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Abstract

Topological indices play a significant role in mathematical chem-
istry. Given a graph G with vertex set V = {1,2,...,n} and edge set
&, let d; be the degree of node i. The degree-based topological index
is defined as Z,, = Z{i,j}eg f(di,d;), where f(z,y) is a symmetric
function. In this paper, we investigate the asymptotic distribution of
the degree-based topological indices of a heterogeneous Erdés-Rényi
random graph. We show that after suitably centered and scaled, the
topological indices converges in distribution to the standard normal
distribution. Interestingly, we find that the general Randié¢ index
with f(z,y) = (xy)” for a constant 7 exhibits a phase change at

—_1
T=—3

1 Introduction

Topological index is a numerical parameter of a graph. It is graph invariant
and characterizes the topology of a graph. Topological indices are used
to model many physicochemical properties in QSAR [1,4,12]. One of the
most important types of topological indices is the degree-based topological
indices, which are defined as a function of the degrees of nodes in a graph
[12].

The first degree-based topological index is the Randi¢ index [20]. It

measures the branching extent of a graph. The Randi¢ index is the
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most popular and most studied index among all topological indices. It
plays a central role in understanding quantitative structure-property and
structure-activity relations in chemistry and pharmocology [21,22]. More-
over, the Randi¢ index possesses a wealth of non-trivial and interesting
mathematical properties [2,3,5,6,15]. In addition, the Randi¢ index finds
countless applications in network (graph) data analysis. For instance, it
was used to quantify the similarity between different networks or subgraphs
of the same network [11], it serves as a quantitative characterization of net-
work heterogeneity [10], and [8,9] used the Randi¢ index to measure graph
robustness.

Motivated by the Randié¢ index, various degree-based topological in-
dices have been introduced and attracted great interest in the past years
[16]. For example, [2] proposed the general Randi¢ index, which includes
the Randi¢ index and the second Zagreb index as special cases. [26, 27]
defined the general sum-connectivity index, which includes the harmonic
index as a special case [28]. [23,24] introduced the inverse sum indeg index
to predict the total surface area of octane isomers. The reader is referred
to [12] for more references.

One of the interesting research topics in the study of topological in-
dices is to investigate their properties of random graphs. Recently, [17,18]
performed numeric and analytic analyses of the Randié¢ index and the har-
monic index in the Erdés-Rényi random graph. Their simulation studies
show that the indices are approximately equal to one half of the number
of nodes, and the distributions of the indices are symmetric around their
expectations. [7,8,14] calculated the expectations of the Randié¢ index, the
generalized Zagreb indices and two modified Zagreb indices of the Erdds-
Rényi random graph, respectively. [25] derived the asymptotic limits of the
Randi¢ index and the harmonic index of a heterogeneous random graph.

In this paper, we are interested in the asymptotic distribution of the
degree-based topological index of a heterogeneous Erdds-Rényi random
graph. We show that after suitably centered and scaled, the degree-based
topological index converges in distribution to the standard normal distri-
bution. We apply our results to several well-known topological indices

and observe that the general Randi¢ index exhibits a phase change phe-
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nomenon.

This paper is organized as follows. In Section 2, we present the asymp-
totic distribution of the topological index of a heterogeneous random gr-
aph. In Section 3, we provide several examples. The proof is deferred to

Section 4.

Notation: We adopt the Bachmann—Landau notation throughout this
paper. Let a, and b, be two positive sequences. Denote a,, = O(b,)
if ¢1b, < a, < cb, for some positive constants cq,cs. Denote a, =
w(by) if limy, 0o % = oo. Denote a, = O(b,) if a, < cb, for some
‘;: = 0. Let N(0,1)

be the standard normal distribution and X,, be a sequence of random

positive constants ¢. Denote a,, = o(b,,) if lim, o

variables. Then X,, = N (0,1) means X,, converges in distribution to the

standard normal distribution as n goes to infinity. Denote X,, = Op(a,)
Xn

an

if ff is bounded in probability. Denote X,, = op(a,,) if converges to
zero in probability as n goes to infinity. Let E[X,,] and Var(X,) denote
the expectation and variance of a random variable X,, respectively. P[E]
denote the probability of an event E. Let f = f(x,y) be a function. For
non-negative integers s, t, f(5t) = f(s:t) (z,y) denote the partial derivative
%éz;y). For convenience, sometimes we write f, = f(10, f, = fO1
fow = @O £, = fO2 and f,, = fOV. exp(z) denote the exponential
function e®. For positive integer n, denote [n] = {1,2,...,n}. Given a

finite set E, |E| represents the number of elements in E.

2 Main results

A graph consists of a set of nodes (vertices) and a set of edges. Given a
positive integer n, an undirected graph on V = [n] is a pair G = (V, ),
where £ is a collection of subsets of V such that |e| = 2 for every e € .
Elements in £ are called edges. A graph can be conveniently represented
as an adjacency matrix A, where A;; = 1 if {7,j} is an edge, A;; = 0
otherwise and A;; = 0. Since G is undirected, the adjacency matrix A is
symmetric. The degree d; of node 7 is the number of edges connecting it,
that is, d; = >, ; Aij. A graph is said to be random if 4;;(1 <i < j <n)

are random.
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The degree-based topological index of a graph is defined as follows
[1,12].

Definition 1. The degree-based topological index of a graph G = (V,€)
is defined as
.= Y [didy), (1)
{i,j}€€

where f(z,y) is a real function satisfying f(z,y) = f(y, ).

Many well-known topological indices can be expressed as (1). For ex-
ample, the Randié¢ index corresponds to f(z,y) = (J:y)_% and the hyper-
Zagreb index corresponds to f(z,y) = (z +y)2.

Definition 2. Let 8 be a constant between zero and one, n be an positive

integer, and
W ={w;; € [8,1]]1 <i<j<n,wj =w;j,w; =0}
Define a heterogeneous random graph G, (5, W) as
P(Aij = 1) = pawij,

where A;; (1 <i < j <n) are independent, A;; = A;; and p, € (0,1).

The expected degree of node i in G,(8,W) is E[d;] = >_ ; pawik. In
general, E[d;] # E[d;] if ¢ # j, that is, the expected degrees of nodes are
not the same. Hence G, (8, W) is a heterogeneous random graph. When
wij = ¢ (1 <1< j < n)for aconstant ¢ € (0,1), G,(B, W) is the Erd6s-
Rényi random graph. It is homogeneous in the sense that nodes in it share
the same expected degree.

Several recent works have studied the expectations of some special
topological indices of the Erdés-Rényi random graph [7,8,14,17,18]. In this
paper, we derive the asymptotic distribution of the topological index Z,,
of the heterogeneous random graph G, (8, W). Our results can be applied
to all the topological indices studied in [7,8,14,17,18].

Before presenting our results, we introduce several notations and as-
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sumptions. Let wygy =1+ Zlg{uk} Pnwj and

on =Y (@i + aji) pawi; (1 = powyy), (2)
i<j

1 1
Qij = §f(wi(j)awj(i)) + 3 Z PrWii [fw(wi(l)a wiesy) + fy(wiq, wl(z))]-
1¢{ig}
Assumption 1. Let ko(ko > 3), s,t be non-negative integers. Suppose
np, = w(log(n)) and the following conditions hold.
(C1)
> (aij + aji)*pn = o(o}).
i<j
(C2). For all non-negative integers s,t satisfying s+t < ko, there is some

positive constant C such that

[fED (2, )] < (2y)©.

(C3). Given s,t satisfying s +t = ko, |V (x,y)| is monotone in x and
y.

(C4). For a large positive constant M and positive sequences an,b, €
[(log(npy)) 2, M], the following holds. For s+t = ko,

k
n(npn)TOJr”f(s’t)(annpna bnnpn)| =0 (Un) .
(C5). For 1 <s+t<ky—1,

2(s+t)—1|f(s,t)(

n(npy) npn,npn)|* = o (07) .

Assumption 1 is not restrictive and many common degree-based topo-
logical indices satisfy this assumption as shown later. Under Assumption
1, we derive the asymptotic distribution of the topological index Z,, of
Gn(8,W) as follows.
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Theorem 1. Let Z,, be the topological index defined in (1) of the random
graph G, (B, W) and o2 be defined in (2). Suppose Assumption 1 holds.
Then

T, — E[Z,]
On

= N(0,1), 3)

as n goes to infinity. In addition, the expectation E[Z,] has the following

asymptotic expression

E[Z,] = (1 +0< ! )) > pawiif(wigy, wig), (4)

n,
Pn 1<i<j<n

where the error rate % cannot be improved.
n

Based on Theorem 1, the degree-based topological index Z,, (suitably
centered and scaled) of the heterogeneous random graph G, (5, W) con-
verges in distribution to the standard normal distribution. As far as we
know, this is the first theoretical result on limiting distribution of topo-
logical indices. Moreover, Theorem 1 provides the best approximation of
the expectation of Z,,, in the sense that the error rate % cannot be im-
proved. For some special topological indices of the Erd6s-Rényi random
graph, it is possible to get an exact and compact expression of E[Z,]. For
instance, [14] and [7] obtained the exact expressions of the expectation of
the hyper-Zagreb index and the forgotten topological index of the Erdos-
Rényi random graph respectively. However, for most topological indices,
it seems impossible to get exact and closed-form expressions of the expec-
tations [7]. Our result (4) provides an approximation of the expectations.

The proof of Theorem 1 proceeds by decomposing 7, as a sum of
leading term and remainder term, followed by finding the limiting distri-
bution of the leading term and showing the remainder term is negligible.
The condition (C1) of Assumption 1 is used to prove the leading term
converges in distribution to the standard normal distribution. The condi-
tions (C2)—(C5) are needed to bound the remainder term. The condition
np, = w(log(n)) requires the random graph to be relatively dense. This
condition is common in theoretical network analysis. Assumption 1 is
weak. We shall provide several examples of degree-based topological in-

dices that satisfy this assumption in the subsequent section.
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3 Application to several topological indices

In this section, we apply Theorem 1 to several well-known topological
indices of a special heterogeneous random graph.

Let p, = n~* for a constant o € (0,1) and w;; = e~ Re W, (i £ j)
with non-negative constant x. Then e~ 2" < w;; < 1. Denote the corre-
sponding random graph as G, (a, k). When & = 0, G,(«,0) is the Erdés-
Rényi random graph. In this case, we denote it as G, («) for convenience.
For k > 0, G, («, k) is heterogeneous.

Denote ¢(k) = 1=¢" for k > 0 and ¢(0) = 1. Note that

" Ki “a(l—e"®
28_7 :Li):nc(,@)_ko(l)’ K> 0.

l—e™n
Then
wygy = 1+ Z PrWit
1¢{i,k}
=1 +pn6_% ( c(k) +0O(1) — e —e_%k)
= 1+npn() %""O(pn)
= npac(R)e” ™ +0(1), k>0,
When k =0,

Wi(k) =1+ Z pn:1+(n_2)pn~
1¢{i,k}

3.1 The general Randi¢ index

The general Randi¢ index is a generalization of the well-known Randié¢
index and has been widely studied in literature [8,17,18]. Let f(z,y) =
(zy)” for a non-zero constant 7. The general Randié¢ index Z,, is defined
as
.= Y (did)) (5)
{i,51€€

When 7 = f%, T, is the Randi¢ index.
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Given non-negative integers s, t, straightforward computation yields

100 ,9) = (ﬁh - k)) (f[w - k)) oy

k=0 k=0
Then
aij
1 ki T
= 5 [(npn)2 (k)?e"mwe n +O(npn)]
]. K K Ki T—1
—&—5 Z pne e T (npnc(/{)e_T —|—O(1))

1¢{i,5}
X (npnc(ﬁ)e_% +0 (1)>T

t5 3 pue et (mpaetw)eF +0 1)
lé{m}

. T—1
X (npnc(m)e_ﬁ +0 (1)) .
Note that e™* < e~ < 1. If 7 > 0, then ai; = O((np,)?7). In this case,

Z (ai; + aJZ D =0 (n(npn)47+1) .
i<j

Hence
_(aij + a;i)*pn )87
Zz<]( J J ) b _ O n(np ) _ 0(1)
ol 12 (npy, )57 +2
For 1 <s+t,
n(npn)2(5+t)|f(s’t) (ﬂpn, ”pn)|2 = © (n(npn)4T) =0 (O—TQL)

Let ky = max {[1+ t1;] +1,3}. Then ky > 1+ Ly, For s+t = ko, it
is easy to verify that

k k
n(npa) D (mpa,mpn)| = © (n(npa) 2 ) = 0(00).
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Then Assumption 1 holds and Theorem 1 applies.

Corollary 1. Let Z,, be the general Randi¢ index defined in (5) of the
random graph G, (o, k) and o2 be defined in (2). If T > 0, then

Z, — E[Z,]

On

= N(0,1), (6)

as n goes to infinity. In addition, the expectation E[Z,] has the following

asymptotic expression

E[Z,] = (1 +0 (1)> > pawii(wigwy)T (7)

P 1<i<j<n
where the error rate % cannot be improved.
When 7 < 0, Assumption 1 may not hold. To see this, let Kk = 0. Then

(1+ (n—2)pn)*"

Qg5 = 2 +7(14 (n—2)pa)*" " Hn —2)p,
2T 1 + 27 T
= (1+(n—2)p,) ( 2 _1+(n—2)pn)'

Ifr#£ f%, then a;; = © ((npn)QT). Similar to the case 7 > 0, Assump-
tion 1 holds and Theorem 1 applies.

Ifr= —%, then a;; = © (m) In this case, 02 = © ( ) and

p)®

2(s+t)—11 £(s,t 2 _ n
O ) = 6 ().
Clearly, 7-t~s # o(c?). Hence Assumption 1 does not hold. We have to
study this case separately.

When 7 = —%7 T, is the well-known Randi¢ index. The Randié¢ in-
dex is perhaps the first degree-based topological index introduced in [20].
Recently, [17] performed simulation studies of the expectation and distri-
bution of the Randi¢ index in Erdds-Rényi random graph. Its asymptotic
limit was given in [25]. Here we derive the asymptotic distribution of the

Randi¢ index of the Erdds-Rényi random graph as follows.
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Theorem 2. Let Z,, be the general Randi¢ index of the Erdds-Rényi ran-
dom graph G, (c) with constant o € (0,1). Then

T, —E[Z,
b2l v, ()
where 9ri1 .
E[Z,] = n(npn)*" (1 L0 ()> :
2 nPn,
s _ =D -2p0—p)? _ [ n
g, = = _— ,
" 32(1+ (n — 2)py))* (npp)?
for T = —% and
(1+27)° . ,
o= ——n(n = Dpu(1+ (n = 2)pn)*" (1 + 0(1)) = © (n(npa)*™),
for T # —%.

Based on Theorem 2, we have an interesting finding. For 7 # —%, the
order of o2 is n(np,)* ™!, while for 7 = —1, the order of o2 is TR
Note that

R ()
n(npn 2 = =w .
( ) nPn (npn)?
Therefore, as a function of 7, the order of 02 is continuous at 7 # —%, but
discontinuous at 7 = —%. In this sense, the general Randi¢ index exhibits
a phase change at 7 = —%.

3.2 Hyper—Zagreb index

The Zagreb indices and its variants are frequently used to measure physi-
cal-chemical properties of compounds. Recently, [14] studied the expec-
tation of the hyper-Zagreb index of the Erdos-Rényi random graph. Let
f(z,y) = (x +y)?. The hyper-Zagreb index Z, is defined as

1, = Z (di +dj). (9)

{i,j}e€&
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Clearly, &) (z,y) =0 for s+t > 3 and

fm(%y) = fy(xay) = 2(x—l—y), fwm(xvy) = fyy(xay) = fa:y(-r7y) =2.

Straightforward calculation yields

Z wi [ fo(wiqy, wiy) + fy (Wi wi))]
1¢{i,5}
= 4e 7 Z e (npnc(ﬁ)e*% + npnc(n)e’%l +0 (1))
1¢{i.j}

ki

= 4de n [nQpnc(n)zef% + n*ppc(k)c(26) + O(n)]

= An?ppc(r)’e” S+ Anpuc(r)c(2k)e™ 4+ O(n).

Since e " < e~ < 1and e 2F < e n <1, then
2 2 K1 KJ 2
- M (eﬁ Hfﬁf)
+2(npn)20(/£)26_% + Z(npn)Qc(m)c(Zm)e_% + O(npr)
5 Ki ]. 2kj
= (npn)? |‘20(I€)262” + §C(H)2e* 3

+C(H)267%67% + 2¢(k)c(2k)e”

= © ((npn)Q) .

Consequently, we have 02 = © (n(np,)®) and

n =

Dicjlaij +aji) py 0 ( n(npa)° ) = o(1).

lops - n?(npy )10
For s +t >3, f&Y(x,y) = 0. For s +t = 2, we have
n(npn)* =o(c2).

Then Assumption 1 holds and Theorem 1 applies.

Corollary 2. Let Z,, be the hyper-Zagreb index defined in (9) of the ran-
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dom graph G,(a, k) and o2 be defined in (2). Then

Z, — E[Z,]

On

= N(0,1), (10)

as n goes to infinity. In addition, the expectation E[Z,] has the following

asymptotic expression

E[Z,] = (1 +0 <1>) > pawij(wig) + wj)?, (11)

n
Pn 1<i<j<n
where the error rate ﬁ cannot be improved.
n

By Theorem 1 in [14], the expectation of the hyper-Zagreb index of the
Erdés-Rényi random graph G, («) is equal to

E[Z,] = n(n—1)(n—2)(2n—5)p2 +5n(n—1)(n—2)p +2n(n—1)p,. (12)

By (11), we have

1
E[Z,] = 2n(n — 1)(n — 2)?p3 (1 +0 (np)> : (13)
Then our result (13) is consistent with (12). In addition, by (12), the error

rate ﬁ cannot be improved, as stated in Corollary 2.

3.3 Forgotten topological index

The forgotten topological index is another chemical index. 7] studied the
expectation of the forgotten topological index of the Erdos-Rényi random
graph. Let f(z,y) = 22 +y?. The forgotten topological index Z,, is defined
as

T,= Y (d+d)). (14)

{1,j}€€&

Similar to the hyper-Zagreb index, it is easy to verify that Assumption 1
holds. Then Theorem 1 applies.

Corollary 3. Let I, be the forgotten topological index defined in (14) of
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the random graph G, (o, k) and o2 be defined in (2). Then

Z, — E[Z,]

On

= N(0,1), (15)

as n goes to infinity. In addition, the expectation E[Z,] has the following

asymptotic expression

E[Z,] = (1 +0 (1)> D pawii(w) +wi), (16)

n
Pn 1<i<j<n
where the error rate % cannot be improved.
n

For the Erdés-Rényi random graph G, (), the expectation of the for-

gotten topological index [7] is equal to
E[Z,] = n(n—1)(n—2)(n—3)p2 +3n(n—1)(n—2)p2 +n(n—1)p,. (17)
By (16), we have
E[Z.]

_ (1 L0 (1)> n(n = pn [+ (= 2)pn) + (1 + (1~ 2)pn)?

nPn 2

n(n —1)(n —2)%p3 (1 +0 (ni%)) .

Hence our approximation (16) is consistent with (17). Moreover, by (17),

the error rate ﬁ cannot be improved as in Corollary 3.

3.4 The inverse sum indeg index

The inverse sum indeg index is a significant predictor of total surface area

of octane isomers [19,23,24]. Let f(z,y) = ;2% The inverse sum indeg

index Z,, is defined as

d;d;
T,= Y, d‘ﬁd.. (18)
{i,jree " J

As far as we know, the inverse sum indeg index of random graph has not

been studied in literature. Here we provide its asymptotic distribution and
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an approximation of its expectation.

1
z+y”
as f. Then f = gh. Given positive integers s, t, h

For simplicity, we denote f(x,y)
s,t)

Let g(z,y) = xy and h(z,y) =
Cs,t

W, where

Cs,¢ is a constant dependent on s, t. Straightforward calculation yields

f(s,o) _ zs: (i)g(r,O)h(s—r,O) _ gh(s,o) + Sg(l,o)h(s—l,o)
_ r:%s,ol”y SCs—1,0Y
(@+y)'ts  (z+y)
FO0 zt: C) JON RO Z gp00) | 1 OD (041
T:io,txy tco -1

(@+y)*t (@ +y)t

Further, for s > 1 or ¢t > 1, we have

t t
fen = 3 (t>g(0,'r)h(s,t—r) +sY <t)g(1,r)h(s—1,t—'r)
T T

r=0 r=0
— gh(s7t) + tg(O«,l)h(&t—l) + 39(170)h(8—1,t) + Stg(Ll)h(S—l,t—l)
Cs,tTY tCst-1% SCs—1,tY StCs—1,t—1
(@+y)Fett - (z4y) ™ (z+y) Tt (z+y)t

Hence, for s +t > 1, | £ (np,,np,)| can be bounded as follows

(npp )51
Note that

B (e 1
folrwpnspn) = fy(pn, ) = (npn +npp)? 47

Then a;; = O (np,), 02 = © (n(np,)?) and

n

Nic(ais +ag)'on (W) — o(1).

ok n2(npy)8
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When 1 < s+ t, we have
n(npn) 2T FED (npy npa)|? = O (n(npn)?) = o (02).
Let ko = max{[1+ 2| + 1,3}. Then kg > 1+ - and
n(npn)%o+1|f(s’t)(npn, npp)| = O (n(np")27k70) =o(oyn).

Assumption 1 holds. Then Theorem 1 applies.

Corollary 4. Let Z,, be the inverse sum indeg index defined in (18) of the
random graph G, (o, k) and o2 be defined in (2). Then

7, —E[Z,

I — ElZ] = N(0,1), (19)
On

as n goes to infinity. In addition, the expectation E[Z,] has the following

asymptotic expression

Wi(5)Wj(3)
E[T 1+0 " 20
] = ( (m%)) 2 P i) + w0y 20)

1<i<j<n

where the error rate % cannot be improved.
"

For the Erd6s-Rényi random graph G, («), the expectation of the in-

verse sum indeg index can be expressed as

sz, = (140 (L)) = D=2k

NPn

4 Proof of main results

In this section, we provide detailed proofs of Theorem 1 and Theorem 2.
It is not easy to work on Z,, defined in (1) directly. In stead, we provide

an alternative expression of Z,, as follows

= Y Auf(diy di) ZAmf i) djy), (21

1<i<j<n lsﬁj
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where di(j) =1+ Zli{i,j} A; and dj(i) =1+ Zlg{i,j} Ajl. Note that Aij,
di(;y and dj;y are independent , E[d;;)] = w;(;) and Eld;;)] = wj(;). We

will use these facts frequently in the proof.

4.1 Lemmas

Before proving Theorem 1 and Theorem 2, we present two lemmas.

Lemma 1. Let G, (8, W) be defined in Definition 2, 6, = (log(npn))_2

and M be a constant greater than :

5.5 For any i € [n], we have

P(dijy —1 = k) < exp(—npnB(1+0(1))), k< dunpn,

P(d;jy — 1 = k) < exp(—np,B(1+0(1))), k> Mnp,.
Proof of Lemma 1: Given distinct indices i, j, let 0;; = {prwal|l € [n]\

{i,j}}. Then d;(;y — 1 follows the Poisson-Binomial distribution PB(0;;).
Recall that 8 < w;; < 1. Then

P(dij) —1=k) = Z Hpnwil H (1 = ppwa)

Scn]\{i,5},|S|=k1leS 1eSC\{i,5}

> [Ir. II (-pu8)

Scn]\{:,5},|S|=kleS 1esSe\{i,5}

= (n N 2);05,(1 —paf)" R (22)

IN

Note that (";2) < eklogn—klogk+tk 4y, (1—puB)"~27F = e(n—2—k)log(1—pnf)
Then by (22) we get

P(di;) —1=k)
< exp(klog(npn) —klogk +k+ (n—2—k)log(l —p,.B)). (23)

Let g(k) = klog(np,) — klogk +k+ (n —2 — k) log(1 — p, ). Considering
k as continuous variable, the derivative of g(k) with respect to k is equal

to

(k) = 1o ( TPn >—lo k.
g (k) =log T g
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Clearly, ¢'(k) > 0 for k < %25 and ¢'(k) < 0 for k > {*225. Then g(k)
achieves its maximum at k = ”p" . For k < §,npy, g(k:) < g(0nnpy).

1-pnp
Hence
1
< exp <6nnpn IOg 7 T 6nnpn + nlOg 1 _pnﬂ )
5n(1 *pnﬂ) ( )
< exp (—npnB(1+0(1))).
Since M > %, then Mnp, > 1:12:[3. For k > Mnp,, g(k) <

g(Mnp,,). Hence

P(d;;) —1=k)

(=M log(M)np, + Mnp, + (n —2 — Mnpy,) log(l — pnf))
= exp(—M(log M — L)np, + |n — 2 — Mnpy|p,fB)
(=npnB(1+o0(1))).

< exp

< exp

Lemma 2. Suppose (C1) of Assumption 1 holds. For the random graph
Gn(B, W), we have

> iz @ij(Aij — pnwi)
\/Zi<j(aij + aji)?prwij(1 — ppwi)

= N(0,1),

where

Z Powit [ fo (Wi, wigy) + fy(wiy, wis)].-
1¢{i,j}

1
aij = 5 f(wigg), wie) + 5

Proof of Lemma 2: Let

s _ > iz 0ij(Aij — pnwij)
n — .
\/Zi<j (a’ij + aji)anwij(l - pnwij)
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Then E[Z,] = 0. Note that
> aij(Aij = pawij) = (aij + aji)(Aij — ppwij).
i i<

Then
> iejlaij +aji)(Aij — powiy)

\/Ei<j(aij + ;i) *pnwij (1 — pnwi;)

Recall that A;;(1 <i < j < n) are independent. It is easy to verify that

Zn

2

E || D (ay + aji)(Aij — pawi;)

1<J
= ) (@i +a;i)°E[(Ai; — pnwi;)’]
1<J
= Z(aij + aj¢)2pn’wij(1 _pnwij)-
1<J

Hence Var[Z,] = 1. Straightforward calculation yields
E[(Aij — pnwig)'] = pawij[(1 = ppwig)* + piwd; (1 = ppwiy)] < 2ppwi;.
By (C1) of Assumption 1, we have
Yicj(@ij +aji) El(Aij — prwij)?]
2
(Zi<j(aij + aji)?prwi;(1 — inz‘j))
237, ;(ai + aji) pwi

(Zi<j(aij + a;i)?prwi; (1 — inij)>2
= o(l).

According to the Lyapunov Central Limit Theorem, Z,, converges in dis-

tribution to the standard normal distribution. [ |
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4.2 Proof of Theorem 1

Let ko be the integer in Assumption 1. The proof strategy is as follows:
firstly we use the Taylor expansion to expand the function f(d;(;),d;())
at (w;(;),w;(;)) to ko-th order; then we write Z,, as the sum of the leading
term and remainder terms; finally we show the leading term (after suitable
scaling) converges in distribution to the standard normal distribution and
the remainder terms are negligible.

By the Taylor expansion, f(d;(;),d;)) can be decomposed as

f(di),dji)) = M+ Sy +Tij + Ry, (24)
where
My = flwig), wje)) + Jo(wig), i) (di) — wigy))
+fy(wigg), wi)) (djy — wjciy),
1
Sy = §fm(wi(j),wj(i))(di(j) —w;(j)?
1
5 fuu (i) wji) () — i)’
+fay(Wig), wi)(di) — wig) ) dj) — wie)),
ko—1 s,t)
FED (w5, w;01)) s
T, = >, ). i) = wi))* (dje) — wim)'s
k=3 s+t=k o
FOD (X, X)) s
Ry = ;!Z! S22 (digy — wig))* (djgay — wia)",s
s+t=ko

Xi(j) is between d;(;) and w;(j, and Xj(;) is between d;(;) and w;(;). By
(21), the topological index Z,, is equal to

1 1 1 1
i#] i#] i#j i#]
Then

T, — E[Z,)]

On
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+

where o2 is defined in (2).
Next we show the first term in (26) is leading term and the last three

terms are negligible.

4.2.1 Asymptotic normality of the first term in (26)

To begin with, we study the first term of (26). Note that

> MA

ij
= D Fwigywi@) Ay + ) falwigy, wien)(digy — wigy)Aij
i#j i#j
+ 3 Fulwiggy wim) () — wi) A (27)
i#£j

Since di(j) — W) = Zlﬁ{i,j}(Ail — ppwy), then (dz(]) — ’LUl(J)) does not
contain A;;. Hence, (d;;y — w;(;)) and A;; are independent. Similarly,
dj;) — wj) and Ay are independent. In addition, E[d;;)] = w;(;) and
E[d;)] = w;i). Then the expectation of Zi# M;;A;j is equal to

D My Aiy| =Y fwigywja)paws;. (28)
i# i+

The first term of (27) can be written as

Zf wv(])ij(z) ij Zf wz(])aw](z))(Aij _pnwij)
i#] i#]

+ Z f(wi(j)v wj(i))pnwij~ (29)
i#£]
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Similarly, the second term of (27) is written as

Y Falwigyswio) iy — wigg) Aig
i
= Y falwigy, wi)(digy — wi))(Aij — pawij)
i
+ > pnwig o (Wi, wi) ) (digy — wis))
i
= Z Jo(wigjy, wiciy) (Air — Prnwir) (Aij — pwiy)
izl
+Z Z PrWit fo(Wiqy, wi)) | (Aij — Prwiy). (30)
i#j \Ig{i,j}

We will show the first term of (30) is of smaller order than the second
term. To this end, we find the second moment of it. Recall that if {7, j} #
{s,t}, A;j and Ay are independent. Let 7,71 be three arbitrary distinct
indices and i1, j1, {1 be another three arbitrary distinct indices. If {i, 5,1} #
{i1, 1,01}, then

E[(Aij — prnwij)(Ai — pnwi)(Aiyj, — Prwiy gy ) (Aiyty, — Prwiy, )] = 0.
When {i, 5,1} = {i1, j1, 11}, it is easy to get

E[(Aij — prwiz)(Ai — pnwir) (Aiyjy — PaWiy gy ) (Aigt, — PaWiyi, )]
E[(Aij — powij)*(Aa — ppwir)?]

= pawii(1 — prwij)prwi(l — prwy).

Then the second moment of the first term of (30) can be calculated as

follows.

E Z Je(Wicjy, wiay) (Air — prnwir) (Aij — pwiy)
i#£j#l
= Y felwigy wi) fe(wi oy wi )

i
i1£j17h



156

X]E[(A“ N pnwil)(Aij o pnwij)(Ailll - p”wilh)(Ailjl — PnWiyj5, )]
= 7 falwigy wi)*E[(Ai — pw)* (A — puwig)?]

i3l
= > falwigywi)*Pawi(1 = pawi)pwi; (1 — ppwij)

i3l

By Markov’s inequality, it follows that

Z Jo(wigjy, wiciy) (At — Prnwir) (Asj — pnwiy)
i#£j#l

= Op (\/n3p%f$(npn,npn)2) ) (31)

Similarly, one has

Z Ty (Wiggy, wiy) (Ai — pnwa) (Aij — prwiy)
i#jFl

= Op <\/n3p%fy(npmnpn)2) : (32)

Denote
1 1
ag = if(wi(j)awj(i)) +3 Z Prwit [ fo (Wi, wigiy) + fy (Wi, wi)]-
1¢{i,j}
Then combining (27)- (32) yields
3 2oiny (Mij Ay — E[M;; Ag))

On

> iz @ij(Aij — prwij) L Op (\/nsp%fm(npmnan) _

On oz

By Lemma 2 and (C5) of Assumption 1 (let s +¢ = 1), we conclude that

% Zi;&j (szAzJ - E[MZ]AU])

On

= N(0,1).

Then the proof is complete if the second, third and last term of (26)
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converge to zero in probability.

4.2.2 Bound the second term of (26)

We prove the second term of (26) is equal to op(1). By the definition of

Sij, we have

> S A

iséj
= 3 wa Wi, W) (dig) — W) Aij
#J
1
+§ Z Fuy(wicy, wi))(djsy — wjca))* As
i#j
3 fay(wiggy, win) (digy — wig)) (i) — wi) Aij. - (33)
i#]
Then
Z SijAij
i#j
Y Z fxx wz(3)7wj(1 )E [(d () w?(])) ] PnWij
t#]
1
+§ Z fyy(wi(j)a wj(i))E [(dj(i) - wj(i))z} PnWij
i#j

= 3 Z Ja (i), Wiy )Prwir (1 — prwir)pnwi;
iZjl
1
+§ Z Jyy (Wi, W) Pnwii (1 — ppwjr) pwi;. (34)
i#j#l

The first term of (33) can be expressed as

D Faalwiyys wica) ) (diy) — wig)* A

i#£j

me Wi(5), Wy( z))(di(j) - wi(j))2(Aij _pnwij)
i#j



158

3 pnwis Fra(wigy, wj) (di) — wig)- (35)
i)

We will find an upper bound of (35). Note that

D fra(wigy, wic) (diggy — wis))*(Aij — Powis)

i#]
= Z f.L‘L (wi(j)7 wg(z))(Azj - pnwij) Z (Ais - pnwis)(Ait - pnwit)
i#£] s#£t
s,t¢{i.5}
+ Z fwa: (wi(j)7 w](z))(Al] - panJ) Z (Ais - pnwis)Q- (36)
i£j s¢{i.g}

The second moment of the first term of (36) is equal to

E Z fea(Wigjy, wiey) (Aij — Prwiy)
i#£]

X Z (Azs - pnwis)(Ait - pnwit)
s#t
s,t¢{i,g}

Y feawigy wiw) E[(Ay — prwis)?
i#], 57t
s,t¢{i,j}
X (Azs - pnwis)2(Ait - pnwit)Q]

= Z fow(Wig), wii))*Prwij (1 — ppwsy)

e
s,t@{i,5}
XPpWis(1 — prwis)pnwis (1 — ppwir)
= 0 (n4pifmr(npmnpn)2) . (37)

The second moment of the second term of (36) is equal to

E Z Jaea(Wig5y, wieiy) (Aij — Prwiz) Z (Ais — pnwis)?
i#j s¢{i,j}
= Z fzz(wi(j)awj(i))2E [(Aij _pnwij)Q(Ais - pnwz‘s)ﬂ
i#j#s
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+ Z faz(Wig) i) E[(Aij — pawij)*(Ais — pawis)®
iRt

X (Ait — pnwir)?]
+ Z Sz (Wich), Wjey) faa(Wis), Ws(i))
itits
XE [(Aij — pnwij)® (Ais — pnwis)®]
> feolwigywi@)? i+ Y fee(wigy, wi)ph
i£j#s i£jF#s#L
+ Z fzm(wi(j)7wj(i))frr(wi(s)aws(i))pi
itits
= 0 (n4p2fxx(npm npn)Q) . (38)

IN

Now we consider the second term of (35). Note that

> Pawisfaa (Wi, wie) (digy — wiy))?

i#]
= anwijfma:(wi(j)ij(i)) Z (Ais = Pnwis) (Ait — Pnwit)
i#£] s#L
s,tg{i,g}
+anwijfxz(wi(j)awj(i))
i#]
X Z [(A'Ls - inis)2 - E[(A’LS - pnwis)2]]
s¢{i.g}
+ anwzjfmz wz(])v w](’L Z ]E - pnwi8)2] . (39)
i#j s¢{i.g}

The second moment of the first term of (39) is equal to

2
anwijfzz(wi(j)awj(i)> Z (Ais — pnwis)(Ait — PnWit)
i#£] s#t

s,t¢{i.j}

= > pRwiwij, fra(Wigy W) Fra(Wig)s Wiy (i)
1£J,i#J1,87t
sty

XE [(Ais — pnwis)*(Ait — prwir)?]
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+ Z piwf_]fxl(wz(g)a w](z))QE [(Ais - pnwis)2(Ait - pnwit)2]
ij 57t
s,t¢{i,5}

= Z Piwijwijl fa::p(wi(j)7 wj(i))fww(wi(jl)a wjl(i))

i i1, 57

s,t¢{i,5,51}

XPnWis(1 — Prwis)pnwit (1 — prwiy)

+ Y PR} fra(Wigs), wi(0)) Patis(1 = Putis)prwir(1 — puwsy)

i#], 57t
s,t¢ {47}

The second moment of the second term of (39) is equal to

E anwijfzx(wi(j)’wj(i))

i#]
2
X Z [(Azs _pnwz’s)2 —E [(Ais —pnwis)ZH ]
s¢{i.j}
= Z pnwijfww (wz(])v Wi (4) )pnwijl fx,a: (wi(j1)7 Wy, (z))
i#jF#s
i#j17#s
xE |:((Azs _pnwis)2 —-E [(Ais - pnwis)Q])z}

+ Y pwd fra(wigy wys))?

i#jFs
xE |:((A’LS - pnwis)2 —E [(Ais _pnwis)Z])z}
= 0 (n4pifm(npn, npn)Q) . (41)

By Markov’s inequality and equations (35)- (41), we have
D fea(wiggy, wien) [(digg) = wigy)* Ay = E [(digg) — wis))*] Aig]
i#]

= Op (\/n5pélfww<npn7npn)2) . (42)
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Similarly, one has

D Fuwwigy, wiay) [(digg) — wi)* Aij — E [(digg) — wig))?] A
]

- Op <\/ n%%fyy(npn,npn)Q) : (43)

Now we bound the third term of (33). Note that

D Fay(wiggys wio) (i) — wi) (djcey) — wica)) Aij
i
= > Fay(Wiy, wi) (i) — wig)) (i) — i) (Agj — pawiy)
i
+ 3 Fay(wigg) wi) iy — i) (dics) — i) )Pnwi
£
= Z Jay Wiy, wiiy) (Aij — Prwiz)(Ass — Pnwis) (Aje — Pnwjt)
i#f.5#]
b
+ Z Jay Wiy, Wi(i))Pnwij (Ais — PnWis)(Aje — pawye).  (44)
i#).5)
1

The second moment of the first term of (44) is equal to

E Z Sy (Wicj), wi)) (Aij — pnwij)
i#j, 575, t#1
2

X (Azs - pnwis)(Ajt - pnwjt)

= > fuwig)wie) E[(Aiy — pawi)’
175,577,
t#£i,5#t
X (Azs - pnwis)z(Ajt - pnwjt)Q]
+ D Fay(Wiywin)*E[(Aij — prwig)’
1#£5,5#7,
X (Azs - pnwis)Z(Ajs - pnsz)Q]
= > fey(wigy, wi) pawis(1 = paws;)

i#£],57],
t#£i,5#t
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XPpWis(1 — prwis)ppwijs (1 — ppw;y)

+ ) Fay(Wic)swj0)) Pawi (1 = pawis)

i+,
87]
X PpWis(1 — prw;s)pnwjs(1 — prw;s)
= 0 (”4p§szy(npmnpn)2) . (45)

The second moment of the second term of (44) is equal to

E Z fwy(wz y Wii( z))pnwu (A pnwis)(Ajt - pnwjt)
i#£],s7£7,t#1
= Y fay(wigy wie) PRwLE [(Ais — powis)? (Aje — pawse)?]
i#£5,57]
t#i,5F#t
+ Z facy(wi(j)a wj(z)) pn ZJE [(Azs - pnwis)z(Ajs _pnsz)2]
175,577
= Z fa:y Wi (5 ) pn z]pnwzs(l _pnwis)pnwjt(]- _pnwjt)

i#5,57]
t#i,5#t

+ Z fzy(wi(j)7 w](z))zpiw%pnwzs(l - pnwis)pnw]’s(l - pnsz)
i#],s
= O (P fay(npn,npn)?) - (46)

Combining (44), (45) and (46) yields

D Fay(wiggys wii) (i) — wi) (dsey — i) A
i#]

- Op <\/ n4pifzy(npn,npn)2) : (47)

By (42), (43), (47) and (C5) of Assumption 1 (let s+t = 2), we get
> (8ijAij — E[Si;Ayj)) =
i#£]
Op (\/n5p% [fzw (npn, npn)? + fyy(nPn, npn)?] + nP3, fay (npn, npn)z)
=op(on). (48)
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Hence the second term of (26) is equal to op(1).

4.2.3 Bound the third term of (26)

Now we prove the third term of (26) converges in probability to zero. This

is the most complex part of the proof. Note that

> TijAi
i
S i(5)> Wi (i)
= > > Z S,Z, T (dig) — wih))* (dj) — wies)) Al
k=3 s+t=k i#j
ko—1

MW, wji)
= > ZZ S.Z, FE dig) = wig)) " (di) — i)'

k=3 s+t=k i#j
X (Aij — pnwij)
ko—1 flst)

DI S!t! J())(diu)—wim)s

k=3 s+t=k i#j
X(dj(i) — wj(i))tpnwij. (49)

Next we bound the second moment of the first term of (49) and the variance
of the second term. Since kg is a fixed finite integer, the quantities s!, ¢!
n (49) are finite. We will ignore them in the subsequent analysis for
simplicity. Given finite integer kg > 4, there are finitely many non-negative
integers s, t such that s+t =k for any k = 3,4,..., kg — 1. Hence we only

need to bound the second moment of
D PO (wiggy wi)(dig) — wig)* () — wi) (Aiy = paws), (50
i#j
and the variance of
D P wiggy wia) (i) = wip)* (i) — i) Pwiy, (51)
i#]

where s,t are given non-negative integers with s +¢ =k for k = 3,4,...,
ko — 1.
We consider the variance of (51) first. Fix integer k € {3,4,... ko —1}
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and integers s,t € {0,1,2,...,k} satisfying s+t = k. For positive integers
r<sand v <t let A1, Ari2y ooy Ariry Yosls Yus2s - - -5 Yoo D€ positive inte-
gers such that A.q + Ao 4+ - 4+ Ay = s and Y1 + Yo + 0 F Yo = ¢

Given indices ¢, j, we have

(dij) —wiy)® = > 114, = pawij)

J1.d2,-Js ¢ {45} =1

= Z Z H(Aijz _pnwijz)/\r;lv

r=1j1,j2,....5r#{1,5} =1
J1#£J2F . Fr

t
(djy) —wjp)" = Z H(Ajiz — PaWji,)

102,000 @ (4,5} 1=1

- Z Z H(Ajil _pnwjil)%;l- (52)

v=1141,ia,...,iy E{4,5} =1
i1in k. i

Then (51) can be written as

s t
> pawig £ (Wi, wi ) (digy — wi) (i) — wi)' =D D Vi,

i#] r=1v=1
where
r
‘/T’U = Z pnwijf(s’t) (U}Z(‘]), w](z)) H(A'L]L — pnwijl))\r;l

i£j =1

J1s--es ]r%{lv]}

J1#j2 . Fr

i1 eerto @41,

i1F£i2F . Fiy
v

X H (Ajzm - pnwjim,)’yv;m' (53)

m=1
Note that

Var (zzvm) Y Y ConlV Vo)

r=1v=1 r=lv=1lr;=1v;=1
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S

Zi Z i (Var rv)“l‘VaT(‘/rlvl))

»

and s,t are finite non-negative integers, we only need to bound Var(V,.,)
for each given r,v. Fix r € {1,2,...,s} and v € {1,2,...,t}. There are
two cases: (I) there exists lp € {1,2,...,r} or mg € {1,2,...,v} such that
Arito =108 Yyume = 15 (II) Ay > 2 for all 1 € {1,2,...,r} and vy > 2
for all m € {1,2,...,v}.

We study case (I) first. Suppose there are some Ay, or 7., which are
equal to one. Without loss of generality, let A\p.y = Ao =+ = Apipy =1
and Ay > 2forl € {ro+1,....,7}, Vo1 = Yoz = -+ = Yo, = 1 and
Yo > 2 for I € {vg+1,...,v}. Here, either ro > 1 or vy > 1. Without

loss of generality, let 79 > 1. In this case,

r

[1(As, = pawij)™

=1
To T
= <H(Aijz pnwijl)) < H (Aijz pnwijl)Ar;l> ) (54)
=1 l=ro+1
H (Aji,, — Pnwji,, )™
m=1
Vo v
= (H (Aji,, —m%m)) ( 1T 4. —pnwjz;”)%””> , (55)
m=1 m=vo+1

and E[V,.,] = 0. Then Var(V,,) = E[V;2]. For convenience, denote A;; =
A;j — ppwi;. By (53), (54) and (55), we have

E[V;%]
— Z Z inijf(s’t)(wi(j)v wi(j))
i#j i35

J1s-- ]TQ{'LJ} 5 y/‘g{‘/?‘,}
I Ta i jjﬁfﬁ..%;
preneiav B

13‘6125‘6 A,

Xpnwz"j'f(’ (wi'(j’)’wj’(i’))
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) ( 10 45) (11 ) ( 11 27)

=1 l=ro+1 =1 l=ro+1

(i) () (10) (115
m=1 m=vo+1 m=1 m=vg+1

Next we find an upper bound of (56). Recall that ¢ # j and ¢’ # j'. We
shall decompose the summation in (56) into six cases: ¢ # i’ and j = j';
i=iandj#ji4 andj=i;i=j andj#i; {i,j} = {¢',7'%;
{i,7} N{#, 4"} = 0. For convenience, denote the expectation in (56) as E.

Firstly, we consider the case {i,j} = {i’,j’}. There are two scenarios:
(1) i =i and j = j/, (i) i = j' and j = ",

Consider (i) first. In this case, A;j,, A;j; are independent of Aj;, , Ajir .

Then
(HA”ZAU{> ( H AZJ:IA H)
=1 l=ro+1

Vo
X]E[ <H Aji,,LAji’m> < H A;Y;mmAvv m) 1 (57)
m=1 m=vo+1

Recall that ji, jo, ..., jr are mutually distinct and ji, j5, ..., j. are mutu-
ally distinct. Moreover, E[Aijz] =0foralll =1,2,...,r. If there exists
an index j;, with 1 <[y < rg such that j;, ¢ {ji,45,...,7.}, then

(HAijzAij,'> < 11 Azg:lA”:l>]
=1 l=ro+1

I As (HAz'j,f) ( 11 AzﬁlAzfllﬂ
I=1,51#j1, =1 I=ro+1
_— (58)

= E[A, ]E

Hence E = 0 by (57). Similarly, if there exists an index I3 with 1 <1; < rg
such that j; ¢ {ji,J2,..-,jr}, then E = 0. In addition, if there is an
index my with 1 < my; < wg such that ip,, ¢ {i},45,...,i,} or iy, &
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{i1,42, ...,y }, then E = 0. Consequently, E # 0 implies the following
{j17j2a oo 7jT0} C {.7]/.7.757 .. 7j7/‘}7 {ji?jév .. 7j7/'0} C {j17j27- . 7jT}a

{il,i27...,iv0} C {ill,ié,...,i;}, {’L'll,ié,...,ii)o} - {i1,i27...,iv}.

Without loss of generality, suppose

{gvd2s o osdm Y =01 J2s - dm s et ey 15 s dry =0

(59)
{il,ig, cee 77;1)1} = {7;,171'/2’ s 7i;1}7 {iv1+17 s 7iv} N {i{U1+1’ s 72;} = (2)7

(60)
for some 1 (rg < r;y < r) and v; (vg < v; < v). There are at most
n2t2r—m+2v—vi pogssible choices for the indices 4, 5,71, ..., 0w, J1,-- - Jr, ¢,
i, oy i, gl . gn satisfying i =4/, § = 57, (59) and (60). Let o1 be a
permutation of {1,2,...,r1} such that j, = j['n(l) and o, be a permutation
of {1,2,...,v1} such that i,, = i’UZ(m). The numbers of the permutations

o1 and o9 are r1! and vy! respectively. Then

<HAijzAij,’> ( H Adﬁ“%f)]
=1 l=ro+1
- TALFAro (1)
<HAijl )1 ( H E 1]1 Ul ]>
l=r1+1

= O(pr ). (61)

Similarly, we have

(i) (1t o)
m=vg+1 g

v1
= E (H A];;’"*””z“”))]( H E[A;™]E Aj;:])
m=1 m=v1+1
= O (p,'Q,L’U_Ul) . (62)

Note that 2(r +v) — (r1 +v1) < 2(s+t) — 1. By (56), (57), (61), (62) and
(C5) of Assumption 1, the sum in (56) over the indices ¢ = ', j = j', (59)
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and (60) is bounded by

242r—r14+2v—2v1 f(s,t) 2(s+t)f(s,t)

(an”pn)Q < (npn)(npn) (npmnPn)Q
= o(o}). (63)

(npn)

Consider case (ii) ¢ = j' and j = ¢’. If there is an index I; with 1 < [; <
ro such that j;, € {é#},...,4,}, then E = 0 (the same argument as in (58)).
If there is an index my with 1 < my < wg such that 4, ¢ {ji,...,/}, then
E =0 (the same argument as in (58)). Then E # 0 implies the following

{jlvav"-vao} C {1/1,1/2,,2;}, {7’,171/2’71210} - {jlﬁan"'ajT}?

{i17i27"'7ivo} C {]i7]éa '7.].'{)}7 {]ia]é7a];0} C {ilai27' '-7iv}-

Without loss of generality, suppose

{jlajZa cee 7j7‘1} = {le,Z/Q, e ,7:{,‘1}, {jT’H-la e 7j7‘}m{i;“1+17 e aZ;} = Q]>
(64)
{i17i27 v aivl} = {]Ljé) s 7j:)1}a {iv1+17 v aiv} N {j;1+1, s 7.71/;} = @,
(65)
for some 11 with max{rp,vo} <71 < min{r,v} and vy with max{rg,vo} <

242r—r1+2v—vq

vy < min{r,v}. There are at most n possible choices for

indices 4, 4,61,y buy J1se v s ey 83 J 380y e vyt 41y ..., Jb satisfying ¢ = j7,
j =4, (64) and (65). Let o1 be a permutation of {1,2,...,7r1} such that

5= i;l(l) and oy be a permutation of {1,2,...,v;} such that i,, = j;z(m).

Then
r1 \ r r
TArLFYvi0q (1) T AYvim
[145 IT 450\ IT 4%
=1 l=r1+1 m=ri1+1
v1 N v T
1 7';m+'7v;o2(m) H A Yvim H TAv;m
X HAjz'm Aji, Asir,
m=1 m=v1+1 m=v;+1

_ o).

E = E

Then the sum in (56) over the indices i = j/, j = ¢/, (64) and (65) is
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bounded by
(npn)2+2r—r1+2v—vl f(s,t) (in“ npn)Q
< (npn)(npn)* O (npy, npa)? = 0 (7)) - (66)
Consider the case i # ¢ and j = j'. For any Iy € {1,2,...,7},
{i,51,} # {4, 0} and {4, 5, } # {49} for any 1 <1 < w. If 1o > 2, it is
not possible that {i,j1} = {7, j;, } and {i, jo} = {4’, jj, } for distinct /; and
la. Then E = 0 (the same argument as in (58)). Let 7o = 1. In this case,
i = jj and 7' = j;. Otherwise E' = 0. Suppose {i1,...,dy, } = {i},... 7, }
and {iy, 11,50} N {if, 11,0y} = 0 for v < v; < v. Suppose
e vdn} = U rdin} 80d Lrs a4} 0 {dsnse 240} = 0 for
1 < r; < r. There are at most n2+t2(r+v)=vi=r1 chojces for the in-

.. A A A 1wt .
dices 4, 5,91, - -y buy J1s - -y Jrs 85 3505 oy 0y, J15 - - -, 4y satisfying these con-

ditions. Then
ZJl <HA 11) <HAJ1JZ> < H AJIJE)
l=ri1+1
(ﬁ Afl:’") ( 11 AJJL:A”“"H
m=v1+1

= O (pi+2(rfl)+v1+2(v7v1)> ,

E

and hence the sum over i # i’ and j = j’ in (56) is bounded by

2(r+7j)7v1+1f(s,t) (

(npn) npn, 1pn)* = o(ay). (67)

Consider the case ¢ = i’ and j # j'. If vg > 1, the summation is
similarly bounded by (67). Suppose vy = 0. Suppose {ji1,...,jr } =

{]177‘77/“1} and {jr1+1a"'ajr} N {j7/~1+1a"'aj7/~} = (Z) for To < 1 < r

3+2r—r1+2v

There are at most n choices for the indices i, 7,41, ..., %y, J1,- - -

)

Jry @58, dh 91, - - -, J0 satisfying these conditions. Then

= (i) (11,2 (11,2
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(o) (102)

_ O (pir r1+2v> .

Then the sum over ¢ = ¢’ and j # j' in (56) is bounded by

2

2+2T_T1+2Uf(s’t) (npm npn)2 = O(an)' (68)

n(npn)

Suppose i = j' and j # i'. If 1o > 2 or vy > 2, then F = 0 (similar
to the argument in the case ¢ # i and j = j'). Let 1o = 1. If vp = 1,
then j = j; and iy = ¢'. If v = 0, then j; = 4;, for some 1 < my < v,
j =j;, for some 1 <} < r and iy = i’. Without loss of generality, let

m1 = l; = 1. Suppose
{jla---ajﬁ} {Zlv"'v 7"1} {jr1+17"'7j7”}m{i;ﬁ-&-la"'vigz}:w'

{ig, .. yin = {dos - du by Lot ioy NV {do 4100t =0,

where 1 < r1,v; < min{r,v}. There are at most n2("**)=71=v1+2 choices
o . gy o . e
for the indices 2,7, %1, .. %0, J1s vy drs @3 380y, J1, - - - g satisfying

these conditions. In this case,

ﬂl (HAUZL-F’Y”) < 1.71 ) < H AZZT)
I=r1+1 l=ri+1
v1
ol (TL) (T ) (1T )
= =2 l=v1+1

_ O(p:L+r+(r v1)+v—rit+v—1+v— 1)

E =

Then the sum over ¢ = j' and j # ¢’ in (56) is bounded by

2(r+v)—r1—1f(s,t)(

(npn) npn,npn)? = o(c?). (69)

The case i # j' and j = ¢’ can be similarly bounded as in (69).
Now we consider {i,5} N {i,j'} = 0. If ro > 3, then at least one
of {i,j1}, {i,j2} and {i,js} is not in {{j',;,, }, {&', j}} for any m,my, 1.
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Hence F = 0. Similarly, if vg > 3, E = 0.

Suppose 79 = vg = 2. Then {i,j1} = {¢,j]} for some 1 <[ < r or
{t,71} = {J',i,,} for some 1 < m < v. Otherwise E = 0. Without loss
of generality, suppose {i,j1} = {¢,j;/}. In this case, i = j] and j; =¢'. If
1> 3, then {7, 11} = {j.im, } and {735} = (7', } o1 {734} = (7' 10y}
and {i',j5} = {4, im,} (otherwise E = 0). Either case is impossible, due
to the fact that j° # ¢, j* # j;, for any l;. Hence | = 1 or | = 2.
Without loss of generality, let [ = 1. In this case, {¢,55} = {J,%ms}
and 7' = ip, and j, = j. If mg > 3, then {j, i1} = {j’,i,,,} and
{j,i2} = {j',4;,,} (otherwise £ = 0), which is not possible. Hence m3z = 1
or mg = 2. Let mg = 1 (the argument for ms = 2 is the same). Then
{rin} = {7 - Tomg > 3, then {4, #4} = {i,ji,} and {74} = {i, }
(otherwise E = 0), which is not possible. Hence, mg = 1 or mg = 2. Let
me = 1 (the argument for mg = 2 is the same). Then {j’,i5} = {i, 2},
1 =15 and jo = j'. There are at most n2(rtv)=4 pogsible choices of the in-
dices 4, J, i1, - -y huy J1y- vy Jry 833080, o0l G, - - -, g1 satisfying these con-

ditions. Then the sum in (56) over these indices is bounded by
(npn) 2T FED (i, mpy)® = o(03). (70)

Suppose 79 = 2 and vg = 1. Then {i,5:} = {¢,j]} and {i,j2} =
{" i, yor {i, 71} =4y’ i, } and {1, jo } = {¢', j/} for some [, m. Otherwise
E = 0. Without loss of generality, let {i,j1} = {¢,j/} and {i,j2} =
{j’,il,}. By a similar argument as in the previous paragraph, [ = 1 or
Il =2.Letl=1. Then {¢, 55} = {J,ims }- If mg =1 and m = 1, the sum
in (56) over these indices is bounded by

p7L(npn)2(T+v)72f(syt)(npna npn)2 = 0(0'721)’ (71)
If m3 > 2 or m > 2, the sum in (56) over these indices is bounded by

2

20+0)=4 £ (. npy)? = 0(02). (72)

pi(’npn)

Suppose 79 = 2 and vg = 0. Then {i,5:} = {¢,j]} and {i,j2} =
{" i, yor {i, 1} =4y’ i, } and {1, jo} = {¢, j/} for some I, m. Otherwise
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E = 0. Without loss of generality, let {i,j1} = {¢/,j]} and {i,j2} =
{j',il,}. Then l =1 or I = 2. Without loss of generality, let { = 1. Then
{#,75} = {J,%m, }. The sum in (56) over these indices is bounded by

pn(npn)Q(r+v)72f(s’t)(npna npn)2 = 0(0721)' (73)

Suppose 7o = 1 and vo = 1. Then {¢, 51} = {¢', j/} or {¢, 1} = {4, 4],.}
for some [, m. Without loss of generality, let {i,51} = {¢,j/}. Suppose

I =1. Then {j,i1} = {¢', 77, } or {j,ir} = {j", i, } U {d, i1} = {4' 0., }
with m; = 1, the sum in (56) over these indices is bounded by

(npn)* ) FD (npy, mpy)? = o(a7). (74)

If my > 2, then {j',4\} = {4, jm, } for mg > 2. Then the sum in (56) over
these indices is bounded by

pn(npn)Q(Tﬂ})_Qf(s’t)(npna npn)2 = 0(0’37,)' (75)

The case {j,i1} = {’,j;, } can be similarly bounded as in (75).
Suppose | > 2. Then {i',j1} = {j,im, ;. If my = 1, then {j’,é{} =
{i,ji, } for Iy > 2 or {j',#{} = {4, im,} for ma > 2. In this case, the sum

in (56) over these indices is bounded by

pn(npn)Q(T+U)_2f(s7t)(npna npn)2 = O(Ui)' (76)

If my > 2, then {j’,4{} = {j,41}. The sum in (56) over these indices is
bounded by

P (npn) 272 FED (np,, np,,)? = o(02). (77)

Suppose 79 = 1 and vy = 0. Then {i,j1} = {',j; } or {i,ji} =

{7’ i, }. Suppose {i,j1} = {54, }. Then {7, j1} = {j,im,}. In this
case, the sum in (56) over these indices is bounded by

(npn)*H) £ (npp, mpn)® = o(o7). (78)
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Suppose {i,j1} = {i,j;,}. If 1 = 1, then the sum in (56) over these
indices is bounded by

2

2(7"-&-11)-&-1f(s,t)(npn7 npn)2 = o(o2). (79)

n(npy)

If I; > 2, then {#,j1} = {4, ims }- In this case, the sum in (56) over these
indices is bounded by

2

2(r+v)f(s7t)(npna npn)2 =o(0,)- (80)

(npn)

Now we consider the case (II): Ay > 2 for all [ = 1,2,...,r and

Yoym = 2 for all m = 1,2,...,v. In this case, r < 5 and v < % The

expectation of V., is equal to

E[V,v)
= > > pawy O (wigy wie) [TE(Ay — powii)™]
#7 G1,52,05r € {15} =1
Fj2F - Fr
01,02, 00 E{4,5}
i1l Fly
T El(4si,, = pnwji, )], (81)

m=1

Next we bound the variance of V., that is, Var(V.,) = E [(Viw — E[Viw])?].
Let gy € {0,1} for I = 1,2,...,r and & € {0,1} for I = 1,2,...,v. Then

we have

[T = puwis) ™ TT (Aji = puwji, )7
=1 m=1

=TT [ = powis ™ — E [(Ags, = pao) ]
=1

+E [(Aij, — prwig )] }
X [(Ajiz = pnwji,) " — E[(Aji, — pnwji, )"
=1

+E [(Aji, — pawjs, )] ]
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&
x [(Ajil — pnwji,) " — E[(Aji, —injz'z)w]}
=1

R R s
x[E (41, = prwsa) ]| (82)
For convenience, denote
Xij(x) = (Aij — pnwiz)” — E[(Aij — pnwij)”]

and Yj;(z) = E[(As; — prwi;)*]-

Since ¢ # j, i ¢ {i,j} for I = 1,2,...,r and 4, ¢ {i,j} for | =
1,2,...,v, then {i,5;} #{j,im} forany I =1,2,...,rand m =1,2,...,v.
Consequently, A;;, (I =1,2,...,r) and Aj;,, (m = 1,2,...,v) are inde-
pendent.

By (53), (81) and (82), V,, — E[V;.,] does not contain the term cor-
responding to n = 0 for all I € {1,2,...,7} and &, = 0 for all m €
{1,2,...,v}. Hence we assume 1y +---+n,. > lor & +---+&, > 1. With-
out loss of generality, let ny =no = ---=n, =1, Qg41 =--- =1 =0,
===, =1land &1 = - =&, =0, where 1 <y +mp <
r + v. In this case,

[T (o] ratrea] ™ = (T80 ( 11 vi000),

=1 I=lg+1

v & 1-§ o

H [inz ('VU;l)} [inz (%};l)} = (H Jit Vvl ) < H lez %}l )
=1 =1 I=mo+1
Denote

Vio(lo, mo)
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lo
=Y pan g ue) (HXW>)
i#£] =1
J1,d2,-dr {15}
J1F#JeF - Fir
1,02, 500 E{4,5}
1ia k. L

X < 11 Yz‘jl(/\m)> <Hij'l(%;l)> ( 11 Ym(%;l)) -(83)
I=lo+1 =1 l=mo+1

We only need to consider the variance of V;.,(lp,mo). Since A,; > 2 and
w;j € [B,1], then

E[(Aijl - pnwijl))\r;l]
(1 = prwij)) M prwij, + (—pawij,) M (1 = ppwij,)
O(pn)-

Hence one has

T
I Y v0) = 005", H Yii, (You) = O(p2™).
I=lp+1 l=mo+1
For convenience, denote

Wijy ooty = > IT Y,

Jlg+1se-dr@{d1,5d10 } 1=lo+1

bjir,ovsimg = > H Yii, (Vost)-

Img41seeeriv @{i1,0simg } I=mo+1

Then

Wijyogig = OPR)" ™), bjiy iy = O((npn)" ™). (84)
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In this case, V., (lg, mo) is written as

Vio(lo,mo) = Z Pt FO (Wi, W) )igy iy i

#Jj
J1,J25- 1jr¢{i7j}
7175]275 7577
1,02, 00 E{4,5}

i i P

X (1_0[ Xijl(/\rl > (H Ju 'le ) (85)
=1

Next we bound the variance of V.., (lp,mq). Since i # j, ji ¢ {i,7} and
im ¢ {3,j} for all I,m, X;;,(A\ry) and Xj;, () are independent. By
definition, E[X;;, (Ar)] = E[Xji, (Yo)] = 0. Then E[V,,(ly,mo)] = 0 and
Var (Vey(lo, mo)) = E[Viy (lo, mo)?], that is,

Var (Ve (lo, mo))
= E[ > Prwis £ (Wi ;) Qi oty Bt i
§00 1 AL

x (HXij,(Ar;z)> <H Xii (%;O)]
=1 =1

= > Powig £ (i), wj ) )Pawirjr F0 (win iy, w5 ar))

X@ijy,...pjig Djin,emsimyg Qg jr ..., il b]’zl ,,,,, o
lo mo

xE (H Xige i) X0 ) | T X (rost) X e (o z)) (86)
=1 =1

For each j;, with 1 <y <o, if {4, ji, } # {¢',4;} or {j’,4],} for some
1e{1,2,...,lo} or m € {1,2,...,mo}, then X;; (Ay,) is independent of
Xii,(Ary1), Xi'j;()\r;l) and Xjir (Arym). In this case,

lo mo
E [H Xijy ()‘T;Z)Xi’j{ (Arit) H Xji, ('VU;l)Xj’iQ (7v;l)‘|
=1

=1

= E [Xijll] E Xz]l Tl zgl ()\T‘l)HX]’LL (’YUZ)X (Vvl)
1=1,l#1 =

_— (87)



177

Hence, for each j;, with 1 <1y <y, there exists [ or m such that {7, j;,} =
{¢/,4;} or {4, 51, } = {4’,4,,}. Otherwise, (87) holds. Moreover, if {3, ji, } =
{7, 4/} and {3, 5;, } = {y',4,,,}, then {¢, 5/} = {4, ¢/, }. In this case, i’ =i/,
and j' = jj (since ¢’ # j’). This is not possible, due to the fact that
ir, & {¢/,7'} and j; ¢ {¢,j'} for all m,l. Therefore, {i,7;, } can only be
equal to one of {i’,j/} and {j’,,,}, but not both. Similarly, {4,4,,} can
only be equal to one of {¢’, j/} and {j,4],}.

Let mg = 0. 1f lg > 2, then i = i/, {j1,j2, -, jio} = {452 dbs -+ d1 }
Then

lo mo
E | [ Xij Q) Xorjg ) [ T X0 (rost) X (%;l)]
=1 =1
lo
= E|[[[Xi,(A\a)?| = 0@k). (88)
=1

Then the sum over these indices in (86) is bounded by
O (nlnp, )20 (D p, mp)2) = ofo2).  (89)

If lp = 1, then {7, j1} = {¢/, 41 }. In this case, (89) still holds.

Let mog = 1. If Iy > 3, then i = @, {41,752, 1o = {45, 7% --- ,jllo}
and {j,i1} = {j’,4}}. Then the sum over these indices in (86) is bounded
by

O ((npa )27 f40 (mp mp,)?) = o(02). (90)
If lp = 2, there are two situations: (i) ¢ = ¢, {j1,j2} = {J1,75} and
{oiny = {g" ks () i} = {ai,, % 450, = {dvind, {ds g} = {5744}
with {3 # ly. For the case (i), the sum over these indices in (86) is bounded
by (90) with I = 2. For case (ii), the sum over these indices in (86) is
bounded by

O (npa)2 472 F0 (npy, mp)? ) = o(0). (91)

If ZO = ]-7 then {Zﬂjl} = {7’/7]1} and {jvll} = {]/72/1} or {Za.jl} = {J/vzll}
and {j,41} = {¢’,71}. Either case, the sum over these indices in (86) is
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bounded by

O ((np 209 15 (npy mpn)?) = o(02). (92)

If Ip = 0, then (89) holds with Iy replaced by mg = 1.

Let mo = 2. If lp > 3, then i = 4', {j1,j2,. ., Ji,} = {J1:72 > Ji, }»
j =74 and {i1,io} = {¢},45}. In this case, the sum over these indices in
(86) is bounded by

O ((mpn) 4700 £ (mpy, mpn)? ) = (o). (93)

Let lp = 2. There are two cases (i) i = ¢, {j1,J2} = {41,744}, 7 = 7' and
{ilaiZ} = {zll,lIQ}a (11) {Zvjl} = {jlllvi/}v {jll2>i/} = {jaiml}v {]77'7112} =
{0 ims s 43" im, = {4,72}. For case (i), (93) holds. For case (ii), the

sum over these indices in (86) is bounded by

0 ()27 +)2 £ (1, ) = o). (94

The case lp = 0,1 are similar to the case mo = 0,1 and [y = 2 discussed
earlier.
The case mq > 3 is similar to the case [y > 3.

Now we study the second moment of (50). Note that

D FED (Wi, wia) (i) — wi)*(di) — wi)) (Aij — powiy)
oy

s t
= ZZUMM

r=1v=1

where

U = Y, Y, 9w, wie) (A — pawsy)
i#J J1,d2,- 00 €65}
J1FJeF . Fir
11,82, 00 E{1,5}
i1 Ein k.. Py

T v

x [T, = prwis) 1T (Ajin = pawji, )7

=1 m=1
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Since s, t are fixed finite integers less than kg, we only need to bound the
variance of U,,,. Obviously, E[U,,] = 0. Then Var(U,,) is equal to

E[U7,]

= > > > FED (wiggy, wics))

#1520 0dr @005} iy i {5}
i'#j g1Fja# . FEir 7,1;£227$...7$72'T

GRS VBTN LA I3 SN 101
i Al .715’£J27Z #Jl
g

(Aij — prwij)(Airjr — prwirys (H sz )

(i) () ()] e
m=1

Denote the expectation in (95) as E;. Fix r € {1,2,...,s} and v €

Xf(s’t) (wi/(j/), wj'(i'))E

{1,2,...,t}. There are two cases: (a) there are some indices A\,.; or Yy.m
are equal to one; (b) Ay > 2 and vy, > 2 for all I € {1,2,...,r} and
m e {1,2,...,v}.

Consider case (a) first. Suppose there are some indices A,y or Yyum
which are equal to one. Without loss of generality, let A,y = Apo =+ =
Arirg = Land Ay > 2forl € {ro+1,...,r}. Let yp1 = Yoo = -+ =
Yoo = 1 and 7,y > 2 for I € {vg +1,...,v}. Here rg +v9 > 1. Then

To _ r 7}\7“
(Aij — prwij)(Aijr — ppwirjr) <H Am) ( 1T Aijl’l>
=1

l=ro+1

r vo v
(M) (0 ) (1) (1T 230
l=ro+1 m=1 m=vg+1
(i) (1)
m=1 m=vo+1 )

We split the sum of (95) into two cases: {i,j} # {¢,7'} and {i,j} =
{5

Suppose {i,7} # {i',j'}. Let vg > 2 and rg > 2. For 1 < my < vy, if
{Jyim, } # {7, 7]} for any I, {j,im, } # {j’,1,,} for any m and {j, i, } #

E, = E
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{i',j'}, then Aj;  is independent of A;j; for all I, Aj;, ~for all m and
Ai’j’- Then

3
o

Ey = E

- o
(Aij = prwiz) (Airjr — pawirjr) ( Aijz) 1 45"
=1 l=rg+1
0 r N v v
1 ATl A AYvim
x (HAi’j{) 11 A II A ( 11 Aj%)
=1 l=ro+1 m=1,m#m1 m=vg+1

v v
_ TV
() ( 11 A
m=1 m=vg+1

Hence, {j,im, } = {¢’,j;} for some l or {j,im, } = {j’,4],} for some m or
{Jyim, } = {¢,7'}. Similar results hold for {i,;}, {7,751} with 1 <1 < r,
{j',i,} with 1 < m < vy, {¢,5'}, and {¢, 5/} with 1 < 1 < ro. (i)
Suppose {j,i1} = {7',j;,}. Then {j,i2} = {¢',j;,} or {j,i2} = {¢',j'}. If
{j,ia} = {7, jj, }, then {3, j} = {i’, 5, }. Since j; # j' for all [, then either
{34} # L, g} for all [ or {j',i5} # {jj,, i} for all . By a similar
argument as in (96), Eq = 0. The same result hods if {j,i2} = {7, j'}. (ii)
Suppose {j,i1} = {j',4,,,} or {j,i1} = {7, j'}. By a similar argument as

E [Aji,, ] =0. (96)

in the case {j,i1} = {4', 7, }, it is easy to get Ey = 0.
Let vg > 2,79 < 1. Given 1 < m < wg, if {j,im} = {¢/,j]} for some [,
then By = 0. Hence {7, i} = {j’,4;} for some . Then j = j’ and

iy ik i 1y {05 00 0 Gy (97)

Similarly,

{{jl77;l}7 {jlvill}’ AR {j/7i210}} C {{377’}7 {j7i1}7 AR {]7 Zv}} (98)

Without loss of generality, let i = 4, iy = i, ip = i5, ..., 4, =i, for
vo < v; < v. There are at most n2("?)+2=v1 choices of these indices. If
ro = 0, E; is bounded by O (pi(ﬂrv)ﬂfvl). Then the sum of (95) over

these indices is bounded by

n(npn)2(r+v)+1—v1 f(87t) (npn’ ,npn)2 _ O(JZ)' (99)
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If ro = 1, then {i,j1} = {/,71}. In this case, the sum of (95) over these
indices is bounded by

(npa) 20700 £ (npy mpy)* = o). (100)

Let vg = ro = 1. In this case, {j,i1} = {¢’,j;} for some [ or {j,i1} =

{4,i0,.} for some m or {j,ir} = {#',j'}. Let {j,ir} = {#', 4. }. 1 j =,

then {i,7} = {7',j;,}. In this case, {7',j'} = {J,im,} for some m; > 2,

{i,71} = {j’,i1} and Iy = 1. Otherwise E; = 0. There are at most

n?("tv)=2 choices of these indices. In this case, the sum of (95) over these
indices is bounded by

2

20402 50 (np, mip)? = 0(02). (101)

(npn)
If j = j1, then {i,5} = {j', ¢}, {i,51} = {¢,4'} and Iy = 1. Otherwise
E1 = 0. There are at most n2("+*)~1 choices of these indices. In this case,
the sum of (95) over these indices is bounded by
2(r+v)71f(s,t) (npn7 npn)Q — 0(0_2). (102)

n

(npn)

The cases {j,i1} = {j’,i,,} for some m and {j,i1} = {¢/,j’} can be simi-
larly bounded as in (100) and (102).

Let vo = 1 and 79 = 0. In this case, {j,i1} = {7/, ]} for some [ or
{7,i1} = {j’,1,,} for some m or {j,i1} = {7',j'}. Let {j,i1} = {j',7,, }.
If my = 1, then {i,j} = {j’,i,,} and {i',j'} = {j,im,;}. There are at
most n2("+?)=1 choices of these indices. Then the sum of (95) over these
indices is bounded by (102). If m; > 2 and mg = 1, then the sum of
(95) over these indices is bounded by (102). If m; > 2 and mg > 2, then

2(r+v)—1

{j",#1} = {J,ims}. There are at most n choices of these indices.

Then the sum of (95) over these indices is bounded by
n(np,) 207250 (np np,)? = o(c?). (103)

The case {j, i1} = {¢, j;} for some [ and {j,i1} = {¢,j'} can be similarly
studied.
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Suppose {i,7} = {i’,j'}. Consider i = ¢’ and j = j' first. For any m
with 1 < m < vy, if i, # i;m for all 1 < my < v, then the expectation
Ey = 0. Hence, {i1,... i} C {i,...,4,}. Similarly, {4},...,i, } C
(i vivh Ul B} © oo G o} © Ul ndl} Wi
thout loss of generality, let

{illa"" vl} {Zl""aim}v {i;1+1a"'vi;}m{iv1+la'"7iv}:@'

{]{77];‘1} = {jla"'7jT1}7 {j;1+1""7j;} N {jT1+17"-ajT} = (Z)v

where vy < v < v, 79 <11 < r. There are at most n?*71 20— Fvi+2(v—v1)

indices. Let oy be a one-to-one map from {iy,...,4,, } to {7},...,7, } and
o3 be a one-to-one map from {ji,...,5 } to {ji,..., 4, }. Then
Cr A
o 79 TArL T Ar o0 (1) ril ril
E, = A (HAijl : ) < H Am Awl )
=1 l=r1+1
v1 L v
A Vvim T Yvs0q (m) AYv;m A Vvsm
x (H Ajim, ' > ( H AJZ"L Ajil > ‘|
m=1 m=v1+1
— (_) ( 71L+’I“1+2(7” T1)+'U1+2('U 'Ul)) . (104)

Then the sum over indices {i,5} = {i’, '} in (95) is bounded by

2O 0 (i, np, 2 = 0(0?). (105)

n(npy)

Similarly, (105) holds for the case i = j' and j = i’ with max{rg, vg} <
r1,v1 < min{r,v}.

Now we consider case (b). Suppose A,y > 2 for I € {1,...,r} and
Yoym = 2 for m € {1,...,v}. In this case r < £ and v < L. If {i,j} #
{¢, '}, {e, 5} # {7, 4} for all I, {4, 5} # {j’,4,,} for all m, then E; = 0.

Suppose {i,j} = {i’,j'}. There are two cases: i = i’ and j = j’
ori=j and j = ¢. Let i =4 and j = j/. Suppose |{ji,...,jr} N
{j1,---»JiH =m and [{i1,...,5} N{i},..., i }| = v1. There are at most
p2tri20r—r)tuit2(v=u1) pogsible indices. Without loss of generality, as-
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sume j; = j; for 1 <1<y and 4y = 4] for 1 <! < v;. Then

(Aij _pnwzj (HAZ)Z\”) ( H Azgl ) < H Az]l >
l=r1+1 l=r1+1

vy v v
72’717;7‘”. H A Yvsm H AYv;m
x H A, Aji, A
m=1 m=v1+1 m=v1+1

— O<prlb+r1+2(r ri)+vi+2(v— vl)) (106)

E; E

Then the sum over indices {7, j} = {¢’, 5’} with ¢ =4’ and j = j’ in (95) is
bounded by

2

2(T+v)—r1—v1+1f(s,t) (npn7 npn)2 _ O(O'n).

n(npy)
Let ¢ = j/ and j = i’. Suppose |{j1,...,5-} N{#,...,i} = r1 and
{i1,. -y iu} N4{JL, -, Ji} = v1, where 0 < 71 < min{r,v} and 0 < v; <

min{r,v}. There are at most n>tm+r—r)+r—vi)tvit=—v)+@=r1) gych

indices. Without loss of generality, let j; = ¢} for [ < r; and 4; = j] for

{ <wjp. Then
Yo
(Aij—pnwzy <HAml ’> ( H Am ) ( H AJJ, )
I=r1+1 l=v1+1
vy v v
() (i ) (I )]
m=1 m=vi+1 m=ri1+1

- O (pilJrrl+(r7r1)+(r7v1)+v1+(v7v1)+(v7r1)) ) (107)

By E

Then the sum over indices {i,j} = {¢',j'} with i = j/ and j = ¢ in (95)
is bounded by

0 (n(npn)l-‘rQ(r-‘rv)—(Tl+Ul)f(87t) (npn, npn)z) = O(Ui),

Suppose {i,j} = {i’, ji, } for some [;. If i = j; and j =4’ then j’ = iy,
for some m;, otherwise By = 0. There are at most n3tr+(—D+v+(v—1)
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possible nodes. In this case,

1+>\T
(Ajjl’1 — PprW JJL h (H iJ1 ) ( H AJJ, )
=1 1=1,1#1,
v v
(A, = PrWjiy,, ) I 4w <H Al >]

m=1,m#m1 m=1

Ey

E

6 (pi”“r’l)*“*(”’”) . (108)

Then the sum over indices {i,j} = {4’,5;, } in (95) is bounded by

0] (n(npn)Q(T+“)f(S’t) (npn,npn)2> = o(oi). (109)

Similarly, (109) holds for ¢ = i" and j = j;, or {i,j} = {j',4},,} for some

mi.

4.2.4 Bound the last term of (26)

Now we prove the last term of (26) converges in probability to zero. To

this end, we will show that

Z RijAij|| = o(on). (110)
i#]

Let s,t satisfy s +t = ko. By (C3) of Assumption 1, |58 (z,y)| is
monotone in x and y. There are four cases: |f(*) (x,y)| is decreasing in =
and y, | ! (z,y)| is increasing in = and y, | %) (z,)| is increasing in x
and decreasing in y, |f(®) (x,y)| is decreasing in = and increasing in y.

Suppose | £ (x, )| is decreasing in z and y. Let 8, = [log(np,)] >
Then

E[ £ (Xiy, Xjo)ldicy — wi *ldjay — wico |’

= B (Xig), Xjo)ldig) — wig*1dji) — wio’

xI[X;(5) 2 Gnwi(y), Xj(a) 2 Onwj(i))
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HE| D (X, X di) — wich|*ldjy — wie !

xI[Xi(5) = dnwi(y), Xj(i) < 5nwj<i>]]

HE | £ (X, Xl dicy — wich*ldj) — wi

XI[X;(5) < Onwij), Xy > §nwj(i)]‘|

+E || £ (X, Xl iy — wig *ldsy — wja*

By the Cauchy—Schwarz inequality and (52), we have

E[ldig) —wi*] < /B [(dig) — wigy)]

= i > ﬁ E[(Asj, = pnwig )]

r=1j1,j2,....4r{i,5} =1
NFJaF e Fr

Then
E [If(s’”(Xi(j), Xialldiy — wigpl*ldjy — wjpl*
X[ Xy 2 Onwi(yy, Xja) 2 5nwj<i>}]
= llf(svt) (i) 0nw;n)|dicy) — i) |*ldj) — wio"

XI[X;5) = Onwigjy, Xy = 6nwj(i)}]
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<

| £ (Snwigys nw;)[E [|dis) — wis) *lds) — wio']

= £ (Gnwis), Snwii)IE [|di) — wig)|*] B [Idjs) — wjia|']

IN

k 3
(npn) | £ (Bpwicsy, Gnweay)l-

(112)

On the event {X;(;) < dpw;(;)}, if Xi(j) < di(j), then X;(;) cannot be
between d;(;) and w;(;). Hence X;;) < dpwj(;) implies d;;y < Xj(;) <

Onwj(j). Similar result holds for Xj;). By definition, d;;) and d;;) are

independent if ¢ # j. By Lemma 1 and (C2) of Assumption 1, one has

IN

IN

]E[If“‘t) (Xit, Xj@)lldicsy = wicp | ldicy — wyco’
*I[Xi() < dnwigs), X < 5nwj(i>}]
E[|f<s‘t)(Xi<j>a Xa)lldicy — wip|*ldiy — wieo |
xI[dijy < Xigjy < dnwiy), djy < Xjgay < 6nwj(i)]:|
E[|f(s’”(di<j>7 dj)ldicsy — wig "y — wjo’

xIdig) < Snwigg), djs) < 5nwj<i)]]

Snwi(j) OnWj(s)

Do > R DIE = wig Pl = wjw | "P(diy = k)P(dy

O ((6mpa)™ exp(—~2npaB(1 + 0(1)))
exp(—2np,B(1 + o(1)),

where M is a positive constant.

Similarly, the second term of (111) is bounded as follows.

IN

IN

£ {If(svﬂ(Xi(j)a X)) = wiepl*ldj) — wieo*
xI[Xigy 2 dnwigy), Xy < 5nwj(i)]}

E {If(s’t)(%wi(j)v Xjolldiy — wip|*1djay — wio|*
xI[X;(5) = onwigyy, djy < Xj) < 5nwj(i)]}

E |1/ Gnwiciys dico) iy — wigp |*ldjo) = wico "

) =1

(113)
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Snw;(i
= Z |f(s’t) (5nwi(j)v E)|(k — wj(i))t]P’(dj(i) = k)E[|d;(;) — wi(j)|s]
k=1
= O (((5nnpn)M exp(—np, 8(1 + 0(1)))
—  exp(—npaB(1 + o(1)). (114)

The third term of (111) can be similarly bounded.
Combining (111)-(114) yields
B [|f(s’t) (Xi(i)» Xj)lldic) — wigy*ldj) — wj(i)|t]

ko | (g
= O ((npn)7|f( ) (Snwi(s), Onwjcs))| + exp(—np,B(1 + 0(1))) .

By (C4) of Assumption 1, we have

E (| RiAy|| =0 (n(mpa) #1170 Gunpa, unpa)]) = 0 (00)
i#]
Then (110) holds.

Suppose | f*t) (2, )| is increasing in  and y. Let M be a large positive

constant. Then
E {159 (Xi), Xje)ldicy = wita) " ldsiy — wyeo

= |t

7D Xy X)ldigs) = wi*ldj o) — wjca

XI[XZ'(]') > Mw;jy, Xjiy = ij(i)]l

+E || £ (Xiy, X))l diy — wig *ldsey — wjca*

xXI[X;05) > Mw;gjy, Xy < M“’j(i)]}

+E || £ (X, X))l digy — wig *ldsy — wjca|*
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xI[ X505y < Mw;gjy, Xjy > ij(i)]]
HE| £ (X, Xl dicg) — wigy*ldjco) — win |

) I[ Xy < Mwiy), X0y < Mwm]}-
(115)

On the event {Xi(j) > Mwi(j)}, if X > di(j)a then Xj(;) cannot be
between d;(;) and w;(;). Hence X;(;) > Mw;(;) implies Mw; ;) < Xy <
d;(jy- Similar result holds for Xj;). By definition, d;;) and d;(; are
independent if ¢ # j. Suppose np, = w(logn). By Lemma 1 and (C2) of
Assumption 1, one has

E |1 (Xigy, Xia)ldigy — wii|*ldjy — wica|”

XI[Xi() =2 Mwigy, Xj0) 2 ij(iﬂ]

IN

E|1f* (X, Xi)lldiy — wicn| ldsey — wjn’

xIdij) 2 Xijy = Mwigy), disy = Xy = ij@]]

IN

s,t s t
B £ (i), diay)ldicy — wicp) I°1djcy — wjca)|

xIdij) — 1 > Mwigj) — 1,dj) — 1 > Mwj) — 1]]

n—2 n—2

= > ST IR LT DIk L= wigp Tl 1 - wy

k:]\iwi(j)fl l:k[wj(i)fl
XP(dij) — 1 = k)P(dijy — 1 =1)
— O(ncs,t,fefnpnﬁ(uo(l)))

= 0 (e—np715(1+0(1))) , (116)
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where C ¢ ¢ is some constant dependent on s,t and f. Similarly,

E||F*(Xigy X)) i) — i *ldjay — wio I

xI[X;(5) 2 Muwi(y), X0y < ij(i)]]

< B (Xigy, Xja)ldic) — wip*1dj) — wies”

xIdij) = Xy 2 Mwigj), X0 < ij(i)]]
< E|1£S(diggy, Mw;p)lld 0156y — win*
= (5), MW i(5) — Wi 1%5() — Wj(e)

xI[dy(5) 2 Mwi(j)ﬂ

n—2
= Eldjo —wipl" D> 1FO 41 Muwj)|lk + 1 — wig;)|*
k:Mw,;(j)fl
= O (e—npnﬁ(l-i-O(l))) , (117)
and

[lf(s V(X Xja)|ldigg) = wigp*1djy — wjco"
)I[Xi() < Mwig), Xy < ij(iﬂ]
< E (1500 (Mwigy, Muj)lldi) — wicp*ldjo — i ']

= E[lf0 (Mwigy, Muwjo)l] E [ldigs) = wi '] E [ldjo) = wyo']

= C>((npn>%ﬂf<*”(ﬂfnpn,Afnpnﬂ), (118)

By (115), (116),(117) and (118), it follows that

k
>~ RijAij| | = O (n(npa) E| 700 (Mnp,, Mnp,)|) = 0(0)
i#]
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Then (110) holds.

Suppose |f**)(x,7)| is decreasing in  and increasing in y. Let 4, =

llog(np,)] 2 and M be a large positive constant. Then
E [\f(s’t)(Xz‘(j)a Xj)lldi¢g) = wig*ld;) — wj(z‘)ﬂ
= E [|f(s’t) (Xi) Xja)dis) — wip *ldjo) — wiol"
*I[Xi() 2 dnwiy), Xjci) 2 Mwa‘(z‘ﬂ]

+E || FD (X, X)) iy — wig)|*1djca) — wica |

+E || £ (X, X))l iy — wig *ldsy — wyia*

XI[Xi(j) < Onwigyy, Xjgiy = ij(z’)}‘|

+E || £ (X, Xia)ldigy — wig ldsy — wjo|*

) I[Xi(5) < Onwi(yy, Xj(i) < ij(i)}] '
(119)

The first term of (119) can be bounded by

E| £ (Xigg), Xi) dic) — wigp*dja) —wjo |

xI[X(5) = dnwi(yy, Xj(i) = ij(i)]]

< E

£ Gnwicsy, diay) iy — win|*ldj) — wica |
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xI[Xi(j) 2 Snwiyy, djgiy > Mwj(;)]

n—2

= (npn)% Z |f(‘S t)<6 Wi(4), )Hk Wj(4) ‘ ]P)( k)
k=Muw;)

exp(—npnB(1 +o(1)), (120)

The second term of (119) can be bounded by

E |17 (X Xy sy — wicp) sy — wyo |

xI[Xi5) = Onwigjy, Xy < Mw;;))

k,
< ‘f(swt)((snwi(j)yij(i))|(npn)70~ (121)
The third term of (119) can be bounded by

E (IF&9(Xig), X)) — wie sy — i

) I[Xig) < dnwiyy, Xjiy 2 ij(i)]]
< E |f(6 t)( ])’ )Hd’t(j) — W5 ‘sldj(i) - wj(i)lt

) Idi() < Snwigs), djsy > Mwm]}

Fnwi(j)
= > Z |FED (e, D[k — w51 — wjo |

k=0 I=Muw,

xP(dj) = k)P(dj(i) = 1)

= exp(—npnB(1+o(1)). (122)

By (119)-(122), (110) holds.
The case that |f(5)(z, )| is increasing in = and decreasing in y can be

similarly processed. We omit it. Then the proof is complete. ]
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4.3 Proof of Theorem 2 in Subsection 3.1

To prove Theorem 2 in Subsection 3.1, we only need to derive the asymp-
totic distribution of the Randi¢ index of the Erdés-Rényi random graph
Gn(a), that is, 7 = —%. Recall that for the Erdés-Rényi random graph

Gn(a), wiy =14 (n — 2)p,. Then

Jo(wiggy, wi)) = fy(wigy, wiy) = 21+ (n—2)pn))?’

3
faa(Wig), wi0) = fyy(wigg), wi)) = 05 =2

1
fay (Wi, wicy) = 41+ (n — 2)py))3’

s 1
£ (npn, npp)| = O (WHSH)) :

Let kg = maX{LZ + =1+ 1,3}. By (25) and the proof of Theorem 1,

we have

1 1
I, -E[L] = 5 > (M A — E[M;;Aij)) + 3 > (SijAij — E[Si; Aij))
i#j i#]
n
) — .
o ( (npn)3>
By the calculations in Section 3.1, a;; = © (ﬁ) for 7 = —5. Then

St )| =0 (i)

i#]
By equations (27)- (32), we have

Z i — E[M;; Aij))

#J

 2igga(Aa = pn)(Aij — pn) n
B 2(1+ (n—2)py))? o < (npn)3) '
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By equations (33)-(47), we have

*Z 7 ’Lj Sle’LJ])

i#]
1
= 1 D o (Faalwigwy) + Fuy(wicys wjciy))
i#7,8F#t
s,t¢{i,g}
% (Ais — p)(Ait — pn) + O ( ”)
18 Pn it Pn P (npn)3
3(n — n
- n — FPn +O .
ST = B 2, (e~ =)+ 0r (|05
Hence, we get
I, ~E[Z,] = X, +0 o (123)
n n — n P (npn)3 3
where
X ! > (Ais = pa)(Air — pn).
n — — p) 18 n it — Pn
8(1+(n 2)pn)) forrel?
Note that
(Aij — pn)(Aix — Dn) (Aji — pn)(Ajk — pn)
—X, = I
2 41+ (n —2)pn))? 2 4(1+ (n—2)p,))?

i<j<k

Ak}l pn Ak] pn)
+ 3 ST

i<j<k

)
i<j<k

and the variance o2 of X, is equal to

2 _nn=1)(n—2)p;(1—pn)? _ n
no 321+ (n— 2)pn))4 =9 ((npn)2> .

By Theorem 6.1 in [13], we have

o N0, 1),

On
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from which and (123) it follows that

Z, — E[Z,]

On

= N(0,1).

Then the proof is complete. |

Acknowledgment: The author is grateful to the anonymous reviewers
for valuable comments.
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