictly convex and the maximum graph G^* has $r \ (r \le n-3)$ vertices of degree n-1, then the minimum degree of G^* is r.

Lemma 14. Assume that a function f(x) satisfy conditions (i), (ii), (iii), and at least one of the conditions (iv), (v) and (vi). Let n, m, k, p be integers satisfying that m = n+k(k-3)/2+p and $n \le m \le (n^2-3n+2)/2$, where $2 \le k \le n-1$ and $0 \le p \le k-2$. If G^* is a maximum connected (n,m)-graph, then $n_1 \ne 0$.

Proof. Note that according to Proposition 8, the function f(x) must satisfy condition (vi). Toward a contradiction, suppose $n_1 = 0$. Let r be the minimum degree of G^* , in other words, $n_1 = n_2 = \cdots = n_{r-1} = 0$ and $n_r \neq 0$, where $r \geq 2$. Then $n_{n-1} = r$. Otherwise, if $n_{n-1} = k$, where $k \neq r$, then by Lemma 13 the minimum degree of G^* is k, not r, a contradiction. Let u be a vertex of degree r. Then u is adjacent to all the r vertices w_1, w_2, \ldots, w_r of degree n-1.

Let $S = V(G)^* \setminus \{u, w_1, w_2, \dots, w_r\}$, and K(S) be the complete graph on S. Then

$$|E(K(S))| - |E(G[S])| = \binom{n-r-1}{2} - \binom{m-r(n-r) - \binom{r}{2}}{2}$$
$$\geq \binom{n-r-1}{2} - \frac{n^2 - 3n + 2}{2} + r(n-r) + \binom{r}{2}$$
$$= r.$$

This implies that we can add to G[S] at least r-1 edges, and these vertices still do not form a complete graph after adding these edges. Furthermore, $|S| \ge 3$, which leads to $n \ge r+4$.

For $r \geq 2$, denote by G' a connected graph obtained from G^* when we delete r-1 edges between vertex u and vertices w_1, \ldots, w_{r-1} and add r-1 new edges between t vertices in S. Without loss of generality we can assume that these t vertices are v_1, v_2, \ldots, v_t with degrees j_1, j_2, \ldots, j_t in G^* , and the degree of v_i is $j_i + x_i$ in G' for $i \in \{1, 2, \ldots, t\}$. Then $j_i \geq r$ and $x_i \geq 1$ for $i \in \{1, 2, \ldots, t\}$ and $\sum_{i=1}^t x_i = 2(r-1)$. Therefore, applying Lemma 5, we have

$$H_f(G') - H_f(G^*) = f(1) - f(r) + (r-1)f(n-2) - (r-1)f(n-1) + \sum_{i=1}^t (f(j_i + x_i) - f(j_i)) > f(1) - f(r) + \sum_{i=1}^t x_i(f(r+1) - f(r)) = f(1) - f(r) + 2(r-1)(f(r+1) - f(r)) = f(1) + (2r-2)f(r+1) - (2r-1)f(r) \ge 0$$

for $r \ge 4$, which contradicts the maximality of G^* .

Next, we show that the minimum degree of G^* cannot be 2 or 3. Since f(x) is a convex function, f(x+1) - f(x) is an increasing function. Case 1. r = 2

In this case the maximum graph G^* has only two vertices of degree n-1, denoted by w_1 and w_2 . Since $|E(K(S))| - |E(G[S])| \ge r = 2, n \ge 6$. We consider the number n_2 of vertices with degree 2.

Subcase 1.1. $1 \le n_2 \le n-3$.

Let u be a vertex of degree 2. Clearly, u is adjacent to w_1 , w_2 . We claim that there exists a vertex v in S with degree j, where $3 \le j \le n-3$. Since $1 \le n_2 \le n-3$, there exists a vertex v_1 in S with degree j_1 greater than 2. If $j_1 \le n-3$, then v_1 is the desired vertex. Otherwise, $j_1 = n-2$ and v_1 is adjacent to all vertices in S. So all the vertices in S have degrees greater than 2, then there must exist a vertex in S whose degree is less than or equal to n-3, this is because $|E(K(S))| - |E(G[S])| \ge r$.

Thus we can find two nonadjacent vertices v_1 and v_2 in S with degree $j_1 \geq 2$ and $j_2 \geq 3$. Construct a new graph $G'' = G^* - uw_1 + v_1v_2$. We have

$$\begin{split} H_f(G'') - H_f(G^*) &= f(1) - f(2) + f(n-2) - f(n-1) + f(j_1+1) \\ &- f(j_1) + f(j_2+1) - f(j_2) \\ &> f(1) - f(2) + f(3) - f(2) + f(4) - f(3) \\ &= f(1) - 2f(2) + f(4) \\ &\geq 0, \end{split}$$

a contradiction.

Subcase 1.2. $n_2 = n - 2$.

Let $u_1, u_2, \ldots, u_{n-2}$ be the vertices of degree 2. Clearly, u_i is adjacent to w_1, w_2 for $1 \le i \le n-2$.

If n = 6, then $G^* = K_{2,4}$. Let $G'' = FPA_1(6, 4, 0)$. Thus,

$$H_f(G'') - H_f(G^*) = f(5) + 3f(3) + 2f(1) - 4f(2) - 2f(4)$$

= f(3) - 2f(4) + f(5) + 2(f(1) - 2f(2) + f(3))
> 0,

a contradiction. The last inequality can be derived from Lemma 2.

If n = 7, then $G^* = K_{2,5}$. Let $G'' = FPA_1(7, 4, 1)$. Hence,

$$H_f(G'') - H_f(G^*) = 2f(1) + f(2) + 2f(3) + f(4) + f(6) - 5f(2) - 2f(5)$$

= f(4) - 2f(5) + f(6) + 2(f(1) - 2f(2) + f(3))
> 0,

a contradiction. The last inequality can be derived from Lemma 2.

Thus $n \ge 8$ and $n_2 = n - 2 \ge 6$. Construct a new graph G'' =

 $G^* - u_1w_1 - u_2w_1 - u_3w_1 + u_4u_5 + u_5u_6 + u_4u_6$. We have

$$H_f(G'') - H_f(G^*) = 3(f(1) - f(2)) + f(n-4) - f(n-1) + 3(f(4) - f(2))$$

> 3(f(1) - 2f(2) + f(4))
\ge 0,

a contradiction.

Case 2. r = 3

In this case the maximum graph G^* has only three vertices with degree n-1, denoted by w_1 , w_2 and w_3 . Since $|E(K(S))| - |E(G[S])| \ge r = 3$, $n \ge 7$. We consider the number n_3 of vertices with degree 3.

Subcase 2.1. $1 \le n_3 \le n-4$.

Let u be a vertex of degree 3. Clearly, u is adjacent to w_1 , w_2 , w_3 . With a similar approach to **Subcase 1.1**, we can find two pairs of nonadjacent vertices v_1 and v_2 , v_3 and v_4 in S whose degrees are j_1, j_2, j_3 and j_4 , where $j_1 \ge 4$ and $j_i \ge 3$ for $i \in \{2, 3, 4\}$. Note that these four vertices are not necessarily distinct.

If all these four vertices are distinct, we construct a new graph $G'' = G^* - uw_1 - uw_2 + v_1v_2 + v_3v_4$. We have

$$H_f(G'') - H_f(G^*) = f(1) - f(3) + 2(f(n-2) - f(n-1)) + \sum_{i=1}^4 (f(j_i+1) - f(j_i)) > f(1) - f(3) + f(5) - f(4) + 3(f(4) - f(3)) = f(1) - 4f(3) + 2f(4) + f(5) \ge 0,$$

a contradiction.

Next, assume that some vertices in v_1, v_2, v_3, v_4 are same. By symmetry, it suffices to consider two possibilities: $v_1 = v_3$ or $v_2 = v_3$.

If $v_1 = v_3$, we use v to denote v_1 . Clearly, v has degree $j \ge 4$. We construct a new graph $G'' = G^* - uw_1 - uw_2 + vv_2 + vv_4$. Therefore,

$$H_f(G'') - H_f(G^*) = f(1) - f(3) + 2(f(n-2) - f(n-1)) + f(j+2)$$

$$-f(j) + (f(j_2+1) - f(j_2)) + (f(j_4+1) - f(j_4))$$

> f(1) - f(3) + f(6) - f(4) + 2(f(4) - f(3)).

By taking the values of a, b and y in Inequality (3) to be 4, 4 and 2, respectively, we have

$$f(6) - f(4) \ge 2(f(5) - f(4)).$$

Thus,

$$H_f(G'') - H_f(G^*) > f(1) - f(3) + f(6) - f(4) + 2(f(4) - f(3))$$

> $f(1) - f(3) + 2(f(5) - f(4)) + 2(f(4) - f(3))$
> $f(1) - f(3) + (f(5) - f(4)) + 3(f(4) - f(3))$
= $f(1) - 4f(3) + 2f(4) + f(5)$
\ge 0,

a contradiction.

If $v_2 = v_3$, we use v to denote v_2 . Clearly, v has degree $j \ge 3$. Construct a new graph $G'' = G^* - uw_1 - uw_2 + vv_1 + vv_4$. Hence,

$$H_f(G'') - H_f(G^*) = f(1) - f(3) + 2(f(n-2) - f(n-1)) + f(j+2)$$

- f(j) + (f(j_1+1) - f(j_1)) + (f(j_4+1) - f(j_4))
> f(1) - f(3) + f(5) - f(3) + f(5) - f(4)
+ f(4) - f(3).

By taking the values of a, b and y in Inequality (3) to be 3, 3 and 2, respectively, we have

$$f(5) - f(3) \ge 2(f(4) - f(3)).$$

Thus,

$$H_f(G'') - H_f(G^*)$$

> $f(1) - f(3) + f(5) - f(3) + f(5) - f(4) + f(4) - f(3)$

$$> f(1) - f(3) + 2(f(4) - f(3)) + f(5) - f(4) + f(4) - f(3)$$

= f(1) - 4f(3) + 2f(4) + f(5)
$$\ge 0,$$

a contradiction.

Subcase 2.2. $n_3 = n - 3$.

Let $u_1, u_2, \ldots, u_{n-3}$ be the vertices of degree 3. Clearly, u_i is adjacent to w_1, w_2 and w_3 for $1 \le i \le n-3$. Since $n \ge 7$, $n_3 = n-3 \ge 4$. Construct a new graph $G'' = G^* - u_1w_1 - u_1w_2 + u_2u_3 + u_3u_4$. We have

$$H_f(G'') - H_f(G^*) = f(1) - f(3) + 2(f(n-2) - f(n-1)) + f(5) - f(3) + 2(f(4) - f(3)) > f(1) - 4f(3) + 2f(4) + f(5) \ge 0,$$

a contradiction.

Hence, we only need to consider maximum graphs which have $n_1 \neq 0$, for $2 \leq k \leq n-2$. Then $n_{n-1} = 1$ (by Lemmas 1 and 6) and all vertices of degree 1 must be adjacent to this unique vertex of degree n-1. Here we do not consider the case $n_1 = n - 1$, since it is equivalent to the case m = n - 1, which has been proved before. When $n_1 < n - 1$, it is readily obtained that $n_1 \leq n - 3$.

When $n_{n-1} = 1$ and $n_1 = l$, where $1 \le l \le n-3$, according to Lemma 7, problem (P) can be transformed into the subsequent problem (P^l) :

$$\max l \cdot f(1) + n_2 \cdot f(2) + \dots + n_{n-l-1} f(n-l-1) + f(n-1)$$

under the constraints:

$$n_2 + n_3 + n_4 + \dots + n_{n-l-1} = n - 1 - l, \tag{9}$$

$$n_2 + 2n_3 + 3n_4 + \dots + (n-l-2)n_{n-l-1} = 2(m-n+1).$$
 (10)

To prove the following lemma, it is necessary to use mathematical induction. It is straightforward to verify that Theorem 9 is true for n = 4 and $3 \le m \le 6$. We assume that Theorem 9 is true for every connected graph G in G(i, j) when $4 \le i \le n - 1$ and $i - 1 \le j \le {i \choose 2}$.

Lemma 15. Let G be a connected (n,m)-graph, where m = n + k(k - 3)/2 + p, $m \ge n$, $2 \le k \le n - 2$ and $0 \le p \le k - 2$. If $n_{n-1} = 1$ and $1 \le n_1 \le n - 3$, then Inequality (1) holds for G.

Proof. Inequality (1) will be valid for G with $n_{n-1} = 1$ and $n_1 = l$, if the following inequality holds:

$$l \cdot f(1) + n_2 \cdot f(2) + n_3 \cdot f(3) + \dots + n_{n-l-1}f(n-l-1) + f(n-1)$$

$$\leq (n-k-1)f(1) + f(p+1) + (k-p-1)f(k-1) + pf(k) + f(n-1)$$
(11)

under constraints (9) and (10).

We first prove (11) for $l \geq 2$. Since $n_1 = l$, by Lemma 7 we have $n_{n-l} = n_{n-l+1} = \cdots = n_{n-2} = 0$. Consider the graph G', which is obtained from G, when we delete one vertex of degree 1. The graph G' has $n'_1 = l - 1$ and one vertex of degree n - 2 (because the other vertices can have a degree at most n - 1 - l), and $n'_i = n_i$ for $i \in \{2, \ldots, n - 3\}$. Then $n'_{n-l} = n'_{n-l+1} = \cdots = n'_{n-3} = 0$ and the same constraints (9) and (10) hold (because n - 1 - (l - 1) = n - l). Since G' has n - 1 vertices and n - 1 + k(k - 3)/2 + p edges, it satisfies the inductive hypothesis, and so,

$$n_{2} \cdot f(2) + n_{3} \cdot f(3) + \dots + n_{n-l-1}f(n-l-1)$$

$$= n'_{2} \cdot f(2) + n'_{3} \cdot f(3) + \dots + n'_{n-l-1}f(n-l-1)$$

$$\leq (n-1-k-1-(l-1)) \cdot f(1) + f(p+1)$$

$$+ (k-p-1)f(k-1) + pf(k)$$
(12)

for every $2 \le k \le n-2$ and $0 \le p \le k-2$. Inequality (12) is equivalent to (11), which is now proved because the constraints are the same.

Now we show that (11) holds for l = 1, that is, the graph G' has no vertex of degree one. We have $n'_i = n_i$ for $i\{2, \ldots, n-3 \text{ and } n'_{n-2} =$

 $n_{n-2} + 1$. By the inductive hypothesis for the graph G' holds

$$n_{2} \cdot f(2) + n_{3} \cdot f(3) + \dots + n_{n-3} \cdot f(n-3) + (n_{n-2}+1)f(n-2)$$

= $n'_{2} \cdot f(2) + n'_{3} \cdot f(3) + \dots + n'_{n-3} \cdot f(n-3) + n'_{n-2}f(n-2)$
 $\leq (n-1-k-1) \cdot f(1) + f(p+1) + (k-p-1)f(k-1)$
 $+ pf(k) + f(n-1-1)$ (13)

under the constraints

$$n'_{2} + n'_{3} + n'_{4} + \dots + n'_{n-2} = n - 1,$$

$$2n'_{2} + 3n'_{3} + 4n'_{4} + \dots + (n-2)n'_{n-2} = 2(m-1).$$

Thus, we have

$$n_2 \cdot f(2) + n_3 \cdot f(3) + \dots + n_{n-3}f(n-3) + n_{n-2}f(n-2)$$

$$\leq (n-k-2)f(1) + f(p+1) + (k-p-1)f(k-1) + p \cdot f(k) \quad (14)$$

under the constraints

$$n_2 + n_3 + \dots + n_{n-3} + n_{n-2} = n - 2,$$

$$n_2 + 2n_3 + \dots + (n - 3)n_{n-3} + (n - 2)n_{n-2} = 2m - n.$$
 (15)

Equalities (15) are just the constraints (9) and (10), and inequality (14) is equivalent to inequality (11) for l = 1. Thus the lemma is proved.

Proof of Theorem 9. We need to show that Theorem 9 holds for $n-1 \le m \le \binom{n}{2}$. The case m = n-1 has already been proved in Corollary 3, and cases $m = \binom{n}{2}$ and $\binom{n}{2} - 1$ are disregarded because they all correspond to unique graphs.

Since m = n + k(k-3)/2 + p, where $2 \le k \le n-1$ and $0 \le p \le k-2$, we distinguish two cases k = n-1 and $2 \le k \le n-2$. The case k = n-1has already been proved in 12. The case $2 \le k \le n-2$ can be proved by combining Lemmas 14 and 15. Thus, Theorem 9 is proved.

Theorem 9 characterizes the maximum value of $H_f(G)$ among all con-

nected (n, m)-graphs. Applying Theorem 9, we can also determine the maximum value of $H_f(G)$ among all (n, m)-graphs, as stated in Theorem 10.

Proof of Theorem 10. Let G be the maximum (n, m)-graph. By Lemma 1, G consists of a set I_1 of isolated vertices, together with a connected graph G_1 , which has n' vertices m edges. Note that G_1 is a maximum connected (n',m)-graph, otherwise, we can find a connected (n',m)-graph G_2 , such that $H_f(G_2) > H_f(G_1)$, then the graph $G' := G_2 + I_1$ is an (n,m)-graph satisfying that $H_f(G') > H_f(G)$ holds, a contradiction.

If $m = \binom{n'}{2}$, then $G = \overline{FPA}_1(n, n', 0)$, which proves the theorem.

If $m < \binom{n'}{2}$. Assume that m = n' + k'(k'-3)/2 + p', where $2 \le k' \le n'-1$ and $0 \le p' \le k'-2$. By Theorem 9, G_1 is a fanned pineapple of type 1 with parameters n', k', p', that is $G_1 = FPA_1(n', k', p')$. Let K be a copy of a clique of k' vertices of G_1 . Let l be the number of vertices in $V(G_1) \setminus V(K)$ with degree 1. It is easily seen that p' and l cannot both be 0 simultaneously. Next, we differ the subsequent proof into the following four cases.

Case 1. p' = 0, l = 1.

In this case, k' = n' - l = n' - 1, $G_1 = FPA_1(n', n' - 1, 0)$, then $G = \overline{FPA_1}(n, n' - 1, 1)$, the theorem is proved.

Case 2. $1 \le p' \le k' - 2, l = 0.$

In this case, k' = n' - l - 1 = n' - 1, $G_1 = FPA_1(n', n' - 1, p')$, then $G = \overline{FPA_1}(n, n' - 1, p' + 1)$, which proves the theorem. Case 3. p' = 0, l > 2.

In this case, $k' \geq 2$, $G_1 = FPA_1(n', k', 0)$. Let w be a vertex of degree n' - 1. Let u and v be two vertices in $V(G_1) \setminus V(K)$ with degree 1. Let $z \in V(K) \setminus w$. Then d(z) = k' - 1. Construct a new graph G' = G - uw + vz. Thus,

$$H_f(G') - H_f(G)$$

= $f(0) + f(2) + f(n'-2) + f(k') - 2f(1) - f(n'-1) - f(k'-1)$
= $f(0) + f(2) - 2f(1) + f(n'-2) - f(n'-1) + f(k') - f(k'-1)$
> $f(0) + f(2) - 2f(1) + f(2) - f(2-1)$

$$= f(0) + 2f(2) - 3f(1)$$

$$\ge 0,$$

which contradicts the maximality of G.

Case 4. $1 \le p' \le k' - 2, l \ge 1$.

In this case, $k' \geq 3$, $G_1 = FPA_1(n', k', p')$. Let w be a vertex of degree n' - 1. Let u be a vertex in $V(G_1) \setminus V(K)$ with degree 1. Let v be the vertex of degree p' + 1 in $V(G_1) \setminus V(K)$. Let z be a vertex in V(K) which is not adjacent to v. Then d(z) = k' - 1. Construct a new graph G' = G - uw + vz. Therefore,

$$\begin{aligned} H_f(G') - H_f(G) &= f(0) + f(p'+2) + f(n'-2) + f(k') - f(1) \\ &- f(p'+1) - f(n'-1) - f(k'-1) \\ &= f(0) - f(1) + f(n'-2) + f(n'-1) + f(p'+2) \\ &- f(p'+1) + f(k') - f(k'-1) \\ &> f(0) - f(1) + f(1+2) - f(1+1) + f(3) - f(3-1) \\ &= f(0) - f(1) + 2f(3) - 2f(2) \\ &\ge 0, \end{aligned}$$

which contradicts the maximality of G.

Next, we show by Lemmas 16–23 that the function $f(x) = (x+q)^{\alpha}$ satisfies the assumption in Theorem 9 when $t \ge 1$, $\alpha \le -t$ and $-1 < q \le 2.038t - 0.038$, or $\alpha < 0$ and $-1 < q \le 0$. Furthermore, the function $f(x) = (x+q)^{\alpha}$ satisfies the conditions of Theorem 10 for $t \ge 1$, $\alpha \le -t$ and $0 < q \le 1.413t + 0.587$.

Lemma 16. Let n, p, j be integers with $n \ge 5$. Let $f(x) = (x+q)^{\alpha}$. If $\alpha < 0$ and q > -1, then

$$\begin{split} g(p,j) = &(n-p-j-3)f(p+1) - (n-p+j-3)f(p+j+1) \\ &+ j(n-p-j-1)f(n-2) - j(n-p-j-3)f(n-1) > 0, \end{split}$$

for each $p \in \{0, 1, ..., n-4\}$ and for each $j \in \{1, ..., n-p-4\}$.

Proof. In the following, we prove that the partial derivative of g(p, j) with respect to p is less than 0. Firstly,

$$\begin{aligned} \frac{\partial g(p,j)}{\partial p} &= -(p+1+q)^{\alpha} + \alpha(n-p-j-3)(p+1+q)^{\alpha-1} \\ &+ (p+j+1+q)^{\alpha} - \alpha(n-p+j-3)(p+j+1+q)^{\alpha-1} \\ &- j(n-2+q)^{\alpha} + j(n-1+q)^{\alpha}. \end{aligned}$$

Since $\alpha(\alpha-1)(n-p-j-3)((p+1+q)^{\alpha-2}-(p+j+1+q)^{\alpha-2}) \ge 0$ for $\alpha < 0$, we have

$$\begin{split} \frac{\partial^2 g(p,j)}{\partial p^2} \\ &= -2\alpha(p+1+q)^{\alpha-1} + 2\alpha(p+j+1+q)^{\alpha-1} \\ &+ \alpha(\alpha-1)(n-p-j-3)(p+1+q)^{\alpha-2} \\ &- \alpha(\alpha-1)(n-p+j-3)(p+j+1+q)^{\alpha-2} \\ &= -2\alpha(p+1+q)^{\alpha-1} + 2\alpha(p+j+1+q)^{\alpha-1} \\ &+ \alpha(\alpha-1)(n-p-j-3)\left((p+1+q)^{\alpha-2} - (p+j+1+q)^{\alpha-2}\right) \\ &- \alpha(\alpha-1) \cdot 2j \cdot (p+j+1+q)^{\alpha-2} \\ &\geq -2\alpha\left((p+1+q)^{\alpha-1} - (p+j+1+q)^{\alpha-1}\right) \\ &- 2\alpha(\alpha-1)j(p+j+1+q)^{\alpha-2} \\ &= -2j\alpha(\alpha-1)\left(-\xi^{\alpha-2} + (p+j+1+q)^{\alpha-2}\right) \geq 0, \end{split}$$

where $\xi \in (p+1+q, p+j+1+q)$. Since $p \le n-j-3$,

$$\frac{\partial g(p,j)}{\partial p} \le -(n-j-2+q)^{\alpha} + (n-2+q)^{\alpha} - 2j\alpha(n-2+q)^{\alpha-1} -j\left((n-2+q)^{\alpha} - (n-1+q)^{\alpha}\right).$$

 $\begin{array}{l} \text{Define a function } h(j) = -(n-j-2+q)^{\alpha} + (n-2+q)^{\alpha} - 2j\alpha(n-2+q)^{\alpha-1} - j\left((n-2+q)^{\alpha} - (n-1+q)^{\alpha}\right). \text{ Since } \frac{\partial^2 h(j)}{\partial j^2} = -\alpha(\alpha-1)(n-j-2+q)^{\alpha-2} \leq 0, \\ \left[(n-1+q)^{\alpha-1} + (n-3+q)^{\alpha-1} - 2(n-2+q)^{\alpha-1}\right] > 0 \end{array}$

(by Corollary 2) and $j \ge 1$, we have

$$\begin{split} \frac{\partial h(j)}{\partial j} &= \alpha (n-j-2+q)^{\alpha-1} - 2\alpha (n-2+q)^{\alpha-1} \\ &- ((n-2+q)^{\alpha} - (n-1+q)^{\alpha}) \\ &\leq \alpha (n-3+q)^{\alpha-1} - 2\alpha (n-2+q)^{\alpha-1} \\ &- ((n-2+q)^{\alpha} - (n-1+q)^{\alpha}) \\ &= \alpha \left[(n-1+q)^{\alpha-1} + (n-3+q)^{\alpha-1} - 2(n-2+q)^{\alpha-1} \right] \\ &- ((n-2+q)^{\alpha} - (n-1+q)^{\alpha}) - \alpha (n-1+q)^{\alpha-1} \\ &\leq \alpha \eta^{\alpha-1} - \alpha (n-1+q)^{\alpha-1} \leq 0, \end{split}$$

where $\eta \in (n-2+q, n-1+q)$. Thus, $\frac{\partial g(p,j)}{\partial p} \leq h(j) \leq h(1)$.

Since for any $x, x_0 \in [a, b]$, where a and \dot{b} are real numbers, there exists $\xi \in (a, b)$ such that $f(x) = f(x_0) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x=x_0} (x-x_0) + \frac{1}{2!} \left. \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} \right|_{x=\xi} (x-x_0)^2$, so we have

$$(n-1+q)^{\alpha} = (n-2+q)^{\alpha} + \alpha(n-2+q)^{\alpha-1} + \frac{\alpha(\alpha-1)}{2!}(n-2+\xi_1+q)^{\alpha-2},$$

$$(n-3+q)^{\alpha} = (n-2+q)^{\alpha} - \alpha(n-2+q)^{\alpha-1} + \frac{\alpha(\alpha-1)}{2!}(n-2-\xi_2+q)^{\alpha-2},$$

where $0 < \xi_1 < 1$ and $0 < \xi_2 < 1$. Then

$$\begin{split} h(1) = &(n-1+q)^{\alpha} - (n-3+q)^{\alpha} - 2\alpha(n-2+q)^{\alpha-1} \\ = &(n-2+q)^{\alpha} + \alpha(n-2+q)^{\alpha-1} + \frac{\alpha(\alpha-1)}{2}(n-2+\xi_1+q)^{\alpha-2} \\ &- (n-2+q)^{\alpha} + \alpha(n-2+q)^{\alpha-1} - \frac{\alpha(\alpha-1)}{2}(n-2-\xi_2+q)^{\alpha-2} \\ &- 2\alpha(n-2+q)^{\alpha-1} \\ = &\frac{\alpha(\alpha-1)}{2}\left((n-2+\xi_1+q)^{\alpha-2} - (n-2-\xi_2+q)^{\alpha-2}\right) < 0. \end{split}$$

Consequently, $\frac{\partial g(p,j)}{\partial p} \le h(j) \le h(1) < 0$. Thus, $g(p,j) \ge g(n-j-4,j) > g(n-j-3,j) = 0$.

Lemma 17. Let $f(x) = (x+q)^{\alpha}$. If $\alpha \le -t$, $-1 < q \le 2.038t - 0.038$,

 $t \geq 1$ and $r \geq 3$, then

$$f(1) + (2r - 2)f(r + 1) - (2r - 1)f(r) \ge 0.$$

Proof. Let $f_1(\alpha, q, r) = f(1) + (2r - 2)f(r + 1) - (2r - 1)f(r) = (1 + q)^{\alpha} + (2r - 2)(r + 1 + q)^{\alpha} - (2r - 1)(r + q)^{\alpha}$ and $g(\alpha, q, r) = \frac{f_1(\alpha, q, r)}{(r+q)^{\alpha}} = \left(\frac{1+q}{r+q}\right)^{\alpha} + (2r - 2)\left(\frac{r+1+q}{r+q}\right)^{\alpha} - (2r - 1).$ Firstly,

$$\frac{\partial g}{\partial q} = \frac{\alpha}{(r+q)^2} \left[(r-1) \left(\frac{1+q}{r+q}\right)^{\alpha-1} - (2r-2) \left(\frac{r+1+q}{r+q}\right)^{\alpha-1} \right].$$

Let $g_1(t) = (t+1) \ln \left(\frac{2.038t+3.962}{2.038t+0.962}\right) - \ln 2$. According to Lemma 10, Since $2 \times 2.038^2 - 2.038 \times 3.962 - 2.038 \times 0.962 < 0$, $2.038 \times 3.962 + 2.038 \times 0.962 - 2 \times 3.962 \times 0.962 > 0$ and $\frac{dg_1}{dt}$ has no root on the interval $(1, \infty)$, it follows that $g_1(t) \ge g_1(1) \approx 0.69 > 0$. Thus,

$$\frac{(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}}{(2r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}} = \frac{1}{2}\left(\frac{1+q}{r+1+q}\right)^{\alpha-1} \ge \frac{1}{2}\left(\frac{r+1+q}{1+q}\right)^{t+1}$$
$$\ge \frac{1}{2}\left(1+\frac{r}{1+q}\right)^{t+1}$$
$$\ge \frac{1}{2}\left(1+\frac{3}{1+2.038t-0.038}\right)^{t+1}$$
$$= \frac{1}{2}\left(\frac{2.038t+3.962}{2.038t+0.962}\right)^{t+1}$$
$$> 1$$

and $\frac{\partial g}{\partial q} < 0$.

We now prove that the partial derivative of the function $g(\alpha, q, r)$ with respect to α is less than or equal to 0. By Lemmas 8 and 11, $\frac{\ln\left(\frac{2.038t+r+0.962}{2.038t+r-0.038}\right)}{\ln\left(\frac{2.038t+r-0.038}{2.038t+r-0.962}\right)^t} \leq \frac{3}{(r-1)(r+3)}$ and $\frac{\ln\left(\frac{q+r+1}{q+r}\right)}{\ln\left(\frac{q+r+1}{q+r}\right)}$ is monoton-ically increasing with respect to q. We have $\frac{(2r-2)\ln\left(\frac{q+r+1}{q+r}\right)\left(\frac{q+r+1}{q+r}\right)^a}{\ln\left(\frac{q+r}{q+r}\right)\left(\frac{q+r+1}{q+r}\right)^a} = (2r-2)\frac{\ln\left(\frac{q+r+1}{q+r}\right)\left(\frac{q+r+1}{q+1}\right)^a}{\ln\left(\frac{q+r}{q+1}\right)\left(\frac{q+r+1}{q+1}\right)^a} \leq (2r-2)\frac{\ln\left(\frac{q+r+1}{q+r}\right)\left(\frac{q+1}{q+r}\right)^a}{\ln\left(\frac{q+r}{q+1}\right)}$

$$\begin{split} & \leq (2r-2) \frac{\ln\left(\frac{2.038t+1+0.062}{2.038t+0.062}\right)}{\ln\left(\frac{2.038t+0.062}{2.038t+1+0.062}\right)} \left(\frac{2.0.1}{2.038t+1+0.062}\right)^{t} \leq (2r-2) \frac{3}{(r-1)(r+3)} \leq 1. \text{ Since } \\ & \frac{\partial g}{\partial a} = (2r-2) \ln\left(\frac{q+r+1}{q+r}\right) \left(\frac{q+r+1}{q+r}\right)^{a} - \ln\left(\frac{q+r}{q+1}\right) \left(\frac{q+1}{q+r}\right)^{a}, \frac{\partial g}{\partial a} \leq 0. \\ & \text{ Since } \frac{\partial g}{\partial q} < 0 \text{ and } \frac{\partial g}{\partial a} \leq 0, g(\alpha, q, r) \geq g(-t, 2.038t - 0.038, r) = \\ & g_{2}(t, r), \text{ where } g_{2}(t, r) = \left(\frac{2.038t+r-0.038}{2.038t+0.062}\right)^{t} + (2r-2) \left(\frac{2.038t+r-0.038}{2.038t+r+0.062}\right)^{t} - \\ & (2r-1). \text{ The partial derivative of } g_{2}(t, r) \text{ with respect to r is given by;} \\ & \frac{\partial g_{2}}{\partial r} = 2 \left(\frac{2.038t+r-0.038}{2.038t+r+0.062}\right)^{t} + \frac{t(2r-2)\left(\frac{2.038t+r-0.038}{2.038t+r+0.062}\right)^{t-1}}{(2.038t+r+0.062)^{t-1}} + \frac{t(2r-2)\left(\frac{2.038t+r-0.038}{2.038t+r+0.062}\right)^{t-1}}{(2.038t+r+0.062)^{t-1}} - 2, \text{ where } h_{1}(t) = \\ & \left(\frac{2.038t+2.062}{2.038t+3.062}\right)^{t}, h_{2}(t) = \frac{t}{2.038t+2.062} \text{ and } h_{3}(t) = \left(\frac{2.038t+2.062}{2.038t+0.062}\right)^{t}. \text{ Let } \\ h_{4}(t) = t\ln \left(\frac{2.038t+2.062}{2.038t+0.062}\right) \text{ and } h(t) = 2h_{1}(t) + h_{2}(t)h_{3}(t) - 2. \text{ By Lemma} \\ 9, \text{ we have } h_{1}(t), \frac{d_{4}}{dt} \text{ and } \frac{d_{4}}{dt} \text{ are positive and monotonically decreasing \\ \text{ on the interval } [1, \infty). \text{ On the interval } [1, \infty), h_{2}(t), h_{3}(t) \text{ and } h_{4}(t) \text{ are } \\ positive monotonically increasing functions, while $\frac{d_{h_{1}}}{dt} \text{ is a negative monotonically decreasing \\ \text{ on the interval } [1, \infty]. \text{ On the interval } [1, \infty], h_{2}(t), h_{3}(t) \text{ and } h_{5}(a, b) = 0, \\ \text{ the } \frac{dh_{4}}{dt} = 2\frac{dh_{4}}{dt} + \frac{dh_{2}}{dt} + \frac{dh_{2}}{dt} + \frac{dh_{2}}{dt} + \frac{dh_{2}}{dt} + \frac{h_{2}(2h_{4}(t))}{dt} + h_{2}(t)e^{h_{4}(t)} \frac{dh_{4}}{dt}} = h_{5}(a, b). \text{ If } h_{5}(a, b) \geq 0, \\ \text{ then } \frac{dh_{4}}{dt} = 2\frac{dh_{4}}{dt} + \frac{dh_{2}}{dt} + \frac{dh_{2}}{dt} + \frac{h_{2}(2h_{4}(t))}{dt} + h_{2}(t)e^{h_{4}(t)} \frac{dh_{4}}{dt}} = h_{6}(t) + 4h_{7}(t) - 5. \text{ By Lemma} \\ 9, \text{ we have } h_{7}(t) \text{ and } h_{4}(t) = h_{6}(t) + h_{6}(t) + 4h_{7}(t) - 5. \text{ By Lemma} \\ 9, \text{$$$

 $e^{h_8(t)} \frac{dh_8}{dt} + 4 \frac{dh_7}{dt} \ge h_{10}(a, b)$. If $h_{10}(a, b) \ge 0$, then $\frac{dh_9}{dt} \ge 0$ on the interval [a, b]. It can be verified that $h_{10}(a, b) > 0$ when a = 1 + 0.04i and b = a + 0.04 for $i \in \{0, 1, \dots, 500\}$. Thus, $\frac{dh_9}{dt} \ge 0$ and $h_9(t) \ge h_9(1) = 0$ on the interval [1, 21]. When $t \ge 21$, $h_9(t) \ge h_6(21) + 4h_7(\infty) - 5 > 0$.

Hence, $g(\alpha, q, r) \ge g_2(t, r) \ge g_2(t, 3) = h_9(t) \ge 0$ and $f(\alpha, q, r) = g(\alpha, q, r)(r+q)^{\alpha} \ge 0.$

Lemma 18. Let $f(x) = (x+q)^{\alpha}$. If $\alpha \le -t$, $-1 < q \le 2.038t - 0.038$ and $t \ge 1$, then

$$f(1) - 2f(2) + f(4) \ge 0.$$

Proof. Let $f(\alpha, q) = f(1) - 2f(2) + f(4) = (1+q)^{\alpha} - 2(2+q)^{\alpha} + (4+q)^{\alpha}$ and $g(\alpha, q) = \frac{f(\alpha, q)}{(2+q)^{\alpha}} = \left(\frac{1+q}{2+q}\right)^{\alpha} + \left(\frac{4+q}{2+q}\right)^{\alpha} - 2$. Firstly,

$$\frac{\partial g}{\partial q} = \frac{\alpha}{(2+q)^2} \left[\left(\frac{1+q}{2+q}\right)^{\alpha-1} - 2\left(\frac{4+q}{2+q}\right)^{\alpha-1} \right].$$

Let $g_1(t) = (t+1) \ln \left(\frac{2.038t+3.962}{2.038t+0.962}\right) - \ln 2$. According to Lemma 10, since $2 \times 2.038^2 - 2.038 \times 3.962 - 2.038 \times 0.962 < 0, 2.038 \times 3.962 + 2.038 \times 0.962 - 2 \times 3.962 \times 0.962 > 0$ and $\frac{dg_1}{dt} > 0$ has no root on the interval $(1, \infty)$, it follows that $g_1(t) \ge g_1(1) \approx 0.693 > 0$. Thus, $\frac{\left(\frac{1+q}{2+q}\right)^{\alpha-1}}{2\left(\frac{4+q}{1+q}\right)^{\alpha-1}} = \frac{1}{2} \left(\frac{1+q}{4+q}\right)^{\alpha-1} \ge \frac{1}{2} \left(\frac{4+q}{2.038t+0.962}\right)^{t+1} > 1$ and $\frac{\partial g}{\partial q} < 0$. We now prove that the partial derivative of the function $g(\alpha, q)$ with

respect to α is less than or equal to 0. By Lemmas 8 and 11, $\frac{\ln\left(\frac{2.038t+3.962}{2.038t+1.962}\right)}{\ln\left(\frac{2.038t+0.962}{2.038t+0.962}\right)} \left(\frac{2.038t+0.962}{2.038t+3.962}\right)^t \leq 1 \text{ and } \frac{\ln\left(\frac{q+4}{q+2}\right)}{\ln\left(\frac{q+2}{q+1}\right)} \text{ is monotonically increasing}$ with respect to q, we have

$$\frac{\ln\left(\frac{q+4}{q+2}\right)\left(\frac{q+4}{q+2}\right)^{a}}{\ln\left(\frac{q+2}{q+1}\right)\left(\frac{q+1}{q+2}\right)^{a}} = \frac{\ln\left(\frac{q+4}{q+2}\right)}{\ln\left(\frac{q+2}{q+1}\right)} \left(\frac{q+4}{q+1}\right)^{a}$$
$$\leq \frac{\ln\left(\frac{q+4}{q+2}\right)}{\ln\left(\frac{q+2}{q+1}\right)} \left(\frac{q+1}{q+4}\right)^{t}$$
$$\leq \frac{\ln\left(\frac{2.038t+3.962}{2.038t+1.962}\right)}{\ln\left(\frac{2.038t+1.962}{2.038t+0.962}\right)} \left(\frac{2.038t+0.962}{2.038t+3.962}\right)^{t}$$
$$\leq 1.$$

Since $\frac{\partial g}{\partial \alpha} = \ln \left(\frac{q+4}{q+2}\right) \left(\frac{q+4}{q+2}\right)^a - \ln \left(\frac{q+2}{q+1}\right) \left(\frac{q+1}{q+2}\right)^a, \ \frac{\partial g}{\partial \alpha} < 0.$

Since $\frac{\partial g}{\partial q} < 0$ and $\frac{\partial g}{\partial \alpha} < 0$, $g(\alpha, q) \geq g(-t, 2.038t - 0.038) = h_1(t) + h_2(t) - 2$, where $h_1(t) = \left(\frac{2.038t + 1.962}{2.038t + 0.962}\right)^t$ and $h_2(t) = \left(\frac{2.038t + 1.962}{2.038t + 3.962}\right)^t$. Let $h_3(t) = t \ln \left(\frac{2.038t + 1.962}{2.038t + 0.962}\right)$ and $h(t) = h_1(t) + h_2(t) - 2$. By Lemma 9, we have $h_2(t)$ and $\frac{dh_3}{dt}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty)$, $h_1(t)$ and $h_3(t)$ are positive monotonically increasing functions, while $\frac{dh_2}{dt}$ is a negative monotonically increasing function. For two constants a and b, let $h_4(a, b) = e^{h_3(a)} \frac{dh_3}{dt}|_{t=b} + \frac{dh_2}{dt}|_{t=a}$, where $1 \leq a \leq b$. When $t \in [a, b]$, $\frac{dh}{dt} = e^{h_3(t)} \frac{dh_3}{dt} + \frac{dh_2}{dt} \geq h_4(a, b)$. If $h_4(a, b) \geq 0$, then $\frac{dh}{dt} \geq 0$ on the interval [a, b]. It can be verified that $h_4(a, b) > 0$ when a = 1.6 + 0.01i and b = a + 0.0102 for $i \in \{0, 1, \dots, 6740\}$. Thus, $\frac{dh}{dt} \geq 0$ and $h(t) \geq h(1) = 0$ on the interval [1, 69]. When $t \geq 69$, $h(t) \geq h_1(69) + h_2(\infty) - 2 > 0$.

Hence,
$$g(\alpha, q) \ge h(t) \ge 0$$
 and $f(\alpha, q) = g(\alpha, q)(2+q)^{\alpha} \ge 0$.

Lemma 19. Let $f(x) = (x+q)^{\alpha}$. If $\alpha < 0, -1 < q \le 0$ and $r \ge 4$, then

$$f(1) + (2r - 2)f(r + 1) - (2r - 1)f(r) > 0.$$

Proof. Let $f(\alpha, q) = f(1) + (2r-2)f(r+1) - (2r-1)f(r) = (1+q)^{\alpha} + (2r-2)(r+1+q)^{\alpha} - (2r-1)(r+q)^{\alpha}$ and $g(\alpha, q) = \frac{f(\alpha, q)}{(r+q)^{\alpha}} = \left(\frac{1+q}{r+q}\right)^{\alpha} + (2r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha} - (2r-1).$ Firstly,

$$\frac{\partial g}{\partial q} = \frac{\alpha}{(r+q)^2} \left[(r-1) \left(\frac{1+q}{r+q}\right)^{\alpha-1} - (2r-2) \left(\frac{r+1+q}{r+q}\right)^{\alpha-1} \right].$$

Since $\frac{(r-1)\left(\frac{1+q}{r+q}\right)^{\alpha-1}}{(2r-2)\left(\frac{r+1+q}{r+q}\right)^{\alpha-1}} = \frac{1}{2}\left(\frac{1+q}{r+1+q}\right)^{\alpha-1} \ge \frac{1}{2}\left(\frac{r+1+q}{1+q}\right) \ge \frac{1}{2}\left(1+\frac{r}{1+q}\right) \ge \frac{1}{2}\left(1+\frac{r}{1+q}\right) \ge \frac{1}{2}\left(1+\frac{4}{1+0}\right) = \frac{5}{2} > 1, \ \frac{\partial g}{\partial q} < 0.$ Thus, $g(\alpha,q) \ge g(\alpha,0) = \left(\frac{1}{r}\right)^{\alpha} + (2r-2)\left(\frac{r+1}{r}\right)^{\alpha} - (2r-1).$

We now prove that the partial derivative of $g(\alpha, 0)$ with respect to α is less than 0. Set $g_1(r) = (2r-2)\ln(r+1) - (2r-1)\ln r$. Consider the derivative of $g_1(r)$ with respect to r, we have $\frac{dg_1}{dr} = 2\ln \frac{r+1}{r} + \frac{1-3r}{r(r+1)}$. Set $g_2(r) = \frac{3r-1}{2r(r+1)\ln \frac{r+1}{r}}$. Then $\frac{dg_2}{dr} = \frac{3r-1-\ln(1+\frac{1}{r})(3r^2-2r-1)}{2r^2\ln^2(1+\frac{1}{r})(r+1)^2}$. Since $\begin{array}{|c|c|c|c|c|}\hline \hline \frac{\ln(1+\frac{1}{r})(3r^2-2r-1)}{3r-1} &= \ln(1+\frac{1}{r})\frac{(3r^2-2r-1)}{3r-1} &= \frac{(3r-1)(r-\frac{1}{3})-\frac{4}{3}}{3r-1}\ln(1+\frac{1}{r}) < r \\ \hline \ln(1+\frac{1}{r}) &= \ln(1+\frac{1}{r})^r, \ (1+\frac{1}{r})^r \text{ is monotonically increasing in } (0,+\infty) \\ \text{and } \lim_{r \to +\infty} (1+\frac{1}{r})^r &= e, \ \frac{\ln(1+\frac{1}{r})(3r^2-2r-1)}{3r-1} < \ln(1+\frac{1}{r})^r < \ln e = 1. \\ \hline \ln(1+\frac{1}{r})^r < 0 \text{ and } g_2(r) \geq g_2(4) &= \frac{11}{40\ln\frac{5}{4}} > 1, \text{ it implies that } \frac{3r-1}{r(r+1)} > 2\ln\frac{r+1}{r} \\ \text{and } \frac{dg_1}{dr} &= 2\ln\frac{r+1}{r} + \frac{1-3r}{r(r+1)} < 0. \\ \hline \ln d \frac{(2r-2)\ln\frac{r+1}{r} \cdot (\frac{r+1}{r})^{\alpha}}{\ln r \cdot (\frac{1}{r})^{\alpha}} &= \frac{(2r-2)\ln\frac{r+1}{r}}{\ln r} \cdot (r+1)^{\alpha} \leq \frac{(2r-2)(\ln(r+1)-\ln r)}{\ln r} \\ = \frac{g_1(r)+\ln r}{\ln r} < 1. \\ \hline \text{Since } \frac{\partial g(\alpha,0)}{\partial \alpha} &= (2r-2)\ln\frac{r+1}{r} \cdot (\frac{r+1}{r})^{\alpha} - \ln r \cdot (\frac{1}{r})^{\alpha}, \ \frac{\partial g(\alpha,0)}{\partial \alpha} < 0. \\ \hline \text{Consequently, } g(\alpha,q) \geq g(\alpha,0) > g(0,0) = 1 + (2r-2) - (2r-1) = 0. \\ \hline \text{Thus } f(\alpha,q) &= g(\alpha,q)(r+q)^{\alpha} > 0. \\ \end{array}$

Lemma 20. Let $f(x) = (x+q)^{\alpha}$. If $\alpha < 0$ and $-1 < q \le 0$, then

$$f(1) - 2f(2) + f(4) > 0.$$

Proof. Let $f(\alpha, q) = f(1) - 2f(2) + f(4) = (1+q)^{\alpha} - 2(2+q)^{\alpha} + (4+q)^{\alpha}$ and $g(\alpha, q) = \frac{f(\alpha, q)}{(2+q)^{\alpha}} = \left(\frac{1+q}{2+q}\right)^{\alpha} + \left(\frac{4+q}{2+q}\right)^{\alpha} - 2$. Firstly,

$$\frac{\partial g}{\partial q} = \frac{\alpha}{(2+q)^2} \left[\left(\frac{1+q}{2+q} \right)^{\alpha-1} - 2 \left(\frac{4+q}{2+q} \right)^{\alpha-1} \right]$$

Since $\frac{\left(\frac{1+q}{2+q}\right)^{\alpha-1}}{2\left(\frac{4+q}{2+q}\right)^{\alpha-1}} = \frac{1}{2}\left(\frac{1+q}{4+q}\right)^{\alpha-1} \ge \frac{1}{2}\left(1-\frac{3}{4+q}\right)^{-1} \ge \frac{1}{2}\left(1-\frac{3}{4}\right)^{-1} = 2 > 1,$ $\frac{\partial g}{\partial q} < 0. \text{ Thus, } g(\alpha,q) \ge g(\alpha,0) = \left(\frac{1}{2}\right)^{\alpha} + 2^{\alpha} - 2. \text{ Since } \frac{\mathrm{d}g(\alpha,0)}{\mathrm{d}\alpha} = \ln 2 \cdot 2^{\alpha} - \ln 2 \cdot \left(\frac{1}{2}\right)^{\alpha} < 0, \ g(\alpha,q) \ge g(\alpha,0) > g(0,0) = 0. \text{ Thus } f(\alpha,q) = g(\alpha,q)(2+q)^{\alpha} > 0.$

Lemma 21. Let $f(x) = (x+q)^{\alpha}$. If $\alpha < 0$ and $-1 < q \le 0$, then

$$f(1) + 2f(4) + f(5) - 4f(3) > 0.$$

 $\begin{array}{l} Proof. \ \text{Let} \ f(\alpha,q) = f(1) + 2f(4) + f(5) - 4f(3) = (1+q)^{\alpha} + 2(4+q)^{\alpha} + (5+q)^{\alpha} \\ q)^{\alpha} - 4(3+q)^{\alpha} \ \text{and} \ f_1(\alpha,q) = \frac{f(\alpha,q)}{(3+q)^{\alpha}} = \left(\frac{1+q}{3+q}\right)^{\alpha} + 2\left(\frac{4+q}{3+q}\right)^{\alpha} + \left(\frac{5+q}{3+q}\right)^{\alpha} - 4. \ \text{Firstly}, \ \frac{\partial f_1}{\partial q} = \frac{\alpha}{(3+q)^2} \left[2\left(\frac{1+q}{3+q}\right)^{\alpha-1} - 2\left(\frac{4+q}{3+q}\right)^{\alpha-1} - 2\left(\frac{5+q}{3+q}\right)^{\alpha-1} \right]. \ \text{Set} \ f_2(\alpha,q) = 2\left(\frac{1+q}{3+q}\right)^{\alpha-1} - 2\left(\frac{4+q}{3+q}\right)^{\alpha-1} - 2\left(\frac{5+q}{3+q}\right)^{\alpha-1} \ \text{and} \ f_3(\alpha,q) = \frac{f_2(\alpha,q)}{2\left(\frac{5+q}{3+q}\right)^{\alpha-1}} \end{array}$

$$\begin{split} \overline{\left(\frac{1+q}{5+q}\right)^{\alpha-1} - \left(\frac{4+q}{5+q}\right)^{\alpha-1} - 1.} \\ \text{Since } \frac{\partial f_3}{\partial q} &= \frac{\alpha-1}{(5+q)^2} \left[4 \left(\frac{1+q}{5+q}\right)^{\alpha-2} - \left(\frac{4+q}{5+q}\right)^{\alpha-2} \right] \text{ and } 4 \frac{\left(\frac{1+q}{5+q}\right)^{\alpha-2}}{\left(\frac{4+q}{5+q}\right)^{\alpha-2}} = 4 \left(\frac{1+q}{4+q}\right)^{\alpha-2} \\ &\geq 4 \left(1 - \frac{3}{4+q}\right)^{-2} \geq 4 \left(1 - \frac{3}{4}\right)^{-2} = 64 > 1 \ , \ \frac{\partial f_3}{\partial q} < 0. \ \text{Thus, } f_3(\alpha, q) \geq \\ f_3(\alpha, 0) &= \left(\frac{1}{5}\right)^{\alpha-1} - \left(\frac{4}{5}\right)^{\alpha-1} - 1. \ \text{Since } \frac{df_3(\alpha, 0)}{d\alpha} = \ln \frac{5}{4} \cdot \left(\frac{4}{5}\right)^{\alpha-1} - \ln 5 \cdot \left(\frac{1}{5}\right)^{\alpha-1} \\ \text{and } \frac{\ln \frac{5}{4} \cdot \left(\frac{4}{5}\right)^{\alpha-1}}{\ln 5 \cdot \left(\frac{1}{5}\right)^{\alpha-1}} = \frac{\ln \frac{5}{4}}{\ln 5} \cdot 4^{\alpha-1} \leq \frac{\ln \frac{5}{4}}{\ln 5} \cdot 4^{-1} < 1, \ \frac{df_3(\alpha, 0)}{d\alpha} < 0. \ \text{Thus, } f_3(\alpha, q) \geq \\ f_3(\alpha, 0) > f_3(0, 0) = 5 - \frac{5}{4} - 1 > 0, \ \frac{\partial f_1}{\partial q} = \frac{\alpha}{(3+q)^2} f_2(\alpha, q) = \frac{\alpha}{(3+q)^2} f_3(\alpha, q) \cdot \\ 2 \left(\frac{5+q}{3+q}\right)^{\alpha-1} < 0 \ \text{and } f_1(\alpha, q) \geq f_1(\alpha, 0) = \left(\frac{1}{3}\right)^{\alpha} + 2\left(\frac{4}{3}\right)^{\alpha} + \left(\frac{5}{3}\right)^{\alpha} - 4. \\ \text{Set } f_4(\alpha) = \frac{df_1(\alpha, 0)}{d\alpha} / \left(\frac{5}{3}\right)^{\alpha} = \ln \frac{5}{3} + 2\ln \frac{4}{3} \cdot \left(\frac{4}{5}\right)^{\alpha} - \ln 3 \cdot \left(\frac{1}{5}\right)^{\alpha}. \ \text{Since } \\ \frac{df_4}{d\alpha} = \ln 3 \cdot \ln 5 \cdot \left(\frac{1}{5}\right)^{\alpha} - 2\ln \frac{4}{3} \cdot \ln \frac{5}{4} \cdot \left(\frac{4}{5}\right)^{\alpha} \ \text{and } \frac{\ln 3 \cdot \ln 5 \cdot \left(\frac{1}{5}\right)^{\alpha}}{2\ln \frac{4}{3} \cdot \ln \frac{5}{4} \cdot \left(\frac{4}{5}\right)^{\alpha}} \end{aligned}$$

 $(\frac{1}{4})^{\alpha} \geq \frac{\ln 3 \cdot \ln 5}{2 \ln \frac{4}{3} \cdot \ln \frac{5}{4}} \cdot (\frac{1}{4})^0 > 1, \ \frac{df_4}{d\alpha} > 0.$ Consequently, $f_4(\alpha) < f_4(0) =$ $\ln \frac{5}{3} + 2 \ln \frac{4}{3} - \ln 3 < 0$ and $\frac{df_1(\alpha, 0)}{d\alpha} = f_4(\alpha)(\frac{5}{3})^{\alpha} < 0$. Thus, $f_1(\alpha, q) \geq 1$ $f_1(\alpha, 0) > f_1(0, 0) = 0$ and $f(\alpha, q) = f_1(\alpha, q)(3+q)^{\alpha} > 0$.

Lemma 22. Let $f(x) = (x+q)^{\alpha}$. If $\alpha \leq -t$, $0 < q \leq 1.413t + 0.587$ and t > 1, then

$$f(0) + 2f(2) - 3f(1) \ge 0.$$

Proof. Let $f(\alpha, q) = f(0) + 2f(2) - 3f(1) = q^{\alpha} + 2(2+q)^{\alpha} - 3(1+q)^{\alpha}$ and $g(\alpha, q) = \frac{f(\alpha, q)}{(1+q)^{\alpha}} = \left(\frac{q}{1+q}\right)^{\alpha} + 2\left(\frac{2+q}{1+q}\right)^{\alpha} - 3$. Firstly,

$$\frac{\partial g}{\partial q} = \frac{\alpha}{(1+q)^2} \left[\left(\frac{q}{1+q} \right)^{\alpha-1} - 2 \left(\frac{2+q}{1+q} \right)^{\alpha-1} \right]$$

Let $g_1(t) = (t+1) \ln \left(\frac{1.413t+2.587}{1.413t+0.587}\right) - \ln 2$. According to Lemma 10, since $2 \times 1.413^2 - 1.413 \times 2.587 - 1.413 \times 0.587 < 0, \ 1.413 \times 2.587 + 1.413 \times 0.587 < 0$ $0.587 - 2 \times 2.587 \times 0.587 > 0$ and $\frac{dg_1}{dt} > 0$ has a unique root t_1 on the interval $(1, \infty)$, where $t_1 \approx 1.625$, it follows that $g_1(t) \ge g_1(t_1) \approx 0.69 > 0$. Thus, $\frac{\left(\frac{q}{1+q}\right)^{\alpha-1}}{2\left(\frac{2+q}{1+q}\right)^{\alpha-1}} = \frac{1}{2} \left(\frac{q}{2+q}\right)^{\alpha-1} \ge \frac{1}{2} \left(\frac{2+q}{q}\right)^{t+1} \ge \frac{1}{2} \left(\frac{1.413t+2.587}{1.413t+0.587}\right)^{t+1} > 1$ and $\frac{\partial g}{\partial a} < 0$.

We now prove that the partial derivative of the function $q(\alpha, q)$ with respect to α is less than or equal to 0. By Lemmas 8 and 11, $\frac{2\ln(\frac{1.413t+2.587}{1.413t+1.587})}{\ln(\frac{1.413t+0.587}{1.413t+0.587})} \left(\frac{1.413t+0.587}{1.413t+2.587}\right)^t \leq 1$ and $\frac{\ln(\frac{q+2}{q+1})}{\ln(\frac{q+1}{q})}$ is monotonically increasing

with respect to q, we have

$$\frac{2\ln\left(\frac{q+2}{q+1}\right)\left(\frac{q+2}{q+1}\right)^{a}}{\ln\left(\frac{q+1}{q}\right)^{a}} \le \frac{2\ln\left(\frac{q+2}{q+1}\right)}{\ln\left(\frac{q+1}{q}\right)} \left(\frac{q}{q+2}\right)^{t} \le \frac{2\ln\left(\frac{1.413t+2.587}{1.413t+1.587}\right)}{\ln\left(\frac{1.413t+1.587}{1.413t+0.587}\right)} \left(\frac{1.413t+0.587}{1.413t+2.587}\right)^{t} \le 1.$$

Since $\frac{\partial g}{\partial \alpha} = 2 \ln \left(\frac{q+2}{q+1}\right) \left(\frac{q+2}{q+1}\right)^a - \ln \left(\frac{q+1}{q}\right) \left(\frac{q}{q+1}\right)^a \leq 0, \ \frac{\partial g}{\partial \alpha} \leq 0.$ Since $\frac{\partial g}{\partial q} \leq 0$ and $\frac{\partial g}{\partial \alpha} \leq 0, \ g(\alpha, q) \geq g(-t, 1.413t + 0.587) = h_1(t)$ $+2h_2(t) - 3, \ \text{where } h_1(t) = \left(\frac{1.413t+1.587}{1.413t+0.587}\right)^t \ \text{and } h_2(t) = \left(\frac{1.413t+1.587}{1.413t+2.587}\right)^t.$ Let $h_3(t) = t \ln \left(\frac{1.413t+1.587}{1.413t+0.587}\right) \ \text{and } h(t) = h_1(t) + 2h_2(t) - 3.$ By Lemma 9, we have $h_2(t)$ and $\frac{dh_3}{dt}$ are positive and monotonically decreasing on the interval $[1, \infty)$. On the interval $[1, \infty), h_1(t)$ and $h_3(t)$ are positive monotonically increasing functions, while $\frac{dh_2}{dt}$ is a negative monotonically increasing function. For two constants a and b, let $h_4(a, b) = e^{h_3(a)} \frac{dh_3}{dt}|_{t=b} + 2 \frac{dh_2}{dt}|_{t=a}, \ \text{where } 1 \leq a \leq b.$ When $t \in [a, b], \ \frac{dh}{dt} = e^{h_3(t)} \frac{dh_3}{dt} + 2 \frac{dh_2}{dt} \geq h_4(a, b)$. If $h_4(a, b) \geq 0$, then $\frac{dh}{dt} \geq 0$ on the interval [a, b]. It can be verified that $h_4(a, b) > 0$ when a = 1 + 0.0001i and b = a + 0.0001 for $i \in \{0, 1, \dots, 7240\}$. Thus, $\frac{dh}{dt} \geq 0$ and $h(t) \geq h(1) = 0$ on the interval [1, 74]. When $t \geq 74, h(t) = h_1(t) + 2h_2(t) - 3 \geq h_1(74) + 2h_2(\infty) - 3 > 0.$ Hence, $g(\alpha, q) \geq h(t) \geq 0$ and $f(\alpha, q) = g(\alpha, q)(1+q)^{\alpha} \geq 0.$

Lemma 23. Let $f(x) = (x+q)^{\alpha}$. If $\alpha \le -t$, $0 < q \le 1.413t + 0.587$ and $t \ge 1$, then

$$f(0) - f(1) - 2f(2) + 2f(3) > 0.$$

Proof. Let $f(\alpha, q) = f(0) - f(1) - 2f(2) + 2f(3) = q^{\alpha} - (1+q)^{\alpha} - 2(2+q)^{\alpha} + 2(3+q)^{\alpha}$ and $f_1(\alpha, q) = \frac{f(\alpha, q)}{q^{\alpha}} = 1 - \left(\frac{1+q}{q}\right)^{\alpha} - 2\left(\frac{2+q}{q}\right)^{\alpha} + 2\left(\frac{3+q}{q}\right)^{\alpha}$. Firstly,

$$\frac{\partial f_1}{\partial q} = \frac{\alpha}{q^2} \left[-6\left(\frac{3+q}{q}\right)^{\alpha-1} + \left(\frac{1+q}{q}\right)^{\alpha-1} + 4\left(\frac{2+q}{q}\right)^{\alpha-1} \right].$$

Let $f_2(\alpha, q) = -6\left(\frac{3+q}{q}\right)^{\alpha-1} + \left(\frac{1+q}{q}\right)^{\alpha-1} + 4\left(\frac{2+q}{q}\right)^{\alpha-1}$ and $f_3(\alpha, q) = \frac{f_2(\alpha, q)}{\left(\frac{3+q}{q}\right)^{\alpha-1}} = \left(\frac{1+q}{3+q}\right)^{\alpha-1} + 4\left(\frac{2+q}{3+q}\right)^{\alpha-1} - 6.$

$$\begin{split} \hline Since \frac{\partial f_3}{\partial q} &= \left(\frac{\alpha - 1}{(3 + q)^2} \left[4 \left(\frac{2 + q}{3 + q}\right)^{\alpha - 2} + 2 \left(\frac{1 + q}{3 + q}\right)^{\alpha - 2} \right] < 0 \text{ and} \\ \frac{\partial f_3}{\partial \alpha} &= \ln \left(\frac{1 + q}{3 + q}\right) \left(\frac{1 + q}{3 + q}\right)^{\alpha - 1} + 4 \ln \left(\frac{2 + q}{3 + q}\right)^{\alpha - 1} < 0, \\ f_3(\alpha, q) &\geq f_3(-t, 1.413t + 0.587) = e^{h_1(t)} + 4e^{h_2(t)} - 6, \text{ where } h_1(t) = \\ (t + 1) \ln \left(\frac{1.413t + 3.587}{1.413t + 1.587}\right) \text{ and } h_2(t) = (t + 1) \ln \left(\frac{1.413t + 3.587}{1.413t + 2.587}\right). \text{ According to} \\ \text{Lemma 10, since } 2 \times 1.413^2 - 1.413 \times 3.587 - 1.413 \times 1.587 < 0, 1.413 \times 3.587 + 1.413 \times 2.587 < 0 \text{ and } 1.413 \times 3.587 + 1.413 \times 2.587 < 0 \text{ and } 1.413 \times 3.587 + 1.413 \times 2.587 - 2 \times 3.587 \times 2.587 < 0, \\ \text{it follows that } h_1(t) \geq h_1(1) \text{ and } h_2(t) \geq h_2(1). \text{ Thus, } f_3(\alpha, q) \geq e^{h_1(t)} + \\ 4e^{h_2(t)} - 6 \geq e^{h_1(1)} + 4e^{h_2(1)} - 6 = \frac{109}{36} > 0. \text{ Since } \frac{\partial f_1}{\partial q} = \frac{\alpha}{q^2} f_2(\alpha, q) = \\ \frac{\alpha}{q^2} f_3(\alpha, q) \cdot \left(\frac{3 + q}{q}\right)^{\alpha}, \frac{\partial f_1}{\partial q} < 0. \\ \text{ The partial derivative of } f_1(\alpha, q) \text{ with respect to } \alpha \text{ is given by:} \\ \frac{\partial f_1}{\partial \alpha} = 2\ln \left(\frac{3 + q}{q}\right) \left(\frac{3 + q}{q}\right)^{\alpha} - 2\ln \left(\frac{2 + q}{3 + q}\right)^{\alpha} - \ln \left(\frac{1 + q}{q}\right) \left(\frac{1 + q}{q}\right) \left(\frac{3 + q}{3 + q}\right)^{\alpha} > 0 \\ \text{ and } \frac{\partial f_4}{\partial q} = \left(\frac{2 + 1}{q(q + 1)}\right)^{\alpha} \left(\frac{3 + q}{q(q + 2)}\right) - 2\ln \left(\frac{2 + q}{3 + q}\right)^{\alpha} + \ln \left(\frac{1 + q}{q}\right) \ln \left(\frac{3 + q}{1 + q}\right) \left(\frac{3 + q}{3 + q}\right)^{\alpha} - 0 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 4}{q(q + 3)}\right)^{\alpha} - \frac{6}{q(q + 3)} + \left(\frac{4 + 3}{q(q + 2)}\right)^{\alpha} + 1 + 1 + \left(\frac{q + 3}{q}\right) \left(\frac{1 + q}{q}\right) \left(\frac{3 + q}{q}\right)^{\alpha} > 0 \\ \text{ and } \frac{\partial f_4}{\partial q} = \left(\frac{q + 1 + 3}{q(q + 1)}\right)^{\alpha} - 6 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 3}{q(q + 3)}\right)^{\alpha} - 6 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 3}{q(q + 3)}\right)^{\alpha} + 1 + \left(\frac{1 + 3}{q(q + 3)}\right)^{\alpha} + 1 + \left(\frac{q + 3}{q(q + 2)}\right)^{\alpha} + 1 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 3 + 5 \times 87}{1 + q(q + 3)}\right)^{\alpha} + 1 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 4}{q(q + 3)}\right)^{\alpha} - 6 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 3 + 5 \times 87}{1 + 1 + 1 + 8 + 2 + 1 + 8}\right)^{\alpha} + 1 \\ \frac{1}{q(q + 3)} \left(\frac{1 + 1 + 4 + 2 + 1 + 2 + 1 + 8}{1 + 1 + 1 + 1 + 8}\right)^{\alpha} + 1 \\ \frac{1}{q(q + 3)}$$

 $t \in [a,b], g_3(t) - g_4(t) = 2g_5(t) - 2g_6(t)g_7(t) - g_8(t)g_9(t) \le g_{11}(a,b).$ If $g_{11}(a,b) \leq 0$, then $g_3(t) - g_4(t) \leq 0$ on the interval [a,b]. It can be verified that $g_{11}(a,b) < 0$ when a = 1 + 0.5i and b = a + 0.5 for $i \in \{0, 1, 2, 3\}$. Thus, $g_3(t) - g_4(t) < 0$ on the interval [1,3]. When $t \geq 3, \ \frac{g_6(t)g_7(t)}{g_5(t)} = g_7(t)g_{10}(t) \geq g_7(3)g_{10}(\infty) = \frac{2}{3}g_7(3) > 1, \ g_3(t) < 0 \ \text{and}$ $q_3(t) - q_4(t) < 0.$ Since $\frac{\partial f_4}{\partial q} > 0$ and $\frac{\partial f_4}{\partial \alpha} > 0$, $f_4(\alpha, q) \leq f_4(-t, 1.413t + 0.587) = g_3(t) - g_3(t)$ $g_4(t) < 0$ and $\frac{\partial f_1}{\partial \alpha} = f_4(\alpha, q) (\frac{3+q}{q})^{\alpha} < 0.$ Since $\frac{\partial f_1}{\partial q} < 0$ and $\frac{\partial f_1}{\partial \alpha} < 0$, $f_1(\alpha, q) \geq f_1(-t, 1.413t + 0.587) =$ $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t)$, where $g_{12}(t) = \left(\frac{1.413t + 0.587}{1.413t + 1.587}\right)^t$, $g_{13}(t) = \frac{1}{2} \left(\frac{1.413t + 0.587}{1.413t + 1.587}\right)^t$ $\left(\frac{1.413t+0.587}{1.413t+2.587}\right)^t$ and $g_{14}(t) = \left(\frac{1.413t+0.587}{1.413t+3.587}\right)^t$. By Lemma 9, $\lim_{t \to +\infty} g_{14}(t)$ $=e^{\frac{-3}{1.413}}$, the functions $g_{12}(t)$, $g_{13}(t)$ and $g_{14}(t)$ are all monotonically decreasing. For two constants a and b, let $g_{15}(a,b) = 1 - g_{12}(a) - 2g_{13}(a) + g_{15}(a,b) = 1 - g_{15}(a,b) = 1 2g_{14}(b)$, where $1 \leq a \leq b$. When $t \in [a, b]$, $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) \geq 2g_{14}(t) = 2g_{14}(t) + 2g_{14}(t) = 2g_{14}(t) =$ $g_{15}(a,b)$. If $g_{15}(a,b) \ge 0$, then $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) \ge 0$ on the interval [a, b]. It can be verified that $g_{15}(a, b) > 0$ when a = 1 + 0.4i and b = a + 0.4 for $i \in \{0, 1, \dots, 7\}$. Thus, $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) > 0$ on the interval [1,4]. When $t \ge 4$, $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) \ge 1 - g_{12}(4) - g_{12}(4)$ $2g_{13}(4) + 2g_{14}(\infty) > 0$, so the function $1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) > 0$ on the interval $[1, +\infty)$.

Thus, $f_1(\alpha, q) \ge 1 - g_{12}(t) - 2g_{13}(t) + 2g_{14}(t) > 0$ and $f(\alpha, q) = f_1(\alpha, q)q^{\alpha} > 0.$

Acknowledgment: The research was supported by NSFC (No. 12061073).

References

[1] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index (χ_{α}) with given cyclomatic number when $\alpha > 1$, *Discr. Appl. Math.* **257** (2019) 19–30.

- [2] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, *MATCH Commun. Math. Comput. Chem.* 80 (2018) 5–84.
- [3] A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89–96.
- [4] M. Aouchiche, F. K. Bell, D. Cvetković, P. Hansen, P. Rowlinson, S. K. Simić, D. Stevanović, Variable neighborhood search for extremal graphs. 16. Some conjectures related to the largest eigenvalue of a graph, *Eur. J. Oper. Res.* **191** (2008) 661–676.
- [5] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, London, 2008.
- [6] Y. Caro, New results on the independence number, *Tech. Report*, Tel-Aviv Univ., 1979.
- [7] X. Cheng, X. Li, Some bounds for the vertex degree function index of connected graphs with given minimum and maximum degrees, *MATCH Commun. Math. Comput. Chem.* **90** (2023) 175–186.
- [8] S. Fajtlowicz, On conjectures of graffiti II, Congr. Num. 60 (1987) 189–197.
- [9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [10] L. H. Hall, L. B. Kier, The nature of structure-activity relationships and their relation to molecular connectivity, *Eur. J. Med. Chem.* 12 (1977) 307–312.
- [11] Z. Hu, X. Li, D. Peng, Graphs with minimum vertex-degree functionindex for convex functions, MATCH Commun. Math. Comput. Chem. 88 (2022) 521–533.
- [12] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, *Discr. Appl. Math.* 155 (2007) 1044–1054.
- [13] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425–434.
- [14] X. Li, Y. Shi, (n,m)-graphs with maximum zeroth-order general Randić index for $\alpha \in (-1,0)$, MATCH Commun. Math. Comput. Chem. **62** (2009) 163–170.

- [15] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
- [16] L. Pavlović, Maximal value of the zeroth-order Randić index, Discr. Appl. Math. 127 (2003) 615–626.
- [17] L. Pavlović, M. Lazić, T. Aleksić, More on "Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index", *Discr. Appl. Math.* 157 (2009) 2938–2944.
- [18] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109–114.
- [19] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285–294.
- [20] V. K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum, 81-11217-9, Murray Hill, 1981.
- [21] Y. Yao, M. Liu, F. Belardo, C. Yang, Unified extremal results of topological indices and spectral invariants of graphs, *Discr. Appl. Math.* 271 (2019) 218–232.
- [22] Y. Yao, M. Liu, X. Gu, Unified extremal results for vertex-degreebased graph invariants with given diameter, *MATCH Commun. Math. Comput. Chem.* 82 (2019) 699–714.