Asymptotic Distribution of Degree-Based Topological Indices

Mingao Yuan
${ }^{a}$ Department of Statistics, North Dakota State University, USA
mingao. yuan@ndsu.edu

(Received May 30, 2023)

Abstract

Topological indices play a significant role in mathematical chemistry. Given a graph \mathcal{G} with vertex set $\mathcal{V}=\{1,2, \ldots, n\}$ and edge set \mathcal{E}, let d_{i} be the degree of node i. The degree-based topological index is defined as $\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}} f\left(d_{i}, d_{j}\right)$, where $f(x, y)$ is a symmetric function. In this paper, we investigate the asymptotic distribution of the degree-based topological indices of a heterogeneous Erdős-Rényi random graph. We show that after suitably centered and scaled, the topological indices converges in distribution to the standard normal distribution. Interestingly, we find that the general Randić index with $f(x, y)=(x y)^{\tau}$ for a constant τ exhibits a phase change at $\tau=-\frac{1}{2}$.

1 Introduction

Topological index is a numerical parameter of a graph. It is graph invariant and characterizes the topology of a graph. Topological indices are used to model many physicochemical properties in QSAR [$1,4,12$]. One of the most important types of topological indices is the degree-based topological indices, which are defined as a function of the degrees of nodes in a graph [12].

The first degree-based topological index is the Randić index [20]. It measures the branching extent of a graph. The Randić index is the
most popular and most studied index among all topological indices. It plays a central role in understanding quantitative structure-property and structure-activity relations in chemistry and pharmocology [21,22]. Moreover, the Randic index possesses a wealth of non-trivial and interesting mathematical properties $[2,3,5,6,15]$. In addition, the Randić index finds countless applications in network (graph) data analysis. For instance, it was used to quantify the similarity between different networks or subgraphs of the same network [11], it serves as a quantitative characterization of network heterogeneity [10], and [8,9] used the Randić index to measure graph robustness.

Motivated by the Randić index, various degree-based topological indices have been introduced and attracted great interest in the past years [16]. For example, [2] proposed the general Randić index, which includes the Randić index and the second Zagreb index as special cases. [26, 27] defined the general sum-connectivity index, which includes the harmonic index as a special case [28]. [23,24] introduced the inverse sum indeg index to predict the total surface area of octane isomers. The reader is referred to [12] for more references.

One of the interesting research topics in the study of topological indices is to investigate their properties of random graphs. Recently, $[17,18]$ performed numeric and analytic analyses of the Randić index and the harmonic index in the Erdős-Rényi random graph. Their simulation studies show that the indices are approximately equal to one half of the number of nodes, and the distributions of the indices are symmetric around their expectations. $[7,8,14]$ calculated the expectations of the Randic index, the generalized Zagreb indices and two modified Zagreb indices of the ErdősRényi random graph, respectively. [25] derived the asymptotic limits of the Randić index and the harmonic index of a heterogeneous random graph.

In this paper, we are interested in the asymptotic distribution of the degree-based topological index of a heterogeneous Erdős-Rényi random graph. We show that after suitably centered and scaled, the degree-based topological index converges in distribution to the standard normal distribution. We apply our results to several well-known topological indices and observe that the general Randić index exhibits a phase change phe-
nomenon.
This paper is organized as follows. In Section 2, we present the asymptotic distribution of the topological index of a heterogeneous random graph. In Section 3, we provide several examples. The proof is deferred to Section 4.

Notation: We adopt the Bachmann-Landau notation throughout this paper. Let a_{n} and b_{n} be two positive sequences. Denote $a_{n}=\Theta\left(b_{n}\right)$ if $c_{1} b_{n} \leq a_{n} \leq c_{2} b_{n}$ for some positive constants c_{1}, c_{2}. Denote $a_{n}=$ $\omega\left(b_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$. Denote $a_{n}=O\left(b_{n}\right)$ if $a_{n} \leq c b_{n}$ for some positive constants c. Denote $a_{n}=o\left(b_{n}\right)$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$. Let $\mathcal{N}(0,1)$ be the standard normal distribution and X_{n} be a sequence of random variables. Then $X_{n} \Rightarrow \mathcal{N}(0,1)$ means X_{n} converges in distribution to the standard normal distribution as n goes to infinity. Denote $X_{n}=O_{P}\left(a_{n}\right)$ if $\frac{X_{n}}{a_{n}}$ is bounded in probability. Denote $X_{n}=o_{P}\left(a_{n}\right)$ if $\frac{X_{n}}{a_{n}}$ converges to zero in probability as n goes to infinity. Let $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left(X_{n}\right)$ denote the expectation and variance of a random variable X_{n} respectively. $\mathbb{P}[E]$ denote the probability of an event E. Let $f=f(x, y)$ be a function. For non-negative integers $s, t, f^{(s, t)}=f^{(s, t)}(x, y)$ denote the partial derivative $\frac{\partial^{s+t} f(x, y)}{\partial x^{s} \partial y^{t}}$. For convenience, sometimes we write $f_{x}=f^{(1,0)}, f_{y}=f^{(0,1)}$, $f_{x x}=f^{(2,0)}, f_{y y}=f^{(0,2)}$ and $f_{x y}=f^{(1,1)} . \exp (x)$ denote the exponential function e^{x}. For positive integer n, denote $[n]=\{1,2, \ldots, n\}$. Given a finite set $E,|E|$ represents the number of elements in E.

2 Main results

A graph consists of a set of nodes (vertices) and a set of edges. Given a positive integer n, an undirected graph on $\mathcal{V}=[n]$ is a pair $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where \mathcal{E} is a collection of subsets of \mathcal{V} such that $|e|=2$ for every $e \in \mathcal{E}$. Elements in \mathcal{E} are called edges. A graph can be conveniently represented as an adjacency matrix A, where $A_{i j}=1$ if $\{i, j\}$ is an edge, $A_{i j}=0$ otherwise and $A_{i i}=0$. Since \mathcal{G} is undirected, the adjacency matrix A is symmetric. The degree d_{i} of node i is the number of edges connecting it, that is, $d_{i}=\sum_{j \neq i} A_{i j}$. A graph is said to be random if $A_{i j}(1 \leq i<j \leq n)$ are random.

The degree-based topological index of a graph is defined as follows $[1,12]$.

Definition 1. The degree-based topological index of a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is defined as

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}} f\left(d_{i}, d_{j}\right) \tag{1}
\end{equation*}
$$

where $f(x, y)$ is a real function satisfying $f(x, y)=f(y, x)$.
Many well-known topological indices can be expressed as (1). For example, the Randić index corresponds to $f(x, y)=(x y)^{-\frac{1}{2}}$ and the hyperZagreb index corresponds to $f(x, y)=(x+y)^{2}$.

Definition 2. Let β be a constant between zero and one, n be an positive integer, and

$$
W=\left\{w_{i j} \in[\beta, 1] \mid 1 \leq i<j \leq n, w_{j i}=w_{i j}, w_{i i}=0\right\}
$$

Define a heterogeneous random graph $\mathcal{G}_{n}(\beta, W)$ as

$$
\mathbb{P}\left(A_{i j}=1\right)=p_{n} w_{i j},
$$

where $A_{i j}(1 \leq i<j \leq n)$ are independent, $A_{i j}=A_{j i}$ and $p_{n} \in(0,1)$.
The expected degree of node i in $\mathcal{G}_{n}(\beta, W)$ is $\mathbb{E}\left[d_{i}\right]=\sum_{k \neq i} p_{n} w_{i k}$. In general, $\mathbb{E}\left[d_{i}\right] \neq \mathbb{E}\left[d_{j}\right]$ if $i \neq j$, that is, the expected degrees of nodes are not the same. Hence $\mathcal{G}_{n}(\beta, W)$ is a heterogeneous random graph. When $w_{i j}=c(1 \leq i<j \leq n)$ for a constant $c \in(0,1), \mathcal{G}_{n}(\beta, W)$ is the ErdősRényi random graph. It is homogeneous in the sense that nodes in it share the same expected degree.

Several recent works have studied the expectations of some special topological indices of the Erdős-Rényi random graph $[7,8,14,17,18]$. In this paper, we derive the asymptotic distribution of the topological index \mathcal{I}_{n} of the heterogeneous random graph $\mathcal{G}_{n}(\beta, W)$. Our results can be applied to all the topological indices studied in $[7,8,14,17,18]$.

Before presenting our results, we introduce several notations and as-
sumptions. Let $w_{i(k)}=1+\sum_{l \notin\{i, k\}} p_{n} w_{i l}$ and

$$
\begin{equation*}
\sigma_{n}^{2}=\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right) \tag{2}
\end{equation*}
$$

where

$$
a_{i j}=\frac{1}{2} f\left(w_{i(j)}, w_{j(i)}\right)+\frac{1}{2} \sum_{l \notin\{i, j\}} p_{n} w_{i l}\left[f_{x}\left(w_{i(l)}, w_{l(i)}\right)+f_{y}\left(w_{i(l)}, w_{l(i)}\right)\right] .
$$

Assumption 1. Let $k_{0}\left(k_{0} \geq 3\right)$, s, t be non-negative integers. Suppose $n p_{n}=\omega(\log (n))$ and the following conditions hold.
(C1)

$$
\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} p_{n}=o\left(\sigma_{n}^{4}\right)
$$

(C2). For all non-negative integers s, t satisfying $s+t \leq k_{0}$, there is some positive constant C such that

$$
\left|f^{(s, t)}(x, y)\right| \leq(x y)^{C}
$$

(C3). Given s, t satisfying $s+t=k_{0},\left|f^{(s, t)}(x, y)\right|$ is monotone in x and y.
(C4). For a large positive constant M and positive sequences $a_{n}, b_{n} \in$ $\left[\left(\log \left(n p_{n}\right)\right)^{-2}, M\right]$, the following holds. For $s+t=k_{0}$,

$$
n\left(n p_{n}\right)^{\frac{k_{0}}{2}+1}\left|f^{(s, t)}\left(a_{n} n p_{n}, b_{n} n p_{n}\right)\right|=o\left(\sigma_{n}\right)
$$

(C5). For $1 \leq s+t \leq k_{0}-1$,

$$
n\left(n p_{n}\right)^{2(s+t)-1}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|^{2}=o\left(\sigma_{n}^{2}\right)
$$

Assumption 1 is not restrictive and many common degree-based topological indices satisfy this assumption as shown later. Under Assumption 1 , we derive the asymptotic distribution of the topological index \mathcal{I}_{n} of $\mathcal{G}_{n}(\beta, W)$ as follows.

Theorem 1. Let \mathcal{I}_{n} be the topological index defined in (1) of the random graph $\mathcal{G}_{n}(\beta, W)$ and σ_{n}^{2} be defined in (2). Suppose Assumption 1 holds. Then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{3}
\end{equation*}
$$

as n goes to infinity. In addition, the expectation $\mathbb{E}\left[\mathcal{I}_{n}\right]$ has the following asymptotic expression

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \sum_{1 \leq i<j \leq n} p_{n} w_{i j} f\left(w_{i(j)}, w_{j(i)}\right) \tag{4}
\end{equation*}
$$

where the error rate $\frac{1}{n p_{n}}$ cannot be improved.
Based on Theorem 1, the degree-based topological index \mathcal{I}_{n} (suitably centered and scaled) of the heterogeneous random graph $\mathcal{G}_{n}(\beta, W)$ converges in distribution to the standard normal distribution. As far as we know, this is the first theoretical result on limiting distribution of topological indices. Moreover, Theorem 1 provides the best approximation of the expectation of \mathcal{I}_{n}, in the sense that the error rate $\frac{1}{n p_{n}}$ cannot be improved. For some special topological indices of the Erdős-Rényi random graph, it is possible to get an exact and compact expression of $\mathbb{E}\left[\mathcal{I}_{n}\right]$. For instance, [14] and [7] obtained the exact expressions of the expectation of the hyper-Zagreb index and the forgotten topological index of the ErdősRényi random graph respectively. However, for most topological indices, it seems impossible to get exact and closed-form expressions of the expectations [7]. Our result (4) provides an approximation of the expectations.

The proof of Theorem 1 proceeds by decomposing \mathcal{I}_{n} as a sum of leading term and remainder term, followed by finding the limiting distribution of the leading term and showing the remainder term is negligible. The condition ($C 1$) of Assumption 1 is used to prove the leading term converges in distribution to the standard normal distribution. The conditions $(C 2)-(C 5)$ are needed to bound the remainder term. The condition $n p_{n}=\omega(\log (n))$ requires the random graph to be relatively dense. This condition is common in theoretical network analysis. Assumption 1 is weak. We shall provide several examples of degree-based topological indices that satisfy this assumption in the subsequent section.

3 Application to several topological indices

In this section, we apply Theorem 1 to several well-known topological indices of a special heterogeneous random graph.

Let $p_{n}=n^{-\alpha}$ for a constant $\alpha \in(0,1)$ and $w_{i j}=e^{-\frac{\kappa i}{n}} e^{-\frac{\kappa j}{n}},(i \neq j)$ with non-negative constant κ. Then $e^{-2 \kappa} \leq w_{i j} \leq 1$. Denote the corresponding random graph as $\mathcal{G}_{n}(\alpha, \kappa)$. When $\kappa=0, \mathcal{G}_{n}(\alpha, 0)$ is the ErdősRényi random graph. In this case, we denote it as $\mathcal{G}_{n}(\alpha)$ for convenience. For $\kappa>0, \mathcal{G}_{n}(\alpha, \kappa)$ is heterogeneous.

Denote $c(\kappa)=\frac{1-e^{-\kappa}}{\kappa}$ for $\kappa>0$ and $c(0)=1$. Note that

$$
\sum_{i=1}^{n} e^{-\frac{\kappa i}{n}}=\frac{e^{-\frac{\kappa}{n}}\left(1-e^{-\kappa}\right)}{1-e^{-\frac{\kappa}{n}}}=n c(\kappa)+O(1), \quad \kappa>0
$$

Then

$$
\begin{aligned}
w_{i(k)} & =1+\sum_{l \notin\{i, k\}} p_{n} w_{i l} \\
& =1+p_{n} e^{-\frac{\kappa i}{n}}\left(n c(\kappa)+O(1)-e^{-\frac{\kappa i}{n}}-e^{-\frac{\kappa k}{n}}\right) \\
& =1+n p_{n} c(\kappa) e^{-\frac{\kappa i}{n}}+O\left(p_{n}\right) \\
& =n p_{n} c(\kappa) e^{-\frac{\kappa i}{n}}+O(1), \quad \kappa>0 .
\end{aligned}
$$

When $\kappa=0$,

$$
w_{i(k)}=1+\sum_{l \notin\{i, k\}} p_{n}=1+(n-2) p_{n}
$$

3.1 The general Randić index

The general Randić index is a generalization of the well-known Randic index and has been widely studied in literature $[8,17,18]$. Let $f(x, y)=$ $(x y)^{\tau}$ for a non-zero constant τ. The general Randić index \mathcal{I}_{n} is defined as

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}}\left(d_{i} d_{j}\right)^{\tau} \tag{5}
\end{equation*}
$$

When $\tau=-\frac{1}{2}, \mathcal{I}_{n}$ is the Randić index.

Given non-negative integers s, t, straightforward computation yields

$$
f^{(s, t)}(x, y)=\left(\prod_{k=0}^{s-1}(\tau-k)\right)\left(\prod_{k=0}^{t-1}(\tau-k)\right) x^{\tau-s} y^{\tau-t}
$$

Then

$$
\begin{aligned}
& a_{i j} \\
= & \frac{1}{2}\left[\left(n p_{n}\right)^{2} c(\kappa)^{2} e^{-\frac{\kappa i}{n}} e^{-\frac{\kappa j}{n}}+O\left(n p_{n}\right)\right]^{\tau} \\
& +\frac{1}{2} \sum_{l \notin\{i, j\}} p_{n} e^{-\frac{\kappa i}{n}} e^{-\frac{\kappa l}{n}} \tau\left(n p_{n} c(\kappa) e^{-\frac{\kappa i}{n}}+O(1)\right)^{\tau-1} \\
& \times\left(n p_{n} c(\kappa) e^{-\frac{\kappa l}{n}}+O(1)\right)^{\tau} \\
& +\frac{1}{2} \sum_{l \notin\{i, j\}} p_{n} e^{-\frac{\kappa i}{n}} e^{-\frac{\kappa l}{n}} \tau\left(n p_{n} c(\kappa) e^{-\frac{\kappa i}{n}}+O(1)\right)^{\tau} \\
& \times\left(n p_{n} c(\kappa) e^{-\frac{\kappa l}{n}}+O(1)\right)^{\tau-1}
\end{aligned}
$$

Note that $e^{-\kappa} \leq e^{-\frac{\kappa i}{n}} \leq 1$. If $\tau>0$, then $a_{i j}=\Theta\left(\left(n p_{n}\right)^{2 \tau}\right)$. In this case,

$$
\sigma_{n}^{2}=\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n}=\Theta\left(n\left(n p_{n}\right)^{4 \tau+1}\right)
$$

Hence

$$
\frac{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} p_{n}}{\sigma_{n}^{4}}=O\left(\frac{n\left(n p_{n}\right)^{8 \tau+1}}{n^{2}\left(n p_{n}\right)^{8 \tau+2}}\right)=o(1)
$$

For $1 \leq s+t$,

$$
n\left(n p_{n}\right)^{2(s+t)}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|^{2}=\Theta\left(n\left(n p_{n}\right)^{4 \tau}\right)=o\left(\sigma_{n}^{2}\right)
$$

Let $k_{0}=\max \left\{\left\lfloor 1+\frac{1}{1-\alpha}\right\rfloor+1,3\right\}$. Then $k_{0}>1+\frac{1}{1-\alpha}$. For $s+t=k_{0}$, it is easy to verify that

$$
n\left(n p_{n}\right)^{\frac{k_{0}}{2}+1}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|=\Theta\left(n\left(n p_{n}\right)^{1+2 \tau-\frac{k_{0}}{2}}\right)=o\left(\sigma_{n}\right)
$$

Then Assumption 1 holds and Theorem 1 applies.
Corollary 1. Let \mathcal{I}_{n} be the general Randić index defined in (5) of the random graph $\mathcal{G}_{n}(\alpha, \kappa)$ and σ_{n}^{2} be defined in (2). If $\tau>0$, then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{6}
\end{equation*}
$$

as n goes to infinity. In addition, the expectation $\mathbb{E}\left[\mathcal{I}_{n}\right]$ has the following asymptotic expression

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \sum_{1 \leq i<j \leq n} p_{n} w_{i j}\left(w_{i(j)} w_{j(i)}\right)^{\tau} \tag{7}
\end{equation*}
$$

where the error rate $\frac{1}{n p_{n}}$ cannot be improved.
When $\tau<0$, Assumption 1 may not hold. To see this, let $\kappa=0$. Then

$$
\begin{aligned}
a_{i j} & =\frac{\left(1+(n-2) p_{n}\right)^{2 \tau}}{2}+\tau\left(1+(n-2) p_{n}\right)^{2 \tau-1}(n-2) p_{n} \\
& =\left(1+(n-2) p_{n}\right)^{2 \tau}\left(\frac{1+2 \tau}{2}-\frac{\tau}{1+(n-2) p_{n}}\right)
\end{aligned}
$$

If $\tau \neq-\frac{1}{2}$, then $a_{i j}=\Theta\left(\left(n p_{n}\right)^{2 \tau}\right)$. Similar to the case $\tau>0$, Assumption 1 holds and Theorem 1 applies.

If $\tau=-\frac{1}{2}$, then $a_{i j}=\Theta\left(\frac{1}{\left(n p_{n}\right)^{2}}\right)$. In this case, $\sigma_{n}^{2}=\Theta\left(\frac{n}{\left(n p_{n}\right)^{3}}\right)$ and

$$
n\left(n p_{n}\right)^{2(s+t)-1}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|^{2}=\Theta\left(\frac{n}{\left(n p_{n}\right)^{3}}\right) .
$$

Clearly, $\frac{n}{\left(n p_{n}\right)^{3}} \neq o\left(\sigma_{n}^{2}\right)$. Hence Assumption 1 does not hold. We have to study this case separately.

When $\tau=-\frac{1}{2}, \mathcal{I}_{n}$ is the well-known Randić index. The Randić index is perhaps the first degree-based topological index introduced in [20]. Recently, [17] performed simulation studies of the expectation and distribution of the Randić index in Erdős-Rényi random graph. Its asymptotic limit was given in [25]. Here we derive the asymptotic distribution of the Randić index of the Erdős-Rényi random graph as follows.

Theorem 2. Let \mathcal{I}_{n} be the general Randić index of the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha)$ with constant $\alpha \in(0,1)$. Then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\frac{n\left(n p_{n}\right)^{2 \tau+1}}{2}\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \\
\sigma_{n}^{2}=\frac{n(n-1)(n-2) p_{n}^{2}\left(1-p_{n}\right)^{2}}{\left.32\left(1+(n-2) p_{n}\right)\right)^{4}}=\Theta\left(\frac{n}{\left(n p_{n}\right)^{2}}\right)
\end{gathered}
$$

for $\tau=-\frac{1}{2}$ and
$\sigma_{n}^{2}=\frac{(1+2 \tau)^{2}}{2} n(n-1) p_{n}\left(1+(n-2) p_{n}\right)^{4 \tau}(1+o(1))=\Theta\left(n\left(n p_{n}\right)^{4 \tau+1}\right)$,
for $\tau \neq-\frac{1}{2}$.
Based on Theorem 2, we have an interesting finding. For $\tau \neq-\frac{1}{2}$, the order of σ_{n}^{2} is $n\left(n p_{n}\right)^{4 \tau+1}$, while for $\tau=-\frac{1}{2}$, the order of σ_{n}^{2} is $\frac{n}{\left(n p_{n}\right)^{2}}$. Note that

$$
n\left(n p_{n}\right)^{4\left(-\frac{1}{2}\right)+1}=\frac{n}{n p_{n}}=\omega\left(\frac{n}{\left(n p_{n}\right)^{2}}\right)
$$

Therefore, as a function of τ, the order of σ_{n}^{2} is continuous at $\tau \neq-\frac{1}{2}$, but discontinuous at $\tau=-\frac{1}{2}$. In this sense, the general Randić index exhibits a phase change at $\tau=-\frac{1}{2}$.

3.2 Hyper-Zagreb index

The Zagreb indices and its variants are frequently used to measure physi-cal-chemical properties of compounds. Recently, [14] studied the expectation of the hyper-Zagreb index of the Erdős-Rényi random graph. Let $f(x, y)=(x+y)^{2}$. The hyper-Zagreb index \mathcal{I}_{n} is defined as

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}}\left(d_{i}+d_{j}\right)^{2} \tag{9}
\end{equation*}
$$

Clearly, $f^{(s, t)}(x, y)=0$ for $s+t \geq 3$ and

$$
f_{x}(x, y)=f_{y}(x, y)=2(x+y), \quad f_{x x}(x, y)=f_{y y}(x, y)=f_{x y}(x, y)=2
$$

Straightforward calculation yields

$$
\begin{aligned}
& \sum_{l \notin\{i, j\}} w_{i l}\left[f_{x}\left(w_{i(l)}, w_{l(i)}\right)+f_{y}\left(w_{i(l)}, w_{l(i)}\right)\right] \\
= & 4 e^{-\frac{\kappa i}{n}} \sum_{l \notin\{i, j\}} e^{-\frac{\kappa l}{n}}\left(n p_{n} c(\kappa) e^{-\frac{\kappa i}{n}}+n p_{n} c(\kappa) e^{-\frac{\kappa l}{n}}+O(1)\right) \\
= & 4 e^{-\frac{\kappa i}{n}}\left[n^{2} p_{n} c(\kappa)^{2} e^{-\frac{\kappa i}{n}}+n^{2} p_{n} c(\kappa) c(2 \kappa)+O(n)\right] \\
= & 4 n^{2} p_{n} c(\kappa)^{2} e^{-\frac{2 \kappa i}{n}}+4 n^{2} p_{n} c(\kappa) c(2 \kappa) e^{-\frac{\kappa i}{n}}+O(n) .
\end{aligned}
$$

Since $e^{-\kappa} \leq e^{-\frac{\kappa i}{n}} \leq 1$ and $e^{-2 \kappa} \leq e^{-\frac{2 \kappa i}{n}} \leq 1$, then

$$
\begin{aligned}
a_{i j}= & \frac{\left(n p_{n}\right)^{2} c(\kappa)^{2}}{2}\left(e^{-\frac{\kappa i}{n}}+e^{-\frac{\kappa j}{n}}\right)^{2} \\
& +2\left(n p_{n}\right)^{2} c(\kappa)^{2} e^{-\frac{2 \kappa i}{n}}+2\left(n p_{n}\right)^{2} c(\kappa) c(2 \kappa) e^{-\frac{\kappa i}{n}}+O\left(n p_{n}\right) \\
= & \left(n p_{n}\right)^{2}\left[\frac{5}{2} c(\kappa)^{2} e^{-\frac{2 \kappa i}{n}}+\frac{1}{2} c(\kappa)^{2} e^{-\frac{2 \kappa j}{n}}\right. \\
& \left.+c(\kappa)^{2} e^{-\frac{\kappa i}{n}} e^{-\frac{\kappa j}{n}}+2 c(\kappa) c(2 \kappa) e^{-\frac{\kappa i}{n}}\right]+O\left(n p_{n}\right) \\
= & \Theta\left(\left(n p_{n}\right)^{2}\right) .
\end{aligned}
$$

Consequently, we have $\sigma_{n}^{2}=\Theta\left(n\left(n p_{n}\right)^{5}\right)$ and

$$
\frac{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} p_{n}}{\sigma_{n}^{4}}=O\left(\frac{n\left(n p_{n}\right)^{9}}{n^{2}\left(n p_{n}\right)^{10}}\right)=o(1)
$$

For $s+t \geq 3, f^{(s, t)}(x, y)=0$. For $s+t=2$, we have

$$
n\left(n p_{n}\right)^{4}=o\left(\sigma_{n}^{2}\right)
$$

Then Assumption 1 holds and Theorem 1 applies.
Corollary 2. Let \mathcal{I}_{n} be the hyper-Zagreb index defined in (9) of the ran-
dom graph $\mathcal{G}_{n}(\alpha, \kappa)$ and σ_{n}^{2} be defined in (2). Then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{10}
\end{equation*}
$$

as n goes to infinity. In addition, the expectation $\mathbb{E}\left[\mathcal{I}_{n}\right]$ has the following asymptotic expression

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \sum_{1 \leq i<j \leq n} p_{n} w_{i j}\left(w_{i(j)}+w_{j(i)}\right)^{2} \tag{11}
\end{equation*}
$$

where the error rate $\frac{1}{n p_{n}}$ cannot be improved.
By Theorem 1 in [14], the expectation of the hyper-Zagreb index of the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha)$ is equal to

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=n(n-1)(n-2)(2 n-5) p_{n}^{3}+5 n(n-1)(n-2) p_{n}^{2}+2 n(n-1) p_{n} . \tag{12}
\end{equation*}
$$

By (11), we have

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=2 n(n-1)(n-2)^{2} p_{n}^{3}\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \tag{13}
\end{equation*}
$$

Then our result (13) is consistent with (12). In addition, by (12), the error rate $\frac{1}{n p_{n}}$ cannot be improved, as stated in Corollary 2.

3.3 Forgotten topological index

The forgotten topological index is another chemical index. [7] studied the expectation of the forgotten topological index of the Erdős-Rényi random graph. Let $f(x, y)=x^{2}+y^{2}$. The forgotten topological index \mathcal{I}_{n} is defined as

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}}\left(d_{i}^{2}+d_{j}^{2}\right) \tag{14}
\end{equation*}
$$

Similar to the hyper-Zagreb index, it is easy to verify that Assumption 1 holds. Then Theorem 1 applies.

Corollary 3. Let \mathcal{I}_{n} be the forgotten topological index defined in (14) of
the random graph $\mathcal{G}_{n}(\alpha, \kappa)$ and σ_{n}^{2} be defined in (2). Then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{15}
\end{equation*}
$$

as n goes to infinity. In addition, the expectation $\mathbb{E}\left[\mathcal{I}_{n}\right]$ has the following asymptotic expression

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \sum_{1 \leq i<j \leq n} p_{n} w_{i j}\left(w_{i(j)}^{2}+w_{j(i)}^{2}\right) \tag{16}
\end{equation*}
$$

where the error rate $\frac{1}{n p_{n}}$ cannot be improved.
For the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha)$, the expectation of the forgotten topological index [7] is equal to

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=n(n-1)(n-2)(n-3) p_{n}^{3}+3 n(n-1)(n-2) p_{n}^{2}+n(n-1) p_{n} \tag{17}
\end{equation*}
$$

By (16), we have

$$
\begin{aligned}
& \mathbb{E}\left[\mathcal{I}_{n}\right] \\
= & \left(1+O\left(\frac{1}{n p_{n}}\right)\right) \frac{n(n-1) p_{n}}{2}\left[\left(1+(n-2) p_{n}\right)^{2}+\left(1+(n-2) p_{n}\right)^{2}\right] \\
= & n(n-1)(n-2)^{2} p_{n}^{3}\left(1+O\left(\frac{1}{n p_{n}}\right)\right) .
\end{aligned}
$$

Hence our approximation (16) is consistent with (17). Moreover, by (17), the error rate $\frac{1}{n p_{n}}$ cannot be improved as in Corollary 3.

3.4 The inverse sum indeg index

The inverse sum indeg index is a significant predictor of total surface area of octane isomers $[19,23,24]$. Let $f(x, y)=\frac{x y}{x+y}$. The inverse sum indeg index \mathcal{I}_{n} is defined as

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{\{i, j\} \in \mathcal{E}} \frac{d_{i} d_{j}}{d_{i}+d_{j}} . \tag{18}
\end{equation*}
$$

As far as we know, the inverse sum indeg index of random graph has not been studied in literature. Here we provide its asymptotic distribution and
an approximation of its expectation.
Let $g(x, y)=x y$ and $h(x, y)=\frac{1}{x+y}$. For simplicity, we denote $f(x, y)$ as f. Then $f=g h$. Given positive integers $s, t, h^{(s, t)}=\frac{c_{s, t}}{(x+y)^{1+s+t}}$, where $c_{s, t}$ is a constant dependent on s, t. Straightforward calculation yields

$$
\begin{aligned}
f^{(s, 0)} & =\sum_{r=0}^{s}\binom{s}{r} g^{(r, 0)} h^{(s-r, 0)}=g h^{(s, 0)}+s g^{(1,0)} h^{(s-1,0)} \\
& =\frac{c_{s, 0} x y}{(x+y)^{1+s}}+\frac{s c_{s-1,0} y}{(x+y)^{s}} \\
f^{(0, t)} & =\sum_{r=0}^{t}\binom{t}{r} g^{(0, r)} h^{(0, t-r)}=g h^{(0, t)}+t g^{(0,1)} h^{(0, t-1)} \\
& =\frac{c_{0, t} x y}{(x+y)^{1+t}}+\frac{t c_{0, t-1} x}{(x+y)^{t}}
\end{aligned}
$$

Further, for $s \geq 1$ or $t \geq 1$, we have

$$
\begin{aligned}
f^{(s, t)} & =\sum_{r=0}^{t}\binom{t}{r} g^{(0, r)} h^{(s, t-r)}+s \sum_{r=0}^{t}\binom{t}{r} g^{(1, r)} h^{(s-1, t-r)} \\
& =g h^{(s, t)}+t g^{(0,1)} h^{(s, t-1)}+s g^{(1,0)} h^{(s-1, t)}+s t g^{(1,1)} h^{(s-1, t-1)} \\
& =\frac{c_{s, t} x y}{(x+y)^{1+s+t}}+\frac{t c_{s, t-1} x}{(x+y)^{s+t}}+\frac{s c_{s-1, t} y}{(x+y)^{s+t}}+\frac{s t c_{s-1, t-1}}{(x+y)^{s+t-1}}
\end{aligned}
$$

Hence, for $s+t \geq 1,\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|$ can be bounded as follows

$$
\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|=O\left(\frac{1}{\left(n p_{n}\right)^{s+t-1}}\right)
$$

Note that

$$
f_{x}\left(n p_{n}, n p_{n}\right)=f_{y}\left(n p_{n}, n p_{n}\right)=\frac{\left(n p_{n}\right)^{2}}{\left(n p_{n}+n p_{n}\right)^{2}}=\frac{1}{4}
$$

Then $a_{i j}=\Theta\left(n p_{n}\right), \sigma_{n}^{2}=\Theta\left(n\left(n p_{n}\right)^{3}\right)$ and

$$
\frac{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} p_{n}}{\sigma_{n}^{4}}=O\left(\frac{n\left(n p_{n}\right)^{5}}{n^{2}\left(n p_{n}\right)^{6}}\right)=o(1)
$$

When $1 \leq s+t$, we have

$$
n\left(n p_{n}\right)^{2(s+t)}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|^{2}=O\left(n\left(n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right)
$$

Let $k_{0}=\max \left\{\left\lfloor 1+\frac{1}{1-\alpha}\right\rfloor+1,3\right\}$. Then $k_{0}>1+\frac{1}{1-\alpha}$ and

$$
n\left(n p_{n}\right)^{\frac{k_{0}}{2}+1}\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|=O\left(n\left(n p_{n}\right)^{2-\frac{k_{0}}{2}}\right)=o\left(\sigma_{n}\right)
$$

Assumption 1 holds. Then Theorem 1 applies.
Corollary 4. Let \mathcal{I}_{n} be the inverse sum indeg index defined in (18) of the random graph $\mathcal{G}_{n}(\alpha, \kappa)$ and σ_{n}^{2} be defined in (2). Then

$$
\begin{equation*}
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1) \tag{19}
\end{equation*}
$$

as n goes to infinity. In addition, the expectation $\mathbb{E}\left[\mathcal{I}_{n}\right]$ has the following asymptotic expression

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \sum_{1 \leq i<j \leq n} p_{n} w_{i j} \frac{w_{i(j)} w_{j(i)}}{w_{i(j)}+w_{j(i)}} \tag{20}
\end{equation*}
$$

where the error rate $\frac{1}{n p_{n}}$ cannot be improved.
For the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha)$, the expectation of the inverse sum indeg index can be expressed as

$$
\mathbb{E}\left[\mathcal{I}_{n}\right]=\left(1+O\left(\frac{1}{n p_{n}}\right)\right) \frac{n(n-1)(n-2) p_{n}^{2}}{4}
$$

4 Proof of main results

In this section, we provide detailed proofs of Theorem 1 and Theorem 2. It is not easy to work on \mathcal{I}_{n} defined in (1) directly. In stead, we provide an alternative expression of \mathcal{I}_{n} as follows

$$
\begin{equation*}
\mathcal{I}_{n}=\sum_{1 \leq i<j \leq n} A_{i j} f\left(d_{i(j)}, d_{j(i)}\right)=\frac{1}{2} \sum_{i \neq j} A_{i j} f\left(d_{i(j)}, d_{j(i)}\right) \tag{21}
\end{equation*}
$$

where $d_{i(j)}=1+\sum_{l \notin\{i, j\}} A_{i l}$ and $d_{j(i)}=1+\sum_{l \notin\{i, j\}} A_{j l}$. Note that $A_{i j}$, $d_{i(j)}$ and $d_{j(i)}$ are independent, $\mathbb{E}\left[d_{i(j)}\right]=w_{i(j)}$ and $\mathbb{E}\left[d_{j(i)}\right]=w_{j(i)}$. We will use these facts frequently in the proof.

4.1 Lemmas

Before proving Theorem 1 and Theorem 2, we present two lemmas.
Lemma 1. Let $\mathcal{G}_{n}(\beta, W)$ be defined in Definition 2, $\delta_{n}=\left(\log \left(n p_{n}\right)\right)^{-2}$ and M be a constant greater than $\frac{e^{2}}{1-p_{n} \beta}$. For any $i \in[n]$, we have

$$
\begin{aligned}
& \mathbb{P}\left(d_{i(j)}-1=k\right) \leq \exp \left(-n p_{n} \beta(1+o(1))\right), \quad k \leq \delta_{n} n p_{n} \\
& \mathbb{P}\left(d_{i(j)}-1=k\right) \leq \exp \left(-n p_{n} \beta(1+o(1))\right), \quad k \geq M n p_{n}
\end{aligned}
$$

Proof of Lemma 1: Given distinct indices i, j, let $\theta_{i j}=\left\{p_{n} w_{i l} \mid l \in[n] \backslash\right.$ $\{i, j\}\}$. Then $d_{i(j)}-1$ follows the Poisson-Binomial distribution $P B\left(\theta_{i j}\right)$. Recall that $\beta \leq w_{i j} \leq 1$. Then

$$
\begin{align*}
\mathbb{P}\left(d_{i(j)}-1=k\right) & =\sum_{S \subset[n] \backslash\{i, j\},|S|=k} \prod_{l \in S} p_{n} w_{i l} \prod_{l \in S^{C} \backslash\{i, j\}}\left(1-p_{n} w_{i l}\right) \\
& \leq \sum_{S \subset[n] \backslash\{i, j\},|S|=k} \prod_{l \in S} p_{n} \prod_{l \in S^{C} \backslash\{i, j\}}\left(1-p_{n} \beta\right) \\
& =\binom{n-2}{k} p_{n}^{k}\left(1-p_{n} \beta\right)^{n-2-k} \tag{22}
\end{align*}
$$

Note that $\binom{n-2}{k} \leq e^{k \log n-k \log k+k}$ and $\left(1-p_{n} \beta\right)^{n-2-k}=e^{(n-2-k) \log \left(1-p_{n} \beta\right)}$. Then by (22) we get

$$
\begin{align*}
& \mathbb{P}\left(d_{i(j)}-1=k\right) \\
\leq & \exp \left(k \log \left(n p_{n}\right)-k \log k+k+(n-2-k) \log \left(1-p_{n} \beta\right)\right) \tag{23}
\end{align*}
$$

Let $g(k)=k \log \left(n p_{n}\right)-k \log k+k+(n-2-k) \log \left(1-p_{n} \beta\right)$. Considering k as continuous variable, the derivative of $g(k)$ with respect to k is equal to

$$
g^{\prime}(k)=\log \left(\frac{n p_{n}}{1-p_{n} \beta}\right)-\log k
$$

Clearly, $g^{\prime}(k)>0$ for $k<\frac{n p_{n}}{1-p_{n} \beta}$ and $g^{\prime}(k)<0$ for $k>\frac{n p_{n}}{1-p_{n} \beta}$. Then $g(k)$ achieves its maximum at $k=\frac{n p_{n}}{1-p_{n} \beta}$. For $k \leq \delta_{n} n p_{n}, g(k) \leq g\left(\delta_{n} n p_{n}\right)$. Hence

$$
\begin{aligned}
& \mathbb{P}\left(d_{i(j)}-1=k\right) \\
\leq & \exp \left(\delta_{n} n p_{n} \log \frac{1}{\delta_{n}\left(1-p_{n} \beta\right)}+\delta_{n} n p_{n}+n \log \left(1-p_{n} \beta\right)\right) \\
\leq & \exp \left(-n p_{n} \beta(1+o(1))\right)
\end{aligned}
$$

Since $M>\frac{e^{2}}{1-p_{n} \beta}$, then $M n p_{n} \geq \frac{n p_{n}}{1-p_{n} \beta}$. For $k \geq M n p_{n}, g(k) \leq$ $g\left(M n p_{n}\right)$. Hence

$$
\begin{aligned}
& \mathbb{P}\left(d_{i(j)}-1=k\right) \\
\leq & \exp \left(-M \log (M) n p_{n}+M n p_{n}+\left(n-2-M n p_{n}\right) \log \left(1-p_{n} \beta\right)\right) \\
= & \exp \left(-M(\log M-1) n p_{n}+\left|n-2-M n p_{n}\right| p_{n} \beta\right) \\
\leq & \exp \left(-n p_{n} \beta(1+o(1))\right)
\end{aligned}
$$

Lemma 2. Suppose (C1) of Assumption 1 holds. For the random graph $\mathcal{G}_{n}(\beta, W)$, we have

$$
\frac{\sum_{i \neq j} a_{i j}\left(A_{i j}-p_{n} w_{i j}\right)}{\sqrt{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)}} \Rightarrow \mathcal{N}(0,1)
$$

where

$$
a_{i j}=\frac{1}{2} f\left(w_{i(j)}, w_{j(i)}\right)+\frac{1}{2} \sum_{l \notin\{i, j\}} p_{n} w_{i l}\left[f_{x}\left(w_{i(l)}, w_{l(i)}\right)+f_{y}\left(w_{i(l)}, w_{l(i)}\right)\right]
$$

Proof of Lemma 2: Let

$$
\mathcal{Z}_{n}=\frac{\sum_{i \neq j} a_{i j}\left(A_{i j}-p_{n} w_{i j}\right)}{\sqrt{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)}}
$$

Then $\mathbb{E}\left[\mathcal{Z}_{n}\right]=0$. Note that

$$
\sum_{i \neq j} a_{i j}\left(A_{i j}-p_{n} w_{i j}\right)=\sum_{i<j}\left(a_{i j}+a_{j i}\right)\left(A_{i j}-p_{n} w_{i j}\right)
$$

Then

$$
\mathcal{Z}_{n}=\frac{\sum_{i<j}\left(a_{i j}+a_{j i}\right)\left(A_{i j}-p_{n} w_{i j}\right)}{\sqrt{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)}}
$$

Recall that $A_{i j}(1 \leq i<j \leq n)$ are independent. It is easy to verify that

$$
\begin{aligned}
& \mathbb{E}\left[\left(\sum_{i<j}\left(a_{i j}+a_{j i}\right)\left(A_{i j}-p_{n} w_{i j}\right)\right)^{2}\right] \\
= & \sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\right] \\
= & \sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)
\end{aligned}
$$

Hence $\operatorname{Var}\left[\mathcal{Z}_{n}\right]=1$. Straightforward calculation yields

$$
\mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{4}\right]=p_{n} w_{i j}\left[\left(1-p_{n} w_{i j}\right)^{4}+p_{n}^{3} w_{i j}^{3}\left(1-p_{n} w_{i j}\right)\right] \leq 2 p_{n} w_{i j}
$$

By (C1) of Assumption 1, we have

$$
\begin{aligned}
& \frac{\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{4}\right]}{\left(\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)\right)^{2}} \\
\leq & \frac{2 \sum_{i<j}\left(a_{i j}+a_{j i}\right)^{4} p_{n} w_{i j}}{\left(\sum_{i<j}\left(a_{i j}+a_{j i}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)\right)^{2}} \\
= & o(1)
\end{aligned}
$$

According to the Lyapunov Central Limit Theorem, \mathcal{Z}_{n} converges in distribution to the standard normal distribution.

4.2 Proof of Theorem 1

Let k_{0} be the integer in Assumption 1. The proof strategy is as follows: firstly we use the Taylor expansion to expand the function $f\left(d_{i(j)}, d_{j(i)}\right)$ at $\left(w_{i(j)}, w_{j(i)}\right)$ to k_{0}-th order; then we write \mathcal{I}_{n} as the sum of the leading term and remainder terms; finally we show the leading term (after suitable scaling) converges in distribution to the standard normal distribution and the remainder terms are negligible.

By the Taylor expansion, $f\left(d_{i(j)}, d_{j(i)}\right)$ can be decomposed as

$$
\begin{equation*}
f\left(d_{i(j)}, d_{j(i)}\right)=M_{i j}+S_{i j}+T_{i j}+R_{i j}, \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{i j}= & f\left(w_{i(j)}, w_{j(i)}\right)+f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right) \\
& +f_{y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{j(i)}-w_{j(i)}\right), \\
S_{i j}= & \frac{1}{2} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2} \\
& +\frac{1}{2} f_{y y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{j(i)}-w_{j(i)}\right)^{2} \\
& +f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right), \\
T_{i j}= & \sum_{k=3}^{k_{0}-1} \sum_{s+t=k} \frac{f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)}{s!t!}\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t}, \\
R_{i j}= & \sum_{s+t=k_{0}} \frac{f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)}{s!t!}\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t},
\end{aligned}
$$

$X_{i(j)}$ is between $d_{i(j)}$ and $w_{i(j)}$, and $X_{j(i)}$ is between $d_{j(i)}$ and $w_{j(i)}$. By (21), the topological index \mathcal{I}_{n} is equal to

$$
\begin{equation*}
\mathcal{I}_{n}=\frac{1}{2} \sum_{i \neq j} M_{i j} A_{i j}+\frac{1}{2} \sum_{i \neq j} S_{i j} A_{i j}+\frac{1}{2} \sum_{i \neq j} T_{i j} A_{i j}+\frac{1}{2} \sum_{i \neq j} R_{i j} A_{i j} . \tag{25}
\end{equation*}
$$

Then

$$
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}}
$$

$$
\begin{align*}
& =\frac{\frac{1}{2} \sum_{i \neq j}\left(M_{i j} A_{i j}-\mathbb{E}\left[M_{i j} A_{i j}\right]\right)}{\sigma_{n}}+\frac{\frac{1}{2} \sum_{i \neq j}\left(S_{i j} A_{i j}-\mathbb{E}\left[S_{i j} A_{i j}\right]\right)}{\sigma_{n}} \\
& +\frac{\frac{1}{2} \sum_{i \neq j}\left(T_{i j} A_{i j}-\mathbb{E}\left[T_{i j} A_{i j}\right]\right)}{\sigma_{n}}+\frac{\frac{1}{2} \sum_{i \neq j}\left(R_{i j} A_{i j}-\mathbb{E}\left[R_{i j} A_{i j}\right]\right)}{\sigma_{n}}, \tag{26}
\end{align*}
$$

where σ_{n}^{2} is defined in (2).
Next we show the first term in (26) is leading term and the last three terms are negligible.

4.2.1 Asymptotic normality of the first term in (26)

To begin with, we study the first term of (26). Note that

$$
\begin{align*}
& \sum_{i \neq j} M_{i j} A_{i j} \\
= & \sum_{i \neq j} f\left(w_{i(j)}, w_{j(i)}\right) A_{i j}+\sum_{i \neq j} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right) A_{i j} \\
& +\sum_{i \neq j} f_{y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{j(i)}-w_{j(i)}\right) A_{i j} \tag{27}
\end{align*}
$$

Since $d_{i(j)}-w_{i(j)}=\sum_{l \notin\{i, j\}}\left(A_{i l}-p_{n} w_{i l}\right)$, then $\left(d_{i(j)}-w_{i(j)}\right)$ does not contain $A_{i j}$. Hence, $\left(d_{i(j)}-w_{i(j)}\right)$ and $A_{i j}$ are independent. Similarly, $d_{j(i)}-w_{j(i)}$ and $A_{i j}$ are independent. In addition, $\mathbb{E}\left[d_{i(j)}\right]=w_{i(j)}$ and $\mathbb{E}\left[d_{j(i)}\right]=w_{j(i)}$. Then the expectation of $\sum_{i \neq j} M_{i j} A_{i j}$ is equal to

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i \neq j} M_{i j} A_{i j}\right]=\sum_{i \neq j} f\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i j} \tag{28}
\end{equation*}
$$

The first term of (27) can be written as

$$
\begin{align*}
\sum_{i \neq j} f\left(w_{i(j)}, w_{j(i)}\right) A_{i j}= & \sum_{i \neq j} f\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
& +\sum_{i \neq j} f\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i j} \tag{29}
\end{align*}
$$

Similarly, the second term of (27) is written as

$$
\begin{align*}
& \sum_{i \neq j} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right) A_{i j} \\
= & \sum_{i \neq j} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
& +\sum_{i \neq j} p_{n} w_{i j} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right) \\
= & \sum_{i \neq j \neq l} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
& +\sum_{i \neq j}\left(\sum_{l \notin\{i, j\}} p_{n} w_{i l} f_{x}\left(w_{i(l)}, w_{l(i)}\right)\right)\left(A_{i j}-p_{n} w_{i j}\right) \tag{30}
\end{align*}
$$

We will show the first term of (30) is of smaller order than the second term. To this end, we find the second moment of it. Recall that if $\{i, j\} \neq$ $\{s, t\}, A_{i j}$ and $A_{s t}$ are independent. Let i, j, l be three arbitrary distinct indices and i_{1}, j_{1}, l_{1} be another three arbitrary distinct indices. If $\{i, j, l\} \neq$ $\left\{i_{1}, j_{1}, l_{1}\right\}$, then

$$
\mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i_{1} j_{1}}-p_{n} w_{i_{1} j_{1}}\right)\left(A_{i_{1} l_{1}}-p_{n} w_{i_{1} l_{1}}\right)\right]=0
$$

When $\{i, j, l\}=\left\{i_{1}, j_{1}, l_{1}\right\}$, it is easy to get

$$
\begin{aligned}
& \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i_{1} j_{1}}-p_{n} w_{i_{1} j_{1}}\right)\left(A_{i_{1} l_{1}}-p_{n} w_{i_{1} l_{1}}\right)\right] \\
= & \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\left(A_{i l}-p_{n} w_{i l}\right)^{2}\right] \\
= & p_{n} w_{i j}\left(1-p_{n} w_{i j}\right) p_{n} w_{i l}\left(1-p_{n} w_{i l}\right)
\end{aligned}
$$

Then the second moment of the first term of (30) can be calculated as follows.

$$
\begin{aligned}
& \mathbb{E}\left[\left(\sum_{i \neq j \neq l} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i j}-p_{n} w_{i j}\right)\right)^{2}\right] \\
= & \sum_{\substack{i \neq j \neq l \\
i_{1} \neq j_{1} \neq l_{1}}} f_{x}\left(w_{i(j)}, w_{j(i)}\right) f_{x}\left(w_{i_{1}\left(j_{1}\right)}, w_{j_{1}\left(i_{1}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times \mathbb{E}\left[\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i_{1} l_{1}}-p_{n} w_{i_{1} l_{1}}\right)\left(A_{i_{1} j_{1}}-p_{n} w_{i_{1} j_{1}}\right)\right] \\
= & \sum_{i \neq j \neq l} f_{x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i l}-p_{n} w_{i l}\right)^{2}\left(A_{i j}-p_{n} w_{i j}\right)^{2}\right] \\
= & \sum_{i \neq j \neq l} f_{x}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n} w_{i l}\left(1-p_{n} w_{i l}\right) p_{n} w_{i j}\left(1-p_{n} w_{i j}\right) \\
= & \Theta\left(n^{3} p_{n}^{2} f_{x}\left(n p_{n}, n p_{n}\right)^{2}\right) .
\end{aligned}
$$

By Markov's inequality, it follows that

$$
\begin{align*}
& \sum_{i \neq j \neq l} f_{x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
= & O_{P}\left(\sqrt{n^{3} p_{n}^{2} f_{x}\left(n p_{n}, n p_{n}\right)^{2}}\right) \tag{31}
\end{align*}
$$

Similarly, one has

$$
\begin{align*}
& \sum_{i \neq j \neq l} f_{y}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i l}-p_{n} w_{i l}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
= & O_{P}\left(\sqrt{n^{3} p_{n}^{2} f_{y}\left(n p_{n}, n p_{n}\right)^{2}}\right) . \tag{32}
\end{align*}
$$

Denote

$$
a_{i j}=\frac{1}{2} f\left(w_{i(j)}, w_{j(i)}\right)+\frac{1}{2} \sum_{l \notin\{i, j\}} p_{n} w_{i l}\left[f_{x}\left(w_{i(l)}, w_{l(i)}\right)+f_{y}\left(w_{i(l)}, w_{l(i)}\right)\right]
$$

Then combining (27)- (32) yields

$$
\begin{aligned}
& \frac{\frac{1}{2} \sum_{i \neq j}\left(M_{i j} A_{i j}-\mathbb{E}\left[M_{i j} A_{i j}\right]\right)}{\sigma_{n}} \\
= & \frac{\sum_{i \neq j} a_{i j}\left(A_{i j}-p_{n} w_{i j}\right)}{\sigma_{n}}+O_{P}\left(\sqrt{\frac{n^{3} p_{n}^{2} f_{x}\left(n p_{n}, n p_{n}\right)^{2}}{\sigma_{n}^{2}}}\right) .
\end{aligned}
$$

By Lemma 2 and ($C 5$) of Assumption 1 (let $s+t=1$), we conclude that

$$
\frac{\frac{1}{2} \sum_{i \neq j}\left(M_{i j} A_{i j}-\mathbb{E}\left[M_{i j} A_{i j}\right]\right)}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1)
$$

Then the proof is complete if the second, third and last term of (26)
converge to zero in probability.

4.2.2 Bound the second term of (26)

We prove the second term of (26) is equal to $o_{P}(1)$. By the definition of $S_{i j}$, we have

$$
\begin{align*}
& \sum_{i \neq j} S_{i j} A_{i j} \\
= & \frac{1}{2} \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2} A_{i j} \\
& +\frac{1}{2} \sum_{i \neq j} f_{y y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{j(i)}-w_{j(i)}\right)^{2} A_{i j} \\
& +\sum_{i \neq j} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right) A_{i j} \tag{33}
\end{align*}
$$

Then

$$
\begin{align*}
& \mathbb{E}\left[\sum_{i \neq j} S_{i j} A_{i j}\right] \\
= & \frac{1}{2} \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) \mathbb{E}\left[\left(d_{i(j)}-w_{i(j)}\right)^{2}\right] p_{n} w_{i j} \\
& +\frac{1}{2} \sum_{i \neq j} f_{y y}\left(w_{i(j)}, w_{j(i)}\right) \mathbb{E}\left[\left(d_{j(i)}-w_{j(i)}\right)^{2}\right] p_{n} w_{i j} \\
= & \frac{1}{2} \sum_{i \neq j \neq l} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i l}\left(1-p_{n} w_{i l}\right) p_{n} w_{i j} \\
& +\frac{1}{2} \sum_{i \neq j \neq l} f_{y y}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{j l}\left(1-p_{n} w_{j l}\right) p_{n} w_{i j .} \tag{34}
\end{align*}
$$

The first term of (33) can be expressed as

$$
\begin{aligned}
& \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2} A_{i j} \\
= & \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2}\left(A_{i j}-p_{n} w_{i j}\right)
\end{aligned}
$$

$$
\begin{equation*}
+\sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2} \tag{35}
\end{equation*}
$$

We will find an upper bound of (35). Note that

$$
\begin{align*}
& \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2}\left(A_{i j}-p_{n} w_{i j}\right) \\
= & \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \sum_{\substack{s \neq t \\
s, t \notin\{i, j\}}}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{i t}-p_{n} w_{i t}\right) \\
& +\sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \sum_{s \notin\{i, j\}}\left(A_{i s}-p_{n} w_{i s}\right)^{2} \tag{36}
\end{align*}
$$

The second moment of the first term of (36) is equal to

$$
\begin{align*}
& \mathbb{E}\left[\sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right)\right. \\
& \left.\times \sum_{\substack{s \neq t \\
s, t \notin\{i, j\}}}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{i t}-p_{n} w_{i t}\right)\right]^{2} \\
= & \sum_{\substack{i \neq j, s \neq t \\
s, t \notin\{i, j\}}} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\right. \\
= & \sum_{\substack{i \neq j, s \neq t \\
s, t \notin\{i, j\}}} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right) \\
& \times p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{i t}\left(1-p_{n} w_{i t}\right) \\
= & \Theta\left(n^{4} p_{n}^{3} f_{x x}\left(n p_{n}, n p_{n}\right)^{2}\right) .
\end{align*}
$$

The second moment of the second term of (36) is equal to

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \sum_{s \notin\{i, j\}}\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right]^{2} \\
= & \sum_{i \neq j \neq s} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\left(A_{i s}-p_{n} w_{i s}\right)^{4}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{i \neq j \neq s \neq t} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right. \\
& \left.\times\left(A_{i t}-p_{n} w_{i t}\right)^{2}\right] \\
& +\sum_{i \neq j \neq s} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) f_{x x}\left(w_{i(s)}, w_{s(i)}\right) \\
& \times \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{3}\left(A_{i s}-p_{n} w_{i s}\right)^{3}\right] \\
\leq & \sum_{i \neq j \neq s} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{2}+\sum_{i \neq j \neq s \neq t} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{3} \\
& +\sum_{i \neq j \neq s} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) f_{x x}\left(w_{i(s)}, w_{s(i)}\right) p_{n}^{2} \\
= & \Theta\left(n^{4} p_{n}^{3} f_{x x}\left(n p_{n}, n p_{n}\right)^{2}\right) . \tag{38}
\end{align*}
$$

Now we consider the second term of (35). Note that

$$
\begin{align*}
& \sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{2} \\
&= \sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) \sum_{\substack{s \neq t \\
s, t \notin\{i, j\}}}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{i t}-p_{n} w_{i t}\right) \\
&+\sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) \\
& \quad \times \sum_{s \notin\{i, j\}}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}-\mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right]\right] \\
& \quad+\sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) \sum_{s \notin\{i, j\}} \mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right] . \tag{39}
\end{align*}
$$

The second moment of the first term of (39) is equal to

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) \sum_{\substack{s \neq t \\
s, t \notin\{i, j\}}}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{i t}-p_{n} w_{i t}\right)\right]^{2} \\
= & \sum_{\substack{i \neq j, i \neq j_{1}, s \neq t \\
s, t \notin\left\{i, j, j_{1}\right\}}} p_{n}^{2} w_{i j} w_{i j_{1}} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) f_{x x}\left(w_{i\left(j_{1}\right)}, w_{j_{1}(i)}\right) \\
& \times \mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{i t}-p_{n} w_{i t}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& \quad+\sum_{\substack{i \neq j, s \neq t \\
s, t \notin\{i, j\}}} p_{n}^{2} w_{i j}^{2} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{i t}-p_{n} w_{i t}\right)^{2}\right] \\
& =\sum_{\substack{i \neq j, i \neq j_{1}, s \neq t \\
s, t \notin\left\{i, j, j_{1}\right\}}} p_{n}^{2} w_{i j} w_{i j_{1}} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) f_{x x}\left(w_{i\left(j_{1}\right)}, w_{j_{1}(i)}\right) \\
& \quad \times p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{i t}\left(1-p_{n} w_{i t}\right) \\
& \quad+\sum_{\substack{i \neq j, s \neq t \\
s, t \neq\{i, j\}}} p_{n}^{2} w_{i j}^{2} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{i t}\left(1-p_{n} w_{i t}\right) \\
& = \tag{40}\\
& \Theta\left(n^{5} p_{n}^{4} f_{x x}\left(n p_{n}, n p_{n}\right)^{2}\right)
\end{align*}
$$

The second moment of the second term of (39) is equal to

$$
\begin{align*}
& \mathbb{E}\left[\sum_{i \neq j} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\right. \\
&\left.\times \sum_{s \notin\{i, j\}}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}-\mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right]\right]\right]^{2} \\
&=\sum_{\substack{i \neq j \neq s \\
i \neq j_{1} \neq s}} p_{n} w_{i j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i j_{1}} f_{x x}\left(w_{i\left(j_{1}\right)}, w_{j_{1}(i)}\right) \\
& \times \mathbb{E}\left[\left(\left(A_{i s}-p_{n} w_{i s}\right)^{2}-\mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right]\right)^{2}\right] \\
&+\sum_{i \neq j \neq s} p_{n}^{2} w_{i j}^{2} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)^{2} \\
&= \times \mathbb{E}\left[\left(\left(A_{i s}-p_{n} w_{i s}\right)^{2}-\mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\right]\right)^{2}\right] \\
&= \Theta\left(n^{4} p_{n}^{3} f_{x x}\left(n p_{n}, n p_{n}\right)^{2}\right) \tag{41}
\end{align*}
$$

By Markov's inequality and equations (35)- (41), we have

$$
\begin{align*}
& \sum_{i \neq j} f_{x x}\left(w_{i(j)}, w_{j(i)}\right)\left[\left(d_{i(j)}-w_{i(j)}\right)^{2} A_{i j}-\mathbb{E}\left[\left(d_{i(j)}-w_{i(j)}\right)^{2}\right] A_{i j}\right] \\
= & O_{P}\left(\sqrt{n^{5} p_{n}^{4} f_{x x}\left(n p_{n}, n p_{n}\right)^{2}}\right) \tag{42}
\end{align*}
$$

Similarly, one has

$$
\begin{align*}
& \sum_{i \neq j} f_{y y}\left(w_{i(j)}, w_{j(i)}\right)\left[\left(d_{i(j)}-w_{i(j)}\right)^{2} A_{i j}-\mathbb{E}\left[\left(d_{i(j)}-w_{i(j)}\right)^{2}\right] A_{i j}\right] \\
= & O_{P}\left(\sqrt{n^{5} p_{n}^{4} f_{y y}\left(n p_{n}, n p_{n}\right)^{2}}\right) . \tag{43}
\end{align*}
$$

Now we bound the third term of (33). Note that

$$
\begin{align*}
& \sum_{i \neq j} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right) A_{i j} \\
&= \sum_{i \neq j} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
&+\sum_{i \neq j} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right) p_{n} w_{i j} \\
&=\sum_{\substack{i \neq j, s \neq j \\
t \neq i}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{j t}-p_{n} w_{j t}\right) \\
&+\sum_{\substack{i \neq j, s \neq j \\
t \neq i}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i j}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{j t}-p_{n} w_{j t}\right) \tag{44}
\end{align*}
$$

The second moment of the first term of (44) is equal to

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i \neq j, s \neq j, t \neq i} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right)\right. \\
&\left.\times\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{j t}-p_{n} w_{j t}\right)\right]^{2} \\
&= \sum_{\substack{i \neq j, s \neq j, t \neq i, s \neq t}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\right. \\
&\left.\times\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{j t}-p_{n} w_{j t}\right)^{2}\right] \\
&+\sum_{\substack{i \neq j, s \neq j,}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\right. \\
&=\left.\times\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{j s}-p_{n} w_{j s}\right)^{2}\right] \\
&=\sum_{\substack{i \neq j, s \neq j, t \neq i, s \neq t}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right)
\end{aligned}
$$

$$
\begin{align*}
& \quad \times p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{j t}\left(1-p_{n} w_{j t}\right) \\
& \quad+\sum_{\substack{i \neq j \\
s \neq j}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n} w_{i j}\left(1-p_{n} w_{i j}\right) \\
& \quad \times p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{j s}\left(1-p_{n} w_{j s}\right) \\
& =\Theta\left(n^{4} p_{n}^{3} f_{x y}\left(n p_{n}, n p_{n}\right)^{2}\right) \tag{45}
\end{align*}
$$

The second moment of the second term of (44) is equal to

$$
\begin{align*}
& \mathbb{E}\left[\sum_{i \neq j, s \neq j, t \neq i} f_{x y}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i j}\left(A_{i s}-p_{n} w_{i s}\right)\left(A_{j t}-p_{n} w_{j t}\right)\right]^{2} \\
= & \sum_{\substack{i \neq j, s \neq j \\
t \neq i, s \neq t}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{2} w_{i j}^{2} \mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{j t}-p_{n} w_{j t}\right)^{2}\right] \\
& +\sum_{\substack{i \neq j, s \neq j}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{2} w_{i j}^{2} \mathbb{E}\left[\left(A_{i s}-p_{n} w_{i s}\right)^{2}\left(A_{j s}-p_{n} w_{j s}\right)^{2}\right] \\
= & \sum_{\substack{i \neq j, s \neq j \\
t \neq i, s \neq t}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{2} w_{i j}^{2} p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{j t}\left(1-p_{n} w_{j t}\right) \\
& +\sum_{\substack{i \neq j, s}} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)^{2} p_{n}^{2} w_{i j}^{2} p_{n} w_{i s}\left(1-p_{n} w_{i s}\right) p_{n} w_{j s}\left(1-p_{n} w_{j s}\right) \\
= & \Theta\left(n^{4} p_{n}^{4} f_{x y}\left(n p_{n}, n p_{n}\right)^{2}\right) . \tag{46}
\end{align*}
$$

Combining (44), (45) and (46) yields

$$
\begin{align*}
& \sum_{i \neq j} f_{x y}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)\left(d_{j(i)}-w_{j(i)}\right) A_{i j} \\
= & O_{P}\left(\sqrt{n^{4} p_{n}^{3} f_{x y}\left(n p_{n}, n p_{n}\right)^{2}}\right) . \tag{47}
\end{align*}
$$

By (42), (43), (47) and (C5) of Assumption 1 (let $s+t=2$), we get

$$
\begin{align*}
& \sum_{i \neq j}\left(S_{i j} A_{i j}-\mathbb{E}\left[S_{i j} A_{i j}\right]\right)= \\
& O_{P}\left(\sqrt{n^{5} p_{n}^{4}\left[f_{x x}\left(n p_{n}, n p_{n}\right)^{2}+f_{y y}\left(n p_{n}, n p_{n}\right)^{2}\right]+n^{4} p_{n}^{3} f_{x y}\left(n p_{n}, n p_{n}\right)^{2}}\right) \\
& =o_{P}\left(\sigma_{n}\right) \tag{48}
\end{align*}
$$

Hence the second term of (26) is equal to $o_{P}(1)$.

4.2.3 Bound the third term of (26)

Now we prove the third term of (26) converges in probability to zero. This is the most complex part of the proof. Note that

$$
\begin{align*}
& \sum_{i \neq j} T_{i j} A_{i j} \\
= & \sum_{k=3}^{k_{0}-1} \sum_{s+t=k} \sum_{i \neq j} \frac{f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)}{s!t!}\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t} A_{i j} \\
= & \sum_{k=3}^{k_{0}-1} \sum_{s+t=k} \sum_{i \neq j} \frac{f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)}{s!t!}\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t} \\
& \times\left(A_{i j}-p_{n} w_{i j}\right) \\
& +\sum_{k=3}^{k_{0}-1} \sum_{s+t=k} \sum_{i \neq j} \frac{f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)}{s!t!}\left(d_{i(j)}-w_{i(j)}\right)^{s} \\
& \times\left(d_{j(i)}-w_{j(i)}\right)^{t} p_{n} w_{i j} . \tag{49}
\end{align*}
$$

Next we bound the second moment of the first term of (49) and the variance of the second term. Since k_{0} is a fixed finite integer, the quantities $s!, t$! in (49) are finite. We will ignore them in the subsequent analysis for simplicity. Given finite integer $k_{0} \geq 4$, there are finitely many non-negative integers s, t such that $s+t=k$ for any $k=3,4, \ldots, k_{0}-1$. Hence we only need to bound the second moment of

$$
\begin{equation*}
\sum_{i \neq j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t}\left(A_{i j}-p_{n} w_{i j}\right) \tag{50}
\end{equation*}
$$

and the variance of

$$
\begin{equation*}
\sum_{i \neq j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t} p_{n} w_{i j} \tag{51}
\end{equation*}
$$

where s, t are given non-negative integers with $s+t=k$ for $k=3,4, \ldots$, $k_{0}-1$.

We consider the variance of (51) first. Fix integer $k \in\left\{3,4, \ldots, k_{0}-1\right\}$
and integers $s, t \in\{0,1,2, \ldots, k\}$ satisfying $s+t=k$. For positive integers $r \leq s$ and $v \leq t$, let $\lambda_{r ; 1}, \lambda_{r ; 2}, \ldots, \lambda_{r ; r}, \gamma_{v ; 1}, \gamma_{v ; 2}, \ldots, \gamma_{v ; v}$ be positive integers such that $\lambda_{r ; 1}+\lambda_{r ; 2}+\cdots+\lambda_{r ; r}=s$ and $\gamma_{v ; 1}+\gamma_{v ; 2}+\cdots+\gamma_{v ; v}=t$. Given indices i, j, we have

$$
\begin{align*}
\left(d_{i(j)}-w_{i(j)}\right)^{s} & =\sum_{\substack{j_{1}, j_{2}, \ldots, j_{s} \notin\{i, j\}}} \prod_{l=1}^{s}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right) \\
& =\sum_{r=1}^{s} \sum_{\substack{j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r}}} \prod_{l=1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}} \\
\left(d_{j(i)}-w_{j(i)}\right)^{t} & =\sum_{\substack{i_{1}, i_{2}, \ldots, i_{t} \notin\{i, j\}}} \prod_{l=1}^{t}\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right) \\
& =\sum_{v=1}^{t} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}}} \prod_{l=1}^{v}\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\gamma_{v ; l}} \tag{52}
\end{align*}
$$

Then (51) can be written as

$$
\sum_{i \neq j} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t}=\sum_{r=1}^{s} \sum_{v=1}^{t} V_{r v}
$$

where

$$
\begin{align*}
V_{r v}= & \left.\sum_{\substack{i \neq j \\
j_{1}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, \ldots, v_{v} \notin\{i, j\}}}^{i_{1} \neq i_{2} \neq \ldots \neq i_{v}}\right\} \\
& p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right) \prod_{l=1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}} \\
& \times \prod_{m=1}^{v}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}}
\end{align*}
$$

Note that

$$
\operatorname{Var}\left(\sum_{r=1}^{s} \sum_{v=1}^{t} V_{r v}\right)=\sum_{r=1}^{s} \sum_{v=1}^{t} \sum_{r_{1}=1}^{s} \sum_{v_{1}=1}^{t} \operatorname{Cov}\left(V_{r v}, V_{r_{1} v_{1}}\right)
$$

$$
\leq \sum_{r=1}^{s} \sum_{v=1}^{t} \sum_{r_{1}=1}^{s} \sum_{v_{1}=1}^{t}\left(\operatorname{Var}\left(V_{r v}\right)+\operatorname{Var}\left(V_{r_{1} v_{1}}\right)\right)
$$

and s, t are finite non-negative integers, we only need to bound $\operatorname{Var}\left(V_{r v}\right)$ for each given r, v. Fix $r \in\{1,2, \ldots, s\}$ and $v \in\{1,2, \ldots, t\}$. There are two cases: (I) there exists $l_{0} \in\{1,2, \ldots, r\}$ or $m_{0} \in\{1,2, \ldots, v\}$ such that $\lambda_{r ; l_{0}}=1$ or $\gamma_{v ; m_{0}}=1$; (II) $\lambda_{r ; l} \geq 2$ for all $l \in\{1,2, \ldots, r\}$ and $\gamma_{v ; m} \geq 2$ for all $m \in\{1,2, \ldots, v\}$.

We study case (I) first. Suppose there are some $\lambda_{r ; l}$ or $\gamma_{v ; m}$ which are equal to one. Without loss of generality, let $\lambda_{r ; 1}=\lambda_{r ; 2}=\cdots=\lambda_{r ; r_{0}}=1$ and $\lambda_{r ; l} \geq 2$ for $l \in\left\{r_{0}+1, \ldots, r\right\}, \gamma_{v ; 1}=\gamma_{v ; 2}=\cdots=\gamma_{v ; v_{0}}=1$ and $\gamma_{v ; l} \geq 2$ for $l \in\left\{v_{0}+1, \ldots, v\right\}$. Here, either $r_{0} \geq 1$ or $v_{0} \geq 1$. Without loss of generality, let $r_{0} \geq 1$. In this case,

$$
\begin{align*}
& \prod_{l=1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}} \\
= & \left(\prod_{l=1}^{r_{0}}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)\right)\left(\prod_{l=r_{0}+1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right), \tag{54}\\
& \prod_{m=1}^{v}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}} \\
= & \left(\prod_{m=1}^{v_{0}}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)\right)\left(\prod_{m=v_{0}+1}^{v}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}}\right), \tag{55}
\end{align*}
$$

and $\mathbb{E}\left[V_{r v}\right]=0$. Then $\operatorname{Var}\left(V_{r v}\right)=\mathbb{E}\left[V_{r v}^{2}\right]$. For convenience, denote $\bar{A}_{i j}=$ $A_{i j}-p_{n} w_{i j}$. By (53), (54) and (55), we have

$$
\begin{aligned}
& \mathbb{E}\left[V_{r v}^{2}\right] \\
& =\sum_{\substack{i \neq j \\
j_{1}, \ldots, j_{r} \notin\{i, j\}}} \sum_{\substack{j^{\prime}, \neq j^{\prime} \\
j^{\prime} \neq\left\{i^{\prime}, j^{\prime}\right\}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{i(j)}\right) \\
& \begin{array}{c}
j_{1}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{1}^{\prime}, \ldots, j_{r}^{\prime} \notin\left\{i^{\prime}, j^{\prime}\right\} \\
j_{2}
\end{array} \\
& \begin{array}{l}
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, \ldots, i_{v} \notin\{i, j\} \\
i_{1}
\end{array}{ }^{j_{1}^{\prime}}{ }_{1}^{\prime} \neq j_{2}^{\prime} \neq \cdots \neq j_{r}^{\prime} \\
& \begin{array}{c}
i_{1}, \ldots, i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}
\end{array}, \begin{array}{c}
i_{1}^{\prime}, \ldots, i_{v}^{\prime} \neq\left\{i^{\prime}, j^{\prime}\right. \\
i^{\prime}
\end{array} \\
& \times p_{n} w_{i^{\prime} j^{\prime}} f^{(s, t)}\left(w_{i^{\prime}\left(j^{\prime}\right)}, w_{j^{\prime}\left(i^{\prime}\right)}\right)
\end{aligned}
$$

$$
\begin{align*}
& \times \mathbb{E}\left[\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{l=1}^{r_{0}} \bar{A}_{i^{\prime} j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i^{\prime} j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{v_{0}} \bar{A}_{j i_{m}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=1}^{v_{0}} \bar{A}_{j^{\prime} i_{m}^{\prime}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j^{\prime} i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \tag{56}
\end{align*}
$$

Next we find an upper bound of (56). Recall that $i \neq j$ and $i^{\prime} \neq j^{\prime}$. We shall decompose the summation in (56) into six cases: $i \neq i^{\prime}$ and $j=j^{\prime}$; $i=i^{\prime}$ and $j \neq j^{\prime} ; i \neq j^{\prime}$ and $j=i^{\prime} ; i=j^{\prime}$ and $j \neq i^{\prime} ;\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$; $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\emptyset$. For convenience, denote the expectation in (56) as E.

Firstly, we consider the case $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$. There are two scenarios: (i) $i=i^{\prime}$ and $j=j^{\prime}$, (ii) $i=j^{\prime}$ and $j=i^{\prime}$.

Consider (i) first. In this case, $A_{i j_{l}}, A_{i j_{l}^{\prime}}$ are independent of $A_{j i_{m}}, A_{j i_{m}^{\prime}}$. Then

$$
\begin{align*}
E= & \mathbb{E}\left[\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}} \bar{A}_{i j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}} \bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right] \\
& \times \mathbb{E}\left[\left(\prod_{m=1}^{v_{0}} \bar{A}_{j i_{m}} \bar{A}_{j i_{m}^{\prime}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}} \bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \tag{57}
\end{align*}
$$

Recall that $j_{1}, j_{2}, \ldots, j_{r}$ are mutually distinct and $j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r}^{\prime}$ are mutually distinct. Moreover, $\mathbb{E}\left[\bar{A}_{i j_{l}}\right]=0$ for all $l=1,2, \ldots, r$. If there exists an index $j_{l_{1}}$ with $1 \leq l_{1} \leq r_{0}$ such that $j_{l_{1}} \notin\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r}^{\prime}\right\}$, then

$$
\begin{align*}
& \mathbb{E}\left[\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}} \bar{A}_{i j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\right] \\
= & \mathbb{E}\left[\bar{A}_{i j_{l_{1}}}\right] \mathbb{E}\left[\left(\prod_{l=1, j_{l} \neq j_{l_{1}}}^{r_{0}} \bar{A}_{i j_{l}}\right)\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}} \bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right] \\
= & 0 \tag{58}
\end{align*}
$$

Hence $E=0$ by (57). Similarly, if there exists an index l_{1} with $1 \leq l_{1} \leq r_{0}$ such that $j_{l_{1}}^{\prime} \notin\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$, then $E=0$. In addition, if there is an index m_{1} with $1 \leq m_{1} \leq v_{0}$ such that $i_{m_{1}} \notin\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v}^{\prime}\right\}$ or $i_{m_{1}}^{\prime} \notin$
$\left\{i_{1}, i_{2}, \ldots, i_{v}\right\}$, then $E=0$. Consequently, $E \neq 0$ implies the following

$$
\begin{aligned}
\left\{j_{1}, j_{2}, \ldots, j_{r_{0}}\right\} \subset\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r}^{\prime}\right\}, & \left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r_{0}}^{\prime}\right\} \subset\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}, \\
\left\{i_{1}, i_{2}, \ldots, i_{v_{0}}\right\} \subset\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v}^{\prime}\right\}, & \left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v_{0}}^{\prime}\right\} \subset\left\{i_{1}, i_{2}, \ldots, i_{v}\right\}
\end{aligned}
$$

Without loss of generality, suppose

$$
\begin{align*}
& \left\{j_{1}, j_{2}, \ldots, j_{r_{1}}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r_{1}}^{\prime}\right\}, \quad\left\{j_{r_{1}+1}, \ldots, j_{r}\right\} \cap\left\{j_{r_{1}+1}^{\prime}, \ldots, j_{r}^{\prime}\right\}=\emptyset, \tag{59}\\
& \left\{i_{1}, i_{2}, \ldots, i_{v_{1}}\right\}=\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v_{1}}^{\prime}\right\}, \quad\left\{i_{v_{1}+1}, \ldots, i_{v}\right\} \cap\left\{i_{v_{1}+1}^{\prime}, \ldots, i_{v}^{\prime}\right\}=\emptyset, \tag{60}
\end{align*}
$$

for some $r_{1}\left(r_{0} \leq r_{1} \leq r\right)$ and $v_{1}\left(v_{0} \leq v_{1} \leq v\right)$. There are at most $n^{2+2 r-r_{1}+2 v-v_{1}}$ possible choices for the indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots, j_{r}, i^{\prime}$, $j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying $i=i^{\prime}, j=j^{\prime},(59)$ and (60). Let σ_{1} be a permutation of $\left\{1,2, \ldots, r_{1}\right\}$ such that $j_{l}=j_{\sigma_{1}(l)}^{\prime}$ and σ_{2} be a permutation of $\left\{1,2, \ldots, v_{1}\right\}$ such that $i_{m}=i_{\sigma_{2}(m)}^{\prime}$. The numbers of the permutations σ_{1} and σ_{2} are r_{1} ! and v_{1} ! respectively. Then

$$
\begin{align*}
& \mathbb{E}\left[\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}} \bar{A}_{i j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}} \bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right] \\
= & \mathbb{E}\left[\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{\lambda_{r ; l}+\lambda_{r ; \sigma_{1}(l)}}\right)\right]\left(\prod_{l=r_{1}+1}^{r} \mathbb{E}\left[\bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right] \mathbb{E}\left[\bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right]\right) \\
= & O\left(p_{n}^{2 r-r_{1}}\right) . \tag{61}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \mathbb{E}\left[\left(\prod_{m=1}^{v_{0}} \bar{A}_{j i_{m}} \bar{A}_{j i_{m}^{\prime}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}} \bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}^{\prime}}\right)\right] \\
= & \mathbb{E}\left[\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{l}}^{\gamma_{v ; m}+\gamma_{v ; \sigma_{2}(m)}}\right)\right]\left(\prod_{m=v_{1}+1}^{v} \mathbb{E}\left[\bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right] \mathbb{E}\left[\bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}}\right]\right) \\
= & O\left(p_{n}^{2 v-v_{1}}\right) . \tag{62}
\end{align*}
$$

Note that $2(r+v)-\left(r_{1}+v_{1}\right) \leq 2(s+t)-1$. By (56), (57), (61), (62) and $(C 5)$ of Assumption 1, the sum in (56) over the indices $i=i^{\prime}, j=j^{\prime}$, (59)
and (60) is bounded by

$$
\begin{align*}
\left(n p_{n}\right)^{2+2 r-r_{1}+2 v-v_{1}} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2} & \leq\left(n p_{n}\right)\left(n p_{n}\right)^{2(s+t)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2} \\
& =o\left(\sigma_{n}^{2}\right) \tag{63}
\end{align*}
$$

Consider case (ii) $i=j^{\prime}$ and $j=i^{\prime}$. If there is an index l_{1} with $1 \leq l_{1} \leq$ r_{0} such that $j_{l_{1}} \notin\left\{i_{1}^{\prime}, \ldots, i_{v}^{\prime}\right\}$, then $E=0$ (the same argument as in (58)). If there is an index m_{1} with $1 \leq m_{1} \leq v_{0}$ such that $i_{m_{1}}^{\prime} \notin\left\{j_{1}, \ldots, j_{r}\right\}$, then $E=0$ (the same argument as in (58)). Then $E \neq 0$ implies the following

$$
\begin{array}{ll}
\left\{j_{1}, j_{2}, \ldots, j_{r_{0}}\right\} \subset\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v}^{\prime}\right\}, & \left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{v_{0}}^{\prime}\right\} \subset\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}, \\
\left\{i_{1}, i_{2}, \ldots, i_{v_{0}}\right\} \subset\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{v}^{\prime}\right\}, & \left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{r_{0}}^{\prime}\right\} \subset\left\{i_{1}, i_{2}, \ldots, i_{v}\right\}
\end{array}
$$

Without loss of generality, suppose
$\left\{j_{1}, j_{2}, \ldots, j_{r_{1}}\right\}=\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{r_{1}}^{\prime}\right\}, \quad\left\{j_{r_{1}+1}, \ldots, j_{r}\right\} \cap\left\{i_{r_{1}+1}^{\prime}, \ldots, i_{v}^{\prime}\right\}=\emptyset$,
$\left\{i_{1}, i_{2}, \ldots, i_{v_{1}}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{v_{1}}^{\prime}\right\}, \quad\left\{i_{v_{1}+1}, \ldots, i_{v}\right\} \cap\left\{j_{v_{1}+1}^{\prime}, \ldots, j_{v}^{\prime}\right\}=\emptyset$,
for some r_{1} with $\max \left\{r_{0}, v_{0}\right\} \leq r_{1} \leq \min \{r, v\}$ and v_{1} with $\max \left\{r_{0}, v_{0}\right\} \leq$ $v_{1} \leq \min \{r, v\}$. There are at most $n^{2+2 r-r_{1}+2 v-v_{1}}$ possible choices for indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots, j_{r}, i^{\prime}, j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying $i=j^{\prime}$, $j=i^{\prime},(64)$ and (65). Let σ_{1} be a permutation of $\left\{1,2, \ldots, r_{1}\right\}$ such that $j_{l}=i_{\sigma_{1}(l)}^{\prime}$ and σ_{2} be a permutation of $\left\{1,2, \ldots, v_{1}\right\}$ such that $i_{m}=j_{\sigma_{2}(m)}^{\prime}$. Then

$$
\begin{aligned}
E= & \mathbb{E}\left[\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{\lambda_{r ; l}+\gamma_{v ; \sigma_{1}(l)}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{m=r_{1}+1}^{r} \bar{A}_{i i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{m}}^{\lambda_{r ; m}+\gamma_{v ; \sigma_{2}(m)}}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=v_{1}+1}^{r} \bar{A}_{j j_{m}^{\prime m}}^{\lambda_{v ; m}}\right)\right] \\
= & \Theta\left(p_{n}^{2(r+v)-r_{1}-v_{1}}\right) .
\end{aligned}
$$

Then the sum in (56) over the indices $i=j^{\prime}, j=i^{\prime}$, (64) and (65) is
bounded by

$$
\begin{align*}
& \left(n p_{n}\right)^{2+2 r-r_{1}+2 v-v_{1}} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2} \\
\leq \quad & \left(n p_{n}\right)\left(n p_{n}\right)^{2(s+t)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) . \tag{66}
\end{align*}
$$

Consider the case $i \neq i^{\prime}$ and $j=j^{\prime}$. For any $l_{0} \in\{1,2, \ldots, r\}$, $\left\{i, j_{l_{0}}\right\} \neq\left\{j, i_{l}\right\}$ and $\left\{i, j_{l_{0}}\right\} \neq\left\{j, i_{l}^{\prime}\right\}$ for any $1 \leq l \leq v$. If $r_{0} \geq 2$, it is not possible that $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=\left\{i^{\prime}, j_{l_{2}}^{\prime}\right\}$ for distinct l_{1} and l_{2}. Then $E=0$ (the same argument as in (58)). Let $r_{0}=1$. In this case, $i=j_{1}^{\prime}$ and $i^{\prime}=j_{1}$. Otherwise $E=0$. Suppose $\left\{i_{1}, \ldots, i_{v_{1}}\right\}=\left\{i_{1}^{\prime}, \ldots, i_{v_{1}}^{\prime}\right\}$ and $\left\{i_{v_{1}+1}, \ldots, i_{v}\right\} \cap\left\{i_{v_{1}+1}^{\prime}, \ldots, i_{v}^{\prime}\right\}=\emptyset$ for $v_{0} \leq v_{1} \leq v$. Suppose $\left\{j_{2}, \ldots, j_{r_{1}}\right\}=\left\{j_{2}^{\prime}, \ldots, j_{r_{1}}^{\prime}\right\}$ and $\left\{j_{r_{1}+1}, \ldots, j_{r}\right\} \cap\left\{j_{r_{1}+1}^{\prime}, \ldots, j_{r}^{\prime}\right\}=\emptyset$ for $1 \leq r_{1} \leq r$. There are at most $n^{2+2(r+v)-v_{1}-r_{1}}$ choices for the indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots, j_{r}, i^{\prime}, j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying these conditions. Then

$$
\begin{aligned}
E= & \mathbb{E}\left[\bar{A}_{i j_{1}}^{2}\left(\prod_{l=2}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{l=2}^{r_{1}} \bar{A}_{j_{1} j_{l}}^{\lambda_{r, l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{j_{1} j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right] \\
& \times \mathbb{E}\left[\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{m}}^{2 \gamma_{v ; m}}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}} \bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \\
= & O\left(p_{n}^{1+2(r-1)+v_{1}+2\left(v-v_{1}\right)}\right)
\end{aligned}
$$

and hence the sum over $i \neq i^{\prime}$ and $j=j^{\prime}$ in (56) is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-v_{1}+1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) . \tag{67}
\end{equation*}
$$

Consider the case $i=i^{\prime}$ and $j \neq j^{\prime}$. If $v_{0} \geq 1$, the summation is similarly bounded by (67). Suppose $v_{0}=0$. Suppose $\left\{j_{1}, \ldots, j_{r_{1}}\right\}=$ $\left\{j_{1}^{\prime}, \ldots, j_{r_{1}}^{\prime}\right\}$ and $\left\{j_{r_{1}+1}, \ldots, j_{r}\right\} \cap\left\{j_{r_{1}+1}^{\prime}, \ldots, j_{r}^{\prime}\right\}=\emptyset$ for $r_{0} \leq r_{1} \leq r$. There are at most $n^{3+2 r-r_{1}+2 v}$ choices for the indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots$, $j_{r}, i^{\prime}, j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying these conditions. Then

$$
E=\mathbb{E}\left[\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{2 \lambda_{r, l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}^{l}}^{\lambda_{r ; l}}\right)\right.
$$

$$
\begin{aligned}
& \left.\times\left(\prod_{m=1}^{v} \bar{A}_{j i_{m}, m}^{\gamma_{v}}\right)\left(\prod_{m=1}^{v} \bar{A}_{j^{\prime} i_{m}^{\prime}, m}^{\gamma_{i}}\right)\right] \\
= & O\left(p_{n}^{2 r-r_{1}+2 v}\right) .
\end{aligned}
$$

Then the sum over $i=i^{\prime}$ and $j \neq j^{\prime}$ in (56) is bounded by

$$
\begin{equation*}
n\left(n p_{n}\right)^{2+2 r-r_{1}+2 v} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) . \tag{68}
\end{equation*}
$$

Suppose $i=j^{\prime}$ and $j \neq i^{\prime}$. If $r_{0} \geq 2$ or $v_{0} \geq 2$, then $E=0$ (similar to the argument in the case $i \neq i^{\prime}$ and $j=j^{\prime}$). Let $r_{0}=1$. If $v_{0}=1$, then $j=j_{1}^{\prime}$ and $i_{1}=i^{\prime}$. If $v_{0}=0$, then $j_{1}=i_{m_{1}}^{\prime}$ for some $1 \leq m_{1} \leq v$, $j=j_{l_{1}}^{\prime}$ for some $1 \leq l_{1} \leq r$ and $i_{1}=i^{\prime}$. Without loss of generality, let $m_{1}=l_{1}=1$. Suppose

$$
\begin{array}{ll}
\left\{j_{1}, \ldots, j_{r_{1}}\right\}=\left\{i_{1}^{\prime}, \ldots, i_{r_{1}}^{\prime}\right\}, & \left\{j_{r_{1}+1}, \ldots, j_{r}\right\} \cap\left\{i_{r_{1}+1}^{\prime}, \ldots, i_{v}^{\prime}\right\}=\emptyset . \\
\left\{i_{2}, \ldots, i_{v_{1}}\right\}=\left\{j_{2}^{\prime}, \ldots, j_{v_{1}}^{\prime}\right\}, & \left\{i_{v_{1}+1}, \ldots, i_{v}\right\} \cap\left\{j_{v_{1}+1}^{\prime}, \ldots, j_{r}^{\prime}\right\}=\emptyset
\end{array}
$$

where $1 \leq r_{1}, v_{1} \leq \min \{r, v\}$. There are at most $n^{2(r+v)-r_{1}-v_{1}+2}$ choices for the indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots, j_{r}, i^{\prime}, j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying these conditions. In this case,

$$
\begin{aligned}
E= & \mathbb{E}\left[\bar{A}_{j i_{1}}^{2}\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{\lambda_{r, l}+\gamma_{v ; l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r, l}}\right)\left(\prod_{l=r_{1}+1}^{v} \bar{A}_{i i_{l}^{\prime}}^{\gamma_{v, l}}\right)\right] \\
& \times \mathbb{E}\left[\left(\prod_{m=2}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{l=2}^{v_{1}} \bar{A}_{i_{1} i_{l}}^{\lambda_{r, l}}\right)\left(\prod_{l=v_{1}+1}^{r} \bar{A}_{i_{1} j_{l}^{\prime}}^{\lambda_{r, l}}\right)\right] \\
= & O\left(p_{n}^{1+r+\left(r-v_{1}\right)+v-r_{1}+v-1+v_{1}-1}\right) .
\end{aligned}
$$

Then the sum over $i=j^{\prime}$ and $j \neq i^{\prime}$ in (56) is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-r_{1}-1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{69}
\end{equation*}
$$

The case $i \neq j^{\prime}$ and $j=i^{\prime}$ can be similarly bounded as in (69).
Now we consider $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}=\emptyset$. If $r_{0} \geq 3$, then at least one of $\left\{i, j_{1}\right\},\left\{i, j_{2}\right\}$ and $\left\{i, j_{3}\right\}$ is not in $\left\{\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\},\left\{i^{\prime}, j_{l}^{\prime}\right\}\right\}$ for any m, m_{1}, l.

Hence $E=0$. Similarly, if $v_{0} \geq 3, E=0$.
Suppose $r_{0}=v_{0}=2$. Then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some $1 \leq l \leq r$ or $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some $1 \leq m \leq v$. Otherwise $E=0$. Without loss of generality, suppose $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$. In this case, $i=j_{l}^{\prime}$ and $j_{1}=i^{\prime}$. If $l \geq 3$, then $\left\{i^{\prime}, j_{1}^{\prime}\right\}=\left\{j, i_{m_{1}}\right\}$ and $\left\{i^{\prime}, j_{2}^{\prime}\right\}=\left\{j^{\prime}, i_{m_{2}}^{\prime}\right\}$ or $\left\{i^{\prime}, j_{1}^{\prime}\right\}=\left\{j^{\prime}, i_{m_{2}}^{\prime}\right\}$ and $\left\{i^{\prime}, j_{2}^{\prime}\right\}=\left\{j, i_{m_{1}}\right\}$ (otherwise $E=0$). Either case is impossible, due to the fact that $j^{\prime} \neq i^{\prime}, j^{\prime} \neq j_{l_{1}}^{\prime}$ for any l_{1}. Hence $l=1$ or $l=2$. Without loss of generality, let $l=1$. In this case, $\left\{i^{\prime}, j_{2}^{\prime}\right\}=\left\{j, i_{m_{3}}\right\}$ and $i^{\prime}=i_{m_{3}}$ and $j_{2}^{\prime}=j$. If $m_{3} \geq 3$, then $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m_{4}}^{\prime}\right\}$ and $\left\{j, i_{2}\right\}=\left\{j^{\prime}, i_{m_{5}}^{\prime}\right\}$ (otherwise $E=0$), which is not possible. Hence $m_{3}=1$ or $m_{3}=2$. Let $m_{3}=1$ (the argument for $m_{3}=2$ is the same). Then $\left\{j, i_{2}\right\}=\left\{j^{\prime}, i_{m_{6}}^{\prime}\right\}$. If $m_{6} \geq 3$, then $\left\{j^{\prime}, i_{1}^{\prime}\right\}=\left\{i, j_{l_{2}}\right\}$ and $\left\{j^{\prime}, i_{2}^{\prime}\right\}=\left\{i, j_{l_{3}}\right\}$ (otherwise $E=0$), which is not possible. Hence, $m_{6}=1$ or $m_{6}=2$. Let $m_{6}=1$ (the argument for $m_{6}=2$ is the same). Then $\left\{j^{\prime}, i_{2}^{\prime}\right\}=\left\{i, j_{2}\right\}$, $i=i_{2}^{\prime}$ and $j_{2}=j^{\prime}$. There are at most $n^{2(r+v)-4}$ possible choices of the indices $i, j, i_{1}, \ldots, i_{v}, j_{1}, \ldots, j_{r}, i^{\prime}, j^{\prime}, i_{1}^{\prime}, \ldots, i_{v}^{\prime}, j_{1}^{\prime}, \ldots, j_{r}^{\prime}$ satisfying these conditions. Then the sum in (56) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-4} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{70}
\end{equation*}
$$

Suppose $r_{0}=2$ and $v_{0}=1$. Then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=$ $\left\{j^{\prime}, i_{m}^{\prime}\right\}$ or $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l, m. Otherwise $E=0$. Without loss of generality, let $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=$ $\left\{j^{\prime}, i_{m}^{\prime}\right\}$. By a similar argument as in the previous paragraph, $l=1$ or $l=2$. Let $l=1$. Then $\left\{i^{\prime}, j_{2}^{\prime}\right\}=\left\{j, i_{m_{3}}\right\}$. If $m_{3}=1$ and $m=1$, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{71}
\end{equation*}
$$

If $m_{3} \geq 2$ or $m \geq 2$, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}^{2}\left(n p_{n}\right)^{2(r+v)-4} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{72}
\end{equation*}
$$

Suppose $r_{0}=2$ and $v_{0}=0$. Then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=$ $\left\{j^{\prime}, i_{m}^{\prime}\right\}$ or $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l, m. Otherwise
$E=0$. Without loss of generality, let $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{i, j_{2}\right\}=$ $\left\{j^{\prime}, i_{m}^{\prime}\right\}$. Then $l=1$ or $l=2$. Without loss of generality, let $l=1$. Then $\left\{i^{\prime}, j_{2}^{\prime}\right\}=\left\{j, i_{m_{1}}\right\}$. The sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{73}
\end{equation*}
$$

Suppose $r_{0}=1$ and $v_{0}=1$. Then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ or $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some l, m. Without loss of generality, let $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$. Suppose $l=1$. Then $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ or $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$. If $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$ with $m_{1}=1$, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{74}
\end{equation*}
$$

If $m_{1} \geq 2$, then $\left\{j^{\prime}, i_{1}^{\prime}\right\}=\left\{i, j_{m_{2}}\right\}$ for $m_{2} \geq 2$. Then the sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{75}
\end{equation*}
$$

The case $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ can be similarly bounded as in (75).
Suppose $l \geq 2$. Then $\left\{i^{\prime}, j_{1}^{\prime}\right\}=\left\{j, i_{m_{1}}\right\}$. If $m_{1}=1$, then $\left\{j^{\prime}, i_{1}^{\prime}\right\}=$ $\left\{i, j_{l_{1}}\right\}$ for $l_{1} \geq 2$ or $\left\{j^{\prime}, i_{1}^{\prime}\right\}=\left\{j, i_{m_{2}}\right\}$ for $m_{2} \geq 2$. In this case, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{76}
\end{equation*}
$$

If $m_{1} \geq 2$, then $\left\{j^{\prime}, i_{1}^{\prime}\right\}=\left\{j, i_{1}\right\}$. The sum in (56) over these indices is bounded by

$$
\begin{equation*}
p_{n}\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{77}
\end{equation*}
$$

Suppose $r_{0}=1$ and $v_{0}=0$. Then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ or $\left\{i, j_{1}\right\}=$ $\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$. Suppose $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$. Then $\left\{i^{\prime}, j_{1}^{\prime}\right\}=\left\{j, i_{m_{2}}\right\}$. In this case, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{78}
\end{equation*}
$$

Suppose $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$. If $l_{1}=1$, then the sum in (56) over these indices is bounded by

$$
\begin{equation*}
n\left(n p_{n}\right)^{2(r+v)+1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) . \tag{79}
\end{equation*}
$$

If $l_{1} \geq 2$, then $\left\{i^{\prime}, j_{1}^{\prime}\right\}=\left\{j, i_{m_{3}}\right\}$. In this case, the sum in (56) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) . \tag{80}
\end{equation*}
$$

Now we consider the case (II): $\lambda_{r ; l} \geq 2$ for all $l=1,2, \ldots, r$ and $\gamma_{v ; m} \geq 2$ for all $m=1,2, \ldots, v$. In this case, $r \leq \frac{s}{2}$ and $v \leq \frac{t}{2}$. The expectation of $V_{r v}$ is equal to

$$
\begin{align*}
& =\sum_{\substack{i \neq j}} \sum_{\substack{j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, i_{2}, \ldots, i_{0} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right) \prod_{l=1}^{r} \mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ;} l}\right] \\
& \quad \times \prod_{m=1}^{v} \mathbb{E}\left[\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}}\right] .
\end{align*}
$$

Next we bound the variance of $V_{r v}$, that is, $\operatorname{Var}\left(V_{r v}\right)=\mathbb{E}\left[\left(V_{r v}-\mathbb{E}\left[V_{r v}\right]\right)^{2}\right]$. Let $\eta_{l} \in\{0,1\}$ for $l=1,2, \ldots, r$ and $\xi_{l} \in\{0,1\}$ for $l=1,2, \ldots, v$. Then we have

$$
\begin{aligned}
& \prod_{l=1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}} \prod_{m=1}^{v}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}} \\
= & \prod_{l=1}^{r}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}-\mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right]\right. \\
& +\mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\left.\lambda_{r ; l}\right]}\right] \\
& \times \prod_{l=1}^{v}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\gamma_{v ; l}}-\mathbb{E}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\left.\gamma_{v ; l}\right]}\right.\right. \\
& +\mathbb{E}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\left.\left.\gamma_{v ; l}\right]\right]}\right.
\end{aligned}
$$

$$
\begin{align*}
&= \sum_{\substack{\eta_{1}, \ldots, \eta_{r} \in\{0,1\} \\
\xi_{1}, \ldots, \xi_{v} \in\{0,1\}}} \prod_{l=1}^{r}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}-\mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right]\right]^{\eta_{l}} \\
& \times\left[\mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right]\right]^{1-\eta_{l}} \\
& \times \prod_{l=1}^{r}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\gamma_{v ; l}}-\mathbb{E}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\left.\left.\gamma_{v ; l}\right]\right]^{\xi_{l}}}\right.\right. \\
& \quad \times\left[\mathbb{E}\left[\left(A_{j i_{l}}-p_{n} w_{j i_{l}}\right)^{\gamma_{v ; l}}\right]\right]^{1-\xi_{l}} \tag{82}
\end{align*}
$$

For convenience, denote

$$
X_{i j}(x)=\left(A_{i j}-p_{n} w_{i j}\right)^{x}-\mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{x}\right]
$$

and $Y_{i j}(x)=\mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{x}\right]$.
Since $i \neq j, j_{l} \notin\{i, j\}$ for $l=1,2, \ldots, r$ and $i_{l} \notin\{i, j\}$ for $l=$ $1,2, \ldots, v$, then $\left\{i, j_{l}\right\} \neq\left\{j, i_{m}\right\}$ for any $l=1,2, \ldots, r$ and $m=1,2, \ldots, v$. Consequently, $A_{i j_{l}}(l=1,2, \ldots, r)$ and $A_{j i_{m}}(m=1,2, \ldots, v)$ are independent.

By (53), (81) and (82), $V_{r v}-\mathbb{E}\left[V_{r v}\right]$ does not contain the term corresponding to $\eta_{l}=0$ for all $l \in\{1,2, \ldots, r\}$ and $\xi_{m}=0$ for all $m \in$ $\{1,2, \ldots, v\}$. Hence we assume $\eta_{1}+\cdots+\eta_{r} \geq 1$ or $\xi_{1}+\cdots+\xi_{v} \geq 1$. Without loss of generality, let $\eta_{1}=\eta_{2}=\cdots=\eta_{l_{0}}=1, \eta_{l_{0}+1}=\cdots=\eta_{r}=0$, $\xi_{1}=\xi_{2}=\cdots=\xi_{m_{0}}=1$ and $\xi_{m_{0}+1}=\cdots=\xi_{v}=0$, where $1 \leq l_{0}+m_{0} \leq$ $r+v$. In this case,

$$
\begin{aligned}
& \prod_{l=1}^{r}\left[X_{i j_{l}}\left(\lambda_{r ; l}\right)\right]^{\eta_{l}}\left[Y_{i j_{l}}\left(\lambda_{r ; l}\right)\right]^{1-\eta_{l}}=\left(\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right)\right)\left(\prod_{l=l_{0}+1}^{r} Y_{i j_{l}}\left(\lambda_{r ; l}\right)\right) \\
& \prod_{l=1}^{v}\left[X_{j i_{l}}\left(\gamma_{v ; l}\right)\right]^{\xi_{l}}\left[Y_{j i_{l}}\left(\gamma_{v ; l}\right)\right]^{1-\xi_{l}}=\left(\prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right)\right)\left(\prod_{l=m_{0}+1}^{v} Y_{j i_{l}}\left(\gamma_{v ; l}\right)\right) .
\end{aligned}
$$

Denote

$$
V_{r v}\left(l_{0}, m_{0}\right)
$$

$$
\begin{align*}
& =\sum_{\substack{i \neq j \\
j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, i_{2}, \ldots, i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right)\right) \\
& \quad \times\left(\prod_{\substack{l=l_{0}+1}}^{r} Y_{i j_{l}}\left(\lambda_{r ; l}\right)\right)\left(\prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right)\right)\left(\prod_{l=m_{0}+1}^{v} Y_{j i_{l}}\left(\gamma_{v ; l}\right)\right) \cdot
\end{align*}
$$

We only need to consider the variance of $V_{r v}\left(l_{0}, m_{0}\right)$. Since $\lambda_{r ; l} \geq 2$ and $w_{i j} \in[\beta, 1]$, then

$$
\begin{aligned}
& \mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right] \\
= & \left(1-p_{n} w_{i j_{l}}\right)^{\lambda_{r, l}} p_{n} w_{i j_{l}}+\left(-p_{n} w_{i j_{l}}\right)^{\lambda_{r, l}}\left(1-p_{n} w_{i j_{l}}\right) \\
= & \Theta\left(p_{n}\right) .
\end{aligned}
$$

Hence one has

$$
\prod_{l=l_{0}+1}^{r} Y_{i j_{l}}\left(\lambda_{r ; l}\right)=\Theta\left(p_{n}^{r-l_{0}}\right), \quad \prod_{l=m_{0}+1}^{v} Y_{j i_{l}}\left(\gamma_{v ; l}\right)=\Theta\left(p_{n}^{v-m_{0}}\right) .
$$

For convenience, denote

$$
\begin{aligned}
a_{i j_{1}, \ldots, j_{0}} & =\sum_{j_{l_{0}+1}, \ldots, j_{r} \notin\left\{j_{1}, \ldots, j_{0}\right\}} \prod_{l=l_{0}+1}^{r} Y_{i j_{l}}\left(\lambda_{r ; l}\right), \\
b_{j i_{1}, \ldots, i_{m_{0}}} & =\sum_{i_{m_{0}+1}, \ldots, i_{v} \notin\left\{i_{1}, \ldots, i_{m_{0}}\right\}} \prod_{l=m_{0}+1}^{v} Y_{j i_{l}}\left(\gamma_{v ; l}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
a_{i j_{1}, \ldots, j_{0}}=\Theta\left(\left(n p_{n}\right)^{r-l_{0}}\right), \quad b_{j i_{1}, \ldots, i_{m_{0}}}=\Theta\left(\left(n p_{n}\right)^{v-m_{0}}\right) . \tag{84}
\end{equation*}
$$

In this case, $V_{r v}\left(l_{0}, m_{0}\right)$ is written as

$$
\begin{align*}
V_{r v}\left(l_{0}, m_{0}\right)= & \sum_{\substack{i \neq j \\
j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, i_{2}, \ldots, i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right) a_{i j_{1}, \ldots, j_{l_{0}}} b_{j i_{1}, \ldots, i_{m 0}} \\
& \times\left(\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right)\right)\left(\prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right)\right) .
\end{align*}
$$

Next we bound the variance of $V_{r v}\left(l_{0}, m_{0}\right)$. Since $i \neq j, j_{l} \notin\{i, j\}$ and $i_{m} \notin\{i, j\}$ for all $l, m, X_{i j_{l}}\left(\lambda_{r ; l}\right)$ and $X_{j i_{l}}\left(\gamma_{v ; l}\right)$ are independent. By definition, $\mathbb{E}\left[X_{i j_{l}}\left(\lambda_{r ; l}\right)\right]=\mathbb{E}\left[X_{j i_{l}}\left(\gamma_{v ; l}\right)\right]=0$. Then $\mathbb{E}\left[V_{r v}\left(l_{0}, m_{0}\right)\right]=0$ and $\operatorname{Var}\left(V_{r v}\left(l_{0}, m_{0}\right)\right)=\mathbb{E}\left[V_{r v}\left(l_{0}, m_{0}\right)^{2}\right]$, that is,

$$
\begin{align*}
& \operatorname{Var}\left(V_{r v}\left(l_{0}, m_{0}\right)\right) \\
&= \mathbb{E}\left[\sum_{i, j, j_{1}, \ldots, j_{l_{0}}, i_{1}, \ldots, i_{m_{0}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right) a_{i j_{1}, \ldots, j_{l}} b_{j i_{1}, \ldots, i_{m_{0}}}\right. \\
&=\left.\times\left(\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right)\right)\left(\prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right)\right)\right]^{2} \\
&=\sum_{\substack{i, j, j_{1}, \ldots, j_{0}, i_{1}, \ldots, i_{m} \\
i^{\prime}, j^{\prime}, j_{1}^{\prime}, \ldots, j_{0}^{\prime}, i_{1}^{\prime}, \ldots, i_{m}^{\prime}}} p_{n} w_{i j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right) p_{n} w_{i^{\prime} j^{\prime}} f^{(s, t)}\left(w_{i^{\prime}\left(j^{\prime}\right)}, w_{j^{\prime}\left(i^{\prime}\right)}\right) \\
& \times a_{i j_{1}, \ldots, j_{l_{0}}} b_{j i_{1}, \ldots, i_{m_{0}}} a_{i^{\prime} j_{1}^{\prime}, \ldots, j_{l_{0}}^{\prime}} b_{j^{\prime} i_{1}^{\prime}, \ldots, i_{m_{0}}^{\prime}} \tag{86}\\
& \times \mathbb{E}\left(\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right) X_{i^{\prime} j_{l}^{\prime}}\left(\lambda_{r ; l}\right) \prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right) X_{j^{\prime} i_{l}^{\prime}}\left(\gamma_{v ; l}\right)\right)
\end{align*}
$$

For each $j_{l_{1}}$ with $1 \leq l_{1} \leq l_{0}$, if $\left\{i, j_{l_{1}}\right\} \neq\left\{i^{\prime}, j_{l}^{\prime}\right\}$ or $\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some $l \in\left\{1,2, \ldots, l_{0}\right\}$ or $m \in\left\{1,2, \ldots, m_{0}\right\}$, then $X_{i j_{1}}\left(\lambda_{r ; l_{1}}\right)$ is independent of $X_{j i_{l}}\left(\lambda_{r ; l}\right), X_{i^{\prime} j_{l}^{\prime}}\left(\lambda_{r ; l}\right)$ and $X_{j^{\prime} i_{m}^{\prime}}\left(\lambda_{r ; m}\right)$. In this case,

$$
\begin{align*}
& \mathbb{E}\left[\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right) X_{i^{\prime} j_{l}^{\prime}}\left(\lambda_{r ; l}\right) \prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right) X_{j^{\prime} i_{l}^{\prime}}\left(\gamma_{v ; l}\right)\right] \\
= & \mathbb{E}\left[X_{i j_{l_{1}}}\right] \mathbb{E}\left[\prod_{l=1, l \neq l_{1}}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right) X_{i^{\prime} j_{l}^{\prime}}\left(\lambda_{r ; l}\right) \prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right) X_{j^{\prime} i_{l}^{\prime}}\left(\gamma_{v ; l}\right)\right] \\
= & 0 \tag{87}
\end{align*}
$$

Hence, for each $j_{l_{1}}$ with $1 \leq l_{1} \leq l_{0}$, there exists l or m such that $\left\{i, j_{l_{1}}\right\}=$ $\left\{i^{\prime}, j_{l}^{\prime}\right\}$ or $\left\{i, j_{l_{1}}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$. Otherwise, (87) holds. Moreover, if $\left\{i, j_{l_{1}}\right\}=$ $\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{i, j_{l_{1}}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$, then $\left\{i^{\prime}, j_{l}^{\prime}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$. In this case, $i^{\prime}=i_{m}^{\prime}$ and $j^{\prime}=j_{l}^{\prime}$ (since $\left.i^{\prime} \neq j^{\prime}\right)$. This is not possible, due to the fact that $i_{m}^{\prime} \notin\left\{i^{\prime}, j^{\prime}\right\}$ and $j_{l}^{\prime} \notin\left\{i^{\prime}, j^{\prime}\right\}$ for all m, l. Therefore, $\left\{i, j_{l_{1}}\right\}$ can only be equal to one of $\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{j^{\prime}, i_{m}^{\prime}\right\}$, but not both. Similarly, $\left\{j, i_{m}\right\}$ can only be equal to one of $\left\{i^{\prime}, j_{l}^{\prime}\right\}$ and $\left\{j^{\prime}, i_{m}^{\prime}\right\}$.

Let $m_{0}=0$. If $l_{0} \geq 2$, then $i=i^{\prime},\left\{j_{1}, j_{2}, \ldots, j_{l_{0}}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{l_{0}}^{\prime}\right\}$. Then

$$
\begin{align*}
& \mathbb{E}\left[\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right) X_{i^{\prime} j_{l}^{\prime}}\left(\lambda_{r ; l}\right) \prod_{l=1}^{m_{0}} X_{j i_{l}}\left(\gamma_{v ; l}\right) X_{j^{\prime} i_{l}^{\prime}}\left(\gamma_{v ; l}\right)\right] \\
= & \mathbb{E}\left[\prod_{l=1}^{l_{0}} X_{i j_{l}}\left(\lambda_{r ; l}\right)^{2}\right]=O\left(p_{n}^{l_{0}}\right) \tag{88}
\end{align*}
$$

Then the sum over these indices in (86) is bounded by

$$
\begin{equation*}
O\left(n\left(n p_{n}\right)^{2(r+v)-l_{0}+2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{89}
\end{equation*}
$$

If $l_{0}=1$, then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{1}^{\prime}\right\}$. In this case, (89) still holds.
Let $m_{0}=1$. If $l_{0} \geq 3$, then $i=i^{\prime},\left\{j_{1}, j_{2}, \ldots, j_{l_{0}}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{l_{0}}^{\prime}\right\}$ and $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$. Then the sum over these indices in (86) is bounded by

$$
\begin{equation*}
O\left(\left(n p_{n}\right)^{2(r+v)-l_{0}+1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{90}
\end{equation*}
$$

If $l_{0}=2$, there are two situations: (i) $i=i^{\prime},\left\{j_{1}, j_{2}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}\right\}$ and $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$; (ii) $\left\{i, j_{1}\right\}=\left\{j_{l_{1}}^{\prime}, i^{\prime}\right\},\left\{i^{\prime}, j_{l_{2}}^{\prime}\right\}=\left\{j, i_{1}\right\},\left\{i, j_{2}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$ with $l_{1} \neq l_{2}$. For the case (i), the sum over these indices in (86) is bounded by (90) with $l_{0}=2$. For case (ii), the sum over these indices in (86) is bounded by

$$
\begin{equation*}
O\left(\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{91}
\end{equation*}
$$

If $l_{0}=1$, then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{1}^{\prime}\right\}$ and $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$ or $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$ and $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{1}^{\prime}\right\}$. Either case, the sum over these indices in (86) is
bounded by

$$
\begin{equation*}
O\left(\left(n p_{n}\right)^{2(r+v)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{92}
\end{equation*}
$$

If $l_{0}=0$, then (89) holds with l_{0} replaced by $m_{0}=1$.
Let $m_{0}=2$. If $l_{0} \geq 3$, then $i=i^{\prime},\left\{j_{1}, j_{2}, \ldots, j_{l_{0}}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{l_{0}}^{\prime}\right\}$, $j=j^{\prime}$ and $\left\{i_{1}, i_{2}\right\}=\left\{i_{1}^{\prime}, i_{2}^{\prime}\right\}$. In this case, the sum over these indices in (86) is bounded by

$$
\begin{equation*}
O\left(\left(n p_{n}\right)^{2(r+v)-l_{0}} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{93}
\end{equation*}
$$

Let $l_{0}=2$. There are two cases (i) $i=i^{\prime},\left\{j_{1}, j_{2}\right\}=\left\{j_{1}^{\prime}, j_{2}^{\prime}\right\}, j=j^{\prime}$ and $\left\{i_{1}, i_{2}\right\}=\left\{i_{1}^{\prime}, i_{2}^{\prime}\right\} ;$ (ii) $\left\{i, j_{1}\right\}=\left\{j_{l_{1}}^{\prime}, i^{\prime}\right\},\left\{j_{l_{2}}^{\prime}, i^{\prime}\right\}=\left\{j, i_{m_{1}}\right\},\left\{j, i_{m_{2}}\right\}=$ $\left\{j^{\prime}, i_{m_{3}}^{\prime}\right\},\left\{j^{\prime}, i_{m_{4}}^{\prime}\right\}=\left\{i, j_{2}\right\}$. For case (i), (93) holds. For case (ii), the sum over these indices in (86) is bounded by

$$
\begin{equation*}
O\left(\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{94}
\end{equation*}
$$

The case $l_{0}=0,1$ are similar to the case $m_{0}=0,1$ and $l_{0}=2$ discussed earlier.

The case $m_{0} \geq 3$ is similar to the case $l_{0} \geq 3$.
Now we study the second moment of (50). Note that

$$
\begin{aligned}
& \sum_{i \neq j} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(d_{i(j)}-w_{i(j)}\right)^{s}\left(d_{j(i)}-w_{j(i)}\right)^{t}\left(A_{i j}-p_{n} w_{i j}\right) \\
= & \sum_{r=1}^{s} \sum_{v=1}^{t} U_{r v}
\end{aligned}
$$

where

$$
\begin{aligned}
U_{r v}= & \sum_{\substack{i \neq j}} \sum_{\substack{j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, i_{2}, \ldots, i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{v}}} f^{(s, t)}\left(w_{i(j)}, w_{j(i)}\right)\left(A_{i j}-p_{n} w_{i j}\right) \\
& \times \prod_{l=1}^{r}\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}} \prod_{m=1}^{v}\left(A_{j i_{m}}-p_{n} w_{j i_{m}}\right)^{\gamma_{v ; m}} .
\end{aligned}
$$

Since s, t are fixed finite integers less than k_{0}, we only need to bound the variance of $U_{r v}$. Obviously, $\mathbb{E}\left[U_{r v}\right]=0$. Then $\operatorname{Var}\left(U_{r v}\right)$ is equal to

$$
\begin{align*}
& \mathbb{E}\left[U_{r v}^{2}\right] \\
& =\sum_{\substack{i \neq j}} \sum_{\substack{j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
i^{\prime} \neq j^{\prime} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r} \\
i_{1}, i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{r}^{\prime} \notin\left\{i^{\prime}, j^{\prime}\right\} \\
i_{1}^{\prime} \neq i_{v} \notin\{i, j\} \\
i_{1} \neq i_{2} \neq \ldots \neq i_{2}^{\prime} \neq \ldots \neq i_{r}^{\prime}}} f^{\substack{j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{v}^{\prime} \notin\left\{i_{r}^{\prime}, j^{\prime}\right\} \\
j_{1}^{\prime} \neq j_{2}^{\prime} \neq \ldots \neq j_{v}^{\prime}}} \mid \\
& \times f^{(s, t)}\left(w_{i^{\prime}\left(j^{\prime}\right)}, w_{j^{\prime}\left(i^{\prime}\right)}\right) \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i^{\prime} j^{\prime}}-p_{n} w_{i^{\prime} j^{\prime}}\right)\left(\prod_{l=1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\right. \\
& \left.\times\left(\prod_{l=1}^{r} \bar{A}_{i^{\prime} j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\left(\prod_{m=1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=1}^{v} \bar{A}_{j^{\prime} i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] . \tag{95}
\end{align*}
$$

Denote the expectation in (95) as E_{1}. Fix $r \in\{1,2, \ldots, s\}$ and $v \in$ $\{1,2, \ldots, t\}$. There are two cases: (a) there are some indices $\lambda_{r ; l}$ or $\gamma_{v ; m}$ are equal to one; (b) $\lambda_{r ; l} \geq 2$ and $\gamma_{v ; m} \geq 2$ for all $l \in\{1,2, \ldots, r\}$ and $m \in\{1,2, \ldots, v\}$.

Consider case (a) first. Suppose there are some indices $\lambda_{r ; l}$ or $\gamma_{v ; m}$ which are equal to one. Without loss of generality, let $\lambda_{r ; 1}=\lambda_{r ; 2}=\cdots=$ $\lambda_{r ; r_{0}}=1$ and $\lambda_{r ; l} \geq 2$ for $l \in\left\{r_{0}+1, \ldots, r\right\}$. Let $\gamma_{v ; 1}=\gamma_{v ; 2}=\cdots=$ $\gamma_{v ; v_{0}}=1$ and $\gamma_{v ; l} \geq 2$ for $l \in\left\{v_{0}+1, \ldots, v\right\}$. Here $r_{0}+v_{0} \geq 1$. Then

$$
\begin{aligned}
E_{1}= & \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i^{\prime} j^{\prime}}-p_{n} w_{i^{\prime} j^{\prime}}\right)\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\right. \\
& \times\left(\prod_{l=1}^{r_{0}} \bar{A}_{i^{\prime} j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i^{\prime} j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\left(\prod_{m=1}^{v_{0}} \bar{A}_{j i_{m}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right) \\
& \left.\times\left(\prod_{m=1}^{v_{0}} \bar{A}_{j^{\prime} i_{m}^{\prime}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j^{\prime} i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right]
\end{aligned}
$$

We split the sum of (95) into two cases: $\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\}$ and $\{i, j\}=$ $\left\{i^{\prime}, j^{\prime}\right\}$.

Suppose $\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\}$. Let $v_{0} \geq 2$ and $r_{0} \geq 2$. For $1 \leq m_{1} \leq v_{0}$, if $\left\{j, i_{m_{1}}\right\} \neq\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for any $l,\left\{j, i_{m_{1}}\right\} \neq\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for any m and $\left\{j, i_{m_{1}}\right\} \neq$
$\left\{i^{\prime}, j^{\prime}\right\}$, then $A_{j i_{m_{1}}}$ is independent of $A_{i^{\prime} j_{l}^{\prime}}$ for all $l, A_{j^{\prime} i_{m}^{\prime}}$ for all m and $A_{i^{\prime} j^{\prime}}$. Then

$$
\begin{align*}
E_{1}= & \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)\left(A_{i^{\prime} j^{\prime}}-p_{n} w_{i^{\prime} j^{\prime}}\right)\left(\prod_{l=1}^{r_{0}} \bar{A}_{i j_{l}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\right. \\
& \times\left(\prod_{l=1}^{r_{0}} \bar{A}_{i^{\prime} j_{l}^{\prime}}\right)\left(\prod_{l=r_{0}+1}^{r} \bar{A}_{i^{\prime} j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\left(\prod_{m=1, m \neq m_{1}}^{v_{0}} \bar{A}_{j i_{m}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right) \\
& \left.\times\left(\prod_{m=1}^{v_{0}} \bar{A}_{j^{\prime} i_{m}^{\prime}}\right)\left(\prod_{m=v_{0}+1}^{v} \bar{A}_{j^{\prime} i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \mathbb{E}\left[\bar{A}_{j i_{m_{1}}}\right]=0 . \tag{96}
\end{align*}
$$

Hence, $\left\{j, i_{m_{1}}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l or $\left\{j, i_{m_{1}}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some m or $\left\{j, i_{m_{1}}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. Similar results hold for $\{i, j\},\left\{i, j_{l}\right\}$ with $1 \leq l \leq r_{0}$, $\left\{j^{\prime}, i_{m}^{\prime}\right\}$ with $1 \leq m \leq v_{0},\left\{i^{\prime}, j^{\prime}\right\}$, and $\left\{i^{\prime}, j_{l}^{\prime}\right\}$ with $1 \leq l \leq r_{0}$. (i) Suppose $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$. Then $\left\{j, i_{2}\right\}=\left\{i^{\prime}, j_{l_{2}}^{\prime}\right\}$ or $\left\{j, i_{2}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. If $\left\{j, i_{2}\right\}=\left\{i^{\prime}, j_{l_{2}}^{\prime}\right\}$, then $\{i, j\}=\left\{i^{\prime}, j_{l_{3}}^{\prime}\right\}$. Since $j_{l}^{\prime} \neq j^{\prime}$ for all l, then either $\left\{j^{\prime}, i_{1}^{\prime}\right\} \neq\left\{j_{l_{3}}^{\prime}, j_{l}\right\}$ for all l or $\left\{j^{\prime}, i_{2}^{\prime}\right\} \neq\left\{j_{l_{3}}^{\prime}, j_{l}\right\}$ for all l. By a similar argument as in (96), $E_{1}=0$. The same result hods if $\left\{j, i_{2}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. Suppose $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$ or $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. By a similar argument as in the case $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$, it is easy to get $E_{1}=0$.

Let $v_{0} \geq 2, r_{0} \leq 1$. Given $1 \leq m \leq v_{0}$, if $\left\{j, i_{m}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l, then $E_{1}=0$. Hence $\left\{j, i_{m}\right\}=\left\{j^{\prime}, i_{l}^{\prime}\right\}$ for some l. Then $j=j^{\prime}$ and

$$
\begin{equation*}
\left\{\{j, i\},\left\{j, i_{1}\right\}, \ldots,\left\{j, i_{v_{0}}\right\}\right\} \subset\left\{\left\{j^{\prime}, i^{\prime}\right\},\left\{j^{\prime}, i_{1}^{\prime}\right\}, \ldots,\left\{j^{\prime}, i_{v}^{\prime}\right\}\right\} \tag{97}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\{\left\{j^{\prime}, i^{\prime}\right\},\left\{j^{\prime}, i_{1}^{\prime}\right\}, \ldots,\left\{j^{\prime}, i_{v_{0}}^{\prime}\right\}\right\} \subset\left\{\{j, i\},\left\{j, i_{1}\right\}, \ldots,\left\{j, i_{v}\right\}\right\} \tag{98}
\end{equation*}
$$

Without loss of generality, let $i=i_{1}^{\prime}, i_{1}=i^{\prime}, i_{2}=i_{2}^{\prime}, \ldots, i_{v_{1}}^{\prime}=i_{v_{1}}^{\prime}$ for $v_{0} \leq v_{1} \leq v$. There are at most $n^{2(r+v)+2-v_{1}}$ choices of these indices. If $r_{0}=0, E_{1}$ is bounded by $O\left(p_{n}^{2(r+v)+1-v_{1}}\right)$. Then the sum of (95) over these indices is bounded by

$$
\begin{equation*}
n\left(n p_{n}\right)^{2(r+v)+1-v_{1}} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{99}
\end{equation*}
$$

If $r_{0}=1$, then $\left\{i, j_{1}\right\}=\left\{i^{\prime}, j_{1}^{\prime}\right\}$. In this case, the sum of (95) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-v_{1}} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{100}
\end{equation*}
$$

Let $v_{0}=r_{0}=1$. In this case, $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l or $\left\{j, i_{1}\right\}=$ $\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some m or $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. Let $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$. If $j=i^{\prime}$, then $\{i, j\}=\left\{i^{\prime}, j_{l_{2}}^{\prime}\right\}$. In this case, $\left\{i^{\prime}, j^{\prime}\right\}=\left\{j, i_{m_{1}}\right\}$ for some $m_{1} \geq 2$, $\left\{i, j_{1}\right\}=\left\{j^{\prime}, i_{1}^{\prime}\right\}$ and $l_{1}=1$. Otherwise $E_{1}=0$. There are at most $n^{2(r+v)-2}$ choices of these indices. In this case, the sum of (95) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{101}
\end{equation*}
$$

If $j=j_{1}^{\prime}$, then $\{i, j\}=\left\{j^{\prime}, i_{1}^{\prime}\right\},\left\{i, j_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$ and $l_{1}=1$. Otherwise $E_{1}=0$. There are at most $n^{2(r+v)-1}$ choices of these indices. In this case, the sum of (95) over these indices is bounded by

$$
\begin{equation*}
\left(n p_{n}\right)^{2(r+v)-1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{102}
\end{equation*}
$$

The cases $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some m and $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$ can be similarly bounded as in (100) and (102).

Let $v_{0}=1$ and $r_{0}=0$. In this case, $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l or $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for some m or $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$. Let $\left\{j, i_{1}\right\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$. If $m_{1}=1$, then $\{i, j\}=\left\{j^{\prime}, i_{m_{2}}^{\prime}\right\}$ and $\left\{i^{\prime}, j^{\prime}\right\}=\left\{j, i_{m_{3}}\right\}$. There are at most $n^{2(r+v)-1}$ choices of these indices. Then the sum of (95) over these indices is bounded by (102). If $m_{1} \geq 2$ and $m_{3}=1$, then the sum of (95) over these indices is bounded by (102). If $m_{1} \geq 2$ and $m_{3} \geq 2$, then $\left\{j^{\prime}, i_{1}^{\prime}\right\}=\left\{j, i_{m_{3}}\right\}$. There are at most $n^{2(r+v)-1}$ choices of these indices. Then the sum of (95) over these indices is bounded by

$$
\begin{equation*}
n\left(n p_{n}\right)^{2(r+v)-2} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{103}
\end{equation*}
$$

The case $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for some l and $\left\{j, i_{1}\right\}=\left\{i^{\prime}, j^{\prime}\right\}$ can be similarly studied.

Suppose $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$. Consider $i=i^{\prime}$ and $j=j^{\prime}$ first. For any m with $1 \leq m \leq v_{0}$, if $i_{m} \neq i_{m_{1}}^{\prime}$ for all $1 \leq m_{1} \leq v$, then the expectation $E_{1}=0$. Hence, $\left\{i_{1}, \ldots, i_{v_{0}}\right\} \subset\left\{i_{1}^{\prime}, \ldots, i_{v}^{\prime}\right\}$. Similarly, $\left\{i_{1}^{\prime}, \ldots, i_{v_{0}}^{\prime}\right\} \subset$ $\left\{i_{1}, \ldots, i_{v}\right\},\left\{j_{1}^{\prime}, \ldots, j_{r_{0}}^{\prime}\right\} \subset\left\{j_{1}, \ldots, j_{r}\right\},\left\{j_{1}, \ldots, j_{r_{0}}\right\} \subset\left\{j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right\} . \mathrm{Wi}$. thout loss of generality, let

$$
\begin{array}{ll}
\left\{i_{1}^{\prime}, \ldots, i_{v_{1}}^{\prime}\right\}=\left\{i_{1}, \ldots, i_{v_{1}}\right\}, & \left\{i_{v_{1}+1}^{\prime}, \ldots, i_{v}^{\prime}\right\} \cap\left\{i_{v_{1}+1}, \ldots, i_{v}\right\}=\emptyset \\
\left\{j_{1}^{\prime}, \ldots, j_{r_{1}}^{\prime}\right\}=\left\{j_{1}, \ldots, j_{r_{1}}\right\}, & \left\{j_{r_{1}+1}^{\prime}, \ldots, j_{r}^{\prime}\right\} \cap\left\{j_{r_{1}+1}, \ldots, j_{r}\right\}=\emptyset
\end{array}
$$

where $v_{0} \leq v_{1} \leq v, r_{0} \leq r_{1} \leq r$. There are at most $n^{2+r_{1}+2\left(r-r_{1}\right)+v_{1}+2\left(v-v_{1}\right)}$ indices. Let σ_{1} be a one-to-one map from $\left\{i_{1}, \ldots, i_{v_{1}}\right\}$ to $\left\{i_{1}^{\prime}, \ldots, i_{v_{1}}^{\prime}\right\}$ and σ_{2} be a one-to-one map from $\left\{j_{1}, \ldots, j_{r_{1}}\right\}$ to $\left\{j_{1}^{\prime}, \ldots, j_{r_{1}}^{\prime}\right\}$. Then

$$
\begin{align*}
E_{1}= & \mathbb{E}\left[\bar{A}_{i j}^{2}\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{\lambda_{r ; l}+\lambda_{r ; \sigma_{2}(l)}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}} \bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right. \\
& \times\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{m}}^{\left.\left.\gamma_{v ; m}+\gamma_{v ; \sigma_{1}(m)}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}} \bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right]} \begin{array}{rl}
= & \Theta\left(p_{n}^{1+r_{1}+2\left(r-r_{1}\right)+v_{1}+2\left(v-v_{1}\right)}\right)
\end{array} .\right.
\end{align*}
$$

Then the sum over indices $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$ in (95) is bounded by

$$
\begin{equation*}
n\left(n p_{n}\right)^{2(r+v)-\left(r_{1}+v_{1}\right)+1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right) \tag{105}
\end{equation*}
$$

Similarly, (105) holds for the case $i=j^{\prime}$ and $j=i^{\prime}$ with $\max \left\{r_{0}, v_{0}\right\} \leq$ $r_{1}, v_{1} \leq \min \{r, v\}$.

Now we consider case (b). Suppose $\lambda_{r ; l} \geq 2$ for $l \in\{1, \ldots, r\}$ and $\gamma_{v ; m} \geq 2$ for $m \in\{1, \ldots, v\}$. In this case $r \leq \frac{s}{2}$ and $v \leq \frac{t}{2}$. If $\{i, j\} \neq$ $\left\{i^{\prime}, j^{\prime}\right\},\{i, j\} \neq\left\{i^{\prime}, j_{l}^{\prime}\right\}$ for all $l,\{i, j\} \neq\left\{j^{\prime}, i_{m}^{\prime}\right\}$ for all m, then $E_{1}=0$.

Suppose $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$. There are two cases: $i=i^{\prime}$ and $j=j^{\prime}$ or $i=j^{\prime}$ and $j=i^{\prime}$. Let $i=i^{\prime}$ and $j=j^{\prime}$. Suppose $\mid\left\{j_{1}, \ldots, j_{r}\right\} \cap$ $\left\{j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right\} \mid=r_{1}$ and $\left|\left\{i_{1}, \ldots, i_{v}\right\} \cap\left\{i_{1}^{\prime}, \ldots, i_{v}^{\prime}\right\}\right|=v_{1}$. There are at most $n^{2+r_{1}+2\left(r-r_{1}\right)+v_{1}+2\left(v-v_{1}\right)}$ possible indices. Without loss of generality, as-
sume $j_{l}=j_{l}^{\prime}$ for $1 \leq l \leq r_{1}$ and $i_{l}=i_{l}^{\prime}$ for $1 \leq l \leq v_{1}$. Then

$$
\begin{align*}
E_{1}= & \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{2 \lambda_{r ; l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{m}}^{2 \gamma_{v ; m}}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \\
= & O\left(p_{n}^{1+r_{1}+2\left(r-r_{1}\right)+v_{1}+2\left(v-v_{1}\right)}\right) . \tag{106}
\end{align*}
$$

Then the sum over indices $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$ with $i=i^{\prime}$ and $j=j^{\prime}$ in (95) is bounded by

$$
n\left(n p_{n}\right)^{2(r+v)-r_{1}-v_{1}+1} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}=o\left(\sigma_{n}^{2}\right)
$$

Let $i=j^{\prime}$ and $j=i^{\prime}$. Suppose $\left|\left\{j_{1}, \ldots, j_{r}\right\} \cap\left\{i_{1}^{\prime}, \ldots, i_{v}^{\prime}\right\}\right|=r_{1}$ and $\left|\left\{i_{1}, \ldots, i_{v}\right\} \cap\left\{j_{1}^{\prime}, \ldots, j_{r}^{\prime}\right\}\right|=v_{1}$, where $0 \leq r_{1} \leq \min \{r, v\}$ and $0 \leq v_{1} \leq$ $\min \{r, v\}$. There are at most $n^{2+r_{1}+\left(r-r_{1}\right)+\left(r-v_{1}\right)+v_{1}+\left(v-v_{1}\right)+\left(v-r_{1}\right)}$ such indices. Without loss of generality, let $j_{l}=i_{l}^{\prime}$ for $l \leq r_{1}$ and $i_{l}=j_{l}^{\prime}$ for $l \leq v_{1}$. Then

$$
\begin{align*}
E_{1}= & \mathbb{E}\left[\left(A_{i j}-p_{n} w_{i j}\right)^{2}\left(\prod_{l=1}^{r_{1}} \bar{A}_{i j_{l}}^{\lambda_{r ; l}+\gamma_{v ; l}}\right)\left(\prod_{l=r_{1}+1}^{r} \bar{A}_{i j_{l}}^{\lambda_{r ; l}}\right)\left(\prod_{l=v_{1}+1}^{r} \bar{A}_{j j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right. \\
& \left.\times\left(\prod_{m=1}^{v_{1}} \bar{A}_{j i_{m}}^{\gamma_{v ; m}+\lambda_{r ; m}}\right)\left(\prod_{m=v_{1}+1}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=r_{1}+1}^{v} \bar{A}_{i i_{m}^{\prime}}^{\gamma_{v ; m}}\right)\right] \\
= & \Theta\left(p_{n}^{1+r_{1}+\left(r-r_{1}\right)+\left(r-v_{1}\right)+v_{1}+\left(v-v_{1}\right)+\left(v-r_{1}\right)}\right) . \tag{107}
\end{align*}
$$

Then the sum over indices $\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$ with $i=j^{\prime}$ and $j=i^{\prime}$ in (95) is bounded by

$$
O\left(n\left(n p_{n}\right)^{1+2(r+v)-\left(r_{1}+v_{1}\right)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right)
$$

Suppose $\{i, j\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ for some l_{1}. If $i=j_{l_{1}}^{\prime}$ and $j=i^{\prime}$, then $j^{\prime}=i_{m_{1}}$ for some m_{1}, otherwise $E_{1}=0$. There are at most $n^{3+r+(r-1)+v+(v-1)}$
possible nodes. In this case,

$$
\begin{align*}
E_{1}= & \mathbb{E}\left[\left(A_{j j_{l_{1}}^{\prime}}-p_{n} w_{j j_{l_{1}}^{\prime}}\right)^{1+\lambda_{r ; l}}\left(\prod_{l=1}^{r} \bar{A}_{i j_{l}}^{\lambda_{;, l}}\right)\left(\prod_{l=1, l \neq l_{1}}^{r} \bar{A}_{j j_{l}^{\prime}}^{\lambda_{r ; l}}\right)\right. \\
& \left.\times\left(A_{j i_{m_{1}}}-p_{n} w_{j i_{m_{1}}}\right)^{1+\gamma_{v ; m_{1}}}\left(\prod_{m=1, m \neq m_{1}}^{v} \bar{A}_{j i_{m}}^{\gamma_{v ; m}}\right)\left(\prod_{m=1}^{v} \bar{A}_{i_{m_{1} i_{m}}^{\prime}}^{\gamma_{v ; m}}\right)\right] \\
= & \Theta\left(p_{n}^{2+r+(r-1)+v+(v-1)}\right) . \tag{108}
\end{align*}
$$

Then the sum over indices $\{i, j\}=\left\{i^{\prime}, j_{l_{1}}^{\prime}\right\}$ in (95) is bounded by

$$
\begin{equation*}
O\left(n\left(n p_{n}\right)^{2(r+v)} f^{(s, t)}\left(n p_{n}, n p_{n}\right)^{2}\right)=o\left(\sigma_{n}^{2}\right) \tag{109}
\end{equation*}
$$

Similarly, (109) holds for $i=i^{\prime}$ and $j=j_{l_{1}}^{\prime}$ or $\{i, j\}=\left\{j^{\prime}, i_{m_{1}}^{\prime}\right\}$ for some m_{1}.

4.2.4 Bound the last term of (26)

Now we prove the last term of (26) converges in probability to zero. To this end, we will show that

$$
\begin{equation*}
\mathbb{E}\left[\left|\sum_{i \neq j} R_{i j} A_{i j}\right|\right]=o\left(\sigma_{n}\right) \tag{110}
\end{equation*}
$$

Let s, t satisfy $s+t=k_{0}$. By ($C 3$) of Assumption $1,\left|f^{(s, t)}(x, y)\right|$ is monotone in x and y. There are four cases: $\left|f^{(s, t)}(x, y)\right|$ is decreasing in x and $y,\left|f^{(s, t)}(x, y)\right|$ is increasing in x and $y,\left|f^{(s, t)}(x, y)\right|$ is increasing in x and decreasing in $y,\left|f^{(s, t)}(x, y)\right|$ is decreasing in x and increasing in y.

Suppose $\left|f^{(s, t)}(x, y)\right|$ is decreasing in x and y. Let $\delta_{n}=\left[\log \left(n p_{n}\right)\right]^{-2}$. Then

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)} \geq \delta_{n} w_{j(i)}\right]\right]
\end{aligned}
$$

$$
\begin{align*}
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)} \geq \delta_{n} w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \tag{111}
\end{align*}
$$

By the Cauchy-Schwarz inequality and (52), we have

$$
\begin{aligned}
\mathbb{E}\left[\left|d_{i(j)}-w_{i(j)}\right|^{s}\right] & \leq \sqrt{\mathbb{E}\left[\left(d_{i(j)}-w_{i(j)}\right)^{2 s}\right]} \\
& =\sqrt{\sum_{\substack{r=1}}^{2 s} \sum_{\substack{j_{1}, j_{2}, \ldots, j_{r} \notin\{i, j\} \\
j_{1} \neq j_{2} \neq \ldots \neq j_{r}}} \prod_{l=1}^{r} \mathbb{E}\left[\left(A_{i j_{l}}-p_{n} w_{i j_{l}}\right)^{\lambda_{r ; l}}\right]} \\
& =O\left(\sqrt{\sum_{r=1}^{s}\left(n p_{n}\right)^{r}}\right)=O\left(\left(n p_{n}\right)^{\frac{s}{2}}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)} \geq \delta_{n} w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, \delta_{n} w_{j(i)}\right)\right| d_{i(j)}-\left.w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)} \geq \delta_{n} w_{j(i)}\right]\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, \delta_{n} w_{j(i)}\right)\right| \mathbb{E}\left[\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
& =\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, \delta_{n} w_{j(i)}\right)\right| \mathbb{E}\left[\left|d_{i(j)}-w_{i(j)}\right|^{s}\right] \mathbb{E}\left[\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
& \leq\left(n p_{n}\right)^{\frac{k_{0}}{2}}\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, \delta_{n} w_{j(i)}\right)\right| \tag{112}
\end{align*}
$$

On the event $\left\{X_{i(j)}<\delta_{n} w_{i(j)}\right\}$, if $X_{i(j)}<d_{i(j)}$, then $X_{i(j)}$ cannot be between $d_{i(j)}$ and $w_{i(j)}$. Hence $X_{i(j)}<\delta_{n} w_{i(j)}$ implies $d_{i(j)} \leq X_{i(j)}<$ $\delta_{n} w_{i(j)}$. Similar result holds for $X_{j(i)}$. By definition, $d_{i(j)}$ and $d_{j(i)}$ are independent if $i \neq j$. By Lemma 1 and ($C 2$) of Assumption 1, one has

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)} \leq X_{i(j)}<\delta_{n} w_{i(j)}, d_{j(i)} \leq X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(d_{i(j)}, d_{j(i)}\right) \| d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)}<\delta_{n} w_{i(j)}, d_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
= & \sum_{k=1}^{\delta_{n} w_{i(j)} \delta_{n} w_{j(i)}} \sum_{l=1}\left|f^{(s, t)}(k, l)\right|\left|k-w_{i(j)}\right|^{s}\left|l-w_{j(i)}\right|^{t} \mathbb{P}\left(d_{i(j)}=k\right) \mathbb{P}\left(d_{j(i)}=l\right) \\
= & O\left(\left(\delta_{n} n p_{n}\right)^{M} \exp \left(-2 n p_{n} \beta(1+o(1))\right)\right. \\
= & \exp \left(-2 n p_{n} \beta(1+o(1)),\right. \tag{113}
\end{align*}
$$

where M is a positive constant.
Similarly, the second term of (111) is bounded as follows.

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, d_{j(i)} \leq X_{j(i)}<\delta_{n} w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, d_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{j(i)}<\delta_{n} w_{j(i)}\right]\right]
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{k=1}^{\delta_{n} w_{j(i)}}\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, k\right)\right|\left(k-w_{j(i)}\right)^{t} \mathbb{P}\left(d_{j(i)}=k\right) \mathbb{E}\left[\left|d_{i(j)}-w_{i(j)}\right|^{s}\right] \\
& =O\left(\left(\delta_{n} n p_{n}\right)^{M} \exp \left(-n p_{n} \beta(1+o(1))\right)\right. \\
& =\exp \left(-n p_{n} \beta(1+o(1))\right. \tag{114}
\end{align*}
$$

The third term of (111) can be similarly bounded.
Combining (111)-(114) yields

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & O\left(\left(n p_{n}\right)^{\frac{k_{0}}{2}}\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, \delta_{n} w_{j(i)}\right)\right|+\exp \left(-n p_{n} \beta(1+o(1))\right) .\right.
\end{aligned}
$$

By (C4) of Assumption 1, we have

$$
\mathbb{E}\left[\left|\sum_{i \neq j} R_{i j} A_{i j}\right|\right]=O\left(n\left(n p_{n}\right)^{\frac{k_{0}}{2}+1}\left|f^{(s, t)}\left(\delta_{n} n p_{n}, \delta_{n} n p_{n}\right)\right|\right)=o\left(\sigma_{n}\right)
$$

Then (110) holds.
Suppose $\left|f^{(s, t)}(x, y)\right|$ is increasing in x and y. Let M be a large positive constant. Then

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq M w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq M w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right.
\end{aligned}
$$

$$
\begin{align*}
& \times I\left[X_{i(j)}<M w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \times I\left[X_{i(j)}<M w_{i(j)}, X_{j(i)}<M w_{j(i)}\right] \tag{115}
\end{align*}
$$

On the event $\left\{X_{i(j)} \geq M w_{i(j)}\right\}$, if $X_{i(j)}>d_{i(j)}$, then $X_{i(j)}$ cannot be between $d_{i(j)}$ and $w_{i(j)}$. Hence $X_{i(j)} \geq M w_{i(j)}$ implies $M w_{i(j)} \leq X_{i(j)} \leq$ $d_{i(j)}$. Similar result holds for $X_{j(i)}$. By definition, $d_{i(j)}$ and $d_{j(i)}$ are independent if $i \neq j$. Suppose $n p_{n}=\omega(\log n)$. By Lemma 1 and $(C 2)$ of Assumption 1, one has

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \times I\left[X_{i(j)} \geq M w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)} \geq X_{i(j)} \geq M w_{i(j)}, d_{j(i)} \geq X_{j(i)} \geq M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(d_{i(j)}, d_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)}-1 \geq M w_{i(j)}-1, d_{j(i)}-1 \geq M w_{j(i)}-1\right]\right] \\
= & \sum_{k=M w_{i(j)}-1 l=M w_{j(i)}-1}^{n-2} \sum^{n-2}\left|f^{(s, t)}(k+1, l+1)\right|\left|k+1-w_{i(j)}\right|^{s}\left|l+1-w_{j(i)}\right|^{t} \\
= & O \mathbb{P}\left(d_{i(j)}-1=k\right) \mathbb{P}\left(d_{i(j)}-1=l\right) \\
= & O\left(n^{C_{s, t, f}} e^{-n p_{n} \beta(1+o(1))}\right)
\end{align*}
$$

where $C_{s, t, f}$ is some constant dependent on s, t and f. Similarly,

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq M w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)} \geq X_{i(j)} \geq M w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(d_{i(j)}, M w_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)} \geq M w_{i(j)}\right]\right] \\
= & \mathbb{E}\left|d_{j(i)}-w_{j(i)}\right|^{t} \sum_{k=M w_{i(j)}-1}^{n-2} \\
& \times \mathbb{P}\left(d_{j(i)}-1=k\right) \\
= & O\left(e^{-n p_{n} \beta(1+o(1))}\right) \tag{117}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)}<M w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(M w_{i(j)}, M w_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & \mathbb{E}\left[\left|f^{(s, t)}\left(M w_{i(j)}, M w_{j(i)}\right)\right|\right] \mathbb{E}\left[\left|d_{i(j)}-w_{i(j)}\right|^{s}\right] \mathbb{E}\left[\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & O\left(\left(n p_{n}\right)^{\frac{k_{0}}{2}}\left|f^{(s, t)}\left(M n p_{n}, M n p_{n}\right)\right|\right) \tag{118}
\end{align*}
$$

By (115), (116),(117) and (118), it follows that
$\mathbb{E}\left[\left|\sum_{i \neq j} R_{i j} A_{i j}\right|\right]=O\left(n\left(n p_{n}\right)^{\frac{k_{0}}{2}+1}\left|f^{(s, t)}\left(M n p_{n}, M n p_{n}\right)\right|\right)=o\left(\sigma_{n}\right)$.

Then (110) holds.
Suppose $\left|f^{(s, t)}(x, y)\right|$ is decreasing in x and increasing in y. Let $\delta_{n}=$ $\left[\log \left(n p_{n}\right)\right]^{-2}$ and M be a large positive constant. Then

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right] \\
= & \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right] \\
& +\mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)}<M w_{j(i)}\right] \tag{119}
\end{align*}
$$

The first term of (119) can be bounded by

$$
\begin{aligned}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, d_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right.
\end{aligned}
$$

$$
\begin{align*}
& \times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, d_{j(i)} \geq M w_{j(i)}\right] \\
= & \left(n p_{n}\right)^{\frac{s}{2}} \sum_{k=M w_{j(i)}}^{n-2}\left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, k\right) \| k-w_{j(i)}\right|^{t} \mathbb{P}\left(d_{j(i)}=k\right) \\
= & \exp \left(-n p_{n} \beta(1+o(1))\right. \tag{120}
\end{align*}
$$

The second term of (119) can be bounded by

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)} \geq \delta_{n} w_{i(j)}, X_{j(i)}<M w_{j(i)}\right]\right] \\
\leq & \left|f^{(s, t)}\left(\delta_{n} w_{i(j)}, M w_{j(i)}\right)\right|\left(n p_{n}\right)^{\frac{k_{0}}{2}} . \tag{121}
\end{align*}
$$

The third term of (119) can be bounded by

$$
\begin{align*}
& \mathbb{E}\left[\left|f^{(s, t)}\left(X_{i(j)}, X_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[X_{i(j)}<\delta_{n} w_{i(j)}, X_{j(i)} \geq M w_{j(i)}\right]\right] \\
\leq & \mathbb{E}\left[\left|f^{(s, t)}\left(d_{i(j)}, d_{j(i)}\right)\right|\left|d_{i(j)}-w_{i(j)}\right|^{s}\left|d_{j(i)}-w_{j(i)}\right|^{t}\right. \\
& \left.\times I\left[d_{i(j)}<\delta_{n} w_{i(j)}, d_{j(i)} \geq M w_{j(i)}\right]\right] \\
= & \sum_{k=0}^{\delta_{n} w_{i(j)}} \sum_{l=M w_{j(i)}}^{n-2}\left|f^{(s, t)}(k, l)\right|\left|k-w_{i(j)}\right|^{s}\left|l-w_{j(i)}\right|^{t} \\
= & \times \mathbb{P}\left(d_{i(j)}=k\right) \mathbb{P}\left(d_{j(i)}=l\right) \\
= & \exp \left(-n p_{n} \beta(1+o(1)) .\right. \tag{122}
\end{align*}
$$

By (119)-(122), (110) holds.
The case that $\left|f^{(s, t)}(x, y)\right|$ is increasing in x and decreasing in y can be similarly processed. We omit it. Then the proof is complete.

4.3 Proof of Theorem 2 in Subsection 3.1

To prove Theorem 2 in Subsection 3.1, we only need to derive the asymptotic distribution of the Randić index of the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha)$, that is, $\tau=-\frac{1}{2}$. Recall that for the Erdős-Rényi random graph $\mathcal{G}_{n}(\alpha), w_{i(k)}=1+(n-2) p_{n}$. Then

$$
\begin{gathered}
f_{x}\left(w_{i(j)}, w_{j(i)}\right)=f_{y}\left(w_{i(j)}, w_{j(i)}\right)=-\frac{1}{\left.2\left(1+(n-2) p_{n}\right)\right)^{2}}, \\
f_{x x}\left(w_{i(j)}, w_{j(i)}\right)=f_{y y}\left(w_{i(j)}, w_{j(i)}\right)=\frac{3}{\left.4\left(1+(n-2) p_{n}\right)\right)^{3}}, \\
f_{x y}\left(w_{i(j)}, w_{j(i)}\right)=\frac{1}{\left.4\left(1+(n-2) p_{n}\right)\right)^{3}}, \\
\left|f^{(s, t)}\left(n p_{n}, n p_{n}\right)\right|=O\left(\frac{1}{\left(n p_{n}\right)^{1+(s+t)}}\right) .
\end{gathered}
$$

Let $k_{0}=\max \left\{\left\lfloor 2+\frac{1}{1-\alpha}\right\rfloor+1,3\right\}$. By (25) and the proof of Theorem 1 , we have

$$
\begin{aligned}
\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]= & \frac{1}{2} \sum_{i \neq j}\left(M_{i j} A_{i j}-\mathbb{E}\left[M_{i j} A_{i j}\right]\right)+\frac{1}{2} \sum_{i \neq j}\left(S_{i j} A_{i j}-\mathbb{E}\left[S_{i j} A_{i j}\right]\right) \\
& +O_{P}\left(\sqrt{\frac{n}{\left(n p_{n}\right)^{3}}}\right) .
\end{aligned}
$$

By the calculations in Section 3.1, $a_{i j}=\Theta\left(\frac{1}{\left(n p_{n}\right)^{2}}\right)$ for $\tau=-\frac{1}{2}$. Then

$$
\operatorname{Var}\left(\sum_{i \neq j} a_{i j}\left(A_{i j}-p_{n} w_{i j}\right)\right)=O\left(\frac{n}{\left(n p_{n}\right)^{3}}\right) .
$$

By equations (27)- (32), we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{i \neq j}\left(M_{i j} A_{i j}-\mathbb{E}\left[M_{i j} A_{i j}\right]\right) \\
= & -\frac{\sum_{i \neq j \neq l}\left(A_{i l}-p_{n}\right)\left(A_{i j}-p_{n}\right)}{\left.2\left(1+(n-2) p_{n}\right)\right)^{2}}+O_{P}\left(\sqrt{\frac{n}{\left(n p_{n}\right)^{3}}}\right) .
\end{aligned}
$$

By equations (33)-(47), we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{i \neq j}\left(S_{i j} A_{i j}-\mathbb{E}\left[S_{i j} A_{i j}\right]\right) \\
= & \frac{1}{4} \sum_{\substack{i \neq j, s \neq t \\
s, t \notin\{i, j\}}} p_{n}\left(f_{x x}\left(w_{i(j)}, w_{j(i)}\right)+f_{y y}\left(w_{i(j)}, w_{j(i)}\right)\right) \\
& \times\left(A_{i s}-p_{n}\right)\left(A_{i t}-p_{n}\right)+O_{P}\left(\sqrt{\frac{n}{\left(n p_{n}\right)^{3}}}\right) \\
= & \frac{3(n-3) p_{n}}{\left.8\left(1+(n-2) p_{n}\right)\right)^{3}} \sum_{s \neq t \neq i}\left(A_{i s}-p_{n}\right)\left(A_{i t}-p_{n}\right)+O_{P}\left(\sqrt{\frac{n}{\left(n p_{n}\right)^{3}}}\right) .
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]=\mathcal{X}_{n}+O_{P}\left(\sqrt{\frac{n}{\left(n p_{n}\right)^{3}}}\right) \tag{123}
\end{equation*}
$$

where

$$
\mathcal{X}_{n}=-\frac{1}{\left.8\left(1+(n-2) p_{n}\right)\right)^{2}} \sum_{s \neq t \neq i}\left(A_{i s}-p_{n}\right)\left(A_{i t}-p_{n}\right)
$$

Note that

$$
\begin{aligned}
-\mathcal{X}_{n}= & \sum_{i<j<k} \frac{\left(A_{i j}-p_{n}\right)\left(A_{i k}-p_{n}\right)}{\left.4\left(1+(n-2) p_{n}\right)\right)^{2}}+\sum_{i<j<k} \frac{\left(A_{j i}-p_{n}\right)\left(A_{j k}-p_{n}\right)}{\left.4\left(1+(n-2) p_{n}\right)\right)^{2}} \\
& +\sum_{i<j<k} \frac{\left(A_{k i}-p_{n}\right)\left(A_{k j}-p_{n}\right)}{\left.4\left(1+(n-2) p_{n}\right)\right)^{2}}
\end{aligned}
$$

and the variance σ_{n}^{2} of \mathcal{X}_{n} is equal to

$$
\sigma_{n}^{2}=\frac{n(n-1)(n-2) p_{n}^{2}\left(1-p_{n}\right)^{2}}{\left.32\left(1+(n-2) p_{n}\right)\right)^{4}}=\Theta\left(\frac{n}{\left(n p_{n}\right)^{2}}\right)
$$

By Theorem 6.1 in [13], we have

$$
\frac{\mathcal{X}_{n}}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1)
$$

from which and (123) it follows that

$$
\frac{\mathcal{I}_{n}-\mathbb{E}\left[\mathcal{I}_{n}\right]}{\sigma_{n}} \Rightarrow \mathcal{N}(0,1)
$$

Then the proof is complete.

Acknowledgment: The author is grateful to the anonymous reviewers for valuable comments.

References

[1] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
[2] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225-233.
[3] B. Bollobás, P. Erdős, A. Sarkar, Extremal graphs for weights, Discr. Math. 200 (1999) 5-19.
[4] S. C. Basak, A. T. Balaban, G. Grunwald, B. D. Gute, Topological Indices: Their Nature and Mutual Relatedness, J. Chem. Inf. Comput. Sci. 40 (2000) 891-898.
[5] M. Cavers, S. Kirkland, On the normalized Laplacian energy and general Randić index r_{1} of graphs, Lin. Algebra Appl. 433 (2010) 172-190.
[6] K. C. Das, S. Sun, I. Gutman, Normalized Laplacian eigenvalues and Randić energy of graphs, MATCH Commun. Math. Comput. Chem. 77 (2017) 45-59
[7] T. Došlić, M. A. Hosseinzadeh, S. Hossein-Zadeh, A. Iranmanesh, F. Rezakhanlou, On generalized Zagreb indices of random graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 499-511.
[8] P. De Meo, F. Messina, D. Rosaci, G. M. L. Sarne, A. V. Vasilakos, Estimating graph robustness through the Randić index, IEEE Trans Cyber. 48 (2018) 3232-3242.
[9] S. Dattola, N. Mammone, F. C. Morabito, D. Rosaci, G. M. L. Sarne, F. L. Foresta, Testing graph robustness indexes for EEG analysis in Alzheimer's disease diagnosis, Electronics 10 (2021) \#1440.
[10] E. Estrada, Quantifying network heterogeneity, Phys. Rev. E 82 (2010) \#066102.
[11] D. Fourches, A. Tropsha, Using graph indices for the analysis and comparison of chemical datasets, Mol. Inf. 32 (2013) 827-842.
[12] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[13] C. Gao, J. Lafferty, Testing network structure using relations between small subgraph probabilities, https://arxiv.org/pdf/1704.06742. pdf
[14] S. Li, L. Shi, W. Gao, Two modified Zagreb indices for random structures, Main Group Met. Chem. 44 (2021) 150-156.
[15] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.
[16] Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, B. Furtula, From the connectivity index to various Randić-type descriptors, MATCH Commun. Math. Comput. Chem. 80 (2018) 85-106.
[17] C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Rodriguez, J. Sigarreta, Computational and analytical studies of the Randić index in Erdő-Rényi models, Appl. Math. Comput. 377 (2020) \#125137.
[18] C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Rodriguez, J. Sigarreta, Computational and analytical studies of the harmonic index on Erdős-Rényi models, MATCH Commun. Math. Comput. Chem. 85 (2021) 395-426.
[19] K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb. 15 (2018) 155-167.
[20] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[21] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5-124.
[22] M. Randić, M. Nović, D. Plavšić, Solved and Unsolved Problems in Structural Chemistry, CRC Press, Boca Raton, 2016.
[23] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discr. Appl. Math. 184 (2015) 202-212.
[24] D. Vukičević, M. Gašperov, Bond aditive modeling 1. Ariatic indices, Croat. Chem. Acta 83 (2010) 243-260.
[25] M. Yuan, On the Randić index and its variants of network data, submitted to Test, 2023.
[26] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[27] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[28] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.

