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Abstract

The sum of the absolute values of the eigenvalues of the graph’s
adjacency matrix is known as its ordinary energy. Based on the
eigenvalues of a range of other graph matrices, several other equiv-
alent energies are being considered. In this work, we considered
ordinary energy, Laplacian, Randić, incidence, and Sombor energy
to analyze their relationship using polynomial regression. The per-
formance of each model is exceptional with cross-validation RMSE
mostly below 1.

1 Introduction

Quantitative structure–property relationship (QSPR) and Quantitative

structure-activity relationship(QSAR) modeling, which are used regularly
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in many areas of chemistry, rely heavily on molecular descriptors. To this

end, topological indices are frequently used due to their computational

simplicity and ease of use in identifying structure-property connections.

Topological descriptors exist in the hundreds. They can be conveniently

sorted in accordance with the origin of the parameters employed in their

definitions. Hence, there are topological molecular descriptors that are

based on degree, distance, and eigenvalue, although there are a few that

do not neatly fit into any of these categories. In this paper, our focus is on

some topological descriptors based on eigenvalues. Since, the understand-

ing of the physical significance of eigenvalues in HMO theory, interest in

molecular topological descriptors based on eigenvalues grew.

This emergence begins in the 1970s of the past century. Since then,

the eigenvalue-based descriptors become a very well-researched topic that

they are considered to be a separate branch of graph theory i.e. graph

spectral theory(or algebraic graph theory). For each symmetric graph

matrix, graph energies are matrix energies of different graph forms. They

are called spectral indices in the field of quantitative chemistry. Spectral

indexes might be single eigenvalues or functions of a matrix’s eigenvalues

known as the spectrum of the matrix.

A huge number of articles and monographs were written on the graph

energies, for reference see [10,11]. An excellent collection of different results

related to graph energy, its background, and the significance of the topic

and methodologies that can serve as a guide for researchers interested in

getting more knowledge can be found in the monograph [12]. Gutman

and Frutella [14] pointed out the main applications along with the basic

facts and principles to study graph energies. In [13], the bounds for the

graph energy were described by Gutman, however, McClelland was the

one to estimate bounds for the graph energy for the first time in 1971 [19].

Later on, Gutman with Koolen and Moulton introduced a modification of

McClelland’s formula for total π-electron energy.

The comprehensive research on the topic began 25 years after the intro-

duction of graph energy. More than a hundred variants of graph energies

have been defined using different matrices beyond the adjacency matrix.
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Several graph invariants depending on the degrees of vertices can be found

in the mathematical and chemical literature [9, 16]. One can differentiate

between energies defined over different adjacency matrices, the Incidence

energy, and Sombor energy can be defined on the incidence and Sombor

matrix respectively. Likewise, Laplacian and Randić energy is defined

over the Laplacian and Randić matrices respectively. Each of these ener-

gies can be quantified in greater depth by employing a specific functional

formula depending upon the collection of eigenvalues. Typically, matrix

energy is the sum of the absolute eigenvalues of the simple adjacency ma-

trix but other variants can be found. One can, for example, use the sum

of minimum or maximum eigenvalue, positive eigenvalues, and the differ-

ence between the greatest and smallest eigenvalue i.e. the diameter of a

spectrum, etc. We would like to skip the details here, anyone interested

can see [3, 17] for details.

More than a thousand publications and on average two papers per week

(according to research statistics) show graph energies as an active research

topic nowadays. The main reason behind this unexpected growth is unex-

pected applications of the graph energies in different fields of engineering

and science [5, 8] that include air transportation [15], face recognition [1],

protein sequence comparison [6], high satellite resolution [2], spacecraft

construction, crystallography [25], complex network [24], etc. Some other

applications have also been noticed in medicine. In 2009 Stevanović, D.

and Stanković, I. studied the relationship between simple and Laplacian

energy variants of graphs [22]. Miko laj Morzy et al. found the relationship

of different energies and their relationship with different centrality mea-

sures for egocentric networks and [20]. Shao, Yanling, et al. studied some

upper and lower bounds of degree-based energies of trees [21].

This work aims to investigate the relationship of some graph energies

of arbitrary tree graphs. We undertake a comparative analysis of some

eigenvalue-based topological indices i.e. graph energies by using machine

learning algorithms.

The paper is organized in the following manner: Next section contains

some preliminaries such as the types of energies we are considering in this
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work. The methodology and computational details are presented in Section

3. The relationship of all five energies with each other was examined.

Finally, based on our data set the graph energies are compared. Section

4 includes some results and discussion. Section 5 contains some concrete

examples of the models produced by the statistical techniques employed

and the last section gives the conclusion of our work.

2 Preliminaries

Let V (G) be a vertex set of an un-directed graph G and E(G) be an edge

set. Let n and m be the number of vertices and the number of edges

respectively. If the vertices u and v ∈ V (G) are adjacent then uv denotes

the edge between these vertices. dv represents the degree of the vertex v

and can be defined as the number of edges incident to the vertex v. Graph

energy is defined as the sum of the absolute value of eigenvalues of a graph

G given by E(G) =
∑n

j=1 |λj |. Let λ1, λ2, . . . , λn be its eigenvalues [8],

for each 1 ≤ j ≤ n, λj be the roots of the characteristic polynomial

ϕ(G;x) = det(xI − A(G)) where A(G) represents adjacency matrix of

graph G. For the graph G having vertex set v1, v2, . . . , vn, its adjacency

matrix A(G) = (aij)n×n is an n order symmetric matrix, whose elements

are defined in [7] as:

aij =


1 if vivj ∈ E(G)

0 if vivj /∈ E(G)

TI(G) =
∑

uv∈E(G)

Φ(du, dv)

where Φ is suitable function with the condition Φ(x, y) = Φ(y, x). The

graph invariants stated above are known as topological indices. Laplacian
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matrix Li,j can be defined as:

Lij =



deg(vi) if i = j

−1 if i ̸= j and vivj ∈ E(G)

0 otherwise

Let λi for 1 ≤ i ≤ n be the eigenvalues of Laplacian matrix. The Laplacian

energy can be defined as:

LE(G) =

n∑
i=1

|λi −
2m

n
|

where m is cardinality of edge set and n be cardinality of vertex set of G.

The Randić matrix [4] given by R(G) = (rij)n×n can be defined as:

rij =


1√
didj

if vivj ∈ E(G)

0 if vivj /∈ E(G)

The sum of absolute values of the eigenvalues of this Randić matrix is

known as the Randić energy RE(G) of the graph.

The incidence matrix I(G) of an undirected graph G has a column for

each edge and a row for each vertex of the graph.

Iij =

{
1 if vertex vi is incident to edge ej

0 otherwise

Incidence energy is the sum of the singular values of the incidence matrix

I(G) that are, in turn, equal to the square root of eigenvalues of I(G)I(G)t

where I(G)I(G)t is a square matrix of order n.

The Sombor Index SO(G), developed by Gutman [14], is a novel graph

invariant. This index is noticeable because of its connection to well-known

degree-based topological indices known as forgotten indices. The Sombor
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matrix, denoted by ASO(G) = (soij)n×n, of the graph G is a symmetric

matrix having order n with the following elements:

soij =


√
d2i + d2j if vivj ∈ E(G)

0 if vivj /∈ E(G)

The sum of the absolute value of eigenvalues of the Sombor matrix soij is

known as the Sombor energy SE(G) of the graph.

A connected graph with no cyclic subgraph is known as a tree. The

term leaf or pendent vertex refers to a vertex having degree one. The

incident edge of a leaf is referred to as the pendent edge, while its neigh-

boring vertex is referred to as the support vertex. A tree T with one vertex

designated as the root r is called a rooted tree. Polynomial regression is

a type of regression model in which an n-th order polynomial represents

the relationship between the independent and dependent variables. Con-

sequently, it can be used to characterize a nonlinear relationship between

X and y.

Statistically, polynomial regression applies a nonlinear model to the

data, but the regression is basically linear [18]. Generally, it can be written

as:

y = β0 + β⃗1

t
X⃗ + β⃗2

t
X⃗2 + · · · + β⃗d

t
X⃗d + ϵ

where β0 is a constant, X⃗ = (X1, X2, . . . , Xp) and β⃗k = (βk1, . . . , βkp) are

p-dimensional vectors, k = 1, 2, . . . , d, with d be the maximum degree, and

β⃗k represents the coefficients of the features considered in the model and

ϵ is the error term. When we do linear regression to predict a statisti-

cally significant relationship between the predictor and response variable.

The regression coefficients are tested for significance using the t-test. The

following hypotheses are used for this test:

• H0: βkj = 0 (Xk
j does not affect the response (y))

• HA: βkj ̸= 0 (Xk
j affects the response (y))

known as null and alternative hypotheses respectively. The test statistic
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can be calculated as follows:

t = β̂kj/SEkj (1)

where:

• β̂kj : coefficient estimate of βkj for Xk
j

• SEkj : standard error of the coefficient estimate of βkj for Xk
j

A statistical measure used to evaluate the strength of the evidence against

the null hypothesis while testing the hypothesis is known as the p-value. If

the p-value associated with t is below some threshold (e.g. β = 0.05), then

we reject the null hypothesis and draw a conclusion that there is a statisti-

cally significant relationship between the predictor and response variables.

The degree and direction of the relationship between the independent and

dependent variables in a regression model can be assessed by β.

In this work, we considered up to third-degree polynomial. To assess

how good a trained model is at making predictions, one must compare the

actual values and the model’s predictions. Therefore, it is important to

look at some statistical measures to see how well the model can predict.

The best predictive model will of course record the least error. So, in our

case, we are looking at RMSE i.e. Root Mean Square Error that is given

as:

RMSE =

√√√√ 1

n

n∑
t=1

(ŷt − yt)2.

When assessing a model’s efficacy in machine learning and data science,

k-fold cross-validation (k = 10 in our case) is frequently employed. By

dividing the data into k equal-sized chunks, we may train the model on

k− 1 partitions and then validate it on the last partition. This procedure

is done a total of k times, with each partition being validated only once. k-

fold cross-validation estimates the model’s generalization performance by

averaging the performance measures across k-folds. It is a useful technique

for estimating the model’s efficacy on unseen data and preventing over-

and under-fitting. In this paper, we use k-folds to estimate RMSE for

the number of vertices above 11. Although this approach is reliable, there
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are instances when it should not be employed, such as when you have a

very limited dataset to analyze. So, for 6 ≤ n ≤ 10 we use Leave-one-out

cross-validation to estimate RMSE. Leave-one-out cross-validation is used

when we have a very small dataset and it is a special case of k-folds with

k = n. It is a way to figure out how well machine learning methods work

when they are used to make predictions based on data that wasn’t used to

train the model. It takes a lot of computing power to do this process but

it gives a reliable and unbiased estimate of model performance.

3 Methodology

This section includes the outcomes of the experimental analysis of rela-

tionships between energies. The methodology for analysis goes as given

in Fig. 2 to investigate how the different energies of tree graphs are re-

lated. The trees considered in this work are all trees on n-vertices where

n = 6, 7, . . . , 20, that can be generated using the Python module Net-

workx. The number of trees corresponding to each n are given in the

Table 1 below:

Table 1. Number of trees on n-vertices

n Number of Trees
6 6
7 11
8 23
9 47
10 106
11 235
12 551
13 1301
14 3359
15 7741
16 19320
17 48629
18 123867
19 317955
20 823065
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Our data set consists of five types of energy measures, and we created

five instances of a model by changing one parameter. From the scatter

plots in Fig. 1, a linear model may not be the best algorithm for com-

paring the energies under consideration. First, we scaled the independent

variables to interpret them on the same scale. Then we applied polynomial

regression by fitting a linear, quadratic, and cubic polynomial with k-fold

cross-validation for n = 11, 12, . . . , 20 and leave-one-out cross-validation

for n = 6, 7, . . . , 10 to estimate the root mean squared error. We generated

81 models for each model and every n with varying degree combinations.

Out of which, the model with the lowest RMSE was selected to move for-

ward. The selected models appeared overly complicated. The ‘one-sigma’

technique [23] was used to select the best model for each energy measure,

with the smallest RMSE within one standard deviation from the minimum

RMSE.

Figure 1. Scatter plots for each pair of energies of 15-vertex trees

Following the selection of the final model by polynomial regression,

we investigated the importance of each feature by calculating their im-



752

Figure 2. Flowchart depicting the methodology for analyzing relation-
ships between energies in tree graphs

portance. Regardless of directionality, the coefficient associated with each

feature measures the strength of the link between the features and the tar-

get variable. After taking absolute values, we ranked them in descending

order. By examining them, we identified the features with larger magni-

tudes as having a relatively more substantial influence on the target vari-

able. This ranking provides information about which features contribute

the most to the model’s predictions.

4 Results and discussion

This section contains the analysis of polynomial regression performance

for our considered models. For convenience, we represent ordinary energy,

Laplacian energy, Randić energy, incidence energy, and Sombor energy by

E, L, R, I, and S respectively. In the tables below, |β| is the absolute

value of the coefficient of each feature and p-value is from the t-test of
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the coefficient given by Equation 1 in preliminaries. The ranking of the

features and p−values < 0.05 provides insight into which energies are most

important for predicting the outcome variable and provides the significance

of the relationship between the various energies across the different trees.

Table 2 below presents a series of trees with 6 to 20 vertices represent-

ing the relationship of ordinary graph energy with other energies under

consideration. Sombor energy has the highest ranking and significantly

correlates with ordinary energy for trees on 6 to 9 vertices. With the in-

creasing number of vertices, Randić energy becomes more significant than

Sombor energy. From 6 to 9 vertices, the relationship between energies is

linear. In contrast, some energies have a quadratic or cubic relationship

from 11 to 20 vertices. For example, for trees on 11 vertices, energy is cu-

bically related to Sombor energy. It can also be observed that the RMSE

value increases with the increasing number of vertices. For instance, the

trees on 6 vertices have an RMSE of 0.01126057, while the trees on 20

vertices yield an RMSE of 0.09582839. This complexity is justified to un-

derstand the relationship between these energies better as the number of

trees increases exponentially as n increases, as given in Table 1. Over-

all, our findings suggest that Randić, Sombor, and incidence energies are

consistently stronger predictors of ordinary energy.

Table 2 and Table 3 have more complex features for some moderate n.

This is due to the randomness of 10-folds that some sensitivity of higher

degree terms for moderate n is expected. Even though k-folds involve some

randomness, it is still more stable than only splitting data into training

and test sets.

Table 3 below presents a series of trees with 6 to 20 vertices repre-

senting the relationship of the Laplacian energy with other energies under

consideration. From the feature ranking, ordinary energy has the highest

ranking. This relationship is linear for 6 to 13 vertices, while it becomes

quadratic for 14 to 20 vertices. The second most important feature is Som-

bor energy, with a linear relationship for all vertices except n = 11 which

is quadratic. Incidence energy is the third important feature for 6 to 8

vertices while the third important feature for 10 to 20 vertices is Randić

energy. For Laplacian energy, the overall most important predictors are
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Table 2. Feature ranking for ordinary energy

Vertices Features Ranking RMSE

Name S I L R
6 |β| 0.7198 0.3751 0.2711 0.2046 0.01126057

p-values 0.007 0.004 0.023 0.013

Name S I R L
7 |β| 0.6961 0.422 0.278 0.269 0.03280668

p-values 0 0 0 0.004

Name S I R L
8 |β| 0.6631 0.4487 0.4207 0.296 0.03570834

p-values 0 0 0 0

Name S R I L
9 |β| 0.6061 0.5022 0.4661 0.2963 0.04124739

p-values 0 0 0 0

Name R S I L
10 |β| 0.6051 0.5793 0.4833 0.3135 0.04269574

p-values 0 0 0 0

Name R S I L S2 S3

11 |β| 0.6569 0.5631 0.4826 0.3487 0.0056 0.0021 0.06463317
p-values 0 0 0 0 0.034 0

Name R S I L I2

12 |β| 0.7248 0.5831 0.5189 0.3515 0.0114 0.06004580
p-values 0 0 0 0 0

Name R S I L I2

13 |β| 0.7623 0.5944 0.5265 0.3764 0.0122 0.06325146
p-values 0 0 0 0 0

Name R S I L I2

14 |β| 0.801 0.6157 0.5369 0.4041 0.0128 0.06847567
p-values 0 0 0 0 0

Name R S I L I2

15 |β| 0.8309 0.6341 0.5454 0.4273 0.0134 0.07340321
p-values 0 0 0 0 0

Name R S I L S2 S3

16 |β| 0.8532 0.6525 0.5356 0.4765 0.0054 0.0014 0.08061196
p-values 0 0 0 0 0 0

Name R S I L I2 S2

17 |β| 0.8869 0.6766 0.564 0.4764 0.0133 0.002 0.08191707
p-values 0 0 0 0 0 0

Name R S I L S2

18 |β| 0.9101 0.6912 0.5609 0.5062 0.0111 0.08855195
p-values 0 0 0 0 0

Name R S I L S2

19 |β| 0.9359 0.7076 0.5721 0.5201 0.0114 0.09272274
p-values 0 0 0 0 0

Name R S I L S2

20 |β| 0.9615 0.7234 0.5836 0.5326 0.0116 0.09582839
p-values 0 0 0 0 0

Note:|β| is the absolute value of the coefficient of each feature, and p-value is
from the t-test of the coefficient.

ordinary energy and Sombor energy. Trees on 6 vertices have an RMSE

of 0.0114757869, while trees on 20 vertices yield an RMSE of 2.67994306.

This increase in RMSE is justified as the number of trees increases expo-

nentially as n increases, as given in Table 1.

Table 4 below presents a series of trees with 6 to 20 vertices repre-

senting the relationship of the Randić energy with other energies under

consideration. From the feature ranking, ordinary energy has the highest

ranking. This relationship is linear for 6 to 16 vertices, while for trees on

16 to 20 vertices, this relationship becomes quadratic. The second most

important feature is Sombor energy, which has a linear relationship with
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Table 3. Feature Ranking for Laplacian Energy

Vertices Features Ranking RMSE

Name E S I R
6 |β| 9.9423 8.6005 4.4799 2.4417 0.14757869

p-values 0.023 0.016 0.024 0.036

Name E S I R
7 |β| 10.2985 8.5582 4.6807 2.7488 0.52661485

p-values 0.004 0 0.006 0.033

Name E S I R
8 |β| 13.7907 10.1367 6.0269 5.1917 0.48064202

p-values 0 0 0 0

Name E S I R
9 |β| 15.1972 10.3347 6.5446 6.3363 0.68232998

p-values 0 0 0 0

Name E S R I R2

10 |β| 18.5661 11.614 9.1922 8.0114 0.4102 0.72626094
p-values 0 0 0 0 0

Name E S R I S2

11 |β| 19.6049 12.4489 10.1764 8.2866 0.1343 1.5370880
p-values 0 0 0 0 0.002

Name E S R I
12 |β| 23.3631 14.2469 13.2798 9.6075 1.5969609

p-values 0 0 0 0

Name E S R I
13 |β| 25.0919 15.3421 14.8533 10.1828 1.7908906

p-values 0 0 0 0

Name E S R I E2

14 |β| 26.0188 16.7166 16.0146 10.9573 0.4997 1.92566508
p-values 0 0 0 0 0

Name E S R I E2

15 |β| 26.7665 17.5781 16.8033 11.1426 0.5729 2.0336598
p-values 0 0 0 0 0

Name E S R I E2

16 |β| 27.4506 18.4299 17.4899 11.3007 0.6389 2.1788832
p-values 0 0 0 0 0

Name E S R I E2

17 |β| 27.9449 19.1443 17.999 11.3881 0.6977 2.2956161
p-values 0 0 0 0 0

Name E S R I E2

18 |β| 28.4721 19.843 18.4955 11.4972 0.7453 2.4401601
p-values 0 0 0 0 0

Name E S R I E2

19 |β| 28.9505 20.4751 18.9333 11.5967 0.7843 2.5580593
p-values 0 0 0 0 0

Name E S R I E2

20 |β| 29.4665 21.0912 19.3766 11.7195 0.814 2.67994306
p-values 0 0 0 0 0

Note:|β| is the absolute value of the coefficient of each feature, and p-value is
from the t-test of the coefficient.

all the vertices. Incidence energy is the third important feature, except

trees on 17 vertices. For trees on 11 to 16 vertices, incidence energy has

a quadratic relationship with Randić energy. Overall, our findings sug-

gest that ordinary energy and Sombor energy are stronger predictors for

Randić energy. Trees on 6 vertices have an RMSE of 0.00139663 and it

will increase with the increasing number of vertices as trees on 20 vertices

yield an RMSE of 0.02141770.
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Table 4. Feature Ranking for Randić Energy

Vertices Features Ranking RMSE

Name E S I L
6 |β| 1.4551 1.258 0.6557 0.4736 0.01895269

p-values 0.013 0.019 0.014 0.036

Name E S I L
7 |β| 1.3157 0.9688 0.6064 0.3398 0.06502959

p-values 0 0.001 0 0.033

Name E S I L
8 |β| 1.3379 0.8604 0.6 0.3544 0.05003650

p-values 0 0 0 0

Name E S I L
9 |β| 1.2809 0.7172 0.5726 0.315 0.05173276

p-values 0 0 0 0

Name E S I L
10 |β| 1.2849 0.6611 0.571 0.3254 0.05113024

p-values 0 0 0 0

Name E S I L I2

11 |β| 1.2704 0.6357 0.5781 0.3311 0.0124 0.06430158
p-values 0 0 0 0 0

Name E S I L I2

12 |β| 1.2921 0.6419 0.5855 0.3617 0.0133 0.06922429
p-values 0 0 0 0 0

Name E S I L I2

13 |β| 1.304 0.6482 0.5869 0.3865 0.0138 0.07152262
p-values 0 0 0 0 0

Name E S I L I2

14 |β| 1.3283 0.6674 0.5937 0.4147 0.014 0.07635892
p-values 0 0 0 0 0

Name E S I L I2

15 |β| 1.3476 0.683 0.5986 0.4367 0.0142 0.08128179
p-values 0 0 0 0 0

Name E S I L I2

16 |β| 1.3725 0.7016 0.6066 0.4574 0.0143 0.08582208
p-values 0 0 0 0 0

Name E S L I E2

17 |β| 1.3898 0.7143 0.6055 0.4726 0.0125 0.09219267
p-values 0 0 0 0 0

Name E S I L E2

18 |β| 1.4131 0.7269 0.6144 0.4821 0.0119 0.09675481
p-values 0 0 0 0 0

Name E S I L E2

19 |β| 1.4358 0.7382 0.6234 0.4898 0.0112 0.10117061
p-values 0 0 0 0 0

Name E S I L E2

20 |β| 1.4597 0.7493 0.6331 0.4967 0.0105 0.10442719
p-values 0 0 0 0 0

Note:|β| is the absolute value of the coefficient of each feature, and p-value is
from the t-test of the coefficient.

Table 5 below presents a series of trees on 6 to 20 vertices representing

the relationship of the incidence energy with other energies. Ordinary

energy has the highest feature ranking for trees on 6 to 20 vertices. This

relationship is linear for trees on 6 to 13 vertices and becomes quadratic

for trees on 14 vertices, while for trees on 15 to 20 vertices this relationship

becomes cubic. The second most important feature is Sombor energy for

trees on 6 to 9 vertices while for trees on 10 to 20 vertices, the second

most important feature is Randić energy. For n = 9, 10, 12, 13, Randić

energy has a quadratic relationship with incidence energy. Sombor energy
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is the third important feature except for trees on 6 to 9 vertices. Energy

and Randić energy are stronger predictors for Incidence energy. Trees

on 6 vertices have an RMSE of 0.00139663 and it will increase with the

increasing number of vertices as trees on 20 vertices yield an RMSE of

0.02141770.

Table 5. Feature Ranking for Incidence Energy

Vertices Features Ranking RMSE

Name E S L R
6 |β| 0.1035 0.0895 0.0337 0.0254 0.00139663

p-values 0.004 0.009 0.024 0.014

Name E S R L
7 |β| 0.1328 0.1003 0.0403 0.0385 0.00455069

p-values 0 0 0 0.006

Name E S R L
8 |β| 0.1611 0.1055 0.0677 0.0464 0.00574658

p-values 0 0 0 0

Name E S R L R2

9 |β| 0.1805 0.1047 0.0864 0.0533 0.0033 0.00631308
p-values 0 0 0 0 0.001

Name E R S L R2

10 |β| 0.1983 0.1087 0.1062 0.0606 0.0032 0.00691777
p-values 0 0 0 0 0

Name E R S L L2

11 |β| 0.215 0.1247 0.1123 0.0709 0.0019 0.01119425
p-values 0 0 0 0 0

Name E R S L R2

12 |β| 0.2261 0.1406 0.1146 0.0738 0.0034 0.01285266
p-values 0 0 0 0

Name E R S L R2

13 |β| 0.2367 0.1522 0.1194 0.0791 0.0035 0.01365461
p-values 0 0 0 0 0

Name E R S L E2

14 |β| 0.2408 0.1602 0.1239 0.0798 0.003 0.01474971
p-values 0 0 0 0 0

Name E R S L E2 E3

15 |β| 0.2494 0.1691 0.1289 0.0839 0.0026 0.0002 0.01596246
p-values 0 0 0 0 0 0

Name E R S L E2 E3

16 |β| 0.2581 0.1776 0.1341 0.0877 0.0022 0.0003 0.01719325
p-values 0 0 0 0 0 0

Name E R S L E2 E3

17 |β| 0.2659 0.1851 0.1386 0.0907 0.0019 0.0004 0.01833149
p-values 0 0 0 0 0 0

Name E R S L E2 E3

18 |β 0.2736 0.1923 0.1431 0.0933 0.0016 0.0004 0.01939308
p-values 0 0 0 0 0 0

Name E R S L E2 S2 E3

19 |β| 0.2818 0.199 0.1483 0.0978 0.0013 0.0005 0.0004 0.02048869
p-values 0 0 0 0 0 0 0

Name E R S L E2 S2 E3

20 |β| 0.289 0.2054 0.1522 0.0997 0.0011 0.0005 0.0004 0.02141770
p-values 0 0 0 0 0 0 0

Note:|β| is the absolute value of the coefficient of each feature, and p-value is
from the t-test of the coefficient.

Table 6 below presents a series of trees with 6 to 20 vertices repre-

senting the relationship of the Sombor energy with other energies under

consideration. From the feature ranking, ordinary energy has the highest

ranking and is significantly related to Sombor energy for trees on 6 to 20

vertices.
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Table 6. Feature Ranking for Sombor Energy

Vertices Features Ranking RMSE

Name E I L R
6 |β| 3.0476 1.3732 0.993 0.7488 0.04242875

p-values 0.007 0.009 0.016 0.019

Name E I L R
7 |β| 3.4589 1.5831 1.1108 1.0171 0.10279538

p-values 0 0 0 0.001

Name E I R L
8 |β| 4.1247 1.8276 1.6828 1.3532 0.13522622

p-values 0 0 0 0

Name E R I L
9 |β| 4.5366 2.105 1.9954 1.5081 0.17879870

p-values 0 0 0 0

Name E R I L L2

10 |β| 4.8785 2.5397 2.1127 1.9577 0.0607 0.19853543
p-values 0 0 0 0 0

Name E R L I L2

11 |β| 5.1787 2.8706 2.2423 2.2002 0.0795 0.28483124
p-values 0 0 0 0 0

Name E R I L I2

12 |β| 5.8869 3.6354 2.6346 2.1584 0.0686 0.32106378
p-values 0 0 0 0 0

Name E R I L E2

13 |β| 5.9864 3.7938 2.6412 2.4522 0.0899 0.35154649
p-values 0 0 0 0 0

Name E R I L E2

14 |β| 6.2577 4.0736 2.7419 2.6962 0.0983 0.38178263
p-values 0 0 0 0 0

Name E R L I E2

15 |β| 6.4439 4.2711 2.8982 2.8079 0.1074 0.41504839
p-values 0 0 0 0 0

Name E R L I E2

16 |β| 6.6452 4.4683 3.0939 2.8833 0.1143 0.44743566
p-values 0 0 0 0 0

Name E R L I E2

17 |β| 6.8115 4.6311 3.2589 2.9475 0.1204 0.47508473
p-values 0 0 0 0 0

Name E R L I E2

18 |β| 6.9881 4.7947 3.412 3.0194 0.1243 0.50443517
p-values 0 0 0 0 0

Name E R L I E2

19 |β| 7.151 4.9432 3.547 3.0882 0.1272 0.53667942
p-values 0 0 0 0 0

Name E R L I E2

20 |β| 7.3184 5.0906 3.6729 3.1609 0.1287 0.56269014
p-values 0 0 0 0 0

Note:|β| is the absolute value of the coefficient of each feature, and p-value is
from the t-test of the coefficient.

This relationship is linear for trees on 6 to 12 vertices, while this re-

lationship becomes quadratic with the increasing number of vertices. For

trees on 6 to 8, the second important feature is incidence energy; for trees

on 9 to 20 vertices, the second important feature is Randić energy. Lapla-

cian energy has a quadratic relationship with Sombor energy for trees on

10 and 11 vertices. Our findings suggest that energy and Randić energies

are consistently stronger predictors of Sombor Energy. Trees on 6 vertices

have an RMSE of 0.04242875, while trees on 20 vertices yield an RMSE

of 0.56269014. This increase in RMSE is justified as the number of trees
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increases exponentially as n increases, as given in Table 1.

5 Examples

This section contains three examples of the models produced by the sta-

tistical techniques employed. From Table 2 the best model for Laplacian

energy for trees on 8 vertices can be given as

L = −13.7907(E) + 10.1367(S) + 6.0269(I) + 5.1917(R) + 36.1606 (2)

In this model, Laplacian energy is the dependent feature while E, S, R,

and I are scaled independent features. As given in Table 1 trees on 8

vertices are 23 in total. We considered the one given in Fig. 3(a) as an

example:

Figure 3. Examples of trees on n = 8, 12, 14 vertices

First, we normalize all the independent features. As L is the feature to

be predicted in this example so it’s not normalized and its actual value is

29.7890. By substituting values of E, S, I and R in Equation 2 it yields,

L = −13.7907(1.2551) + 10.1367(−0.4203) + 6.0269(1.5353)

+ 5.1917(1.1687) + 36.1606 = 29.9106

So, the predicted value of L obtained is 29.9106 which is very close to the

actual value.

For our second example, we choose one of the trees on 12 vertices as

given in Fig. 3(b), and computations are done to compare actual and
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predicted values of Randić energy. The best-chosen model for n = 12 is

given below:

R = 1.2921(E) − 0.6419(S) − 0.5855(I) + 0.3617(L) − 0.0133(I)2 + 6.9380

(3)

Again we normalized independent features i.e. E, S, L and I. While R is

in its raw form having an actual value of 7.0288. After substitutions in 3,

R = 1.2921(0.6509) − 0.6419(−0.7538) − 0.5855(1.4585)

+ 0.3617(−0.9025) − 0.0133(1.4585)2 + 6.9380 = 7.0542

So, the predicted value of R obtained is 7.0542 which is again very close

to the actual value of R.

The next example is for one of the trees on 14 vertices given in 3(c)

to analyze model performance for ordinary energy. By using the same

method as the previous two examples we normalized independent features

and the actual value for the dependent variable i.e. E is 17.0117. Best

chosen model for n = 14 vertices is given as under

E = 0.801(R) + 0.6157(S) + 0.5369(I) − 0.4041(L) + 0.0128(I)2 + 15.0241

(4)

After required substitutions in Equation 4.

E = 0.801(0.2992) + 0.6157(−1.0895) + 0.5369(1.8012)

− 0.4041(−1.1202) + 0.0128(1.8012)2 + 15.0241 = 16.0543.

The predicted value of E obtained is 16.0543 which is close to the actual

value of E.

6 Concluding remarks

From the results above, the ordinary energy of the graph is the first impor-

tant feature to predict all other energies i.e. Laplacian, Randić, incidence,

and Somber. It may be due to the fact that the concept of simple energy
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serves as the foundational definition of energy. It is from this basic under-

standing of energy that all other forms of energy are related to ordinary

energy. Of all the energies considered, incidence and Laplacian energies are

defined in different manners. For example, the incidence energy is defined

based on an incidence matrix which is not a square matrix that involves

the relationship between the graph’s vertices and edges and multiplied by

its transpose first to get the singular values. While the Laplacian energy

involves the average degree of the graph along with the eigenvalues of the

Laplacian matrix. Due to their distinct definitions, these two energy mea-

sures are ranked third or fourth in the feature ranking. RMSE values for

predicting ordinary, Randić, and incidence energies are pretty good, as the

RMSE for ordinary energy lies between 0.01126057 and 0.09582839, and

Randić energy between 0.01895269 and 0.10442719. For incidence energy,

it lies between 0.00139663 and 0.021417. For Laplacian and Sombor en-

ergy RMSE is not as small as other energies. For Laplacian energy, RMSE

lies between 0.14757869 and 2.67994306, and for Somber energy, it lies

between 0.04242875 and 0.56269014. Still, it is acceptable as the values

of Somber and Laplacian energies are significantly larger than the other

three energies.
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