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Abstract

In recent years, bacterial resistance becomes a serious problem
due to the abuse of antibiotics. Antimicrobial peptides (AMPs)
have rapidly emerged as the best alternative to antibiotics because
of their ability to rapidly target bacteria, fungi, viruses, and cancer
cells and counteract the toxins they produce. In this study, a two-
branch ensemble framework is proposed to identify AMPs, which
integrates extreme gradient boosting (XGBoost) and bidirectional
long short-term memory network (Bi-LSTM) with attention mech-
anism to form a stronger model. First, one-hot coding and k-mer
are used to represent the sequence features. Then, the feature vec-
tors are input into the two base classifiers respectively to obtain
two predicted values. Finally, the prediction results are obtained
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by compromise. As one of the classical machine learning methods,
XGBoost has strong stability and can adapt to datasets of differ-
ent sizes. Bi-LSTM recurses for each peptide from N-terminal to
C-terminal and C-terminal to N-terminal, respectively. As the con-
text information is provided, the model can make more accurate
prediction. Our method achieves higher or highly comparable re-
sults across the eight independent test datasets. The ACC values of
XUAMP, YADAMP, DRAMP, CAMP, LAMP, APD3, dbAMP, and
DBAASP are 77.9%, 98.5%, 72.5%, 99.8%, 83.0%, 92.4%, 87.5%,
and 84.6%, respectively. This shows that the two-branch ensemble
structure is feasible and has strong generalization. The codes and
datasets are accessible at https://github.com/z11code/AMP-EF.

1 Introduction

So far, more than 800 AMPs have been identified from bacteria, fungi,

amphibians, insects, higher plants, mammals, and even humans [1]. It

consists of protein-based amino acid chains, typically between 6 and 100

in length. AMPs are the first immunoactive molecules produced in or-

ganisms. They play an extremely important role in the host immune de-

fense against pathogen invasion and are known as ”natural antibacterial

agents” [2]. Because of the increasing number of bacteria that are resistant

to antibiotics, AMPs are seen as a viable alternative form of treatment. In

theory, customized peptides treat infections, enhance immune responses,

and counteract toxins produced by microbes. In addition, studies have

found that AMPs also have potent killing effects on some fungi, proto-

zoa, viruses, and cancer cells [3]. Therefore, the study and identification

of AMPs have received increasing attention. It takes a lot of time and

money to identify AMPs by biological experiments, but building a com-

putational model to identify AMPs can not only reduce the cost but also

improve the accuracy.

As early as 2007, researchers began to use machine learning algorithms

to predict AMPs [4], with support vector machines (SVM) [5] and random

forests (RF) [6, 7] being the most commonly used. In 2019, Chung et al.

constructed a classifier named AMPfun that extracted features reflecting

the functional activity of AMPs and used RF as the classifier [8]. In 2020,

Michal Burdukiewicz et al. designed a prediction model for longer AMPs,
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AmpGram, which used RF as the identification algorithm [9]. In 2020,

Legana C.H. Wfingerhut et al. developed an R package with a built-in

SVM classifier, called ampir [10]. In 2020, Kaveh Kavousi et al. built

a prediction platform IAMPE, which involved SVM, RF, XGBoost, and

other identification algorithms [11]. In recent years, with the rise of neu-

ral networks, deep learning has also been used to identify AMPs. In 2018,

Daniel Veltri et al. first applied deep learning methods to the identification

of AMPs. Their AMPScannerV2 model included convolutional neural net-

work (CNN) and long short-term memory network (LSTM) [12]. In 2019,

Su et al. designed a multi-scale convolutional network to identify AMPs,

extracting all potential features with multiple convolution kernels of dif-

ferent sizes [13]. In 2020, Yan et al. also created Deep-AmPEP30 using

CNN to predict short AMPs [14]. In 2022, Li et al. first introduced at-

tention mechanism and combined it with Bi-LSTM to build the AMPlify

model [15]. In 2022, Yan et al. proposed a graph attention network (GAT)

called sAMPpred-GAT to identify AMPs and non-AMPs [16]. After read-

ing articles related to the identification of AMPs, we find that existing

models only use a single machine learning method or a single deep learn-

ing method to distinguish AMPs from non-AMPs. Cesar R. Garcia-Jacas

et al. compared machine learning algorithms with deep learning algo-

rithms and concluded that both have advantages and disadvantages when

it comes to the identification of AMPs [17]. In summary, we can consider

integrating different types of algorithms to improve the prediction accu-

racy of AMPs. Wang et al. have combined XGBoost with CNN to identify

non-classical secreted proteins, and the results showed better performance

than existing state-of-the-art models and other classical machine learning

models [18]. Therefore, we can also try to apply a two-branch ensemble

framework to the identification of AMPs.

Our ensemble framework, named AMP-EF, uses XGBoost and Bi-

LSTM with attention mechanism as two branches of classifier, respectively.

As an optimization strategy, ensemble learning can skillfully integrate the

two, to obtain significantly superior performance than a single classifier.

XGBoost is the best machine learning method for predicting AMPs ex-

cept the above two most commonly used SVM and RF. In the condition
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of using F-score feature selection, XGBoost has the highest prediction

accuracy [19]. Bi-LSTM has a forward layer, a backward layer, and a con-

nection layer. The output vector of each residue is the concatenation of

vectors from two directions, containing both past and future data, which

strengthens the dependence between data [20–22]. The output of Bi-LSTM

is then used as the input of attention mechanism. Attention mechanism

can effectively reduce dimension and avoid information loss by taking dif-

ferent attention to different features. In addition, in order to convert the

original peptide into a mathematically tractable format, we adopt one-hot

encoding and k-mer to represent sequence features, which make full use

of the position and composition information of peptide sequences. The

model structure is shown in Fig 1.

A. DATA COLLECTION

B. FEATURE EXTRACTION

C. CLASSIFICATION

Training Independent

One-hot

2-mer

Dataset Feature

predicted class

CD-HIT

D. EVALUATION

20×20

L×21

2500×1

Figure 1. The architecture of AMP-EF. ’2D’ represents a 2-
dimensional feature vector and ’3D’ represents a 3-
dimensional feature vector.
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2 Materials and methods

2.1 Dataset

To demonstrate that our model is effective for the prediction of AMPs,

we adopt the datasets collected and curated by Yan et al. [16]. Yan et al.

used eight independent test datasets, among which seven datasets came

from Xu et al. [19], namely XUAMP [19], YADAMP [23], DRAMP [24,25],

CAMP [26, 27], LAMP [28, 29], APD3 [30] and dbAMP [31]. Meanwhile,

Yan et al. used the same method as Xu et al. to construct an independent

test dataset called DBAASP. The details of these eight datasets can be

found in Table 1. In addition, Yan et al. constructed eight datasets by

randomly selecting positive and negative samples with length between 40

and 100 residues, and used CD-HIT [32] to eliminate redundancy between

sequences, making the similarity between positive samples less than 90%

and the similarity between negative samples less than 40%. We use them

as training datasets in this paper. The XUAMP and DBAASP training

datasets contain 1500 positive samples and 1500 negative samples each,

and the other six training datasets contain 1000 positive samples and 1000

negative samples each [16]. In this study, we mainly construct and evaluate

the model based on the XUAMP datasets, and the other seven datasets are

used to verify the portability of the model. The sequence length of samples

in the above datasets is different. Before prediction, we supplement all the

peptide sequences to reach 100-bp by filling the letter ’𝑂’ at the C-terminal

of the sequences.

Table 1. Details of the eight independent test datasets.

Independent test datasets Positive Negative
XUAMP 1536 1536
YADAMP 324 324
DRAMP 1408 1408
CAMP 203 203
LAMP 1054 1054

DBAASP 178 178
APD3 494 494
dbAMP 522 522
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2.2 Feature extraction

Effectively extracting sequence features is beneficial to improve the accu-

racy of the model. We extract features from the following two aspects:

peptide sequence location information and amino acid composition. One-

hot encoding can reflect the position information of the sequence and k-

mer represent the composition of amino acids. And then, the 𝐿 × 21-

dimensional feature vector 𝑥 = [𝑥1, 𝑥2, · · · , 𝑥2100] obtained by one-hot en-

coding and the 400-dimensional feature vector 𝑦 = [𝑦1, 𝑦2, · · · , 𝑦400] ob-
tained by k-mer are concatenated to obtain the final fused feature vector

𝑧 = [𝑥1, 𝑥2, · · · , 𝑥2100, 𝑦1, 𝑦2, · · · , 𝑦400].

2.2.1 One-hot encoding

Since the classifiers of machine learning and deep learning algorithms can

not directly process discrete and unordered data, we first apply one-hot

encoding to preprocess peptide sequences. One-hot coding, also known

as one-bit efficient coding, can establish a mapping table for discrete and

disordered data to make it continuous and ordered, which is a simple

and effective coding method. Currently, one-hot encoding is widely used

in many branches of computer science, especially machine learning, deep

learning, and digital circuit design.

One-hot encoding is a representation of categorical variables as binary

vectors by using N-bit state registers to encode N states, each of which

has its register bit, and at any time, only one of which is valid, that is,

only one of which is 1, and the rest is 0 [33]. Firstly, the classification

value is mapped to the integer value. Each integer value is then repre-

sented as a binary vector with zero except for the index of the integer,

which is labeled as 1 [34]. Before using one-hot encoding, the letter ’𝑂’ is

needed to fill the C-terminal of a peptide sequence of varying lengths to

make each sample the same length. In this way, the amino acids involved

in the peptide sequence can be regarded as 21 types (20 common amino

acids and ’𝑂’), which correspond to 21-bit status registers, so each amino

acid can be represented as a 21-dimensional binary vector. For exam-

ple, 𝐴 is represented as [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 𝐷

is represented as [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], and 𝑂 is
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represented as [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. For a pep-

tide sequence of length 𝐿, the feature matrix obtained by one-hot encoding

is 𝐿 × 21-dimensional. If a peptide sequence of 22 kinds of amino acids,

each amino acid can be represented as a 23-dimensional binary vector.

Same principle as above.

2.2.2 K-mer

K-mer is a coding method based on sequence composition, which con-

structs a number vector by calculating the frequencies of 𝑘 consecutive

intervals in a sequence [35,36]. In bioinformatics, k-mers are subsequences

of length 𝑘 that are included in a biological sequence. For different values

of 𝑘, different sequence fragments will be obtained. The larger the value of

𝑘, the more short repeats can be crossed by k-mers. The smaller the num-

ber of k-mers, the poorer the association between k-mers. In practice, it is

necessary to make reasonable selection and repeated attempts according

to the genomic characteristics of the species, the size of sequencing data,

and other factors.

For a peptide sequence𝐷 : 𝐷 = 𝐷1𝐷2 · · ·𝐷𝐿, where𝐷i ∈ {𝐴,𝐶, · · · , 𝑌 },
𝐿 is the sequence length. The principle of k-mer is to calculate the fre-

quency of polypeptide, so there is no need to supplement the sequence,

only the 20 amino acids contained in the peptide sequence itself are used.

Given a sliding window size of 𝑘 and a sliding step size of 1, 𝐿 − 𝑘 + 1

k-mer sequences can be obtained, and the frequency of each k-mer can be

calculated as follows:

𝜙𝑖 =
𝛽𝑖

20𝑘∑︀
𝑖=1

𝛽𝑖

=
𝛽𝑖

𝐿− 𝑘 + 1
(1)

where 𝛽𝑖 denotes the number of occurrence of the 𝑖-th k-mer. Thus, the

peptide sequence can be represented by the following k-mer formula:

𝐾 = [𝜙1, 𝜙2, · · · , 𝜙20𝑘 ] (2)

In this paper, due to the computational complexity and model perfor-

mance, we set 𝑘 to 2, then 202 kinds of sequence fragments can be obtained.
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A peptide sequence can then be represented as a 400-dimensional numeric

vector. If you want to use k-mer to represent a peptide sequence with 22

amino acids, you only need to change the type of sequence fragment to 22𝑘.

Then, the peptide sequence can be represented as 𝐾 = [𝜙1, 𝜙2, · · · , 𝜙22𝑘 ]

2.3 The architecture of the classifier

AMP-EF is an ensemble framework composed of traditional machine learn-

ing and deep learning. It consists of two branches, the first branch is

XGBoost, and the second branch is mainly composed of Bi-LSTM and at-

tention mechanism. Firstly, we input the sequence features obtained above

into the two branches to calculate the prediction probability, respectively.

Since neural network can only receive 3-dimensional input data, we must

first transform the 2-dimensional sequence features into 3-dimensional,

while the input of XGBoost remains 2-dimensional. Soft voting is then

used to combine the outputs of the two branches to get the final predic-

tion, with the two branches having equal weight. The prediction accuracy

of the two-branch structure is usually higher than that of the single-branch

structure. The following is a detailed look at these two branches.

2.3.1 XGBoost

XGBoost is a type of boosting algorithm, the basic idea of which is to en-

semble many tree models together to form a stronger classifier. Because of

its high efficiency and portability, it is widely used in classification, regres-

sion, data mining, etc [37]. The objective function of XGBoost consists of

a loss function and a regularization term that inhibits the complexity of

the model [38], which is defined as follows:

𝐹 =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦𝑖) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖) (3)

where 𝑛 denotes the number of samples, 𝑦𝑖 denotes the true value of the

𝑖-th sample, 𝑦𝑖 denotes the predicted value of the 𝑖-th sample, and 𝑡 de-

notes the number of decision trees. 𝑙(𝑦𝑖, 𝑦𝑖) is the loss function, which is

represented by the predicted value and the true value of the sample. Ω(𝑓𝑖)

is the regularization term, which is essentially the model complexity of
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the 𝑡-th tree. Summing the complexity of 𝑡 trees as a regularization term

is beneficial to reduce the model complexity and prevent overfitting. In

general, the larger the number of trees, the better the learning ability of

the model. In this study, in order to improve the prediction performance

of the model as much as possible, we set n estimator to 1000. In addition,

we set max depth to 6 and learning rate to 0.1 to avoid overfitting and use

the default values for the other parameters.

2.3.2 Bi-LSTM and attention mechanism

The second branch of the classifier is deep learning model which is com-

posed of Bi-LSTM, attention mechanism, and fully connected network.

LSTM is a kind of recurrent neural network (RNN), which is suitable for

processing sequence data and simulating the dependency relationship be-

tween data [39]. But compared with ordinary RNN, it introduces gate

mechanism to avoid gradient vanishing and gradient explosion, and also

adds memory unit to capture long distance dependence. The specific cal-

culation formula is as follows:

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 )

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ 𝑐𝑡

𝑐𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

ℎ𝑡 = 𝑜𝑡 ⊗ 𝑐𝑡−1

(4)

where 𝜎 is the sigmoid function. 𝑖, 𝑓 , 𝑜, 𝑐 and 𝑐 are respectively input

gate, forgetting gate, output gate, unit vector, and candidate state. ℎ is

the hidden vector. Both 𝑊 and 𝑈 are weight matrices. ⊗ is the cross

product. However, one-way LSTM processes sequence information strictly

in chronological order, ignoring the backward dependence of sequence. In

this paper, the sequence length of AMPs is 100-bp and the amino acids

in the context are continuous and tight. Therefore, Bi-LSTM is selected

for feature extraction. Bi-LSTM is essentially a combination of two lay-

ers of LSTMs. The forward LSTM extracts the features of the sequence

forward to obtain the feature vector ℎ𝐿 = [ℎ𝐿,0, ℎ𝐿,1, · · · , ℎ𝐿,𝑇 ], and the
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backward LSTM extracts the features of the sequence backward to obtain

the feature vector ℎ𝑅 = [ℎ𝑅,0, ℎ𝑅,1, · · · , ℎ𝑅,𝑇 ]. The results of the corre-

sponding positions of the two are concatenated to obtain the final output

ℎ = [ℎ𝐿,0, ℎ𝑅,𝑇 , ℎ𝐿,1, ℎ𝑅,𝑇−1, · · · , ℎ𝐿,𝑇 , ℎ𝑅,0]. In this way, the 𝑡-th feature

can be made to have both past and future information. The prediction per-

formance of Bi-LSTM is generally better than LSTM for context-sensitive

text data. Subsequently, the features generated by Bi-LSTM are fed into

attention layer.

We adopt attention mechanism mentioned by Wang et al. [39]. The

main idea of attention mechanism is to focus the important information

with high weight and ignore the irrelevant information with low weight [40].

Inside attention layer, the dense layer with softmax activation function is

first used to calculate the weight of each item in the input sequence, and

then the weight and the input bitwise correspondence are multiplied to

obtain a new feature vector. The important sequence segments of AMPs

are similar to some extent, and the use of attention layer can focus more

attention on the consistent seed sequence, thus improving the prediction

performance.

In this part, Bi-LSTM layer and attention layer are mainly used for

feature selection, to make the features obtained by one-hot encoding and

2-mer cleverly fused together. Bi-LSTM layer can deepen the connection

between context features, and attention layer can extract key features.

Finally, a 3-layer fully connected layer is used to decode the features and

complete the final identification. We set the number of recurrent units in

Bi-LSTM to 64 ( 32 forward and 32 backward ), attention layer has the

same input and output dimensions, and a dropout layer is added between

the dense layer with 64 neurons and 32 neurons to prevent overfitting.

This is then passed to another dense layer with sigmoid function to get

the probability of the sample being positive and negative respectively. The

loss function is categorical crossentropy loss. The detailed parameters of

this branch are shown in Table 2.
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Table 2. The parameters of the second branch of the classifier.

Layers Parameters

Bi-LSTM hidden size=64, dropout ratio=0.3

Attention Default

Dense 1 units=64, kernel initializer=’RandomNormal’, activation=’relu’

Dropout dropout ratio=0.4

Dense 2 units=32, kernel initializer=’RandomNormal’, activation=’relu’

Dense 3 units=2, activation=’sigmoid’

2.4 Model evaluation

In this study, five-fold cross validation and independent dataset testing are

used to test the effectiveness and generalization of the model. Our model

finally obtains the probability values of the sample to be positive and

negative respectively, and then compares the two, and selects the category

corresponding to the larger probability value as the final prediction result

of the sample. In order to fairly evaluate our model, we use the following

five evaluation metrics as in previous studies: accuracy (ACC), sensitivity

(Sn), specificity (Sp), Matthew’s correlation coefficient (MCC), and area

under ROC curve (AUC) [41–43]. Among them, we use ACC as the main

metric to train and evaluate the model. The formulas are as follows:

𝐴𝐶𝐶 =
𝑆+
𝑝 +𝑆+

𝑛

𝑆+
𝑝 +𝑆+

𝑛 +𝑆−
𝑝 +𝑆−

𝑛

𝑆𝑛 =
𝑆+
𝑝

𝑆+
𝑝 +𝑆−

𝑛

𝑆𝑝 =
𝑆+
𝑛

𝑆−
𝑝 +𝑆+

𝑛

𝑀𝐶𝐶 =
𝑆+
𝑝 ×𝑆+

𝑛 −𝑆−
𝑝 ×𝑆−

𝑛√
(𝑆+

𝑝 +𝑆−
𝑛 )(𝑆+

𝑝 +𝑆−
𝑝 )(𝑆+

𝑛 +𝑆−
𝑝 )(𝑆+

𝑛 +𝑆−
𝑛 )

(5)

where 𝑆+
𝑝 , 𝑆+

𝑛 , 𝑆−
𝑝 , and 𝑆−

𝑛 represent correctly predicted positive samples,

negative samples, and incorrectly predicted positive samples, negative sam-

ples, respectively. ACC is the most simple and intuitive evaluation index

in identification problems, which indicates the proportion of correctly clas-

sified samples in the total number of samples. Sn and Sp represent the

probabilities of correctly predicting positive and negative samples, respec-

tively. MCC is essentially a correlation coefficient describing the actual
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result and the predicted result, and it works equally well on imbalanced

datasets. AUC is the area under the ROC curve, between 0 and 1, to

intuitively evaluate the quality of the classifier. The bigger, the better.

3 Results and discussion

3.1 Comparison of feature extraction methods

In this study, we use both one-hot coding and k-mer to extract features.

They can get different peptide sequence information, respectively. One-hot

coding is based on the position information of peptide sequence, while k-

mer is based on the composition and position of amino acids. To illustrate

that both feature extraction methods are helpful for representing AMPs

sequences, we compare the prediction performance of single features and

combined features on the XUAMP training dataset and independent test

dataset. As shown in Figure 2, on the training dataset, the ACC value of

combined features reaches 85.2%, which is 2.27% and 2.63% higher than

that of one-hot coding and k-mer, and other evaluation indicators are also

improved compared with single features. On the independent test dataset,

the ACC value of combined features is 3.68% higher than that of k-mer,

but there is little difference between the result of one-hot encoding. To this

end, experiments are conducted on LAMP [28,29], dbAMP [31], DRAMP

[24, 25], and DBAASP [16] independent test datasets. The results show

that the ACC values of combined features are 2.38%, 0.38%, 1.21%, and

0.85% higher than that of single one-hot encoding, respectively. The MCC

values are increased by 4.57%, 0.75%, 2.61%, and 1.26%, respectively. It

can be seen that the addition of k-mer can improve the generalization of

the model so that it performs well on other datasets. The specific results

are described in Figure 3.
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Figure 2. Comparison of different feature extraction methods on the
XUAMP training dataset and independent test dataset.
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Figure 3. Comparison of different feature extraction methods on other
independent test datasets.

3.2 Analysis of the two-branch ensemble framework

For the first branch of the classifier, we adopt XGBoost. It is a com-

monly used machine learning algorithm in identification problems and is

capable of handling high-dimensional data features. Previously, most re-

searchers used SVM and RF to predict AMPs. We compare these three

machine learning methods on the XUAMP training dataset and indepen-

dent test dataset, and the results are shown in Figure 4. ( SVM parame-

ters: probability is ’True’, kernel is ’poly’; RF parameters: n estimators is



122

500, criterion is ’gini’, max depth is 10. ) The Sp value of SVM is indeed

significantly higher than the other two methods, but the other indicators

are lower than the other two methods. On the training dataset, the ACC,

MCC, Sn, and AUC values of XGBoost are 84.63%, 69.32%, 83.07%, and

91.57%, respectively, which achieve the highest values, and the Sp value is

slightly lower than RF. On the independent test dataset, the ACC, MCC,

and AUC values of XGBoost are 69.6%, 39.27%, and 77.05%, respectively,

which are slightly better than other methods. And the Sn value of XG-

Boost is significantly improved, reaching 66.6%. Overall, XGBoost has the

edge.
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Figure 4. Comparison of different machine learning methods on the
XUAMP training dataset and independent test dataset.

We use Bi-LSTM with attention mechanism as the second branch of
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the classifier. Bi-LSTM layer takes the fusion feature vector as the in-

put and extracts advanced features from each residue in both forward

and reverse directions respectively, which can fully mine the correlation

information between residues. By using attention layer to increase the

weight of important information, the prediction accuracy can be further

improved. In this part, we compare LSTM, Bi-LSTM, LSTM+Attention,

Bi-LSTM+Attention, and AMP-EF, and the results are shown in Fig-

ure 5. On the XUAMP training dataset, the ACC values of LSTM, Bi-

LSTM, LSTM+Attention, and Bi-LSTM+Attention are 76.67%, 80.67%,

79.43%, and 82.20%, respectively. Bi-LSTM is 4% higher than LSTM,

LSTM+Attention is 2.76% higher than LSTM, and Bi-LSTM+Attention

is 5.53% higher than LSTM. It can be seen that the addition of Bi-LSTM

layer and attention layer is indeed more beneficial to identify AMPs. On

the XUAMP independent test dataset, the ACC values of the four mod-

els are 65.14%, 66.86%, 66.64%, and 67.97%, respectively. The evaluation

indexes of Bi-LSTM+Attention are the highest among the four models.

In addition, to more clearly illustrate the superiority of the two-branch

ensemble structure, we present the results of XGBoost, Bi-LSTM+Attention,

and AMP-EF in Table 3.

Table 3. Comparison of two-branch and single-branch structures on
the XUAMP training dataset and independent test dataset.

Dataset Model ACC(%) MCC(%) Sn(%) Sp(%) AUC(%)

Training
XGBoost 84.63 69.32 83.07 86.20 91.57

Bi-LSTM+Attention 82.20 64.41 82.33 82.07 89.37
AMP-EF 85.20 70.47 83.87 86.53 92.09

Independent
XGBoost 69.60 39.27 66.60 72.59 77.05

Bi-LSTM+Attention 67.97 36.17 62.85 73.09 74.18
AMP-EF 77.87 55.93 73.84 81.90 89.44

3.3 Comparison with existing methods

In the previous identification of AMPs, researchers usually only used a

single machine learning method or a single deep learning method, and its

effect still has a lot of room for improvement. AMP-EF is a two-branch

ensemble model composed of XGBoost, Bi-LSTM, and attention mecha-

nism. Its advantage is that it uses machine learning and deep learning
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Figure 5. Comparison of different combinations of deep learning meth-
ods on the XUAMP training dataset and independent test
dataset.

at the same time, and the two complement each other to further improve

the prediction performance. Usually, deep learning algorithms need to

continuously learn with a large amount of data, while traditional machine

learning algorithms use formulated rules and are able to adapt to various

amounts of data, especially small amounts. On the other hand, the per-

formance of most machine learning algorithms depends on the accuracy
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of the extracted features, but deep learning can directly obtain high-level

features from data, reducing the requirements for feature representation

methods. Effectively fusing the two can not only improve the prediction

accuracy of AMPs but also enhance the generalization of the model, so

that it also performs well on different datasets. To this end, we compare

the performance of AMP-EF with other existing methods on the XUAMP

independent test dataset, and the results are shown in Table 4. The ACC,

MCC, Sn, and AUC values of AMP-EF are 77.9%, 55.9%, 73.8%, and

89.4%, respectively, which are 6.4%, 9.5%, 20.8%, and 11.7% higher than

those of the best existing models. The Sp value, while not reaching the

optimum, is also highly comparable. In addition, we also compare ACC,

MCC, and AUC values on the other seven independent test datasets. Our

model outperforms the best existing models on CAMP [26,27], APD3 [30],

and YADAMP [23] datasets and achieves highly comparable results on

LAMP [28,29], dbAMP [31], DRAMP [24,25], and DBAASP [16] datasets.

Detailed results are shown in Table 5 to 7. The results for other existing

models are from Yan et al. [16].

Table 4. Comparison with existing methods on the XUAMP in-
dependent test dataset.

Model ACC(%) MCC(%) Sn(%) Sp(%) AUC(%)

amPEPpy 67.9 43.1 40.0 95.8 74.2

AMPfun 67.4 41.4 40.6 94.3 73.5

AMPEP 66.1 42.9 33.0 99.2 72.7

ADAM-HMM 68.4 39.0 52.1 84.7 68.4

ampir 56.3 15.6 26.6 85.9 61.9

AMPScannerV2 56.8 13.7 52.3 61.3 58.5

AmpGram 56.4 13.1 44.5 68.2 54.7

Deep-AMPEP30 53.3 18.3 6.5 100 53.3

CAMP-ANN 58.4 18.2 38.5 78.2 58.4

sAMPpred-GAT 71.5 46.4 53.0 90.0 77.7

AMP-EF 77.9 55.9 73.8 81.9 89.4
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Table 5. ACC values for existing methods and AMP-EF on the other
seven independent test datasets.

Model YADAMP DRAMP CAMP LAMP APD3 dbAMP DBAASP
amPEPpy 91.5 73.4 94.8 76.5 93.9 88.9 –
AMPfun 95.4 73.9 96.8 75.9 91.6 86.3 –
AMPEP 96.9 71.2 97.3 75.5 93.6 76.6 –

ADAM-HMM 92.7 73.6 86.9 87.2 88.6 88.6 –
ampir 56.6 57.7 50.0 61.4 60.7 62.4 –

AMPScannerV2 76.1 64.6 71.7 67.7 79.9 76.9 –
AmpGram 77.8 62.0 80.5 68.3 76.8 76.6 –

Deep-AMPEP30 73.1 53.0 100 57.8 60.9 59.3 –
CAMP-ANN 73.3 63.8 67.5 64.8 74.5 71.6 –

sAMPpred-GAT 95.5 76.0 95.6 84.0 89.6 88.8 –
AMP-EF 98.5 72.5 99.8 83.0 92.4 87.5 84.6

Table 6. MCC values for existing methods and AMP-EF on the other
seven independent test datasets.

Model YADAMP DRAMP CAMP LAMP APD3 dbAMP DBAASP
amPEPpy 83.0 50.6 89.7 55.7 87.9 78.0 –
AMPfun 91.1 51.1 93.8 54.6 83.2 73.0 –
AMPEP 93.8 49.5 94.6 55.8 87.3 77.9 –

ADAM-HMM 85.6 49.5 74.2 74.4 77.1 77.2 –
ampir 17.1 19.7 0.0 27.9 27.2 29.0 –

AMPScannerV2 53.5 29.2 43.7 35.4 62.2 55.1 –
AmpGram 56.6 24.3 62.6 36.5 54.8 54.4 –

Deep-AMPEP30 54.9 17.5 100 29.1 35.0 31.7 –
CAMP-ANN 46.7 28.7 36.1 30.3 49.2 43.6 –

sAMPpred-GAT 91.2 55.7 91.6 69.4 79.3 78.0 –
AMP-EF 96.9 46.5 99.5 66.2 85.0 75.1 70.3

Table 7. AUC values for existing methods and AMP-EF on the other
seven independent test datasets.

Model YADAMP DRAMP CAMP LAMP APD3 dbAMP DBAASP
amPEPpy 96.8 75.9 97.8 85.5 97.2 94.0 87.0
AMPfun 99.7 81.0 100 85.2 97.2 93.0 93.0
AMPEP 99.2 77.3 99.4 81.8 98.3 93.3 92.2

ADAM-HMM 92.7 73.6 86.9 87.2 88.6 88.6 –
ampir 74.5 63.0 75.1 73.7 75.8 75.2 –

AMPScannerV2 84.1 67.9 77.3 72.9 88.4 85.1 –
AmpGram 87.5 64.0 91.6 71.3 86.0 86.6 –

Deep-AMPEP30 73.1 53.0 100 57.8 60.9 59.3 –
CAMP-ANN 73.3 63.8 67.5 64.8 74.5 71.6 –

sAMPpred-GAT 99.3 82.8 100 92.5 95.5 95.4 94.2
AMP-EF 99.7 79.0 100 90.2 95.7 94.1 93.1
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4 Conclusion

AMPs are expected to be developed as new antibiotics to treat human and

animal diseases to address the problem of microbial resistance to antibi-

otics. Therefore, accurate identification of AMPs is helpful to the devel-

opment of the pharmaceutical industry. Previous identification models of

AMPs are relatively simple. In this paper, we propose AMP-EF, a two-

branch ensemble framework based on machine learning and deep learn-

ing. In the feature representation part, we use one-hot encoding based

on peptide sequence position information and k-mer based on amino acid

composition. Then the two-branch structure consisting of XGBoost and

Bi-LSTM+Attention is used as the classifier. In this way, machine learning

and deep learning methods can complement each other and bring out the

best in each other. On the XUAMP training dataset and independent test

dataset, the ACC values of our model are 85.20% and 77.87%, respectively.

The ACC values of the other seven independent test datasets are 98.5%,

72.5%, 99.8%, 83.0%, 92.4%, 87.5%, and 84.6%, respectively. Hopefully,

our model can help biologists and medical professionals identify and study

AMPs more effectively.
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