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Abstract

Let G be a n−vertex simple graph. Suppose A(G) and L(G) =
∆(G) − A(G) are adjacency and Laplacian matrix of G, respec-
tively, where ∆(G) is degree matrix of G. EE(G) =

∑n
i=1 e

λi and
LEE(G) =

∑n
i=1 e

µi are called Estrada and Laplacian Estrada in-
dex of G, where λi and µi, 1 ≤ i ≤ n, denote the eigenvalues of
A(G) and L(G). In this paper, some new upper and lower bounds
for EE(G) and LEE(G) are given. Moreover, some relations be-
tween EE(G) and LEE(G), and the number of spanning trees are
established.

1 Introduction

Let G = (V,E) be a simple undirected n−vertex graph, where V (G) and

E(G) denote the vertex and edge set of G, respectively. Let A(G), L(G) =

∗Corresponding author.
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∆(G) − A(G), and Q(G) = ∆(G) + A(G) are adjacency, Laplacian and

signless Laplacian matrix of G, respectively, where ∆(G) is degree matrix

of G. The Estrada, Laplacian Estrada and signless Laplacian Estrada

indices of G are defined as EE(G) =
∑n

i=1 e
λi and LEE(G) =

∑n
i=1 e

µi

where λi and µi, 1 ≤ i ≤ n, denote the eigenvalues of A(G) and L(G),

see [8, 13]. To see some previous results, you can refer to [1, 2, 15]. The

Estrada index can be used to measure the folding degree of long-chain

protein [6].

Let {v1, v2, · · · vn} be vertex set of graph G. The degree of vertex vi

denoted by d(vi) = di. The first Zagreb index of graph G, is defined as∑n
i=1 d

2
i and denoted by M1 = M1(G), see [7, 11, 14]. In this paper, we

denote the n−vertex complete graph, path and cycle by Kn, Pn and Cn

and complete bipartite graph by Km,n.

This paper is organized as follows: In the second Section, we express

the required results of the past. In third Section, Part 1, some new bounds

for EE(G) are obtained in terms of the number of fixed edges of n−vertex

graph G. Furthermore, we give some new bounds for EE(G) in terms of

the number of spanning trees. In third Section, Part 2, we give some new

bounds for LEE(G) in terms of the number of edges and spanning trees.

Throughout this paper our notations are standard and can be taken

from [3,4, 9, 10].

2 Preliminaries

An alternating sequence of the form v0e1v1e2 . . . vkekvk, of vertices and

edges, such that for any i = 0, 1, . . . , k − 1, vi−1, vi = ei( the edge ei)

is called a walk of length k in a graph G from v0 to vk. We invite the

interested readers to see papers [12, 18] standard results about walk on

graphs.

In this paper we denote by wk(ij) the number of all walks of length k

starting from vi and terminating at vj .

Theorem 1. [3] Let A be the adjacency matrix of a graph G and vi and

vj be two arbitrary vertices of G. Then [Ak]ij = wk(ij).
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Theorem 2. [4] Let A be the adjacency matrix of a graph G. Then the

k−th spectral moment of G, Sm(G, k) =
∑n

i=1 λ
k
i , is equal to tr(Ak) =∑n

i=1 wk(ii).

In the next theorem, Φ(H) represents the number of subgraphs of type

H in graph G.

Theorem 3. [18] Let G be a simple graph. Then Sm(G, 1) = 0, Sm(G, 2)

= 2m, Sm(G, 3) = 6T (G), Sm(G, 4) = 2M1 − 2m + 8q, Sm(G, 5) =

10P (G)+30T (G)+10T ′(G) and Sm(G, 6) = 2Φ(P2)+12Φ(P3)+6Φ(P4)+

12Φ(K1,3)+12Φ(H2)+36Φ(H3)+24Φ(H4)+24T (G)+48q(G)+12Φ(C6),

where T (G), M1, q(G), P (G) and T ′(G) are the number of triangles, the

first Zagreb index, the number of pentagons and the number of triangles

with a pendant edge.

Let L be Laplacian matrix of a graph G. Then the k−th Laplacian

spectral moment of G, Lsm(G, k) is defined as
∑n

i=1 µ
k
i .

Theorem 4. [17] Let G be a simple graph. Then Lsm(G, 1) = 2m,

Lsm(G, 2) = 2m+M1, Lsm(G, 3) = −6T (G)+3M1+
∑n

i=1 d
3
i , Lsm(G, 4)

= 2M1−2m+4
∑n

i=1 d
3
i +
∑n

i=1 d
4
i +4

∑m
vivj∈E(G) didj+8q and Lsm(G, 5)

= −5M1 + 5
∑n

i=1 d
3
i + 5

∑n
i=1 d

4
i +

∑n
i=1 d

5
i + 30T (G) − 10P (G) −

10
∑n

i=1 d
2
i ti + 5

∑m
vi∼vj

(d2i dj + did
2
j ) + 10

∑m
vi∼vj

didj − 10
∑n

i=1 diti +

10
∑n

i=1 diqi − 10
∑m

vi∼vj
CN(vi, vj)didj where CN(vi, vj) is the number

of common nighbors of vi and vj in G.

3 Main results

This section has two parts. The first part includes relationships between

the number of spanning trees and Estrada index. In addition, we fined new

bounds for Estrada index of graphs. The second part includes relationships

between the number of spanning trees and Laplacian Estrada index. All

graphs in this section are connected.
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3.1 Estrada index

In this part, we fined some bounds based on the number of vertices, edges

and spanning trees of graphs. We improve the results of paper [5], authored

by Jose and others, in the next theorem.

Theorem 5. Let G be a graph of order n, size m and q quadrangles. Then

EE(G) ≥ n− 1 +
M1

12
−

2m2

n2
−

2m4

3n4
−

4m6

45n6
+

11m

12
+

q

3
+

Sm(G, 6)

6!
+ cosh(2m/n),

with equlity if and only if G is an edgeless graph.

Proof. Since EE(G) =
∑∞

k=0
Sm(G,k)

k! , EE(G) ≥
∑∞

k=0
Sm(G,2k)

(2k)! = n +

m + 2M1−2m+8q
4! + Sm(G,6)

6! +
∑∞

k=4
Sm(G,2k)

(2k)! , with equality if and only if

G is bipartite. Its clear that for k ≥ 4, Sm(G, 2k) ≥ λ2k
Max with equality

if and only if G is an edgeless graph. λ2k
Max ≥ ( 2mn )2k, with equality if

and only if G = K2 or an edgeless graph. Thus Sm(G, 2k) ≥ ( 2mn )2k with

equality if and only if G is an edgeless graph. Then

EE(G) ≥ n+m+
2M1 − 2m+ 8q

4!
+

Sm(G, 6)

6!
+

∞∑
k=4

( 2m
n

)2k

(2k)!

= n−1+
M1

12
−

2m2

n2
−

2m4

3n4
−

4m6

45n6
+

11m

12
+

q

3
+

Sm(G, 6)

6!
+cosh(2m/n),

with equlity if and only if G is an edgeless graph.

Theorem 6. Let G be a graph of order n and size m. Then

e−
√

2m(n−1)
n + (n− 1)e

√
2m

n(n−1) ≤ EE(G) ≤ (n− 1)e
−
√

2m
n(n−1) + e

√
2m(n−1)

n ,

with equlity in left and right if and only if G is K2 and Kn, respectively.

Proof. First, we find the extremum of the function f(x1, x2, · · · , xn) =∑n
i=1 e

xi with respect to the conditions
∑n

i=1 xi = 0 and
∑n

i=1 x
2
i = 2m.

By the method of Lagrange multipliers with two constraints, we have exi =

λ+2µxi, for some λ ̸= 0 and µ ̸= 0. It’s clear that this equation has at most

two solutions x1 and x2. Thus n0x1+(n−n0)x2 = 0 and n0x
2
1+(n−n0)x

2
2 =

2m, for a n0. Then x1 =
√

2m(n−n0)
nn0

and x2 = −
√

2mn0

n(n−n0)
. This means

that f(x1, x2, · · · , xn) = n0e
x1 + (n − n0)e

x2 . Now by substituting 1 to

n − 1 instead of n0, we have fMax = (n − 1)e
−
√

2m
n(n−1) + e

√
2m(n−1)

n and
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fMin = e−
√

2m(n−1)
n +(n− 1)e

√
2m

n(n−1) . Thus by choosing xi = λi, we have

e−
√

2m(n−1)
n + (n− 1)e

√
2m

n(n−1) ≤ EE(G) ≤ (n− 1)e
−
√

2m
n(n−1) + e

√
2m(n−1)

n .

In the next theorem, we find a relationship between EE(G) and the

number of spanning trees of k−regular graph G. In [16], we can see

Geometric−Arithmetic inequality(more briefly the AM−GM inequality)

and its reverse as follows: let x1, x2, ..., xn are positive real numbers,

h = Max(xi)
Min(xi)

and S(1) = 1 and S(h) = (h−1)h
1

h−1

eLn(h) , h ̸= 1,

n
√
Πn

i=1xi ≤
∑n

i=1 xi

n
≤ S(h) n

√
Πn

i=1xi,

with equality if and only if x1 = x2 = ... = xn.

Theorem 7. Let G be a k−regular bipartite n−vertex graph and t(G) be
the number of spanning trees in G. Then

2 cosh(k) + e−k(n− 2)e
n−2

√
nt(G)

2k ≤ EE(G) ≤ 2 cosh(k) + S(h)e−k(n− 2)e
n−2

√
nt(G)

2k ,

h = Max(k−λi)
Min(k−λi

),−k < λi < k, with equlity if and only if G is compelete

bipartite graph.

Proof. Since G is k−regular and bipartite, k and −k are eigenvalues of G.

Then EE(G) = ek + e−k +
∑

−k<λi<k e
λi = 2 cosh(k) +

∑
−k<λi<k e

λi .

Because of that G is bipartite,
∑

−k<λi<k e
λi =

∑
−k<λi<k e

−λi . So

EE(G) = 2 cosh(k) + e−k
∑

−k<λi<k

ek−λi

= 2 cosh(k) + e−k
∞∑
r=0

∑
−k<λi<k(k − λi)

r

r!
.

By AM−GM inequality,∑
−k<λi<k

(k − λi)
r ≥ (n− 2) n−2

√
Π−k<λi<k(k − λi)r,
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with equality if and only if (k − λi)
r = (k − λj)

r if and only if λi = λj .

By matrix−tree theorem Π−k<λi<k(k−λi)
r = nt(G)

2k . Therefore EE(G) ≥

2 cosh(k)+e−k(n−2)
∑∞

r=0

(
n−2

√
nt(G)

2k )r

r! = 2 cosh(k)+e−k(n−2)e
n−2

√
nt(G)

2k .

The inequality is sharp if and only if λi = λj if and only if λi = 0 for

λi ̸= k,−k if and only if G has three distinct eigenvalue if and only if G is

complete bipartite graph.

To prove the inequality on the right, you can apply the reverse of

AM−GM inequality.

3.2 Laplacian Estrada index

In this part, at first we compute Lsm(G, 6) and use it in some inequalities.

Next, we obtain inequalities according to the number of vertices, edges and

spanning trees. We know that L = ∆−A(G) and Lsm(G, 6) = tr(L6).

tr(L6) = tr(A6) + tr(∆6) + 6tr(∆2A4) + 6tr(∆4A2)− 6tr(∆5A)− 6tr(∆A5)

− 6tr(∆3A3) + 6tr(∆3A∆A) + 6tr(A3∆A∆)− 6tr(∆2A2∆A)

− 6tr(A2∆2A∆) + 3tr(A2∆A2∆) + 3tr(A∆2A∆2)− 2tr(∆A∆A∆A)

tr(∆2A∆A2) =

n∑
i=1

n∑
k=1

(∆2A)ik(∆A2)ki

=

n∑
i=1

n∑
k=1

d2i (A)ikdk(A
2)ki =

∑
vi∼vk

[d2i dk + d2kdi]tik,

where tik is the number of triangles containing edge vivk.

tr(∆4A2) =

n∑
i=1

n∑
k=1

(∆4)ik(A
2)ki =

n∑
i=1

d4i .(A
2)ii =

n∑
i=1

d5i

tr(∆2A4) =

n∑
i=1

n∑
k=1

(∆2)ik(A
4)ki =

n∑
i=1

d2i (A
4)ii
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=

n∑
i=1

d2i

(
di + S(vi)− di + 2qi + 2

(
d(vi)

2

))
=
∑

d2i
(
S(vi) + 2qi + di(di − 1)

)
,

where qi and S(vi) are the number of quadrangle containing vi and S(vi)

is the sum of degrees of the neighbors of vertex vi.

tr(∆6) =

n∑
i=1

(∆6)ii =

n∑
i=1

d6i

tr(∆3A3) =

n∑
i=1

d3i (A
3)ii = 2

n∑
i=1

d3i ti,

where ti is the number of triangles containing vertex vi.

tr(∆2A∆2A) =

n∑
i=1

n∑
k=1

(∆2A)ik(∆
2A)ki =

n∑
i=1

d2i (A)ik.d
2
k.(A)ki

=

n∑
i=1

n∑
k=1

d2i .d
2
k(A)2ik = 2

∑
vi∼vk

d2i .d
2
k

tr(∆A3∆A) =

n∑
i=1

n∑
k=1

(∆A3)ik(∆A)ki = 2
∑

vi∼vk

didk(A
3)ikaki

= 2
∑

vi∼vk

didk(qik + dk + di − 1),

where qik is the number of quadragles containing edge vivk.

tr(∆5A) =

n∑
i=1

n∑
k=1

(∆5)ik(A)ki = 0

tr(∆A2∆A2) =

n∑
i=1

n∑
k=1

di(A
2)ik.dk(A

2)ik

= 2

n∑
i=1

d4i + 2
∑

1≤i<j≤n

didjCN2(i, j),
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where CN(i, j) is the number of common neighbors of vertices vi and vj .

tr(∆A∆3A) =

n∑
i=1

n∑
k=1

(∆A)ik(∆
3A)ki =

n∑
i=1

n∑
k=1

diaik.d
3
kaki

=

n∑
i=1

n∑
k=1

did
3
kaik =

∑
vi∼vk

(did
3
k + d3i dk)

tr(∆2A2∆A) =

n∑
i=1

n∑
k=1

(∆2A2)ik(∆A)ki

=

n∑
i=1

n∑
k=1

di(A
2)ik.dkaki =

∑
vi∼vk

(d2i dk + d2kdi)tik

tr(∆A∆A∆A) =

n∑
i=1

n∑
k=1

n∑
r=1

drdidkakrariaik

= 3!
∑

T (vr,vi,vk)

drdidk,

where T (vr, vi, vk) is a triangle containing vertices vr, vj and vk.

tr(A5∆) =

n∑
i=1

n∑
k=1

A5
ik∆ki =

n∑
i−1

di(A
5)ii

=

n∑
i=1

di(2pi + 10ti + 2N(τ ′) + 4N(τ ′′) + 2N(τ ′′′)),

where pi is the number of pentagones containing vertex vi and τ ′, τ ′′ and

τ ′′′ depicted in Figure 1.

tr(L6) = Sm(G, 6) +

n∑
i=1

d6i + 6

n∑
i=1

d2i (S(vi) + 2qi + di(di − 1))

+ 6

n∑
i=1

d5i − 12

n∑
i=1

d3i ti + 6
∑

vi∼vk

(did
3
k) + dkd

3
i



795

+ 12
∑

vi∼vk

didk(qik + dk + di − 1)− 6
∑

vi∼vk

(d2i dk + d2kdi)tik

+ 3

∑ d4i + 2
∑

1≤i<j≤n

didjCN2(i, j)

+ 6
∑

vi∼vk

d2i d
2
k

− 18
∑

T (vr,vi,vk)

drdidk − 6

n∑
i=1

di(2pi + 10ti + 2τ ′ + 4τ ′′ + 2τ ′′′)

− 6
∑

vi∼vk

(d2i dk + d2kdi)tik

Figure 1. Graphs generated by closed walk of length 5 from vertex vi.

Theorem 8. Let G be an n−vertex and m−edge graph. Then

LEE(G) ≥ 1 +

6∑
i=2

(
Lsm(G, i)

i!
− (2m)i

i!(n− 1)i−1

)
+ (n− 1)e

2m
n−1 ,

with equality if and only if G is K2.

Proof. Since zero is one of the eigenvalues of G,

LEE(G) = 1 +
∑n−1

i=1 eµi = 1 +
∑∞

k=0

∑n−1
i=1 µk

i

k! = 1 +
∑∞

k=0
Lsm(G,k)

k! .

The minimum value of Lsm(G, k) is equal to (n− 1)( 2m
n−1 )

k. Then

LEE(G) = 1 +
∑6

k=0
Lsm(G,k)

k! +
∑∞

k=7
Lsm(G,k)

k! ≥ 1 +
∑6

k=0
Lsm(G,k)

k! +

(n− 1)
∑∞

k=7

( 2m
n−1 )

k

k! = 1 +
∑6

i=2(
Lsm(G,i)

i! − (2m)i

i!(n−1)i−1 ) + (n− 1)e
2m
n−1 .

With equality if and only if G has two eigenvalues 0 and 2m
n−1 if and only

if G is K2.
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In the next theorem, the upper and lower bounds of Laplacian Estrada

index of graphs with a fixed number of edges and a fixed the first Zagreb

index are provided. The next theorem can be compared with the results

of paper [19].

Theorem 9. Let G be a n−vertex and m−edge graph. If ∆ = (n−1)(2m+∑n
i=1 d

2
i )− 4m2, then

1 + e
2m
n−1−

1
n−1

√
(n−2)∆ + (n− 2)e

2m
n−1+

1
n−1

√
∆

n−2 ≤ LEE(G) ≤

1 + (n− 2)e
2m
n−1−

1
n−1

√
∆

n−2 + e
2m
n−1+

1
n−1

√
(n−2)∆ .

Proof. Consider the function f(x1, x2, · · · , xn−1) =
∑n−1

i=1 xk
i . We find

the extremum of f with respect to conditions x1 + x2 + · · · + xn−1 =

2m and x2
1 + x2

2 + · · · + x2
n−1 = 2m +

∑n
i=1 d

2
i (:= c). By the method of

Lagrange multipliers with two constraints, we have exi = λ + 2µxi, for

some λ ̸= 0 and µ ̸= 0. This equation has at most two solutions x1 and

x2. Thus ax1 + (n − 1 − a)x2 = 2m and ax2
1 + (n − 1 − a)x2

2 = c, for

a a. Consider n − 1 − a = b and ∆ = (n − 1)(2m +
∑n

i=1 d
2
i ) − 4m2.

Then x1 = 2m
n−1 + 1

n−1

√
b∆
a and x2 = 2m

n−1 − 1
n−1

√
a∆
b . This means that

f(x1, x2, · · · , xn−1) = aex1 + bex2 . Now by substituting 1 to n− 2 instead

of a, we have fMax = (n − 2)e
2m
n−1−

1
n−1

√
∆

n−2 + e
2m
n−1+

1
n−1

√
(n−2)∆ and

fMin = e
2m
n−1−

1
n−1

√
(n−2)∆ + (n − 2)e

2m
n−1+

1
n−1

√
∆

n−2 . Thus by choosing

xi = µi, the result is obtained.

In the next theorem, We find a relationship between spanning trees

and Laplacian Estrada index of graphs.

Theorem 10. Let G be a connected graph. Then

(n−1)e
n−1
√

nt(G) ≤ LEE(G)−1−
6∑

k=1

(
Lsm(G, k)− (n− 1) n−1

√
nt(G)

k

k!

)

≤ (n− 1)S(h)e
n−1
√

nt(G).

Proof. LEE(G) = 1 +
∑6

k=0
Lsm(G,k)

k! +
∑∞

k=7
Lsm(G,k)

k! . By geometric-
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arithmetic inequality,

(n− 1) n−1
√
nt(G)

k
≤ Lsm(G, k) ≤ (n− 1)S(h) n−1

√
nt(G)

k
.

Then

(n− 1)

∞∑
k=7

n−1
√
nt(G)

k

k!
≤

∞∑
k=7

Lsm(G, k)

k!
≤ (n− 1)S(h)

∞∑
k=7

n−1
√
nt(G)

k

k!
.

Since
∑∞

k=7

n−1
√

nt(G)
k

k! = e
n−1
√

nt(G)−
∑6

k=0

n−1
√

nt(G)
k

k! , the proof is com-

plete.

Conclusion. To improve the bounds obtained for Estrada index with

the above method, three conditions
∑n

i=1 λi = 0,
∑n

i=1 λ
2
i = 2m and∑n

i=1 λ
3
i = 6T (G) can be used. Also, this can be improved by adding

condition
∑n

i=1 λ
4
i = 2M1−2m. The same method can be used to improve

the bounds of Laplacian Estrada index.

Acknowledgment : I thank professor A. R. Ashrafi for guiding us to start
this paper exactly one month before his passing.
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