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Abstract

This study aims to extend the notion of degree-based topologi-
cal index, associated adjacency-type matrix and its energy from a
simple graph to a graph with self-loops. Let Gs be a graph with k
self-loops obtained from a simple graph G, we define Sombor index
for G5 as SO(Gs) = Z d?(Gs) + d?(Gs)-ﬁ-ﬁ Z di(Gs),

v;v; €X(G) v €S
where S C V(G) having self-loop to each of its vertices in S. In addi-
tion we investigate some fundamental properties of Sombor eigenval-
ues, McClelland and Koolen-Moulton-type bound for Sombor energy
of Gs. Also explores the correlation between Sombor energy of Gg
and the total m—electron energies associated with the corresponding
hetero-molecular systems.

1 Introduction

Let G be a simple connected graph of order n and size m with vertex set
V(G) and edge set X(G). The degree d; is the number of edges incident

on the vertex v; of G, for 1 <i <n.
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Topological indices are graph invariants widely used for characteriz-
ing molecular graphs, predicting the biological activity of chemical com-
pounds, establishing relationships between the structure and properties
of molecules, and making their chemical applications. Any degree-based

topological indices are of the form [9],

TIG)= > f(didy). (1)

ViV GX(G)

where f is a suitably chosen symmetric function. In 2015, B. Furtula and
I. Gutman defined a degree-based topological index called the forgotten
index [5] as,
F(G)= > (d+d)= > d. (2)
0;0;€X(G) v, EV(G)
The Sombor matrix has its origin from the recently introduced topo-

logical index known as Sombor index [8], denoted by SO(G), defined as,

S0(G) = Z \ 42+ d2. (3)

v;v; EX (G

For the Sombor index, associated adjacency type matrix Ap(G), called
Sombor matrix [9] denoted as Aso(G), was defined by I. Gutman in 2021

as,
N/dz2+d? if’l)i’l)j GX(G),
Aso(G)ij =94 0 if vv; ¢ X(Q),
0 if i = j.
Let 01,09,...,0, be the eigenvalues of Ago(G), then the Sombor energy

Engo(G) [9] is defined as,

Ensol(G) =Y ol (4)

In the domain of spectral graph theory, energy of graph with self-loops
was introduced recently by I. Gutman [12] in 2021. Let G be the graph
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with self-loops, obtained from a simple graph G, by attaching a self-loop
to each of its vertices belonging to S, where S C V(G) with |S| = k. Let
X(Gg) and d;(Gg) represent edge set of Gg and degree of vertex v; in
G, for 1 <1 < n respectively. More on degree-based topological indices,
energy of a graph with self-loops and terminologies refer [1,2,4,6,7,14-16].

Since self-loops distinguish hetero-atoms from carbon atoms in hetero-
conjugated molecules [10,11,17,18], the spectral aspect of a simple graph
extended to a graph with self-loops opens up a new area of study for
structural features and related chemical properties of molecules. Motivated
by this, we now extend the degree-based topological index TI(G) and
associated matrix Ap(G) from graph G to Gg.

In analogy with the degree-based topological index T1(G) in Eq. (1),
we define TI(Gg) for Gg as,

TIGs)= ) [f(di(Gs),d;j(Gs))+ Y f(di(Gs),di(Gs)).  (5)
)

v;v; €EX (G v, €S

Also define the matrix Ar(Gg) associated with topological index TI(Gg)

as,

f(di(Gs),dj(Gs)) if VU5 € X(G),

FYISITTN £(di(Gs), di(Gs)) ifi=j and v, € S,
0 ifi=jand v; ¢ S.

From Eq. (5), forgotten index F(Gg) and Sombor index SO(Gg) for
a graph Gg is defined as,

F(Gs)= Y, [d(Gs)+d}(Gs)+2> di(Gs)= > d}(Gs).

v;v; €X(G) v, €S v, EV(Q)
(6)

SOGs)= Y. \Jd(Gs)+EB(Gs) + V20, (7)

v;v; €EX(G)
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where Q = > d;(Gg).

v €S
We define Sombor matrix Aso(Gg) as,

\/dg(GS) +d2(Gs) i vivy € X(G),

if v,v; ¢ X(G),

Aso(Gs)ij = 0 1 1,”]] ¢ (@)
V2d;(Gs) ifi=7andv; €9,
0 ifi=jand v ¢5S.

Let 01(Gs),02(Gs),...,0,(Gg) be the eigenvalues of Ago(Gs). The
Sombor energy of graph with self-loops is defined as,

n

Enso(Gs) =

i=1

O'i(Gs) - @ .

n

(8)

Let t; = 0;,(Gs) — @7 1=1,2,...,n, denote the auxiliary eigenvalues
of Aso(Gs).
In section 2, 3, and 4 we discuss the properties of Sombor eigenvalues,

Sombor energy, and its chemical applicability.

2 Sombor eigenvalues of graph Gg

The eigenvalues of Ago(G) satisfy the following relation [9]:

n n

Zai = 0; Zaf =2F(G). (9)

i=1 i=1

Lemma 1. Let G(V,X) be a graph with n vertices and m edges. If S C
V(G), then the eigenvalues of Aso(Gg) satisfy,

1. ﬁ:lai(Gs) —V3Q
2. éU?(GS) =2 <F(Gs) - Zs d?(Gs)>



T

Proof. 1. We have,

Zai(GS):ZASO Gs)lii = Y V2di(Gs) = V2Q.
i=1 i=

v, €S

2. Also,

ZO’?(GS) - Z[ASO(GS)z]ii

=2 Y [d(Gs)+d3(Gs)+2 > di(Gs)

v;v; €EX(G) v; €S

=2 (F(Gs) -> d?@s)) :
v, €ES

Lemma 2. Let G(V,X) be a graph with n vertices and m edges. If S C
V (@), then the auziliary eigenvalues tq,ts, ..., t, of Aso(Gs) satisfy,

1. >t =0
i=1

2. Y2 =2R
=1

where R = F(Gg) — 5. d?(Gg) — ok

v; €S

Proof. 1. We have,

Zti: ‘ (ai(Gs)—n :Zai(c:s)— > =0.
i=1 i=1 i=1 =1
2. Also,

n n 2
>t (i) - ¥22)

=1 i=1

n n 2
:ZU?(GS)+2Z(C§> —27202 GS
=1 =1
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=2 (F(Gs) DA ?j) =2R.

v; €S
]

Lemma 3. Let t1,to,...,t, be the auxiliary eigenvalues of Aso(Ggs).
Then t;, 1 <i<n are the eigenvalues of the matriz Aso(Gg) — @I.
Proof. Let ty,ts,...,t, be the auxiliary eigenvalues(e.v) of Aso(Gg). It
is known that for scalar matrix B = al, in A + B, we write e.v(4 + al)
as e.v(A) + e.v(al), where « is a scalar.

Therefore, e.v (ASO(GS) - @I) = e (Aso(Gsg)) — ew (@I) =

Ui(Gs)*@:ti,forlgign, m

Lemma 4. [13] Let A € M,, be Hermitian, and let the eigenvalues of A
be ordered as o1 > 09 > -+ > op. Then, o,y*y < y*Ay < o1y™y for all
ye C".

Lemma 5. Let 01(Gg) > 02(Gg) > -+ > 0,(Gg) and t1 > tg > -+ >
t, be the eigenvalues and auziliary eigenvalues of Aso(Gg) respectively.
Then, 01(Gg) and t1 satisfy,

1. 0,(Gg) < ZAUCI=V2Q < 5, ()

2(S0(Gs)-v2Q) <

2. t, < < t.

- n

Proof. 1. Let 01(Gg) > 02(Gg) > -+ > 0,(Gg) be the eigenvalues of
Aso(Gg). Then, for y = 1,, the n x 1 vector having all its entry 1,

we get,

¥ Aso(Gs)y =Y > [Aso(Gs)li

i=1 j=1
=2 Y \JB(Gs)+B(Ge)+V2 Y di(Gs)
’U,;vjEX(G) v; ES

=250(Gs) — V2Q.

Therefore, by Lemma 4, 0,(Gg) < w < 01(Gg).
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2. Also, let t1 >ty > -+ > t,, be the auxiliary eigenvalues of Ago(Gg).
Then for y = 1,, we get,

: (Asows) . z) S

=1 j=1

Aso(Cs) @I

ij

=2 ) \/d?(Gs)+d§(Gs)+
’UivjEX(G)

V2 Y di(Gs) - V2Q

v, €S

=2 (SO(GS) - \/§Q> .

2(50(Gs)-v2Q)

Therefore, by Lemma 3 and Lemma 4, ¢, < <t;. N

3 Sombor energy of Gg

Theorem 1. (McClelland-type bound) Let Gg be a graph of order n and
S CV(G). Then Engo(Gs) < V2nR.

Proof. Put a; = 1 and b; = |t;| in Cauchy—Schwarz inequality we get,

Engo(Gs) = 1| (il ti|) <.In é It:]2 = V2nR. n

Lemma 6. Let Gg be a connected graph of order n > 2 and S C V(G).
Then,

2R  2(50(Gs)-v2Q)
where R = F(Gs) — Y. d?(Gs) — Qz
v, €S

Proof. Let Gg be a connected graph of order n > 2 and S C V(G). Let
e; represents n x 1 vector with all its entry zero except i*" entry 1. Then,
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by using Lemma 2 and Lemma 3,

% CAli=1 | ==t j
n - n o n
n n V20 2
> 3 ([4so(Gs)s - [¥221]
i=1j=1 9
<
n

:\ -

3 A G ij n
mZzl[ so(Gs)] 3" (4s0(Gs 0

i#J

2 (SO(Gs) — V2Q) .

n

R 2(50(Gs)—v2Q)
n — n °

Therefore, |

Theorem 2. (Koolen-Moulton-type bound) Let Gg be a connected graph
of order n > 2 and S C V(G). Then,

Engo(Gg) < 280C)=v2Q) | \/(n_ 1) (QR_ (2(50(053—&@))2)

Proof. Let Gg be a connected graph of order n > 2 and S C V(G).

Consider,

n
(til = [£;1)?
j=2

n

n n
2 2
thzI =2 ftalit] | >0
j=2 j=2

Jj=

2(n —1) (2R — |11]?) — 2(Enso(Gs) — |t1])* > 0

- it

||
N

3
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Further simplification results in,

Enso(Gs) < |ti] +/(n— 1) (2R — [t1]2). (10)

Since |t1] > 0, function in Eq. (10) is monotonically decreasing in the
interval (\ / %, vV ZR). Then by using Lemma 5 and Lemma 6 in Eq. (10)
results in,

Engso(Gs) < 2(SO(G+—\/@Q) + \/(n— 1) (QR— (W)2>

Theorem 3. For complete graph K, with k > 1 self-loops. Then, the
characteristic polynomial p(x) is

n—k—1

p(0(Gs)) = (0(Gs)* ™ (o(Gs) + (n = 1)V2)
(02(05) — o (Gs)V2(2k + 12 — 20+ 1) — 2k(n® + 2n — 2k — 1)) .

Proof. For complete graph K,, with k > 1 self-loops, we have

Aso((K)s) = (n+ 1)v2I V202 + 1) s (np)
SR VCTCE IS DN/ UOPR (RS VAVC T ) M

Y
Let W = 7 be an eigenvector of order n, such that vector Y be of order

k and vector Z be of order n—k. If 0(Gg) be a eigenvalue of Ago((K,)s).
Then,

X
[0(Gs)I = Aso((Kn)s)]

Y

[0(Gs)Ik — (n+ 1)V2Jk]Yiex1 + /22 + 1) ks (n—k) Zin—k)x1
[\/mJ<nk>kakx1 +[o(Gs)T = (n = 1)V2(J - f)](rwk)Z(nfkm( |
11

Case l: Let Y =Y; =¢€1 —¢;,j =2,3,...,k. and Z = Op_px1

From Eq. (11),

[0(Gs)Ii — (n + 1)V2J4]Y; = 0(Gs)Y;.
Which implies that, o(Gg) = 0 is a eigenvalue with multiplicity of at least
k — 1 since there are k — 1 linearly independent eigenvectors of the form
Y;.
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Case 2: Let Y =Orpand Z =Z7;=e1 —e€5,j=2,3,...,n— k.

From Eq. (11),

[0(Gs) ok — (0 = 1)V2(J = I)(n-1)]|Z; = 0(Gs)Z; + (n — 1)V2Z;.
So, 0(Gs) = —(n — 1)y/2 is an eigenvalue with multiplicity at least (n —

k — 1) since there are n — k — 1 linearly independent eigenvector of the

form Z;.
. o . —k4/2(n2+1)
Case 3: Let Y =1, and Z = o(Gs)—(n—l)\/i(n—k—l)lnfk where, 0(Gg)
be a root of the equation 0%(Gs) — v2(2k +n? — 2n+ 1)o(Gs) — 2k(n? +
M —2k—1)=0
(n4+1)vV2k—2(n?+1)(n—k)k _
a(Gs) — o (Go)—(n-D)Va(n——1) | In—k =

02(Gs)—V2(2k+n®—2n+1)0(Gs)—2k(n*+2n—2k—1)
o(Gs)—(n—1)v2(n—k—1)

Thus, the characteristic polynomial is,

p(o(Gs)) = (0(Gs))*H(o(Gs) + (n — 1)vV2)" !
(02(05) — o (Gs)V2(2k + 1> — 2n + 1) — 2k(n® + 2n — 2k — 1)) .

4 Chemical applicability of Engo(Gs)

Several topological indices have been studied extensively by chemists to
correlate the structure of chemical compounds with empirically acquired
data on their physico-chemical properties. In nature, along with hydro-
carbon molecules (molecules containing only hydrogen and carbon), there
are several other compounds in which different types of atoms replace car-
bon and hydrogen. Such molecules, referred as hetero-atomic molecules,
have been focused on in recent years in graph theory. The graphs with
self-loops enable the wide study range of hetero-molecules, where each
self-loop replaces a hetero-atom.

It is well known that the total m-electron energy increases with the size
(number of atoms) of the underlying conjugated molecule. The same holds
for the Sombor energy. Therefore, when comparing the Sombor energy

with total m-electron energy of molecules of different size, an artificially
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good (linear) correlation will be obtained. This was the case in Ref. [6]
and also in Fig. 2 in this paper. In order to get a more realistic insight,
sets of isomers should be considered. For more details on this matter see
Ref. [20]

In this paper, hetero-molecular systems in Fig. 1, from Ref. [3], are
interpreted as a graph with self-loops, where each hetero-atom ‘x’ is re-
placed by a self-loop. Solving secular determinant by taking appropriate
values of Coulomb integral a and resonance integral 3, we obtain the total
m-electron energy. The equation ay = a+hf, Bxy = kf gives the Coulomb
integral for atom x and resonance integral for bound xy, respectively. For
a given hetero-molecular system, the different values for parameters h and
k give different sets of total m-electron energies depending on which atom
is in conjugation [19]. This study correlates Engo(Gs) with the total -
electron energy of hetero-molecular system for h=1 and k=1 [3,19] and
the graphs considered are Gg,, 1 < i < 28, where Gg,=Venyl chloride
like systems, Gg,=Butadiene perturbed at C2, Gg,=Acrolein like sys-
tems, Gg,=1,1-Dichloro-ethylene like systems, G g,=Glyoxal like and 1,2-
Dichloro-ethylene like systems, Gg,=Pyrrole like systems, Gg,=Pyridine
like systems,

G s,=Pyridazine like systems, G's,=Pyrimidine like systems,
Gs,,=Pyrazine like systems, Gg,, =Triazene like systems, Gg,,=Aniline
like systems, G g,, =0O-Phenylene-diamine like systems, G's,, =m- Phenylene-
diamine like systems, G g,, =p-Phenylene-diamine like systems,
Gs,,=Benzaldehyde like systems, G's,,=Quinoline like systems, G g,, =Iso-
quinoline like systems, Gs,,=1-Naphthalein like systems,
Gg,,=2-Naphthalein like systems, Gg,, =Iso-indole like systems,
G's,,=Indole like systems, G's,,=Benzylidine-aniline-like systems,
Gs,,=Azobenzene like systems, Gs,, =Acridine like systems,
Gs,,=Phenazine like systems, Gg,,=9,10-Anthraquinone like systems,

G g,,=Carbazole like systems.
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Figure 1. Hetero-moleclular systems

The scatter plot of the total m-electron energy for h = 1 and k =1
against Engo(Gg) in Fig. 2 shows a strong correlation with the correlation

coefficient 0.994.
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Figure 2. Scatter plot of Engo(Gg) with the total m-electron energies
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