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Abstract

Topological indices play a significant role in mathematical chem-
istry. Given a graph G with vertex set V = {1, 2, . . . , n} and edge set
E , let di be the degree of node i. The degree-based topological index
is defined as In =

∑
{i,j}∈E f(di, dj), where f(x, y) is a symmetric

function. In this paper, we investigate the asymptotic distribution of
the degree-based topological indices of a heterogeneous Erdős-Rényi
random graph. We show that after suitably centered and scaled, the
topological indices converges in distribution to the standard normal
distribution. Interestingly, we find that the general Randić index
with f(x, y) = (xy)τ for a constant τ exhibits a phase change at
τ = − 1

2
.

1 Introduction

Topological index is a numerical parameter of a graph. It is graph invariant

and characterizes the topology of a graph. Topological indices are used

to model many physicochemical properties in QSAR [1, 4, 12]. One of the

most important types of topological indices is the degree-based topological

indices, which are defined as a function of the degrees of nodes in a graph

[12].

The first degree-based topological index is the Randić index [20]. It

measures the branching extent of a graph. The Randić index is the

https://doi.org/10.46793/match.91-1.135Y
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most popular and most studied index among all topological indices. It

plays a central role in understanding quantitative structure-property and

structure-activity relations in chemistry and pharmocology [21,22]. More-

over, the Randić index possesses a wealth of non-trivial and interesting

mathematical properties [2,3,5,6,15]. In addition, the Randić index finds

countless applications in network (graph) data analysis. For instance, it

was used to quantify the similarity between different networks or subgraphs

of the same network [11], it serves as a quantitative characterization of net-

work heterogeneity [10], and [8,9] used the Randić index to measure graph

robustness.

Motivated by the Randić index, various degree-based topological in-

dices have been introduced and attracted great interest in the past years

[16]. For example, [2] proposed the general Randić index, which includes

the Randić index and the second Zagreb index as special cases. [26, 27]

defined the general sum-connectivity index, which includes the harmonic

index as a special case [28]. [23,24] introduced the inverse sum indeg index

to predict the total surface area of octane isomers. The reader is referred

to [12] for more references.

One of the interesting research topics in the study of topological in-

dices is to investigate their properties of random graphs. Recently, [17,18]

performed numeric and analytic analyses of the Randić index and the har-

monic index in the Erdős-Rényi random graph. Their simulation studies

show that the indices are approximately equal to one half of the number

of nodes, and the distributions of the indices are symmetric around their

expectations. [7,8,14] calculated the expectations of the Randić index, the

generalized Zagreb indices and two modified Zagreb indices of the Erdős-

Rényi random graph, respectively. [25] derived the asymptotic limits of the

Randić index and the harmonic index of a heterogeneous random graph.

In this paper, we are interested in the asymptotic distribution of the

degree-based topological index of a heterogeneous Erdős-Rényi random

graph. We show that after suitably centered and scaled, the degree-based

topological index converges in distribution to the standard normal distri-

bution. We apply our results to several well-known topological indices

and observe that the general Randić index exhibits a phase change phe-
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nomenon.

This paper is organized as follows. In Section 2, we present the asymp-

totic distribution of the topological index of a heterogeneous random gr-

aph. In Section 3, we provide several examples. The proof is deferred to

Section 4.

Notation: We adopt the Bachmann–Landau notation throughout this

paper. Let an and bn be two positive sequences. Denote an = Θ(bn)

if c1bn ≤ an ≤ c2bn for some positive constants c1, c2. Denote an =

ω(bn) if limn→∞
an

bn
= ∞. Denote an = O(bn) if an ≤ cbn for some

positive constants c. Denote an = o(bn) if limn→∞
an

bn
= 0. Let N (0, 1)

be the standard normal distribution and Xn be a sequence of random

variables. Then Xn ⇒ N (0, 1) means Xn converges in distribution to the

standard normal distribution as n goes to infinity. Denote Xn = OP (an)

if Xn

an
is bounded in probability. Denote Xn = oP (an) if

Xn

an
converges to

zero in probability as n goes to infinity. Let E[Xn] and V ar(Xn) denote

the expectation and variance of a random variable Xn respectively. P[E]

denote the probability of an event E. Let f = f(x, y) be a function. For

non-negative integers s, t, f (s,t) = f (s,t)(x, y) denote the partial derivative
∂s+tf(x,y)
∂xs∂yt . For convenience, sometimes we write fx = f (1,0), fy = f (0,1),

fxx = f (2,0),fyy = f (0,2) and fxy = f (1,1). exp(x) denote the exponential

function ex. For positive integer n, denote [n] = {1, 2, . . . , n}. Given a

finite set E, |E| represents the number of elements in E.

2 Main results

A graph consists of a set of nodes (vertices) and a set of edges. Given a

positive integer n, an undirected graph on V = [n] is a pair G = (V, E),
where E is a collection of subsets of V such that |e| = 2 for every e ∈ E .
Elements in E are called edges. A graph can be conveniently represented

as an adjacency matrix A, where Aij = 1 if {i, j} is an edge, Aij = 0

otherwise and Aii = 0. Since G is undirected, the adjacency matrix A is

symmetric. The degree di of node i is the number of edges connecting it,

that is, di =
∑

j ̸=i Aij . A graph is said to be random if Aij(1 ≤ i < j ≤ n)

are random.
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The degree-based topological index of a graph is defined as follows

[1, 12].

Definition 1. The degree-based topological index of a graph G = (V, E)
is defined as

In =
∑

{i,j}∈E

f(di, dj), (1)

where f(x, y) is a real function satisfying f(x, y) = f(y, x).

Many well-known topological indices can be expressed as (1). For ex-

ample, the Randić index corresponds to f(x, y) = (xy)−
1
2 and the hyper-

Zagreb index corresponds to f(x, y) = (x+ y)2.

Definition 2. Let β be a constant between zero and one, n be an positive

integer, and

W = {wij ∈ [β, 1]|1 ≤ i < j ≤ n,wji = wij , wii = 0}.

Define a heterogeneous random graph Gn(β,W ) as

P(Aij = 1) = pnwij ,

where Aij (1 ≤ i < j ≤ n) are independent, Aij = Aji and pn ∈ (0, 1).

The expected degree of node i in Gn(β,W ) is E[di] =
∑

k ̸=i pnwik. In

general, E[di] ̸= E[dj ] if i ̸= j, that is, the expected degrees of nodes are

not the same. Hence Gn(β,W ) is a heterogeneous random graph. When

wij = c (1 ≤ i < j ≤ n) for a constant c ∈ (0, 1), Gn(β,W ) is the Erdős-

Rényi random graph. It is homogeneous in the sense that nodes in it share

the same expected degree.

Several recent works have studied the expectations of some special

topological indices of the Erdős-Rényi random graph [7,8,14,17,18]. In this

paper, we derive the asymptotic distribution of the topological index In
of the heterogeneous random graph Gn(β,W ). Our results can be applied

to all the topological indices studied in [7, 8, 14,17,18].

Before presenting our results, we introduce several notations and as-
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sumptions. Let wi(k) = 1 +
∑

l/∈{i,k} pnwil and

σ2
n =

∑
i<j

(aij + aji)
2pnwij(1− pnwij), (2)

where

aij =
1

2
f(wi(j), wj(i)) +

1

2

∑
l/∈{i,j}

pnwil

[
fx(wi(l), wl(i)) + fy(wi(l), wl(i))

]
.

Assumption 1. Let k0(k0 ≥ 3), s, t be non-negative integers. Suppose

npn = ω(log(n)) and the following conditions hold.

(C1) ∑
i<j

(aij + aji)
4pn = o(σ4

n).

(C2). For all non-negative integers s, t satisfying s+ t ≤ k0, there is some

positive constant C such that

|f (s,t)(x, y)| ≤ (xy)C .

(C3). Given s, t satisfying s + t = k0, |f (s,t)(x, y)| is monotone in x and

y.

(C4). For a large positive constant M and positive sequences an, bn ∈
[(log(npn))

−2,M ], the following holds. For s+ t = k0,

n(npn)
k0
2 +1|f (s,t)(annpn, bnnpn)| = o (σn) .

(C5). For 1 ≤ s+ t ≤ k0 − 1,

n(npn)
2(s+t)−1|f (s,t)(npn, npn)|2 = o

(
σ2
n

)
.

Assumption 1 is not restrictive and many common degree-based topo-

logical indices satisfy this assumption as shown later. Under Assumption

1, we derive the asymptotic distribution of the topological index In of

Gn(β,W ) as follows.



140

Theorem 1. Let In be the topological index defined in (1) of the random

graph Gn(β,W ) and σ2
n be defined in (2). Suppose Assumption 1 holds.

Then
In − E[In]

σn
⇒ N (0, 1), (3)

as n goes to infinity. In addition, the expectation E[In] has the following

asymptotic expression

E[In] =
(
1 +O

(
1

npn

)) ∑
1≤i<j≤n

pnwijf(wi(j), wj(i)), (4)

where the error rate 1
npn

cannot be improved.

Based on Theorem 1, the degree-based topological index In (suitably

centered and scaled) of the heterogeneous random graph Gn(β,W ) con-

verges in distribution to the standard normal distribution. As far as we

know, this is the first theoretical result on limiting distribution of topo-

logical indices. Moreover, Theorem 1 provides the best approximation of

the expectation of In, in the sense that the error rate 1
npn

cannot be im-

proved. For some special topological indices of the Erdős-Rényi random

graph, it is possible to get an exact and compact expression of E[In]. For
instance, [14] and [7] obtained the exact expressions of the expectation of

the hyper-Zagreb index and the forgotten topological index of the Erdős-

Rényi random graph respectively. However, for most topological indices,

it seems impossible to get exact and closed-form expressions of the expec-

tations [7]. Our result (4) provides an approximation of the expectations.

The proof of Theorem 1 proceeds by decomposing In as a sum of

leading term and remainder term, followed by finding the limiting distri-

bution of the leading term and showing the remainder term is negligible.

The condition (C1) of Assumption 1 is used to prove the leading term

converges in distribution to the standard normal distribution. The condi-

tions (C2)–(C5) are needed to bound the remainder term. The condition

npn = ω(log(n)) requires the random graph to be relatively dense. This

condition is common in theoretical network analysis. Assumption 1 is

weak. We shall provide several examples of degree–based topological in-

dices that satisfy this assumption in the subsequent section.
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3 Application to several topological indices

In this section, we apply Theorem 1 to several well-known topological

indices of a special heterogeneous random graph.

Let pn = n−α for a constant α ∈ (0, 1) and wij = e−
κi
n e−

κj
n , (i ̸= j)

with non-negative constant κ. Then e−2κ ≤ wij ≤ 1. Denote the corre-

sponding random graph as Gn(α, κ). When κ = 0, Gn(α, 0) is the Erdős-

Rényi random graph. In this case, we denote it as Gn(α) for convenience.

For κ > 0, Gn(α, κ) is heterogeneous.

Denote c(κ) = 1−e−κ

κ for κ > 0 and c(0) = 1. Note that

n∑
i=1

e−
κi
n =

e−
κ
n (1− e−κ)

1− e−
κ
n

= nc(κ) +O(1), κ > 0.

Then

wi(k) = 1 +
∑

l/∈{i,k}

pnwil

= 1 + pne
−κi

n

(
nc(κ) +O(1)− e−

κi
n − e−

κk
n

)
= 1 + npnc(κ)e

−κi
n +O (pn)

= npnc(κ)e
−κi

n +O (1) , κ > 0.

When κ = 0,

wi(k) = 1 +
∑

l/∈{i,k}

pn = 1 + (n− 2)pn.

3.1 The general Randić index

The general Randić index is a generalization of the well-known Randić

index and has been widely studied in literature [8, 17, 18]. Let f(x, y) =

(xy)τ for a non-zero constant τ . The general Randić index In is defined

as

In =
∑

{i,j}∈E

(didj)
τ . (5)

When τ = − 1
2 , In is the Randić index.



142

Given non-negative integers s, t, straightforward computation yields

f (s,t)(x, y) =

(
s−1∏
k=0

(τ − k)

)(
t−1∏
k=0

(τ − k)

)
xτ−syτ−t.

Then

aij

=
1

2

[
(npn)

2c(κ)2e−
κi
n e−

κj
n +O (npn)

]τ
+
1

2

∑
l/∈{i,j}

pne
−κi

n e−
κl
n τ
(
npnc(κ)e

−κi
n +O (1)

)τ−1

×
(
npnc(κ)e

−κl
n +O (1)

)τ
+
1

2

∑
l/∈{i,j}

pne
−κi

n e−
κl
n τ
(
npnc(κ)e

−κi
n +O (1)

)τ
×
(
npnc(κ)e

−κl
n +O (1)

)τ−1

.

Note that e−κ ≤ e−
κi
n ≤ 1. If τ > 0, then aij = Θ((npn)

2τ ). In this case,

σ2
n =

∑
i<j

(aij + aji)
2pn = Θ

(
n(npn)

4τ+1
)
.

Hence ∑
i<j(aij + aji)

4pn

σ4
n

= O

(
n(npn)

8τ+1

n2(npn)8τ+2

)
= o(1).

For 1 ≤ s+ t,

n(npn)
2(s+t)|f (s,t)(npn, npn)|2 = Θ

(
n(npn)

4τ
)
= o

(
σ2
n

)
Let k0 = max

{
⌊1 + 1

1−α⌋+ 1, 3
}
. Then k0 > 1 + 1

1−α . For s+ t = k0, it

is easy to verify that

n(npn)
k0
2 +1|f (s,t)(npn, npn)| = Θ

(
n(npn)

1+2τ− k0
2

)
= o (σn) .
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Then Assumption 1 holds and Theorem 1 applies.

Corollary 1. Let In be the general Randić index defined in (5) of the

random graph Gn(α, κ) and σ2
n be defined in (2). If τ > 0, then

In − E[In]
σn

⇒ N (0, 1), (6)

as n goes to infinity. In addition, the expectation E[In] has the following

asymptotic expression

E[In] =
(
1 +O

(
1

npn

)) ∑
1≤i<j≤n

pnwij(wi(j)wj(i))
τ , (7)

where the error rate 1
npn

cannot be improved.

When τ < 0, Assumption 1 may not hold. To see this, let κ = 0. Then

aij =
(1 + (n− 2)pn)

2τ

2
+ τ(1 + (n− 2)pn)

2τ−1(n− 2)pn

= (1 + (n− 2)pn)
2τ

(
1 + 2τ

2
− τ

1 + (n− 2)pn

)
.

If τ ̸= − 1
2 , then aij = Θ

(
(npn)

2τ
)
. Similar to the case τ > 0, Assump-

tion 1 holds and Theorem 1 applies.

If τ = − 1
2 , then aij = Θ

(
1

(npn)2

)
. In this case, σ2

n = Θ
(

n
(npn)3

)
and

n(npn)
2(s+t)−1|f (s,t)(npn, npn)|2 = Θ

(
n

(npn)3

)
.

Clearly, n
(npn)3

̸= o(σ2
n). Hence Assumption 1 does not hold. We have to

study this case separately.

When τ = − 1
2 , In is the well-known Randić index. The Randić in-

dex is perhaps the first degree-based topological index introduced in [20].

Recently, [17] performed simulation studies of the expectation and distri-

bution of the Randić index in Erdős-Rényi random graph. Its asymptotic

limit was given in [25]. Here we derive the asymptotic distribution of the

Randić index of the Erdős-Rényi random graph as follows.
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Theorem 2. Let In be the general Randić index of the Erdős-Rényi ran-

dom graph Gn(α) with constant α ∈ (0, 1). Then

In − E[In]
σn

⇒ N (0, 1), (8)

where

E[In] =
n(npn)

2τ+1

2

(
1 +O

(
1

npn

))
,

σ2
n =

n(n− 1)(n− 2)p2n(1− pn)
2

32(1 + (n− 2)pn))4
= Θ

(
n

(npn)2

)
,

for τ = − 1
2 and

σ2
n =

(1 + 2τ)2

2
n(n− 1)pn(1 + (n− 2)pn)

4τ (1 + o(1)) = Θ
(
n(npn)

4τ+1
)
,

for τ ̸= − 1
2 .

Based on Theorem 2, we have an interesting finding. For τ ̸= − 1
2 , the

order of σ2
n is n(npn)

4τ+1, while for τ = − 1
2 , the order of σ2

n is n
(npn)2

.

Note that

n(npn)
4(− 1

2 )+1 =
n

npn
= ω

(
n

(npn)2

)
.

Therefore, as a function of τ , the order of σ2
n is continuous at τ ̸= − 1

2 , but

discontinuous at τ = − 1
2 . In this sense, the general Randić index exhibits

a phase change at τ = − 1
2 .

3.2 Hyper–Zagreb index

The Zagreb indices and its variants are frequently used to measure physi-

cal-chemical properties of compounds. Recently, [14] studied the expec-

tation of the hyper-Zagreb index of the Erdős-Rényi random graph. Let

f(x, y) = (x+ y)2. The hyper-Zagreb index In is defined as

In =
∑

{i,j}∈E

(di + dj)
2. (9)



145

Clearly, f (s,t)(x, y) = 0 for s+ t ≥ 3 and

fx(x, y) = fy(x, y) = 2(x+ y), fxx(x, y) = fyy(x, y) = fxy(x, y) = 2.

Straightforward calculation yields∑
l/∈{i,j}

wil

[
fx(wi(l), wl(i)) + fy(wi(l), wl(i))

]
= 4e−

κi
n

∑
l/∈{i,j}

e−
κl
n

(
npnc(κ)e

−κi
n + npnc(κ)e

−κl
n +O (1)

)
= 4e−

κi
n

[
n2pnc(κ)

2e−
κi
n + n2pnc(κ)c(2κ) +O(n)

]
= 4n2pnc(κ)

2e−
2κi
n + 4n2pnc(κ)c(2κ)e

−κi
n +O(n).

Since e−κ ≤ e−
κi
n ≤ 1 and e−2κ ≤ e−

2κi
n ≤ 1, then

aij =
(npn)

2c(κ)2

2

(
e−

κi
n + e−

κj
n

)2
+2(npn)

2c(κ)2e−
2κi
n + 2(npn)

2c(κ)c(2κ)e−
κi
n +O(npn)

= (npn)
2

[
5

2
c(κ)2e−

2κi
n +

1

2
c(κ)2e−

2κj
n

+c(κ)2e−
κi
n e−

κj
n + 2c(κ)c(2κ)e−

κi
n

]
+O(npn)

= Θ
(
(npn)

2
)
.

Consequently, we have σ2
n = Θ

(
n(npn)

5
)
and∑

i<j(aij + aji)
4pn

σ4
n

= O

(
n(npn)

9

n2(npn)10

)
= o(1).

For s+ t ≥ 3, f (s,t)(x, y) = 0. For s+ t = 2, we have

n(npn)
4 = o

(
σ2
n

)
.

Then Assumption 1 holds and Theorem 1 applies.

Corollary 2. Let In be the hyper-Zagreb index defined in (9) of the ran-
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dom graph Gn(α, κ) and σ2
n be defined in (2). Then

In − E[In]
σn

⇒ N (0, 1), (10)

as n goes to infinity. In addition, the expectation E[In] has the following

asymptotic expression

E[In] =
(
1 +O

(
1

npn

)) ∑
1≤i<j≤n

pnwij(wi(j) + wj(i))
2, (11)

where the error rate 1
npn

cannot be improved.

By Theorem 1 in [14], the expectation of the hyper-Zagreb index of the

Erdős-Rényi random graph Gn(α) is equal to

E[In] = n(n−1)(n−2)(2n−5)p3n+5n(n−1)(n−2)p2n+2n(n−1)pn. (12)

By (11), we have

E[In] = 2n(n− 1)(n− 2)2p3n

(
1 +O

(
1

npn

))
. (13)

Then our result (13) is consistent with (12). In addition, by (12), the error

rate 1
npn

cannot be improved, as stated in Corollary 2.

3.3 Forgotten topological index

The forgotten topological index is another chemical index. [7] studied the

expectation of the forgotten topological index of the Erdős-Rényi random

graph. Let f(x, y) = x2+y2. The forgotten topological index In is defined

as

In =
∑

{i,j}∈E

(d2i + d2j ). (14)

Similar to the hyper-Zagreb index, it is easy to verify that Assumption 1

holds. Then Theorem 1 applies.

Corollary 3. Let In be the forgotten topological index defined in (14) of
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the random graph Gn(α, κ) and σ2
n be defined in (2). Then

In − E[In]
σn

⇒ N (0, 1), (15)

as n goes to infinity. In addition, the expectation E[In] has the following

asymptotic expression

E[In] =
(
1 +O

(
1

npn

)) ∑
1≤i<j≤n

pnwij(w
2
i(j) + w2

j(i)), (16)

where the error rate 1
npn

cannot be improved.

For the Erdős-Rényi random graph Gn(α), the expectation of the for-

gotten topological index [7] is equal to

E[In] = n(n− 1)(n− 2)(n− 3)p3n+3n(n− 1)(n− 2)p2n+n(n− 1)pn. (17)

By (16), we have

E[In]

=

(
1 +O

(
1

npn

))
n(n− 1)pn

2

[
(1 + (n− 2)pn)

2 + (1 + (n− 2)pn)
2
]

= n(n− 1)(n− 2)2p3n

(
1 +O

(
1

npn

))
.

Hence our approximation (16) is consistent with (17). Moreover, by (17),

the error rate 1
npn

cannot be improved as in Corollary 3.

3.4 The inverse sum indeg index

The inverse sum indeg index is a significant predictor of total surface area

of octane isomers [19, 23, 24]. Let f(x, y) = xy
x+y . The inverse sum indeg

index In is defined as

In =
∑

{i,j}∈E

didj
di + dj

. (18)

As far as we know, the inverse sum indeg index of random graph has not

been studied in literature. Here we provide its asymptotic distribution and
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an approximation of its expectation.

Let g(x, y) = xy and h(x, y) = 1
x+y . For simplicity, we denote f(x, y)

as f . Then f = gh. Given positive integers s, t, h(s,t) =
cs,t

(x+y)1+s+t , where

cs,t is a constant dependent on s, t. Straightforward calculation yields

f (s,0) =

s∑
r=0

(
s

r

)
g(r,0)h(s−r,0) = gh(s,0) + sg(1,0)h(s−1,0)

=
cs,0xy

(x+ y)1+s
+

scs−1,0y

(x+ y)s
,

f (0,t) =

t∑
r=0

(
t

r

)
g(0,r)h(0,t−r) = gh(0,t) + tg(0,1)h(0,t−1)

=
c0,txy

(x+ y)1+t
+

tc0,t−1x

(x+ y)t
.

Further, for s ≥ 1 or t ≥ 1, we have

f (s,t) =

t∑
r=0

(
t

r

)
g(0,r)h(s,t−r) + s

t∑
r=0

(
t

r

)
g(1,r)h(s−1,t−r)

= gh(s,t) + tg(0,1)h(s,t−1) + sg(1,0)h(s−1,t) + stg(1,1)h(s−1,t−1)

=
cs,txy

(x+ y)1+s+t
+

tcs,t−1x

(x+ y)s+t
+

scs−1,ty

(x+ y)s+t
+

stcs−1,t−1

(x+ y)s+t−1
.

Hence, for s+ t ≥ 1, |f (s,t)(npn, npn)| can be bounded as follows

|f (s,t)(npn, npn)| = O

(
1

(npn)s+t−1

)
.

Note that

fx(npn, npn) = fy(npn, npn) =
(npn)

2

(npn + npn)2
=

1

4
.

Then aij = Θ(npn), σ
2
n = Θ

(
n(npn)

3
)
and∑

i<j(aij + aji)
4pn

σ4
n

= O

(
n(npn)

5

n2(npn)6

)
= o(1).
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When 1 ≤ s+ t, we have

n(npn)
2(s+t)|f (s,t)(npn, npn)|2 = O

(
n(npn)

2
)
= o

(
σ2
n

)
.

Let k0 = max{⌊1 + 1
1−α⌋+ 1, 3}. Then k0 > 1 + 1

1−α and

n(npn)
k0
2 +1|f (s,t)(npn, npn)| = O

(
n(npn)

2− k0
2

)
= o (σn) .

Assumption 1 holds. Then Theorem 1 applies.

Corollary 4. Let In be the inverse sum indeg index defined in (18) of the

random graph Gn(α, κ) and σ2
n be defined in (2). Then

In − E[In]
σn

⇒ N (0, 1), (19)

as n goes to infinity. In addition, the expectation E[In] has the following

asymptotic expression

E[In] =
(
1 +O

(
1

npn

)) ∑
1≤i<j≤n

pnwij

wi(j)wj(i)

wi(j) + wj(i)
, (20)

where the error rate 1
npn

cannot be improved.

For the Erdős-Rényi random graph Gn(α), the expectation of the in-

verse sum indeg index can be expressed as

E[In] =
(
1 +O

(
1

npn

))
n(n− 1)(n− 2)p2n

4
.

4 Proof of main results

In this section, we provide detailed proofs of Theorem 1 and Theorem 2.

It is not easy to work on In defined in (1) directly. In stead, we provide

an alternative expression of In as follows

In =
∑

1≤i<j≤n

Aijf(di(j), dj(i)) =
1

2

∑
i ̸=j

Aijf(di(j), dj(i)), (21)
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where di(j) = 1+
∑

l/∈{i,j} Ail and dj(i) = 1+
∑

l/∈{i,j} Ajl. Note that Aij ,

di(j) and dj(i) are independent , E[di(j)] = wi(j) and E[dj(i)] = wj(i). We

will use these facts frequently in the proof.

4.1 Lemmas

Before proving Theorem 1 and Theorem 2, we present two lemmas.

Lemma 1. Let Gn(β,W ) be defined in Definition 2, δn = (log(npn))
−2

and M be a constant greater than e2

1−pnβ
. For any i ∈ [n], we have

P(di(j) − 1 = k) ≤ exp(−npnβ(1 + o(1))), k ≤ δnnpn,

P(di(j) − 1 = k) ≤ exp(−npnβ(1 + o(1))), k ≥ Mnpn.

Proof of Lemma 1: Given distinct indices i, j, let θij = {pnwil|l ∈ [n]\
{i, j}}. Then di(j) − 1 follows the Poisson-Binomial distribution PB(θij).

Recall that β ≤ wij ≤ 1. Then

P(di(j) − 1 = k) =
∑

S⊂[n]\{i,j},|S|=k

∏
l∈S

pnwil

∏
l∈SC\{i,j}

(1− pnwil)

≤
∑

S⊂[n]\{i,j},|S|=k

∏
l∈S

pn
∏

l∈SC\{i,j}

(1− pnβ)

=

(
n− 2

k

)
pkn(1− pnβ)

n−2−k. (22)

Note that
(
n−2
k

)
≤ ek logn−k log k+k and (1−pnβ)

n−2−k = e(n−2−k) log(1−pnβ).

Then by (22) we get

P(di(j) − 1 = k)

≤ exp (k log(npn)− k log k + k + (n− 2− k) log(1− pnβ)) . (23)

Let g(k) = k log(npn)− k log k+ k+(n− 2− k) log(1− pnβ). Considering

k as continuous variable, the derivative of g(k) with respect to k is equal

to

g′(k) = log

(
npn

1− pnβ

)
− log k.
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Clearly, g′(k) > 0 for k < npn

1−pnβ
and g′(k) < 0 for k > npn

1−pnβ
. Then g(k)

achieves its maximum at k = npn

1−pnβ
. For k ≤ δnnpn, g(k) ≤ g(δnnpn).

Hence

P(di(j) − 1 = k)

≤ exp

(
δnnpn log

1

δn(1− pnβ)
+ δnnpn + n log(1− pnβ)

)
≤ exp (−npnβ(1 + o(1))) .

Since M > e2

1−pnβ
, then Mnpn ≥ npn

1−pnβ
. For k ≥ Mnpn, g(k) ≤

g(Mnpn). Hence

P(di(j) − 1 = k)

≤ exp (−M log(M)npn +Mnpn + (n− 2−Mnpn) log(1− pnβ))

= exp (−M(logM − 1)npn + |n− 2−Mnpn|pnβ)

≤ exp (−npnβ(1 + o(1))) .

Lemma 2. Suppose (C1) of Assumption 1 holds. For the random graph

Gn(β,W ), we have ∑
i ̸=j aij(Aij − pnwij)√∑

i<j(aij + aji)2pnwij(1− pnwij)
⇒ N (0, 1),

where

aij =
1

2
f(wi(j), wj(i)) +

1

2

∑
l/∈{i,j}

pnwil

[
fx(wi(l), wl(i)) + fy(wi(l), wl(i))

]
.

Proof of Lemma 2: Let

Zn =

∑
i ̸=j aij(Aij − pnwij)√∑

i<j(aij + aji)2pnwij(1− pnwij)
.
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Then E[Zn] = 0. Note that∑
i ̸=j

aij(Aij − pnwij) =
∑
i<j

(aij + aji)(Aij − pnwij).

Then

Zn =

∑
i<j(aij + aji)(Aij − pnwij)√∑

i<j(aij + aji)2pnwij(1− pnwij)
.

Recall that Aij(1 ≤ i < j ≤ n) are independent. It is easy to verify that

E


∑

i<j

(aij + aji)(Aij − pnwij)

2


=
∑
i<j

(aij + aji)
2E[(Aij − pnwij)

2]

=
∑
i<j

(aij + aji)
2pnwij(1− pnwij).

Hence V ar[Zn] = 1. Straightforward calculation yields

E[(Aij − pnwij)
4] = pnwij [(1− pnwij)

4 + p3nw
3
ij(1− pnwij)] ≤ 2pnwij .

By (C1) of Assumption 1, we have∑
i<j(aij + aji)

4E[(Aij − pnwij)
4](∑

i<j(aij + aji)2pnwij(1− pnwij)
)2

≤
2
∑

i<j(aij + aji)
4pnwij(∑

i<j(aij + aji)2pnwij(1− pnwij)
)2

= o(1).

According to the Lyapunov Central Limit Theorem, Zn converges in dis-

tribution to the standard normal distribution.
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4.2 Proof of Theorem 1

Let k0 be the integer in Assumption 1. The proof strategy is as follows:

firstly we use the Taylor expansion to expand the function f(di(j), dj(i))

at (wi(j), wj(i)) to k0-th order; then we write In as the sum of the leading

term and remainder terms; finally we show the leading term (after suitable

scaling) converges in distribution to the standard normal distribution and

the remainder terms are negligible.

By the Taylor expansion, f(di(j), dj(i)) can be decomposed as

f(di(j), dj(i)) = Mij + Sij + Tij +Rij , (24)

where

Mij = f(wi(j), wj(i)) + fx(wi(j), wj(i))(di(j) − wi(j))

+fy(wi(j), wj(i))(dj(i) − wj(i)),

Sij =
1

2
fxx(wi(j), wj(i))(di(j) − wi(j))

2

+
1

2
fyy(wi(j), wj(i))(dj(i) − wj(i))

2

+fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i)),

Tij =

k0−1∑
k=3

∑
s+t=k

f (s,t)(wi(j), wj(i))

s!t!
(di(j) − wi(j))

s(dj(i) − wj(i))
t,

Rij =
∑

s+t=k0

f (s,t)(Xi(j), Xj(i))

s!t!
(di(j) − wi(j))

s(dj(i) − wj(i))
t,

Xi(j) is between di(j) and wi(j), and Xj(i) is between dj(i) and wj(i). By

(21), the topological index In is equal to

In =
1

2

∑
i ̸=j

MijAij +
1

2

∑
i ̸=j

SijAij +
1

2

∑
i̸=j

TijAij +
1

2

∑
i̸=j

RijAij . (25)

Then

In − E[In]
σn
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=
1
2

∑
i ̸=j(MijAij − E[MijAij ])

σn
+

1
2

∑
i ̸=j(SijAij − E[SijAij ])

σn

+
1
2

∑
i ̸=j(TijAij − E[TijAij ])

σn
+

1
2

∑
i ̸=j(RijAij − E[RijAij ])

σn
,(26)

where σ2
n is defined in (2).

Next we show the first term in (26) is leading term and the last three

terms are negligible.

4.2.1 Asymptotic normality of the first term in (26)

To begin with, we study the first term of (26). Note that∑
i ̸=j

MijAij

=
∑
i ̸=j

f(wi(j), wj(i))Aij +
∑
i ̸=j

fx(wi(j), wj(i))(di(j) − wi(j))Aij

+
∑
i̸=j

fy(wi(j), wj(i))(dj(i) − wj(i))Aij . (27)

Since di(j) − wi(j) =
∑

l/∈{i,j}(Ail − pnwil), then (di(j) − wi(j)) does not

contain Aij . Hence, (di(j) − wi(j)) and Aij are independent. Similarly,

dj(i) − wj(i) and Aij are independent. In addition, E[di(j)] = wi(j) and

E[dj(i)] = wj(i). Then the expectation of
∑

i ̸=j MijAij is equal to

E

∑
i ̸=j

MijAij

 =
∑
i ̸=j

f(wi(j), wj(i))pnwij . (28)

The first term of (27) can be written as∑
i ̸=j

f(wi(j), wj(i))Aij =
∑
i̸=j

f(wi(j), wj(i))(Aij − pnwij)

+
∑
i̸=j

f(wi(j), wj(i))pnwij . (29)
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Similarly, the second term of (27) is written as∑
i ̸=j

fx(wi(j), wj(i))(di(j) − wi(j))Aij

=
∑
i ̸=j

fx(wi(j), wj(i))(di(j) − wi(j))(Aij − pnwij)

+
∑
i ̸=j

pnwijfx(wi(j), wj(i))(di(j) − wi(j))

=
∑
i ̸=j ̸=l

fx(wi(j), wj(i))(Ail − pnwil)(Aij − pnwij)

+
∑
i̸=j

 ∑
l/∈{i,j}

pnwilfx(wi(l), wl(i))

 (Aij − pnwij). (30)

We will show the first term of (30) is of smaller order than the second

term. To this end, we find the second moment of it. Recall that if {i, j} ≠

{s, t}, Aij and Ast are independent. Let i, j, l be three arbitrary distinct

indices and i1, j1, l1 be another three arbitrary distinct indices. If {i, j, l} ≠

{i1, j1, l1}, then

E[(Aij − pnwij)(Ail − pnwil)(Ai1j1 − pnwi1j1)(Ai1l1 − pnwi1l1)] = 0.

When {i, j, l} = {i1, j1, l1}, it is easy to get

E[(Aij − pnwij)(Ail − pnwil)(Ai1j1 − pnwi1j1)(Ai1l1 − pnwi1l1)]

= E[(Aij − pnwij)
2(Ail − pnwil)

2]

= pnwij(1− pnwij)pnwil(1− pnwil).

Then the second moment of the first term of (30) can be calculated as

follows.

E


 ∑

i ̸=j ̸=l

fx(wi(j), wj(i))(Ail − pnwil)(Aij − pnwij)

2


=
∑
i ̸=j ̸=l

i1 ̸=j1 ̸=l1

fx(wi(j), wj(i))fx(wi1(j1), wj1(i1))
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×E[(Ail − pnwil)(Aij − pnwij)(Ai1l1 − pnwi1l1)(Ai1j1 − pnwi1j1)]

=
∑
i ̸=j ̸=l

fx(wi(j), wj(i))
2E[(Ail − pnwil)

2(Aij − pnwij)
2]

=
∑
i ̸=j ̸=l

fx(wi(j), wj(i))
2pnwil(1− pnwil)pnwij(1− pnwij)

= Θ
(
n3p2nfx(npn, npn)

2
)
.

By Markov’s inequality, it follows that∑
i ̸=j ̸=l

fx(wi(j), wj(i))(Ail − pnwil)(Aij − pnwij)

= OP

(√
n3p2nfx(npn, npn)

2
)
. (31)

Similarly, one has∑
i ̸=j ̸=l

fy(wi(j), wj(i))(Ail − pnwil)(Aij − pnwij)

= OP

(√
n3p2nfy(npn, npn)

2

)
. (32)

Denote

aij =
1

2
f(wi(j), wj(i)) +

1

2

∑
l/∈{i,j}

pnwil

[
fx(wi(l), wl(i)) + fy(wi(l), wl(i))

]
.

Then combining (27)- (32) yields

1
2

∑
i ̸=j(MijAij − E[MijAij ])

σn

=

∑
i̸=j aij(Aij − pnwij)

σn
+OP

(√
n3p2nfx(npn, npn)

2

σ2
n

)
.

By Lemma 2 and (C5) of Assumption 1 ( let s+ t = 1), we conclude that

1
2

∑
i ̸=j(MijAij − E[MijAij ])

σn
⇒ N (0, 1).

Then the proof is complete if the second, third and last term of (26)
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converge to zero in probability.

4.2.2 Bound the second term of (26)

We prove the second term of (26) is equal to oP (1). By the definition of

Sij , we have ∑
i ̸=j

SijAij

=
1

2

∑
i ̸=j

fxx(wi(j), wj(i))(di(j) − wi(j))
2Aij

+
1

2

∑
i̸=j

fyy(wi(j), wj(i))(dj(i) − wj(i))
2Aij

+
∑
i ̸=j

fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i))Aij . (33)

Then

E

∑
i ̸=j

SijAij


=

1

2

∑
i ̸=j

fxx(wi(j), wj(i))E
[
(di(j) − wi(j))

2
]
pnwij

+
1

2

∑
i ̸=j

fyy(wi(j), wj(i))E
[
(dj(i) − wj(i))

2
]
pnwij

=
1

2

∑
i ̸=j ̸=l

fxx(wi(j), wj(i))pnwil(1− pnwil)pnwij

+
1

2

∑
i̸=j ̸=l

fyy(wi(j), wj(i))pnwjl(1− pnwjl)pnwij . (34)

The first term of (33) can be expressed as∑
i ̸=j

fxx(wi(j), wj(i))(di(j) − wi(j))
2Aij

=
∑
i ̸=j

fxx(wi(j), wj(i))(di(j) − wi(j))
2(Aij − pnwij)
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+
∑
i ̸=j

pnwijfxx(wi(j), wj(i))(di(j) − wi(j))
2. (35)

We will find an upper bound of (35). Note that∑
i ̸=j

fxx(wi(j), wj(i))(di(j) − wi(j))
2(Aij − pnwij)

=
∑
i ̸=j

fxx(wi(j), wj(i))(Aij − pnwij)
∑
s̸=t

s,t/∈{i,j}

(Ais − pnwis)(Ait − pnwit)

+
∑
i ̸=j

fxx(wi(j), wj(i))(Aij − pnwij)
∑

s/∈{i,j}

(Ais − pnwis)
2. (36)

The second moment of the first term of (36) is equal to

E

[∑
i ̸=j

fxx(wi(j), wj(i))(Aij − pnwij)

×
∑
s̸=t

s,t/∈{i,j}

(Ais − pnwis)(Ait − pnwit)

]2

=
∑

i ̸=j,s ̸=t
s,t/∈{i,j}

fxx(wi(j), wj(i))
2E
[
(Aij − pnwij)

2

×(Ais − pnwis)
2(Ait − pnwit)

2
]

=
∑

i ̸=j,s ̸=t
s,t/∈{i,j}

fxx(wi(j), wj(i))
2pnwij(1− pnwij)

×pnwis(1− pnwis)pnwit(1− pnwit)

= Θ
(
n4p3nfxx(npn, npn)

2
)
. (37)

The second moment of the second term of (36) is equal to

E

∑
i ̸=j

fxx(wi(j), wj(i))(Aij − pnwij)
∑

s/∈{i,j}

(Ais − pnwis)
2

2

=
∑

i ̸=j ̸=s

fxx(wi(j), wj(i))
2E
[
(Aij − pnwij)

2(Ais − pnwis)
4
]
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+
∑

i̸=j ̸=s̸=t

fxx(wi(j), wj(i))
2E
[
(Aij − pnwij)

2(Ais − pnwis)
2

×(Ait − pnwit)
2
]

+
∑

i ̸=j ̸=s

fxx(wi(j), wj(i))fxx(wi(s), ws(i))

×E
[
(Aij − pnwij)

3(Ais − pnwis)
3
]

≤
∑

i ̸=j ̸=s

fxx(wi(j), wj(i))
2p2n +

∑
i̸=j ̸=s̸=t

fxx(wi(j), wj(i))
2p3n

+
∑

i ̸=j ̸=s

fxx(wi(j), wj(i))fxx(wi(s), ws(i))p
2
n

= Θ
(
n4p3nfxx(npn, npn)

2
)
. (38)

Now we consider the second term of (35). Note that∑
i ̸=j

pnwijfxx(wi(j), wj(i))(di(j) − wi(j))
2

=
∑
i ̸=j

pnwijfxx(wi(j), wj(i))
∑
s ̸=t

s,t/∈{i,j}

(Ais − pnwis)(Ait − pnwit)

+
∑
i ̸=j

pnwijfxx(wi(j), wj(i))

×
∑

s/∈{i,j}

[
(Ais − pnwis)

2 − E[(Ais − pnwis)
2]
]

+
∑
i ̸=j

pnwijfxx(wi(j), wj(i))
∑

s/∈{i,j}

E
[
(Ais − pnwis)

2
]
. (39)

The second moment of the first term of (39) is equal to

E

∑
i ̸=j

pnwijfxx(wi(j), wj(i))
∑
s ̸=t

s,t/∈{i,j}

(Ais − pnwis)(Ait − pnwit)


2

=
∑

i ̸=j,i ̸=j1,s ̸=t
s,t/∈{i,j,j1}

p2nwijwij1fxx(wi(j), wj(i))fxx(wi(j1), wj1(i))

×E
[
(Ais − pnwis)

2(Ait − pnwit)
2
]
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+
∑

i̸=j,s ̸=t
s,t/∈{i,j}

p2nw
2
ijfxx(wi(j), wj(i))

2E
[
(Ais − pnwis)

2(Ait − pnwit)
2
]

=
∑

i̸=j,i ̸=j1,s̸=t
s,t/∈{i,j,j1}

p2nwijwij1fxx(wi(j), wj(i))fxx(wi(j1), wj1(i))

×pnwis(1− pnwis)pnwit(1− pnwit)

+
∑

i̸=j,s ̸=t
s,t/∈{i,j}

p2nw
2
ijfxx(wi(j), wj(i))

2pnwis(1− pnwis)pnwit(1− pnwit)

= Θ
(
n5p4nfxx(npn, npn)

2
)

(40)

The second moment of the second term of (39) is equal to

E

[∑
i̸=j

pnwijfxx(wi(j), wj(i))

×
∑

s/∈{i,j}

[
(Ais − pnwis)

2 − E
[
(Ais − pnwis)

2
]] ]2

=
∑

i ̸=j ̸=s
i̸=j1 ̸=s

pnwijfxx(wi(j), wj(i))pnwij1fxx(wi(j1), wj1(i))

×E
[(
(Ais − pnwis)

2 − E
[
(Ais − pnwis)

2
])2]

+
∑

i ̸=j ̸=s

p2nw
2
ijfxx(wi(j), wj(i))

2

×E
[(
(Ais − pnwis)

2 − E
[
(Ais − pnwis)

2
])2]

= Θ
(
n4p3nfxx(npn, npn)

2
)
. (41)

By Markov’s inequality and equations (35)- (41), we have∑
i ̸=j

fxx(wi(j), wj(i))
[
(di(j) − wi(j))

2Aij − E
[
(di(j) − wi(j))

2
]
Aij

]
= OP

(√
n5p4nfxx(npn, npn)

2
)
. (42)
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Similarly, one has∑
i ̸=j

fyy(wi(j), wj(i))
[
(di(j) − wi(j))

2Aij − E
[
(di(j) − wi(j))

2
]
Aij

]
= OP

(√
n5p4nfyy(npn, npn)

2

)
. (43)

Now we bound the third term of (33). Note that∑
i ̸=j

fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i))Aij

=
∑
i ̸=j

fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i))(Aij − pnwij)

+
∑
i ̸=j

fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i))pnwij

=
∑

i ̸=j,s ̸=j
t̸=i

fxy(wi(j), wj(i))(Aij − pnwij)(Ais − pnwis)(Ajt − pnwjt)

+
∑

i ̸=j,s ̸=j
t̸=i

fxy(wi(j), wj(i))pnwij(Ais − pnwis)(Ajt − pnwjt). (44)

The second moment of the first term of (44) is equal to

E

[ ∑
i ̸=j,s ̸=j,t ̸=i

fxy(wi(j), wj(i))(Aij − pnwij)

×(Ais − pnwis)(Ajt − pnwjt)

]2
=

∑
i̸=j,s ̸=j,
t̸=i,s̸=t

fxy(wi(j), wj(i))
2E
[
(Aij − pnwij)

2

×(Ais − pnwis)
2(Ajt − pnwjt)

2
]

+
∑

i̸=j,s ̸=j,

fxy(wi(j), wj(i))
2E
[
(Aij − pnwij)

2

×(Ais − pnwis)
2(Ajs − pnwjs)

2
]

=
∑

i̸=j,s ̸=j,
t̸=i,s̸=t

fxy(wi(j), wj(i))
2pnwij(1− pnwij)
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×pnwis(1− pnwis)pnwjt(1− pnwjt)

+
∑
i ̸=j,
s̸=j

fxy(wi(j), wj(i))
2pnwij(1− pnwij)

×pnwis(1− pnwis)pnwjs(1− pnwjs)

= Θ
(
n4p3nfxy(npn, npn)

2
)
. (45)

The second moment of the second term of (44) is equal to

E

 ∑
i̸=j,s ̸=j,t ̸=i

fxy(wi(j), wj(i))pnwij(Ais − pnwis)(Ajt − pnwjt)

2

=
∑

i̸=j,s ̸=j
t ̸=i,s̸=t

fxy(wi(j), wj(i))
2p2nw

2
ijE
[
(Ais − pnwis)

2(Ajt − pnwjt)
2
]

+
∑

i ̸=j,s ̸=j

fxy(wi(j), wj(i))
2p2nw

2
ijE
[
(Ais − pnwis)

2(Ajs − pnwjs)
2
]

=
∑

i ̸=j,s ̸=j
t̸=i,s̸=t

fxy(wi(j), wj(i))
2p2nw

2
ijpnwis(1− pnwis)pnwjt(1− pnwjt)

+
∑
i ̸=j,s

fxy(wi(j), wj(i))
2p2nw

2
ijpnwis(1− pnwis)pnwjs(1− pnwjs)

= Θ
(
n4p4nfxy(npn, npn)

2
)
. (46)

Combining (44), (45) and (46) yields∑
i ̸=j

fxy(wi(j), wj(i))(di(j) − wi(j))(dj(i) − wj(i))Aij

= OP

(√
n4p3nfxy(npn, npn)

2

)
. (47)

By (42), (43), (47) and (C5) of Assumption 1 (let s+ t = 2), we get∑
i̸=j

(SijAij − E [SijAij ]) =

OP

(√
n5p4n[fxx(npn, npn)2 + fyy(npn, npn)2] + n4p3nfxy(npn, npn)2

)
= oP (σn). (48)
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Hence the second term of (26) is equal to oP (1).

4.2.3 Bound the third term of (26)

Now we prove the third term of (26) converges in probability to zero. This

is the most complex part of the proof. Note that∑
i̸=j

TijAij

=

k0−1∑
k=3

∑
s+t=k

∑
i ̸=j

f (s,t)(wi(j), wj(i))

s!t!
(di(j) − wi(j))

s(dj(i) − wj(i))
tAij

=

k0−1∑
k=3

∑
s+t=k

∑
i ̸=j

f (s,t)(wi(j), wj(i))

s!t!
(di(j) − wi(j))

s(dj(i) − wj(i))
t

×(Aij − pnwij)

+

k0−1∑
k=3

∑
s+t=k

∑
i ̸=j

f (s,t)(wi(j), wj(i))

s!t!
(di(j) − wi(j))

s

×(dj(i) − wj(i))
tpnwij . (49)

Next we bound the second moment of the first term of (49) and the variance

of the second term. Since k0 is a fixed finite integer, the quantities s!, t!

in (49) are finite. We will ignore them in the subsequent analysis for

simplicity. Given finite integer k0 ≥ 4, there are finitely many non-negative

integers s, t such that s+ t = k for any k = 3, 4, . . . , k0− 1. Hence we only

need to bound the second moment of∑
i ̸=j

f (s,t)(wi(j), wj(i))(di(j) − wi(j))
s(dj(i) − wj(i))

t(Aij − pnwij), (50)

and the variance of∑
i ̸=j

f (s,t)(wi(j), wj(i))(di(j) − wi(j))
s(dj(i) − wj(i))

tpnwij , (51)

where s, t are given non-negative integers with s + t = k for k = 3, 4, . . . ,

k0 − 1.

We consider the variance of (51) first. Fix integer k ∈ {3, 4, . . . , k0−1}
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and integers s, t ∈ {0, 1, 2, . . . , k} satisfying s+ t = k. For positive integers

r ≤ s and v ≤ t, let λr;1, λr;2, . . . , λr;r, γv;1, γv;2, . . . , γv;v be positive inte-

gers such that λr;1 + λr;2 + · · ·+ λr;r = s and γv;1 + γv;2 + · · ·+ γv;v = t.

Given indices i, j, we have

(di(j) − wi(j))
s =

∑
j1,j2,...,js /∈{i,j}

s∏
l=1

(Aijl − pnwijl)

=

s∑
r=1

∑
j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr

r∏
l=1

(Aijl − pnwijl)
λr;l ,

(dj(i) − wj(i))
t =

∑
i1,i2,...,it /∈{i,j}

t∏
l=1

(Ajil − pnwjil)

=

t∑
v=1

∑
i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=...̸=iv

v∏
l=1

(Ajil − pnwjil)
γv;l . (52)

Then (51) can be written as

∑
i ̸=j

pnwijf
(s,t)(wi(j), wj(i))(di(j) − wi(j))

s(dj(i) − wj(i))
t =

s∑
r=1

t∑
v=1

Vrv,

where

Vrv =
∑
i ̸=j

j1,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr
i1,...,iv /∈{i,j}
i1 ̸=i2 ̸=... ̸=iv

pnwijf
(s,t)(wi(j), wj(i))

r∏
l=1

(Aijl − pnwijl)
λr;l

×
v∏

m=1

(Ajim − pnwjim)γv;m . (53)

Note that

V ar

(
s∑

r=1

t∑
v=1

Vrv

)
=

s∑
r=1

t∑
v=1

s∑
r1=1

t∑
v1=1

Cov(Vrv, Vr1v1)
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≤
s∑

r=1

t∑
v=1

s∑
r1=1

t∑
v1=1

(
V ar(Vrv) + V ar(Vr1v1)

)
,

and s, t are finite non-negative integers, we only need to bound V ar(Vrv)

for each given r, v. Fix r ∈ {1, 2, . . . , s} and v ∈ {1, 2, . . . , t}. There are

two cases: (I) there exists l0 ∈ {1, 2, . . . , r} or m0 ∈ {1, 2, . . . , v} such that

λr;l0 = 1 or γv;m0
= 1 ; (II) λr;l ≥ 2 for all l ∈ {1, 2, . . . , r} and γv;m ≥ 2

for all m ∈ {1, 2, . . . , v}.
We study case (I) first. Suppose there are some λr;l or γv;m which are

equal to one. Without loss of generality, let λr;1 = λr;2 = · · · = λr;r0 = 1

and λr;l ≥ 2 for l ∈ {r0 + 1, . . . , r}, γv;1 = γv;2 = · · · = γv;v0 = 1 and

γv;l ≥ 2 for l ∈ {v0 + 1, . . . , v}. Here, either r0 ≥ 1 or v0 ≥ 1. Without

loss of generality, let r0 ≥ 1. In this case,

r∏
l=1

(Aijl − pnwijl)
λr;l

=

(
r0∏
l=1

(Aijl − pnwijl)

)(
r∏

l=r0+1

(Aijl − pnwijl)
λr;l

)
, (54)

v∏
m=1

(Ajim − pnwjim)γv;m

=

(
v0∏

m=1

(Ajim − pnwjim)

)(
v∏

m=v0+1

(Ajim − pnwjim)γv;m

)
, (55)

and E[Vrv] = 0. Then V ar(Vrv) = E[V 2
rv]. For convenience, denote Āij =

Aij − pnwij . By (53), (54) and (55), we have

E[V 2
rv]

=
∑
i ̸=j

j1,...,jr /∈{i,j}
j1 ̸=j2 ̸=... ̸=jr
i1,...,iv /∈{i,j}
i1 ̸=i2 ̸=... ̸=iv

∑
i′ ̸=j′

j′1,...,j
′
r /∈{i′,j′}

j′1 ̸=j′2 ̸=...̸=j′r
i′1,...,i

′
v /∈{i′,j′}

i′1 ̸=i′2 ̸=... ̸=i′v

pnwijf
(s,t)(wi(j), wi(j))

×pnwi′j′f
(s,t)(wi′(j′), wj′(i′))
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×E

[(
r0∏
l=1

Āijl

)(
r∏

l=r0+1

Ā
λr;l

ijl

)(
r0∏
l=1

Āi′j′l

)(
r∏

l=r0+1

Ā
λr;l

i′j′l

)

×

(
v0∏

m=1

Ājim

)(
v∏

m=v0+1

Ā
γv;m

jim

)(
v0∏

m=1

Āj′i′m

)(
v∏

m=v0+1

Ā
γv;m

j′i′m

)]
.

(56)

Next we find an upper bound of (56). Recall that i ̸= j and i′ ̸= j′. We

shall decompose the summation in (56) into six cases: i ̸= i′ and j = j′;

i = i′ and j ̸= j′; i ̸= j′ and j = i′; i = j′ and j ̸= i′; {i, j} = {i′, j′};
{i, j} ∩ {i′, j′} = ∅. For convenience, denote the expectation in (56) as E.

Firstly, we consider the case {i, j} = {i′, j′}. There are two scenarios:

(i) i = i′ and j = j′, (ii) i = j′ and j = i′.

Consider (i) first. In this case, Aijl , Aij′l
are independent of Ajim , Aji′m

.

Then

E = E

[(
r0∏
l=1

ĀijlĀij′l

)(
r∏

l=r0+1

Ā
λr;l

ijl
Ā

λr;l

ij′l

)]

×E

[(
v0∏

m=1

ĀjimĀji′m

)(
v∏

m=v0+1

Ā
γv;m

jim
Ā

γv;m

ji′m

)]
. (57)

Recall that j1, j2, . . . , jr are mutually distinct and j′1, j
′
2, . . . , j

′
r are mutu-

ally distinct. Moreover, E[Āijl ] = 0 for all l = 1, 2, . . . , r. If there exists

an index jl1 with 1 ≤ l1 ≤ r0 such that jl1 /∈ {j′1, j′2, . . . , j′r}, then

E

[(
r0∏
l=1

ĀijlĀij′l

)(
r∏

l=r0+1

Ā
λr;l

ijl
Ā

λr;l

ij′l

)]

= E[Āijl1
]E

[ r0∏
l=1,jl ̸=jl1

Āijl

( r0∏
l=1

Āij′l

)(
r∏

l=r0+1

Ā
λr;l

ijl
Ā

λr;l

ij′l

)]
= 0. (58)

Hence E = 0 by (57). Similarly, if there exists an index l1 with 1 ≤ l1 ≤ r0

such that j′l1 /∈ {j1, j2, . . . , jr}, then E = 0. In addition, if there is an

index m1 with 1 ≤ m1 ≤ v0 such that im1
/∈ {i′1, i′2, . . . , i′v} or i′m1

/∈
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{i1, i2, . . . , iv}, then E = 0. Consequently, E ̸= 0 implies the following

{j1, j2, . . . , jr0} ⊂ {j′1, j′2, . . . , j′r}, {j′1, j′2, . . . , j′r0} ⊂ {j1, j2, . . . , jr},

{i1, i2, . . . , iv0
} ⊂ {i′1, i′2, . . . , i′v}, {i′1, i′2, . . . , i′v0} ⊂ {i1, i2, . . . , iv}.

Without loss of generality, suppose

{j1, j2, . . . , jr1} = {j′1, j′2, . . . , j′r1}, {jr1+1, . . . , jr}∩{j′r1+1, . . . , j
′
r} = ∅,

(59)

{i1, i2, . . . , iv1} = {i′1, i′2, . . . , i′v1}, {iv1+1, . . . , iv} ∩ {i′v1+1, . . . , i
′
v} = ∅,

(60)

for some r1 (r0 ≤ r1 ≤ r) and v1 (v0 ≤ v1 ≤ v). There are at most

n2+2r−r1+2v−v1 possible choices for the indices i, j, i1, . . . , iv, j1, . . . , jr, i
′,

j′, i′1, . . . , i
′
v, j

′
1,. . . ,j

′
r satisfying i = i′, j = j′, (59) and (60). Let σ1 be a

permutation of {1, 2, . . . , r1} such that jl = j′σ1(l)
and σ2 be a permutation

of {1, 2, . . . , v1} such that im = i′σ2(m). The numbers of the permutations

σ1 and σ2 are r1! and v1! respectively. Then

E

[(
r0∏
l=1

ĀijlĀij′l

)(
r∏

l=r0+1

Ā
λr;l

ijl
Ā

λr;l

ij′l

)]

= E

[(
r1∏
l=1

Ā
λr;l+λr;σ1(l)

ijl

)](
r∏

l=r1+1

E[Āλr;l

ijl
]E[Āλr;l

ij′l
]

)
= O

(
p2r−r1
n

)
. (61)

Similarly, we have

E

[(
v0∏

m=1

ĀjimĀji′m

)(
v∏

m=v0+1

Ā
γv;m

jim
Ā

γv;m

ji′m

)]

= E

[(
v1∏

m=1

Ā
γv;m+γv;σ2(m)

jil

)](
v∏

m=v1+1

E[Āγv;m

jim
]E[Āγv;m

ji′m
]

)
= O

(
p2v−v1
n

)
. (62)

Note that 2(r+ v)− (r1 + v1) ≤ 2(s+ t)− 1. By (56), (57), (61), (62) and

(C5) of Assumption 1, the sum in (56) over the indices i = i′, j = j′, (59)
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and (60) is bounded by

(npn)
2+2r−r1+2v−v1f (s,t)(npn, npn)

2 ≤ (npn)(npn)
2(s+t)f (s,t)(npn, npn)

2

= o
(
σ2
n

)
. (63)

Consider case (ii) i = j′ and j = i′. If there is an index l1 with 1 ≤ l1 ≤
r0 such that jl1 /∈ {i′1, . . . , i′v}, then E = 0 (the same argument as in (58)).

If there is an index m1 with 1 ≤ m1 ≤ v0 such that i′m1
/∈ {j1, . . . , jr}, then

E = 0 (the same argument as in (58)). Then E ̸= 0 implies the following

{j1, j2, . . . , jr0} ⊂ {i′1, i′2, . . . , i′v}, {i′1, i′2, . . . , i′v0} ⊂ {j1, j2, . . . , jr},

{i1, i2, . . . , iv0} ⊂ {j′1, j′2, . . . , j′v}, {j′1, j′2, . . . , j′r0} ⊂ {i1, i2, . . . , iv}.

Without loss of generality, suppose

{j1, j2, . . . , jr1} = {i′1, i′2, . . . , i′r1}, {jr1+1, . . . , jr}∩{i′r1+1, . . . , i
′
v} = ∅,

(64)

{i1, i2, . . . , iv1} = {j′1, j′2, . . . , j′v1}, {iv1+1, . . . , iv} ∩ {j′v1+1, . . . , j
′
v} = ∅,

(65)

for some r1 with max{r0, v0} ≤ r1 ≤ min{r, v} and v1 with max{r0, v0} ≤
v1 ≤ min{r, v}. There are at most n2+2r−r1+2v−v1 possible choices for

indices i, j, i1, . . . , iv, j1, . . . , jr, i
′, j′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
r satisfying i = j′,

j = i′, (64) and (65). Let σ1 be a permutation of {1, 2, . . . , r1} such that

jl = i′σ1(l)
and σ2 be a permutation of {1, 2, . . . , v1} such that im = j′σ2(m).

Then

E = E

[(
r1∏
l=1

Ā
λr;l+γv;σ1(l)

ijl

)(
r∏

l=r1+1

Ā
λr;l

ijl

)(
r∏

m=r1+1

Ā
γv;m

ii′m

)

×

(
v1∏

m=1

Ā
λr;m+γv;σ2(m)

jim

)(
v∏

m=v1+1

Ā
γv;m

jim

)(
r∏

m=v1+1

Ā
λv;m

jj′m

)]
= Θ

(
p2(r+v)−r1−v1
n

)
.

Then the sum in (56) over the indices i = j′, j = i′, (64) and (65) is
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bounded by

(npn)
2+2r−r1+2v−v1f (s,t)(npn, npn)

2

≤ (npn)(npn)
2(s+t)f (s,t)(npn, npn)

2 = o
(
σ2
n

)
. (66)

Consider the case i ̸= i′ and j = j′. For any l0 ∈ {1, 2, . . . , r},
{i, jl0} ̸= {j, il} and {i, jl0} ̸= {j, i′l} for any 1 ≤ l ≤ v. If r0 ≥ 2, it is

not possible that {i, j1} = {i′, j′l1} and {i, j2} = {i′, j′l2} for distinct l1 and

l2. Then E = 0 (the same argument as in (58)). Let r0 = 1. In this case,

i = j′1 and i′ = j1. Otherwise E = 0. Suppose {i1, . . . , iv1} = {i′1, . . . , i′v1}
and {iv1+1, . . . , iv} ∩ {i′v1+1, . . . , i

′
v} = ∅ for v0 ≤ v1 ≤ v. Suppose

{j2, . . . , jr1} = {j′2, . . . , j′r1} and {jr1+1, . . . , jr} ∩ {j′r1+1, . . . , j
′
r} = ∅ for

1 ≤ r1 ≤ r. There are at most n2+2(r+v)−v1−r1 choices for the in-

dices i, j, i1, . . . , iv, j1, . . . , jr, i
′, j′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
r satisfying these con-

ditions. Then

E = E

[
Ā2

ij1

(
r∏

l=2

Ā
λr;l

ijl

)(
r1∏
l=2

Ā
λr;l

j1jl

)(
r∏

l=r1+1

Ā
λr;l

j1j′l

)]

×E

[(
v1∏

m=1

Ā
2γv;m

jim

)(
v∏

m=v1+1

Ā
γv;m

jim
Ā

γv;m

ji′m

)]
= O

(
p1+2(r−1)+v1+2(v−v1)
n

)
,

and hence the sum over i ̸= i′ and j = j′ in (56) is bounded by

(npn)
2(r+v)−v1+1f (s,t)(npn, npn)

2 = o(σ2
n). (67)

Consider the case i = i′ and j ̸= j′. If v0 ≥ 1, the summation is

similarly bounded by (67). Suppose v0 = 0. Suppose {j1, . . . , jr1} =

{j′1, . . . , j′r1} and {jr1+1, . . . , jr} ∩ {j′r1+1, . . . , j
′
r} = ∅ for r0 ≤ r1 ≤ r.

There are at most n3+2r−r1+2v choices for the indices i, j, i1, . . . , iv, j1, . . . ,

jr, i
′, j′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
r satisfying these conditions. Then

E = E

[(
r1∏
l=1

Ā
2λr;l

ijl

)(
r∏

l=r1+1

Ā
λr;l

ijl

)(
r∏

l=r1+1

Ā
λr;l

ij′l

)
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×

(
v∏

m=1

Ā
γv;m

jim

)(
v∏

m=1

Ā
γv;m

j′i′m

)]
= O

(
p2r−r1+2v
n

)
.

Then the sum over i = i′ and j ̸= j′ in (56) is bounded by

n(npn)
2+2r−r1+2vf (s,t)(npn, npn)

2 = o(σ2
n). (68)

Suppose i = j′ and j ̸= i′. If r0 ≥ 2 or v0 ≥ 2, then E = 0 (similar

to the argument in the case i ̸= i′ and j = j′). Let r0 = 1. If v0 = 1,

then j = j′1 and i1 = i′. If v0 = 0, then j1 = i′m1
for some 1 ≤ m1 ≤ v,

j = j′l1 for some 1 ≤ l1 ≤ r and i1 = i′. Without loss of generality, let

m1 = l1 = 1. Suppose

{j1, . . . , jr1} = {i′1, . . . , i′r1}, {jr1+1, . . . , jr} ∩ {i′r1+1, . . . , i
′
v} = ∅.

{i2, . . . , iv1} = {j′2, . . . , j′v1}, {iv1+1, . . . , iv} ∩ {j′v1+1, . . . , j
′
r} = ∅,

where 1 ≤ r1, v1 ≤ min{r, v}. There are at most n2(r+v)−r1−v1+2 choices

for the indices i, j, i1, . . . , iv, j1, . . . , jr, i
′, j′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
r satisfying

these conditions. In this case,

E = E

[
Ā2

ji1

(
r1∏
l=1

Ā
λr;l+γv;l

ijl

)(
r∏

l=r1+1

Ā
λr;l

ijl

)(
v∏

l=r1+1

Ā
γv;l

ii′l

)]

×E

[(
v∏

m=2

Ā
γv;m

jim

)(
v1∏
l=2

Ā
λr;l

i1il

)(
r∏

l=v1+1

Ā
λr;l

i1j′l

)]
= O

(
p1+r+(r−v1)+v−r1+v−1+v1−1
n

)
.

Then the sum over i = j′ and j ̸= i′ in (56) is bounded by

(npn)
2(r+v)−r1−1f (s,t)(npn, npn)

2 = o(σ2
n). (69)

The case i ̸= j′ and j = i′ can be similarly bounded as in (69).

Now we consider {i, j} ∩ {i′, j′} = ∅. If r0 ≥ 3, then at least one

of {i, j1}, {i, j2} and {i, j3} is not in {{j′, i′m1
}, {i′, j′l}} for any m,m1, l.
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Hence E = 0. Similarly, if v0 ≥ 3, E = 0.

Suppose r0 = v0 = 2. Then {i, j1} = {i′, j′l} for some 1 ≤ l ≤ r or

{i, j1} = {j′, i′m} for some 1 ≤ m ≤ v. Otherwise E = 0. Without loss

of generality, suppose {i, j1} = {i′, j′l}. In this case, i = j′l and j1 = i′. If

l ≥ 3, then {i′, j′1} = {j, im1} and {i′, j′2} = {j′, i′m2
} or {i′, j′1} = {j′, i′m2

}
and {i′, j′2} = {j, im1

} (otherwise E = 0). Either case is impossible, due

to the fact that j′ ̸= i′, j′ ̸= j′l1 for any l1. Hence l = 1 or l = 2.

Without loss of generality, let l = 1. In this case, {i′, j′2} = {j, im3
}

and i′ = im3
and j′2 = j. If m3 ≥ 3, then {j, i1} = {j′, i′m4

} and

{j, i2} = {j′, i′m5
} (otherwise E = 0), which is not possible. Hence m3 = 1

or m3 = 2. Let m3 = 1 (the argument for m3 = 2 is the same). Then

{j, i2} = {j′, i′m6
}. If m6 ≥ 3, then {j′, i′1} = {i, jl2} and {j′, i′2} = {i, jl3}

(otherwise E = 0), which is not possible. Hence, m6 = 1 or m6 = 2. Let

m6 = 1 (the argument for m6 = 2 is the same). Then {j′, i′2} = {i, j2},
i = i′2 and j2 = j′. There are at most n2(r+v)−4 possible choices of the in-

dices i, j, i1, . . . , iv, j1, . . . , jr, i
′, j′, i′1, . . . , i

′
v, j

′
1, . . . , j

′
r satisfying these con-

ditions. Then the sum in (56) over these indices is bounded by

(npn)
2(r+v)−4f (s,t)(npn, npn)

2 = o(σ2
n). (70)

Suppose r0 = 2 and v0 = 1. Then {i, j1} = {i′, j′l} and {i, j2} =

{j′, i′m} or {i, j1} = {j′, i′m} and {i, j2} = {i′, j′l} for some l,m. Otherwise

E = 0. Without loss of generality, let {i, j1} = {i′, j′l} and {i, j2} =

{j′, i′m}. By a similar argument as in the previous paragraph, l = 1 or

l = 2. Let l = 1. Then {i′, j′2} = {j, im3
}. If m3 = 1 and m = 1, the sum

in (56) over these indices is bounded by

pn(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n), (71)

If m3 ≥ 2 or m ≥ 2, the sum in (56) over these indices is bounded by

p2n(npn)
2(r+v)−4f (s,t)(npn, npn)

2 = o(σ2
n). (72)

Suppose r0 = 2 and v0 = 0. Then {i, j1} = {i′, j′l} and {i, j2} =

{j′, i′m} or {i, j1} = {j′, i′m} and {i, j2} = {i′, j′l} for some l,m. Otherwise
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E = 0. Without loss of generality, let {i, j1} = {i′, j′l} and {i, j2} =

{j′, i′m}. Then l = 1 or l = 2. Without loss of generality, let l = 1. Then

{i′, j′2} = {j, im1}. The sum in (56) over these indices is bounded by

pn(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (73)

Suppose r0 = 1 and v0 = 1. Then {i, j1} = {i′, j′l} or {i, j1} = {j′, i′m}
for some l,m. Without loss of generality, let {i, j1} = {i′, j′l}. Suppose

l = 1. Then {j, i1} = {i′, j′l1} or {j, i1} = {j′, i′m1
}. If {j, i1} = {j′, i′m1

}
with m1 = 1, the sum in (56) over these indices is bounded by

(npn)
2(r+v)f (s,t)(npn, npn)

2 = o(σ2
n). (74)

If m1 ≥ 2, then {j′, i′1} = {i, jm2} for m2 ≥ 2. Then the sum in (56) over

these indices is bounded by

pn(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (75)

The case {j, i1} = {i′, j′l1} can be similarly bounded as in (75).

Suppose l ≥ 2. Then {i′, j′1} = {j, im1
}. If m1 = 1, then {j′, i′1} =

{i, jl1} for l1 ≥ 2 or {j′, i′1} = {j, im2
} for m2 ≥ 2. In this case, the sum

in (56) over these indices is bounded by

pn(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (76)

If m1 ≥ 2, then {j′, i′1} = {j, i1}. The sum in (56) over these indices is

bounded by

pn(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (77)

Suppose r0 = 1 and v0 = 0. Then {i, j1} = {i′, j′l1} or {i, j1} =

{j′, i′m1
}. Suppose {i, j1} = {j′, i′m1

}. Then {i′, j′1} = {j, im2
}. In this

case, the sum in (56) over these indices is bounded by

(npn)
2(r+v)f (s,t)(npn, npn)

2 = o(σ2
n). (78)
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Suppose {i, j1} = {i′, j′l1}. If l1 = 1, then the sum in (56) over these

indices is bounded by

n(npn)
2(r+v)+1f (s,t)(npn, npn)

2 = o(σ2
n). (79)

If l1 ≥ 2, then {i′, j′1} = {j, im3
}. In this case, the sum in (56) over these

indices is bounded by

(npn)
2(r+v)f (s,t)(npn, npn)

2 = o(σ2
n). (80)

Now we consider the case (II): λr;l ≥ 2 for all l = 1, 2, . . . , r and

γv;m ≥ 2 for all m = 1, 2, . . . , v. In this case, r ≤ s
2 and v ≤ t

2 . The

expectation of Vrv is equal to

E[Vrv]

=
∑
i ̸=j

∑
j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr

i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=...̸=iv

pnwijf
(s,t)(wi(j), wj(i))

r∏
l=1

E[(Aijl − pnwijl)
λr;l ]

×
v∏

m=1

E[(Ajim − pnwjim)γv;m ]. (81)

Next we bound the variance of Vrv, that is, V ar(Vrv) = E
[
(Vrv − E[Vrv])

2].
Let ηl ∈ {0, 1} for l = 1, 2, . . . , r and ξl ∈ {0, 1} for l = 1, 2, . . . , v. Then

we have

r∏
l=1

(Aijl − pnwijl)
λr;l

v∏
m=1

(Ajim − pnwjim)γv;m

=

r∏
l=1

[
(Aijl − pnwijl)

λr;l − E
[
(Aijl − pnwijl)

λr;l
]

+E
[
(Aijl − pnwijl)

λr;l
] ]

×
v∏

l=1

[
(Ajil − pnwjil)

γv;l − E [(Ajil − pnwjil)
γv;l ]

+E [(Ajil − pnwjil)
γv;l ]

]
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=
∑

η1,...,ηr∈{0,1}
ξ1,...,ξv∈{0,1}

r∏
l=1

[
(Aijl − pnwijl)

λr;l − E
[
(Aijl − pnwijl)

λr;l
] ]ηl

×
[
E
[
(Aijl − pnwijl)

λr;l
] ]1−ηl

×
r∏

l=1

[
(Ajil − pnwjil)

γv;l − E [(Ajil − pnwjil)
γv;l ]

]ξl
×
[
E [(Ajil − pnwjil)

γv;l ]
]1−ξl

. (82)

For convenience, denote

Xij(x) = (Aij − pnwij)
x − E[(Aij − pnwij)

x]

and Yij(x) = E[(Aij − pnwij)
x].

Since i ̸= j, jl /∈ {i, j} for l = 1, 2, . . . , r and il /∈ {i, j} for l =

1, 2, . . . , v, then {i, jl} ≠ {j, im} for any l = 1, 2, . . . , r and m = 1, 2, . . . , v.

Consequently, Aijl (l = 1, 2, . . . , r) and Ajim (m = 1, 2, . . . , v) are inde-

pendent.

By (53), (81) and (82), Vrv − E[Vrv] does not contain the term cor-

responding to ηl = 0 for all l ∈ {1, 2, . . . , r} and ξm = 0 for all m ∈
{1, 2, . . . , v}. Hence we assume η1+ · · ·+ηr ≥ 1 or ξ1+ · · ·+ξv ≥ 1. With-

out loss of generality, let η1 = η2 = · · · = ηl0 = 1, ηl0+1 = · · · = ηr = 0,

ξ1 = ξ2 = · · · = ξm0 = 1 and ξm0+1 = · · · = ξv = 0, where 1 ≤ l0 +m0 ≤
r + v. In this case,

r∏
l=1

[
Xijl(λr;l)

]ηl
[
Yijl(λr;l)

]1−ηl

=

(
l0∏
l=1

Xijl(λr;l)

)(
r∏

l=l0+1

Yijl(λr;l)

)
,

v∏
l=1

[
Xjil(γv;l)

]ξl[
Yjil(γv;l)

]1−ξl
=

(
m0∏
l=1

Xjil(γv;l)

)(
v∏

l=m0+1

Yjil(γv;l)

)
.

Denote

Vrv(l0,m0)
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=
∑
i ̸=j

j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr

i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=... ̸=iv

pnwijf
(s,t)(wi(j), wj(i))

(
l0∏
l=1

Xijl(λr;l)

)

×

(
r∏

l=l0+1

Yijl(λr;l)

)(
m0∏
l=1

Xjil(γv;l)

)(
v∏

l=m0+1

Yjil(γv;l)

)
. (83)

We only need to consider the variance of Vrv(l0,m0). Since λr;l ≥ 2 and

wij ∈ [β, 1], then

E[(Aijl − pnwijl)
λr;l ]

= (1− pnwijl)
λr;lpnwijl + (−pnwijl)

λr;l(1− pnwijl)

= Θ(pn).

Hence one has

r∏
l=l0+1

Yijl(λr;l) = Θ(pr−l0
n ),

v∏
l=m0+1

Yjil(γv;l) = Θ(pv−m0
n ).

For convenience, denote

aij1,...,jl0 =
∑

jl0+1,...,jr /∈{j1,...,jl0}

r∏
l=l0+1

Yijl(λr;l),

bji1,...,im0
=

∑
im0+1,...,iv /∈{i1,...,im0

}

v∏
l=m0+1

Yjil(γv;l).

Then

aij1,...,jl0 = Θ((npn)
r−l0), bji1,...,im0

= Θ((npn)
v−m0). (84)
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In this case, Vrv(l0,m0) is written as

Vrv(l0,m0) =
∑
i ̸=j

j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr

i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=...̸=iv

pnwijf
(s,t)(wi(j), wj(i))aij1,...,jl0 bji1,...,im0

×

(
l0∏
l=1

Xijl(λr;l)

)(
m0∏
l=1

Xjil(γv;l)

)
. (85)

Next we bound the variance of Vrv(l0,m0). Since i ̸= j, jl /∈ {i, j} and

im /∈ {i, j} for all l,m, Xijl(λr;l) and Xjil(γv;l) are independent. By

definition, E[Xijl(λr;l)] = E[Xjil(γv;l)] = 0. Then E[Vrv(l0,m0)] = 0 and

V ar (Vrv(l0,m0)) = E[Vrv(l0,m0)
2], that is,

V ar (Vrv(l0,m0))

= E

[ ∑
i,j,j1,...,jl0 ,i1,...,im0

pnwijf
(s,t)(wi(j), wj(i))aij1,...,jl0

bji1,...,im0

×

(
l0∏
l=1

Xijl(λr;l)

)(
m0∏
l=1

Xjil(γv;l)

)]2
=

∑
i,j,j1,...,jl0 ,i1,...,im0

i′,j′,j′1,...,j
′
l0

,i′1,...,i
′
m0

pnwijf
(s,t)(wi(j), wj(i))pnwi′j′f

(s,t)(wi′(j′), wj′(i′))

×aij1,...,jl0
bji1,...,im0

ai′j′1,...,j
′
l0
bj′i′1,...,i′m0

×E

(
l0∏
l=1

Xijl(λr;l)Xi′j′
l
(λr;l)

m0∏
l=1

Xjil(γv;l)Xj′i′
l
(γv;l)

)
. (86)

For each jl1 with 1 ≤ l1 ≤ l0, if {i, jl1} ≠ {i′, j′l} or {j′, i′m} for some

l ∈ {1, 2, . . . , l0} or m ∈ {1, 2, . . . ,m0}, then Xijl1
(λr;l1) is independent of

Xjil(λr;l), Xi′j′l
(λr;l) and Xj′i′m

(λr;m). In this case,

E

[
l0∏
l=1

Xijl(λr;l)Xi′j′l
(λr;l)

m0∏
l=1

Xjil(γv;l)Xj′i′l
(γv;l)

]

= E
[
Xijl1

]
E

 l0∏
l=1,l ̸=l1

Xijl(λr;l)Xi′j′l
(λr;l)

m0∏
l=1

Xjil(γv;l)Xj′i′l
(γv;l)


= 0. (87)
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Hence, for each jl1 with 1 ≤ l1 ≤ l0, there exists l or m such that {i, jl1} =

{i′, j′l} or {i, jl1} = {j′, i′m}. Otherwise, (87) holds. Moreover, if {i, jl1} =

{i′, j′l} and {i, jl1} = {j′, i′m}, then {i′, j′l} = {j′, i′m}. In this case, i′ = i′m

and j′ = j′l (since i′ ̸= j′). This is not possible, due to the fact that

i′m /∈ {i′, j′} and j′l /∈ {i′, j′} for all m, l. Therefore, {i, jl1} can only be

equal to one of {i′, j′l} and {j′, i′m}, but not both. Similarly, {j, im} can

only be equal to one of {i′, j′l} and {j′, i′m}.
Let m0 = 0. If l0 ≥ 2, then i = i′, {j1, j2, . . . , jl0} = {j′1, j′2, . . . , j′l0}.

Then

E

[
l0∏
l=1

Xijl(λr;l)Xi′j′l
(λr;l)

m0∏
l=1

Xjil(γv;l)Xj′i′l
(γv;l)

]

= E

[
l0∏
l=1

Xijl(λr;l)
2

]
= O(pl0n ). (88)

Then the sum over these indices in (86) is bounded by

O
(
n(npn)

2(r+v)−l0+2f (s,t)(npn, npn)
2
)
= o(σ2

n). (89)

If l0 = 1, then {i, j1} = {i′, j′1}. In this case, (89) still holds.

Let m0 = 1. If l0 ≥ 3, then i = i′, {j1, j2, . . . , jl0} = {j′1, j′2, . . . , j′l0}
and {j, i1} = {j′, i′1}. Then the sum over these indices in (86) is bounded

by

O
(
(npn)

2(r+v)−l0+1f (s,t)(npn, npn)
2
)
= o(σ2

n). (90)

If l0 = 2, there are two situations: (i) i = i′, {j1, j2} = {j′1, j′2} and

{j, i1} = {j′, i′1}; (ii) {i, j1} = {j′l1 , i
′}, {i′, j′l2} = {j, i1}, {i, j2} = {j′, i′1}

with l1 ̸= l2. For the case (i), the sum over these indices in (86) is bounded

by (90) with l0 = 2. For case (ii), the sum over these indices in (86) is

bounded by

O
(
(npn)

2(r+v)−2f (s,t)(npn, npn)
2
)
= o(σ2

n). (91)

If l0 = 1, then {i, j1} = {i′, j′1} and {j, i1} = {j′, i′1} or {i, j1} = {j′, i′1}
and {j, i1} = {i′, j′1}. Either case, the sum over these indices in (86) is
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bounded by

O
(
(npn)

2(r+v)f (s,t)(npn, npn)
2
)
= o(σ2

n). (92)

If l0 = 0, then (89) holds with l0 replaced by m0 = 1.

Let m0 = 2. If l0 ≥ 3, then i = i′, {j1, j2, . . . , jl0} = {j′1, j′2, . . . , j′l0},
j = j′ and {i1, i2} = {i′1, i′2}. In this case, the sum over these indices in

(86) is bounded by

O
(
(npn)

2(r+v)−l0f (s,t)(npn, npn)
2
)
= o(σ2

n). (93)

Let l0 = 2. There are two cases (i) i = i′, {j1, j2} = {j′1, j′2}, j = j′ and

{i1, i2} = {i′1, i′2}; (ii) {i, j1} = {j′l1 , i
′}, {j′l2 , i

′} = {j, im1}, {j, im2} =

{j′, i′m3
}, {j′, i′m4

} = {i, j2}. For case (i), (93) holds. For case (ii), the

sum over these indices in (86) is bounded by

O
(
(npn)

2(r+v)−2f (s,t)(npn, npn)
2
)
= o(σ2

n). (94)

The case l0 = 0, 1 are similar to the case m0 = 0, 1 and l0 = 2 discussed

earlier.

The case m0 ≥ 3 is similar to the case l0 ≥ 3.

Now we study the second moment of (50). Note that∑
i ̸=j

f (s,t)(wi(j), wj(i))(di(j) − wi(j))
s(dj(i) − wj(i))

t(Aij − pnwij)

=

s∑
r=1

t∑
v=1

Urv,

where

Urv =
∑
i̸=j

∑
j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=...̸=jr

i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=... ̸=iv

f (s,t)(wi(j), wj(i))(Aij − pnwij)

×
r∏

l=1

(Aijl − pnwijl)
λr;l

v∏
m=1

(Ajim − pnwjim)γv;m .
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Since s, t are fixed finite integers less than k0, we only need to bound the

variance of Urv. Obviously, E[Urv] = 0. Then V ar(Urv) is equal to

E[U2
rv]

=
∑
i ̸=j
i′ ̸=j′

∑
j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=... ̸=jr

i1,i2,...,iv /∈{i,j}
i1 ̸=i2 ̸=...̸=iv

∑
i′1,i

′
2,...,i

′
r /∈{i′,j′}

i′1 ̸=i′2 ̸=...̸=i′r
j′1,j

′
2,...,j

′
v /∈{i′,j′}

j′1 ̸=j′2 ̸=... ̸=j′v

f (s,t)(wi(j), wi(j))

×f (s,t)(wi′(j′), wj′(i′))E

[
(Aij − pnwij)(Ai′j′ − pnwi′j′)

(
r∏

l=1

Ā
λr;l

ijl

)

×

(
r∏

l=1

Ā
λr;l

i′j′l

)(
v∏

m=1

Ā
γv;m

jim

)(
v∏

m=1

Ā
γv;m

j′i′m

)]
. (95)

Denote the expectation in (95) as E1. Fix r ∈ {1, 2, . . . , s} and v ∈
{1, 2, . . . , t}. There are two cases: (a) there are some indices λr;l or γv;m

are equal to one; (b) λr;l ≥ 2 and γv;m ≥ 2 for all l ∈ {1, 2, . . . , r} and

m ∈ {1, 2, . . . , v}.
Consider case (a) first. Suppose there are some indices λr;l or γv;m

which are equal to one. Without loss of generality, let λr;1 = λr;2 = · · · =
λr;r0 = 1 and λr;l ≥ 2 for l ∈ {r0 + 1, . . . , r}. Let γv;1 = γv;2 = · · · =
γv;v0 = 1 and γv;l ≥ 2 for l ∈ {v0 + 1, . . . , v}. Here r0 + v0 ≥ 1. Then

E1 = E

[
(Aij − pnwij)(Ai′j′ − pnwi′j′)

(
r0∏
l=1

Āijl

)(
r∏

l=r0+1

Ā
λr;l

ijl

)

×

(
r0∏
l=1

Āi′j′l

)(
r∏

l=r0+1

Ā
λr;l

i′j′l

)(
v0∏

m=1

Ājim

)(
v∏

m=v0+1

Ā
γv;m

jim

)

×

(
v0∏

m=1

Āj′i′m

)(
v∏

m=v0+1

Ā
γv;m

j′i′m

)]
.

We split the sum of (95) into two cases: {i, j} ≠ {i′, j′} and {i, j} =

{i′, j′}.
Suppose {i, j} ̸= {i′, j′}. Let v0 ≥ 2 and r0 ≥ 2. For 1 ≤ m1 ≤ v0, if

{j, im1
} ≠ {i′, j′l} for any l, {j, im1

} ≠ {j′, i′m} for any m and {j, im1
} ≠
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{i′, j′}, then Ajim1
is independent of Ai′j′l

for all l, Aj′i′m
for all m and

Ai′j′ . Then

E1 = E

[
(Aij − pnwij)(Ai′j′ − pnwi′j′)

(
r0∏
l=1

Āijl

) r∏
l=r0+1

Ā
λr;l

ijl


×

(
r0∏
l=1

Āi′j′
l

) r∏
l=r0+1

Ā
λr;l

i′j′
l

 v0∏
m=1,m ̸=m1

Ājim

( v∏
m=v0+1

Ā
γv;m

jim

)

×

(
v0∏

m=1

Āj′i′m

)(
v∏

m=v0+1

Ā
γv;m

j′i′m

)]
E
[
Ājim1

]
= 0. (96)

Hence, {j, im1} = {i′, j′l} for some l or {j, im1} = {j′, i′m} for some m or

{j, im1} = {i′, j′}. Similar results hold for {i, j}, {i, jl} with 1 ≤ l ≤ r0,

{j′, i′m} with 1 ≤ m ≤ v0, {i′, j′}, and {i′, j′l} with 1 ≤ l ≤ r0. (i)

Suppose {j, i1} = {i′, j′l1}. Then {j, i2} = {i′, j′l2} or {j, i2} = {i′, j′}. If

{j, i2} = {i′, j′l2}, then {i, j} = {i′, j′l3}. Since j′l ̸= j′ for all l, then either

{j′, i′1} ≠ {j′l3 , jl} for all l or {j′, i′2} ≠ {j′l3 , jl} for all l. By a similar

argument as in (96), E1 = 0. The same result hods if {j, i2} = {i′, j′}. (ii)
Suppose {j, i1} = {j′, i′m1

} or {j, i1} = {i′, j′}. By a similar argument as

in the case {j, i1} = {i′, j′l1}, it is easy to get E1 = 0.

Let v0 ≥ 2, r0 ≤ 1. Given 1 ≤ m ≤ v0, if {j, im} = {i′, j′l} for some l,

then E1 = 0. Hence {j, im} = {j′, i′l} for some l. Then j = j′ and

{{j, i}, {j, i1}, . . . , {j, iv0}} ⊂ {{j′, i′}, {j′, i′1}, . . . , {j′, i′v}}. (97)

Similarly,

{{j′, i′}, {j′, i′1}, . . . , {j′, i′v0}} ⊂ {{j, i}, {j, i1}, . . . , {j, iv}}. (98)

Without loss of generality, let i = i′1, i1 = i′, i2 = i′2, . . . , i
′
v1

= i′v1
for

v0 ≤ v1 ≤ v. There are at most n2(r+v)+2−v1 choices of these indices. If

r0 = 0, E1 is bounded by O
(
p
2(r+v)+1−v1
n

)
. Then the sum of (95) over

these indices is bounded by

n(npn)
2(r+v)+1−v1f (s,t)(npn, npn)

2 = o(σ2
n). (99)
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If r0 = 1, then {i, j1} = {i′, j′1}. In this case, the sum of (95) over these

indices is bounded by

(npn)
2(r+v)−v1f (s,t)(npn, npn)

2 = o(σ2
n). (100)

Let v0 = r0 = 1. In this case, {j, i1} = {i′, j′l} for some l or {j, i1} =

{j′, i′m} for some m or {j, i1} = {i′, j′}. Let {j, i1} = {i′, j′l1}. If j = i′,

then {i, j} = {i′, j′l2}. In this case, {i′, j′} = {j, im1
} for some m1 ≥ 2,

{i, j1} = {j′, i′1} and l1 = 1. Otherwise E1 = 0. There are at most

n2(r+v)−2 choices of these indices. In this case, the sum of (95) over these

indices is bounded by

(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (101)

If j = j′1, then {i, j} = {j′, i′1}, {i, j1} = {i′, j′} and l1 = 1. Otherwise

E1 = 0. There are at most n2(r+v)−1 choices of these indices. In this case,

the sum of (95) over these indices is bounded by

(npn)
2(r+v)−1f (s,t)(npn, npn)

2 = o(σ2
n). (102)

The cases {j, i1} = {j′, i′m} for some m and {j, i1} = {i′, j′} can be simi-

larly bounded as in (100) and (102).

Let v0 = 1 and r0 = 0. In this case, {j, i1} = {i′, j′l} for some l or

{j, i1} = {j′, i′m} for some m or {j, i1} = {i′, j′}. Let {j, i1} = {j′, i′m1
}.

If m1 = 1, then {i, j} = {j′, i′m2
} and {i′, j′} = {j, im3

}. There are at

most n2(r+v)−1 choices of these indices. Then the sum of (95) over these

indices is bounded by (102). If m1 ≥ 2 and m3 = 1, then the sum of

(95) over these indices is bounded by (102). If m1 ≥ 2 and m3 ≥ 2, then

{j′, i′1} = {j, im3
}. There are at most n2(r+v)−1 choices of these indices.

Then the sum of (95) over these indices is bounded by

n(npn)
2(r+v)−2f (s,t)(npn, npn)

2 = o(σ2
n). (103)

The case {j, i1} = {i′, j′l} for some l and {j, i1} = {i′, j′} can be similarly

studied.
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Suppose {i, j} = {i′, j′}. Consider i = i′ and j = j′ first. For any m

with 1 ≤ m ≤ v0, if im ̸= i′m1
for all 1 ≤ m1 ≤ v, then the expectation

E1 = 0. Hence, {i1, . . . , iv0} ⊂ {i′1, . . . , i′v}. Similarly, {i′1, . . . , i′v0} ⊂
{i1, . . . , iv}, {j′1, . . . , j′r0} ⊂ {j1, . . . , jr}, {j1, . . . , jr0} ⊂ {j′1, . . . , j′r}. Wi-

thout loss of generality, let

{i′1, . . . , i′v1
} = {i1, . . . , iv1}, {i′v1+1, . . . , i

′
v} ∩ {iv1+1, . . . , iv} = ∅.

{j′1, . . . , j′r1} = {j1, . . . , jr1}, {j′r1+1, . . . , j
′
r} ∩ {jr1+1, . . . , jr} = ∅,

where v0 ≤ v1 ≤ v, r0 ≤ r1 ≤ r. There are at most n2+r1+2(r−r1)+v1+2(v−v1)

indices. Let σ1 be a one-to-one map from {i1, . . . , iv1} to {i′1, . . . , i′v1} and

σ2 be a one-to-one map from {j1, . . . , jr1} to {j′1, . . . , j′r1}. Then

E1 = E

[
Ā2

ij

(
r1∏
l=1

Ā
λr;l+λr;σ2(l)

ijl

)(
r∏

l=r1+1

Ā
λr;l

ijl
Ā

λr;l

ij′l

)

×

(
v1∏

m=1

Ā
γv;m+γv;σ1(m)

jim

)(
v∏

m=v1+1

Ā
γv;m

jim
Ā

γv;m

ji′m

)]
= Θ

(
p1+r1+2(r−r1)+v1+2(v−v1)
n

)
. (104)

Then the sum over indices {i, j} = {i′, j′} in (95) is bounded by

n(npn)
2(r+v)−(r1+v1)+1f (s,t)(npn, npn)

2 = o(σ2
n). (105)

Similarly, (105) holds for the case i = j′ and j = i′ with max{r0, v0} ≤
r1, v1 ≤ min{r, v}.

Now we consider case (b). Suppose λr;l ≥ 2 for l ∈ {1, . . . , r} and

γv;m ≥ 2 for m ∈ {1, . . . , v}. In this case r ≤ s
2 and v ≤ t

2 . If {i, j} ̸=
{i′, j′}, {i, j} ≠ {i′, j′l} for all l, {i, j} ≠ {j′, i′m} for all m, then E1 = 0.

Suppose {i, j} = {i′, j′}. There are two cases: i = i′ and j = j′

or i = j′ and j = i′. Let i = i′ and j = j′. Suppose |{j1, . . . , jr} ∩
{j′1, . . . , j′r}| = r1 and |{i1, . . . , iv} ∩ {i′1, . . . , i′v}| = v1. There are at most

n2+r1+2(r−r1)+v1+2(v−v1) possible indices. Without loss of generality, as-
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sume jl = j′l for 1 ≤ l ≤ r1 and il = i′l for 1 ≤ l ≤ v1. Then

E1 = E

[
(Aij − pnwij)

2

(
r1∏
l=1

Ā
2λr;l

ijl

)(
r∏

l=r1+1

Ā
λr;l

ijl

)(
r∏

l=r1+1

Ā
λr;l

ij′l

)

×

(
v1∏

m=1

Ā
2γv;m

jim

)(
v∏

m=v1+1

Ā
γv;m

jim

)(
v∏

m=v1+1

Ā
γv;m

ji′m

)]
= O

(
p1+r1+2(r−r1)+v1+2(v−v1)
n

)
. (106)

Then the sum over indices {i, j} = {i′, j′} with i = i′ and j = j′ in (95) is

bounded by

n(npn)
2(r+v)−r1−v1+1f (s,t)(npn, npn)

2 = o(σ2
n).

Let i = j′ and j = i′. Suppose |{j1, . . . , jr} ∩ {i′1, . . . , i′v}| = r1 and

|{i1, . . . , iv} ∩ {j′1, . . . , j′r}| = v1, where 0 ≤ r1 ≤ min{r, v} and 0 ≤ v1 ≤
min{r, v}. There are at most n2+r1+(r−r1)+(r−v1)+v1+(v−v1)+(v−r1) such

indices. Without loss of generality, let jl = i′l for l ≤ r1 and il = j′l for

l ≤ v1. Then

E1 = E

[
(Aij − pnwij)

2

(
r1∏
l=1

Ā
λr;l+γv;l

ijl

) r∏
l=r1+1

Ā
λr;l

ijl

 r∏
l=v1+1

Ā
λr;l

jj′
l


×

(
v1∏

m=1

Ā
γv;m+λr;m

jim

)(
v∏

m=v1+1

Ā
γv;m

jim

)(
v∏

m=r1+1

Ā
γv;m

ii′m

)]

= Θ
(
p1+r1+(r−r1)+(r−v1)+v1+(v−v1)+(v−r1)
n

)
. (107)

Then the sum over indices {i, j} = {i′, j′} with i = j′ and j = i′ in (95)

is bounded by

O
(
n(npn)

1+2(r+v)−(r1+v1)f (s,t)(npn, npn)
2
)
= o(σ2

n).

Suppose {i, j} = {i′, j′l1} for some l1. If i = j′l1 and j = i′, then j′ = im1

for some m1, otherwise E1 = 0. There are at most n3+r+(r−1)+v+(v−1)
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possible nodes. In this case,

E1 = E

[
(Ajj′

l1
− pnwjj′

l1
)1+λr;l1

(
r∏

l=1

Ā
λr;l

ijl

) r∏
l=1,l ̸=l1

Ā
λr;l

jj′
l


×(Ajim1

− pnwjim1
)1+γv;m1

 v∏
m=1,m ̸=m1

Ā
γv;m

jim

( v∏
m=1

Ā
γv;m

im1
i′m

)]

= Θ
(
p2+r+(r−1)+v+(v−1)
n

)
. (108)

Then the sum over indices {i, j} = {i′, j′l1} in (95) is bounded by

O
(
n(npn)

2(r+v)f (s,t)(npn, npn)
2
)
= o(σ2

n). (109)

Similarly, (109) holds for i = i′ and j = j′l1 or {i, j} = {j′, i′m1
} for some

m1.

4.2.4 Bound the last term of (26)

Now we prove the last term of (26) converges in probability to zero. To

this end, we will show that

E

∣∣∣∣∣∣
∑
i̸=j

RijAij

∣∣∣∣∣∣
 = o (σn) . (110)

Let s, t satisfy s + t = k0. By (C3) of Assumption 1, |f (s,t)(x, y)| is
monotone in x and y. There are four cases: |f (s,t)(x, y)| is decreasing in x

and y, |f (s,t)(x, y)| is increasing in x and y, |f (s,t)(x, y)| is increasing in x

and decreasing in y, |f (s,t)(x, y)| is decreasing in x and increasing in y.

Suppose |f (s,t)(x, y)| is decreasing in x and y. Let δn = [log(npn)]
−2

.

Then

E[|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t]

= E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) ≥ δnwj(i)]

]
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+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) < δnwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) ≥ δnwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) < δnwj(i)]

]
. (111)

By the Cauchy–Schwarz inequality and (52), we have

E
[
|di(j) − wi(j)|s

]
≤

√
E
[
(di(j) − wi(j))2s

]
=

√√√√√√
2s∑
r=1

∑
j1,j2,...,jr /∈{i,j}
j1 ̸=j2 ̸=... ̸=jr

r∏
l=1

E [(Aijl − pnwijl)
λr;l ]

= O

√√√√ s∑
r=1

(npn)r

 = O
(
(npn)

s
2

)
.

Then

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) ≥ δnwj(i)]

]

≤ E

[
|f (s,t)(δnwi(j), δnwj(i))|di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) ≥ δnwj(i)]

]
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≤ |f (s,t)(δnwi(j), δnwj(i))|E
[
|di(j) − wi(j)|s|dj(i) − wj(i)|t

]
= |f (s,t)(δnwi(j), δnwj(i))|E

[
|di(j) − wi(j)|s

]
E
[
|dj(i) − wj(i)|t

]
≤ (npn)

k0
2 |f (s,t)(δnwi(j), δnwj(i))|. (112)

On the event {Xi(j) < δnwi(j)}, if Xi(j) < di(j), then Xi(j) cannot be

between di(j) and wi(j). Hence Xi(j) < δnwi(j) implies di(j) ≤ Xi(j) <

δnwi(j). Similar result holds for Xj(i). By definition, di(j) and dj(i) are

independent if i ̸= j. By Lemma 1 and (C2) of Assumption 1, one has

E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) < δnwj(i)]
]

≤ E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) ≤ Xi(j) < δnwi(j), dj(i) ≤ Xj(i) < δnwj(i)]
]

≤ E
[
|f (s,t)(di(j), dj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) < δnwi(j), dj(i) < δnwj(i)]
]

=

δnwi(j)∑
k=1

δnwj(i)∑
l=1

|f (s,t)(k, l)||k − wi(j)|s|l − wj(i)|tP(di(j) = k)P(dj(i) = l)

= O
(
(δnnpn)

M exp(−2npnβ(1 + o(1))
)

= exp(−2npnβ(1 + o(1)), (113)

where M is a positive constant.

Similarly, the second term of (111) is bounded as follows.

E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) < δnwj(i)]
]

≤ E
[
|f (s,t)(δnwi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), dj(i) ≤ Xj(i) < δnwj(i)]
]

≤ E
[
|f (s,t)(δnwi(j), dj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[dj(i) < δnwj(i)]
]
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=

δnwj(i)∑
k=1

|f (s,t)(δnwi(j), k)|(k − wj(i))
tP(dj(i) = k)E[|di(j) − wi(j)|s]

= O
(
(δnnpn)

M exp(−npnβ(1 + o(1))
)

= exp(−npnβ(1 + o(1)). (114)

The third term of (111) can be similarly bounded.

Combining (111)-(114) yields

E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

]
= O

(
(npn)

k0
2 |f (s,t)(δnwi(j), δnwj(i))|+ exp(−npnβ(1 + o(1))

)
.

By (C4) of Assumption 1, we have

E

∣∣∣∣∣∣
∑
i ̸=j

RijAij

∣∣∣∣∣∣
 = O

(
n(npn)

k0
2 +1|f (s,t)(δnnpn, δnnpn)|

)
= o (σn) .

Then (110) holds.

Suppose |f (s,t)(x, y)| is increasing in x and y. Let M be a large positive

constant. Then

E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

]
= E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ Mwi(j), Xj(i) ≥ Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ Mwi(j), Xj(i) < Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t
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×I[Xi(j) < Mwi(j), Xj(i) ≥ Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < Mwi(j), Xj(i) < Mwj(i)]

]
.

(115)

On the event {Xi(j) ≥ Mwi(j)}, if Xi(j) > di(j), then Xi(j) cannot be

between di(j) and wi(j). Hence Xi(j) ≥ Mwi(j) implies Mwi(j) ≤ Xi(j) ≤
di(j). Similar result holds for Xj(i). By definition, di(j) and dj(i) are

independent if i ̸= j. Suppose npn = ω(log n). By Lemma 1 and (C2) of

Assumption 1, one has

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ Mwi(j), Xj(i) ≥ Mwj(i)]

]

≤ E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) ≥ Xi(j) ≥ Mwi(j), dj(i) ≥ Xj(i) ≥ Mwj(i)]

]

≤ E

[
|f (s,t)(di(j), dj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) − 1 ≥ Mwi(j) − 1, dj(i) − 1 ≥ Mwj(i) − 1]

]

=

n−2∑
k=Mwi(j)−1

n−2∑
l=Mwj(i)−1

|f (s,t)(k + 1, l + 1)||k + 1− wi(j)|s|l + 1− wj(i)|t

×P(di(j) − 1 = k)P(di(j) − 1 = l)

= O
(
nCs,t,f e−npnβ(1+o(1))

)
= O

(
e−npnβ(1+o(1))

)
, (116)
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where Cs,t,f is some constant dependent on s, t and f . Similarly,

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ Mwi(j), Xj(i) < Mwj(i)]

]

≤ E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) ≥ Xi(j) ≥ Mwi(j), Xj(i) < Mwj(i)]

]
≤ E

[
|f (s,t)(di(j),Mwj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) ≥ Mwi(j)]
]

= E|dj(i) − wj(i)|t
n−2∑

k=Mwi(j)−1

|f (s,t)(k + 1,Mwj(i))||k + 1− wi(j)|s

×P(dj(i) − 1 = k)

= O
(
e−npnβ(1+o(1))

)
, (117)

and

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < Mwi(j), Xj(i) < Mwj(i)]

]
≤ E

[
|f (s,t)(Mwi(j),Mwj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

]
= E

[
|f (s,t)(Mwi(j),Mwj(i))|

]
E
[
|di(j) − wi(j)|s

]
E
[
|dj(i) − wj(i)|t

]
= O

(
(npn)

k0
2 |f (s,t)(Mnpn,Mnpn)|

)
, (118)

By (115), (116),(117) and (118), it follows that

E

∣∣∣∣∣∣
∑
i̸=j

RijAij

∣∣∣∣∣∣
 = O

(
n(npn)

k0
2 +1|f (s,t)(Mnpn,Mnpn)|

)
= o (σn) .
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Then (110) holds.

Suppose |f (s,t)(x, y)| is decreasing in x and increasing in y. Let δn =

[log(npn)]
−2

and M be a large positive constant. Then

E
[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

]
= E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) ≥ Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) < Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) ≥ Mwj(i)]

]

+E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) < Mwj(i)]

]
.

(119)

The first term of (119) can be bounded by

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) ≥ Mwj(i)]

]

≤ E

[
|f (s,t)(δnwi(j), dj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t
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×I[Xi(j) ≥ δnwi(j), dj(i) ≥ Mwj(i)]

]

= (npn)
s
2

n−2∑
k=Mwj(i)

|f (s,t)(δnwi(j), k)||k − wj(i)|tP(dj(i) = k)

= exp(−npnβ(1 + o(1)), (120)

The second term of (119) can be bounded by

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) ≥ δnwi(j), Xj(i) < Mwj(i)]

]
≤ |f (s,t)(δnwi(j),Mwj(i))|(npn)

k0
2 . (121)

The third term of (119) can be bounded by

E

[
|f (s,t)(Xi(j), Xj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[Xi(j) < δnwi(j), Xj(i) ≥ Mwj(i)]

]

≤ E

[
|f (s,t)(di(j), dj(i))||di(j) − wi(j)|s|dj(i) − wj(i)|t

×I[di(j) < δnwi(j), dj(i) ≥ Mwj(i)]

]

=

δnwi(j)∑
k=0

n−2∑
l=Mwj(i)

|f (s,t)(k, l)||k − wi(j)|s|l − wj(i)|t

×P(di(j) = k)P(dj(i) = l)

= exp(−npnβ(1 + o(1)). (122)

By (119)-(122), (110) holds.

The case that |f (s,t)(x, y)| is increasing in x and decreasing in y can be

similarly processed. We omit it. Then the proof is complete.
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4.3 Proof of Theorem 2 in Subsection 3.1

To prove Theorem 2 in Subsection 3.1, we only need to derive the asymp-

totic distribution of the Randić index of the Erdős-Rényi random graph

Gn(α), that is, τ = − 1
2 . Recall that for the Erdős-Rényi random graph

Gn(α), wi(k) = 1 + (n− 2)pn. Then

fx(wi(j), wj(i)) = fy(wi(j), wj(i)) = − 1

2(1 + (n− 2)pn))2
,

fxx(wi(j), wj(i)) = fyy(wi(j), wj(i)) =
3

4(1 + (n− 2)pn))3
,

fxy(wi(j), wj(i)) =
1

4(1 + (n− 2)pn))3
,

|f (s,t)(npn, npn)| = O

(
1

(npn)1+(s+t)

)
.

Let k0 = max
{
⌊2 + 1

1−α⌋+ 1, 3
}
. By (25) and the proof of Theorem 1,

we have

In − E[In] =
1

2

∑
i̸=j

(MijAij − E[MijAij ]) +
1

2

∑
i̸=j

(SijAij − E[SijAij ])

+OP

(√
n

(npn)3

)
.

By the calculations in Section 3.1, aij = Θ
(

1
(npn)2

)
for τ = − 1

2 . Then

V ar

∑
i ̸=j

aij(Aij − pnwij)

 = O

(
n

(npn)3

)
.

By equations (27)- (32), we have

1

2

∑
i ̸=j

(MijAij − E[MijAij ])

= −
∑

i̸=j ̸=l(Ail − pn)(Aij − pn)

2(1 + (n− 2)pn))2
+OP

(√
n

(npn)3

)
.
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By equations (33)-(47), we have

1

2

∑
i̸=j

(SijAij − E[SijAij ])

=
1

4

∑
i ̸=j,s ̸=t
s,t/∈{i,j}

pn
(
fxx(wi(j), wj(i)) + fyy(wi(j), wj(i))

)

×(Ais − pn)(Ait − pn) +OP

(√
n

(npn)3

)
=

3(n− 3)pn
8(1 + (n− 2)pn))3

∑
s̸=t̸=i

(Ais − pn)(Ait − pn) +OP

(√
n

(npn)3

)
.

Hence, we get

In − E[In] = Xn +OP

(√
n

(npn)3

)
, (123)

where

Xn = − 1

8(1 + (n− 2)pn))2

∑
s ̸=t ̸=i

(Ais − pn)(Ait − pn).

Note that

−Xn =
∑

i<j<k

(Aij − pn)(Aik − pn)

4(1 + (n− 2)pn))2
+
∑

i<j<k

(Aji − pn)(Ajk − pn)

4(1 + (n− 2)pn))2

+
∑

i<j<k

(Aki − pn)(Akj − pn)

4(1 + (n− 2)pn))2
,

and the variance σ2
n of Xn is equal to

σ2
n =

n(n− 1)(n− 2)p2n(1− pn)
2

32(1 + (n− 2)pn))4
= Θ

(
n

(npn)2

)
.

By Theorem 6.1 in [13], we have

Xn

σn
⇒ N (0, 1),
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from which and (123) it follows that

In − E[In]
σn

⇒ N (0, 1).

Then the proof is complete.

Acknowledgment : The author is grateful to the anonymous reviewers
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