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Abstract

The graph G of order n is an L-borderenergetic graph which
means it has the same Laplacian energy as the complete graph
Kn. In this paper, we find that the combination of complete bi-
partite graphs and stars can construct infinite numbers of infinite
classes L-borderenergetic graphs. We give two infinite numbers of
infinite classes L-borderenergetic graphs and two infinite classes L-
borderenergetic graphs under the operators union, join and their
mixed. This research could provide experience for further study the
structural characteristics of L-borderenergetic graphs.

1 Introduction

A graph G is a simple graph that is to say it has at most one edge between

two distinct vertices and no edge from one vertice to the same vertice. The

undirected graph is a graph that has no direction associated with its edge.

In this paper, we are only concerned the simple and undirected graph.

Let G = (V,E) be a graph of order n = |V | and V = {v1, v2, · · · , vn} ,
∗Corresponding author.
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the edge vxvy ∈ E. The adjacency matrix A(G) of G is the 0-1 matrix,

where the entry axy = 1 when vxvy ∈ E and axy = 0 otherwise. The

Laplacian matrix L(G) of G is defined as L(G) = D(G) − A(G), where

D(G) = diag(d1, d2, · · · , dn) whose entry di is the degree of vi. The energy

of a graph G, introduced by Ivan Gutman [11], is defined by

E(G) =

n∑
i=1

|λi| ,

where λi are the eigenvalues of G. The energy of graph is not only a math-

ematical problem, but also comes from the chemical concept of quantum

chemistry [24], which has certain chemical application significance [19,20].

In this paper, we mainly study the Laplacian energy. The Laplacian

energy of G was introduced by Ivan Gutman and Bo Zhou [12]

LE(G) =

n∑
i=1

∣∣µi − d
∣∣ ,

where µi are the Laplacian eigenvalues of G and d is the average degree

of G. The Laplacian energy has been received a lot of attention, such

as [1–4,13–15,23,29,30].

The Laplacian borderenergetic (L-borderenergetic) graph G of order

n is a graph that its Laplacian energy is equal to the complete graph

Kn, i.e. LE(G) = LE(Kn) = 2(n − 1). The concept of L-borderenergetic

graphs was first proposed by Fernando Tura [25]. The research on L-

borderenergetic graphs is mainly divided into two aspects, one is search

and construction of the L-borderenergetic graphs [10,17,26–28], the other

is investigate some properties of L-borderenergetic graphs [5–8,16,21,22].

These works are very helpful for our study.

In this paper, we mainly investigate how to construct L-borderenergetic

graphs by using the combination of complete bipartite graphs and stars. In

the [9], they constructed infinite classes L-borderenergetic graphs, which

gives a good inspiration for our works. We find the Laplacian energy of

complete bipartite graphs can be greater than the complete graphs and

the stars will be less than the complete graphs, so we guess their combina-
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tion may construct the L-borderenergetic graphs and verified this guess.

Firstly, we use the union operator to construct the L-borderenergetic gra-

phs and find the condition for constructing the L-borderenergetic graphs,

construct 1 infinite numbers of infinite classes L-borderenergetic graphs

and 1 infinite classes L-borderenergetic graphs. Secondly, the join and

mixed operators are used to construct the L-borderenergetic graphs and

find 1 infinite classes L-borderenergetic graphs and 1 infinite numbers of

infinite classes L-borderenergetic graphs.

The paper is organized as follows. In Section 2, some known results

about L-borderenergetic graphs are described. In Section 3, we give 2

infinite numbers of infinite classes L-borderenergetic graphs and 2 infinite

classes L-borderenergetic graphs by using union, join and mixed operators

on complete bipartite graphs and stars. In Section 4, we conclude this

paper.

2 Premilinares

Let Kn = (VKn
, EKn

) be a complete graph of order n. Then, the comple-

ment of G = (V,E) is defined as G = (V,EKn
\E). A complete bipartite

graph with a bipartition of sizes n1 and n2 is denoted by Kn1,n2
. Let

G1 = (V1, E1) and G2 = (V2, E2) be undirected graphs without loops or

multiple edges. Then the union G = G1

⋃
G2 of G1 and G2 is defined as

G = (V1

⋃
V2, E1

⋃
E2). The join G = G1∇G2 of G1 and G2 is defined as

G = G1

⋃
G2. We use Gn to represent the join of n-copies of G and nG to

represent the union of n-copies of G.

The Laplacian spectrum of a join of two graphs can be find in [25] as

follows. This is an important result for this paper.

Theorem 1. Let G1 and G2 be graphs on n1 and n2 vertices, respectively.

Let L1 and L2 be the Laplacian matrices for G1 and G2, respectively, and

let L be the Laplacian matrix for G1∇G2. If 0 = α1 ≤ α2 ≤ · · · ≤ αn1 and

0 = β1 ≤ β2 ≤ · · · ≤ βn2
are the eigenvalues of L1 and L2, respectively.

Then the eigenvalues of L are

{0, n2 + α2, n2 + α3, . . . , n2 + αn1 , n1 + β2, n1 + β3, . . . , n1 + βn2 , n1 + n2} .
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3 Construction of L-borderenergetic graphs

In this section, the L-borderenergetic graphs based on complete bipartite

graphs and stars are given. We divide these new constructions in two

parts. On the one hand, we construct the L-borderenergetic graphs from

the union of some complete bipartite graphs and stars. On the other hand,

we show L-borderenergetic graphs based on the join or mixed operators of

complete bipartite graphs and stars.

3.1 Union of complete bipartite graphs and stars

In this section, we use the union operator to construct the L-borderener-

getic graphs and find the condition for constructing the L-borderenergetic

graphs, construct 1 infinite numbers of infinite classes L-borderenergetic

graphs and 1 infinite classes L-borderenergetic graphs.

Theorem 2. Let Km,n be the complete bipartite graph and Sr(m+n) be a

star with order r(m+ n). Then G = Km,n

⋃
Sr(m+n) is L-borderenergetic

and L-noncospectral graph with K(r+1)(m+n) if r = m+n−3
2mn−3m−3n+1 is a

positive integer and m,n ≥ 2.

Proof. It is known to all, the Laplacian spectrum of Km,n and Sr(m+n) are{
0, [m]n−1, [n]m−1,m+ n

}
and

{
0, [1]r(m+n)−2, r(m+ n)

}
, respectively.

Then the Laplacian spectrum of G = Km,n

⋃
Sr(m+n) can be given as

follows {
[0]2, [m]n−1, [n]m−1,m+ n, [1]r(m+n)−2, r(m+ n)

}
. (1)

Let d be the average degree of G = Km,n

⋃
Sr(m+n). Then we have

d =
(n− 1)m+ (m− 1)n+m+ n+ r(m+ n)− 2 + r(m+ n)

(r + 1)(m+ n)

=
2mn+ 2r(m+ n)− 2

(r + 1)(m+ n)
.
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According to (1), it follows that the Laplacian energy of G is

LE(G) = 2d+ (n− 1)
∣∣m− d

∣∣+ (m− 1)
∣∣n− d

∣∣+ ∣∣m+ n− d
∣∣

+ (r(m+ n)− 2)
∣∣d− 1

∣∣+ ∣∣r(m+ n)− d
∣∣ .

Nextly, let’s discuss the positive and negative of these absolute values.

Firstly, we need to verify the positive and negative of m− d.

m− d = m− 2mn+ 2r(m+ n)− 2

(r + 1)(m+ n)

=
(mr − 2r)(m+ n) +m2 −mn+ 2

(r + 1)(m+ n)

According to the r = m+n−3
2mn−3m−3n+1 , it follows that

m− d =
2mn−m− n+ 1

m+ n

According to the r = m+n−3
2mn−3m−3n+1 is a positive integer and m,n ≥ 2, it

follows that 2mn − 3m − 3n + 1 > 0 and then 2mn −m − n + 1 > 0. So

m− d > 0. Using the same method, we can carry out n− d > 0 and then

m+n−d > 0. Furthermore we get r(m+n)−d > 0. Finally, we will verify

the positive and negative of d− 1.

d− 1 =
2mn+ 2r(m+ n)− 2

(r + 1)(m+ n)
− 1 =

2mn− 2 + (r − 1)(m+ n)

(r + 1)(m+ n)

According to r ≥ 1 and m,n ≥ 2, it follows that d− 1 > 0. Then we have

LE(G)− 2(r + 1)(m+ n) + 2

= 2d+ (n− 1)
(
m− d

)
+ (m− 1)

(
n− d

)
+
(
m+ n− d

)
+ (r(m+ n)− 2)

(
d− 1

)
+ r(m+ n)− d− 2(r + 1)(m+ n) + 2

= (rm+ rn−m− n)d+ 2mn+ 2− 2(r + 1)(m+ n) + 2

= (rm+ rn−m− n)(
2mn+ 2r(m+ n)− 2

(r + 1)(m+ n)
) + 2mn+ 4

− 2(r + 1)(m+ n)
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=
(2m+ 2n)r2 + (4mn− 2m− 2n)r + 4

r + 1
− 2(r + 1)(m+ n) + 2

=
(4mn− 6m− 6n+ 2)r + (6− 2m− 2n)

r + 1

From r = m+n−3
2mn−3m−3n+1 , we have LE(G)− 2(r + 1)(m+ n) + 2 = 0. It is

now obvious that the theorem holds.

Next, we give some examples to verify the Theorem 2.

Example 1. The following examples are all r = m+n−3
2mn−3m−3n+1 ∈ Z+ and

m,n ≥ 2.

1. G1 = K2,6

⋃
S5(2+6) of order n1 = 48.

2. G2 = K3,4

⋃
S(3+4) of order n2 = 14.

3. G3 = K3,3

⋃
S3(3+3) of order n3 = 24.

Theorem 3. Let K2,2t+4 be the complete bipartite graph and Sd be a

star with order d. Then G = pK2,2t+4

⋃
(tp)Sd is L-borderenergetic and L-

noncospectral graph with K(td+2t+6)p if d = 2pt2+8pt−2t+8p−6
t is a positive

integer and t, p ≥ 1.

Proof. It is known to all, the Laplacian spectrum of K2,2t+4 and Sd are{
0, [2]2t+3, [2t+ 4]1, 2t+ 6

}
and

{
0, [1]d−2, d

}
, respectively. Then the La-

placian spectrum of G = pK2,2t+4

⋃
(tp)Sd can be given as follows{

0tp+p, [2]p(2t+3), [2t+ 4]p, [2t+ 6]p, [1]tp(d−2), [d]tp
}
.

Let d be the average degree of G = pK2,2t+4

⋃
(tp)Sd. Then we have

d =
(4t+ 6)p

(td+ 2t+ 6)p
+

(2t+ 4)p

(td+ 2t+ 6)p
+

(2t+ 6)p

(td+ 2t+ 6)p

+
t(d− 2)p

(td+ 2t+ 6)p
+

tdp

(td+ 2t+ 6)p
=

2td+ 6t+ 16

td+ 2t+ 6
.

Then we have

LE(G)− LE(K(td+2t+6)p)

= d+ (2t+ 3)p
∣∣2− d

∣∣+ p
∣∣2t+ 4− d

∣∣+ p
∣∣2t+ 6− d

∣∣
+ tp(d− 2)

∣∣1− d
∣∣+ tp

∣∣d− d
∣∣− 2(td+ 2t+ 6)p+ 2
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=
2td+ 6t+ 16

td+ 2t+ 6
+ (2t+ 3)p

2t+ 4

td+ 2t+ 6
+ p

2dt2 + 2td+ 4t2 + 14t+ 18

td+ 2t+ 6

+ p
2dt2 + 4td+ 4t2 + 18t+ 20

td+ 2t+ 6
+ tp(d− 2)

td+ 4t+ 10

td+ 2t+ 6

+ tp
td2 + 6d− 6t− 16

td+ 2t+ 6
− 2(td+ 2t+ 6)2p− 2td− 4t− 12

td+ 2t+ 6

=
2pd2t2 + 8pdt2 + 24pdt+ 4pt2 + 32pt+ 56p

td+ 2t+ 6

−
2(td+ 2t+ 6)2p− 2t 2pt

2+8pt−2t+8p−6
t − 4t− 12

td+ 2t+ 6

=
2pd2t2 + 8pdt2 + 24pdt+ 4pt2 + 32pt+ 56p

td+ 2t+ 6

− 2pd2t2 + 8pdt2 + 24pdt+ 4pt2 + 32pt+ 56p

td+ 2t+ 6
= 0.

Hence, G = pK2,2t+4

⋃
(tp)Sd is L-borderenergetic and L-noncospectral

graph with K(td+2t+6)p.

From the Theorem 3, we can obtain infinite numbers of infinite classes

of L-borderenergetic graphs. For example, the infinite classes of L-border-

energetic graphs can be listed as follows by using Theorem 3.

Example 2. The following examples are all d = 2pt2+8pt−2t+8p−6
t ∈ Z+

and t, p ≥ 1.

1. t = 1, d = 18p − 8, G1 = pK2,6

⋃
pS18p−8 is L-borderenergetic graphs

with K18p2 .

2. t = 2, d = 16p−10, G2 = pK2,8

⋃
2pS16p−10 is L-borderenergetic graphs

with K32p2−10p.

3. t = 3, d = 50p−12
3 , G3 = pK2,10

⋃
3pS 50p−12

3
is L-borderenergetic graphs

with K50p2 .

That is to say, for any t ∈ Z+, an infinite classes can be obtain according

to the relation between d and p.

Proposition 4. Let K2,5 be the complete bipartite graph and Sd be a star

with order d. Then G = pK2,5

⋃
Sd is L-borderenergetic and L-noncosp-

ectral graph with K7p+d if d = 5p2+9p−2
p−1 is a positive integer and p ≥ 2.

Proof. It is known to all, the Laplacian spectrum of K2,5 and Sd are{
0, [2]4, 5, 7

}
and

{
0, 1d−2, d

}
, respectively. Then the Laplacian spectrum
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of G = pK2,5

⋃
Sd can be given as follows

{
0p+1, [2]4p, [5]p, [7]p, 1d−2, d

}
.

Let d be the average degree of G = pK2,5

⋃
Sd. Then we have

d =
8p+ 5p+ 7p+ d− 2 + d

7p+ d
=

20p+ 2d− 2

7p+ d
.

According to d = 5p2+9p−2
p−1 , it follows that

LE(G)− LE(K7p+d)

= (p+ 1)d+ 4p
∣∣2− d

∣∣+ p
∣∣5− d

∣∣+ p
∣∣7− d

∣∣+ (d− 2)
∣∣1− d

∣∣+ ∣∣d− d
∣∣

− 2(7p+ d) + 2

= (p+ 1)
20p+ 2d− 2

7p+ d
+ 4p

6p− 2

7p+ d
+ p

15p+ 3d+ 2

7p+ d
+ p

29p+ 5d+ 2

7p+ d

+ (d− 2)
13p+ d− 2

7p+ d
+

10p3 + 18p2 + 9p− 1

2p2 − p− 1
− 2(7p+

5p2 + 9p− 2

p− 1
) + 2

=
24p2 + 2p− 2

p− 1
− 24p2 + 2p− 2

p− 1
= 0

Therefore, G = pK2,5

⋃
Sd is L-borderenergetic and L-noncospectral graph

with K7p+d.

3.2 Join and mixed of complete bipartite graphs and

stars

In this section, we use the join and mixed operators to construct the L-

borderenergetic graphs and find 1 infinite classes L-borderenergetic graphs

and 1 infinite numbers of infinite classes L-borderenergetic graphs.

Proposition 5. Let Km,n be the complete bipartite graph and S1 be a star

with order 1. Then G = Km,n∇S1 is L-borderenergetic and L-noncospectral

graph with Km+n+1 if m,n ∈ Z+ and m = n+ 1 or n = m+ 1.

Proof. It is known to all, the Laplacian spectrum of Km,n and S1 are{
0, [m]n−1, [n]m−1,m+ n

}
and {0} , respectively. Then the Laplacian
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spectrum of G = Km,n∇S1 can be given as follows

{
0, [m+ 1]n−1, [n+ 1]m−1, [m+ n+ 1]2

}
.

Let d be the average degree of G = Km,n∇S1. Then we have

d =
(m+ 1)(n− 1) + (m− 1)(n+ 1) + 2(m+ n+ 1)

m+ n+ 1

=
2mn+ 2m+ 2n

m+ n+ 1
.

According to m = n+ 1, it follows that

LE(G)− LE(Km+n+1)

= d+ (n− 1)
∣∣m+ 1− d

∣∣+ (m− 1)
∣∣n+ 1− d

∣∣+ 2
∣∣m+ n+ 1− d

∣∣
− 2(m+ n+ 1) + 2

=
n2 + 3n+ 1

n+ 1
+ (n− 1)

1

n+ 1
+ n

n

n+ 1
+ 2

n2 + n+ 1

n+ 1
− 4n− 2

=
4n2 + 6n+ 2

n+ 1
− 4n− 2 = 4n+ 2− 4n− 2 = 0

Therefore, G = Kn+1,n∇S1 is L-borderenergetic and L-noncospectral gr-

aph with K2n+2. The condition of n = m + 1 can be proved in the same

way as shown before.

Firstly, we give a lemma which is needed in the following Theorem 6.

Lemma 1. Let Km,n be the complete bipartite graph of order m+ n and

p, i ∈ Z+. Then (pKm,n)
i has Laplacian spectrum{

0, [p(i− 1)(m+ n)]
i(p−1)

, [m+ p(i− 1)(m+ n)]
ip(n−1)

,

[n+ p(i− 1)(m+ n)]
ip(m−1)

, [(1 + p(i− 1))(m+ n)]
ip
, [ip(m+ n)]

i−1
}

Proof. The proof is by induction on i. When i = 1, the Laplacian spectrum

of pKm,n is
{
0p, [m]

p(n−1)
, [n]

p(m−1)
, [m+ n]

p
}
. Hence, it holds for i = 1.

We assume that the lemma is true for i. Then when i + 1, the graph
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(pKm,n)
i+1 = (pKm,n)

i∇(pKm,n) has Laplacian spectrum{
0, [pi(m+ n)]

p−1
, [m+ pi(m+ n)]

p(n−1)
, [n+ pi(m+ n)]

p(m−1)
,

[m+ n+ pi(m+ n)]
p
, [ip(m+ n)]

i(p−1)
, [m+ pi(m+ n)]

ip(n−1)
,

[n+ pi(m+ n)]
ip(m−1)

, [(1 + ip)(m+ n)]
(i+1)p

, [(i+ 1)p(m+ n)]
i
}

=
{
0, [p(i− 1)(m+ n)]

(i+1)(p−1)
, [m+ p(i− 1)(m+ n)]

(i+1)p(n−1)
,

[n+ ip(m+ n)]
(i+1)p(m−1)

, [(1 + ip)(m+ n)]
(i+1)p

, [(i+ 1)p(m+ n)]
i
}

by Theorem 1. Then the lemma holds for i+1. Therefore, we are done.

Theorem 6. Let K1,1 be the complete bipartite graph and S2r be a star

with order 2r. Then G = Ki
1,1

⋃
qS2r is L-borderenergetic and L-noncos-

pectral graph with K2(qr+i) if q = 4ri2−2i2+3i−8ri+3r−1
2r−1 is a positive integer

and r, i ≥ 1.

Proof. From Lemma 1, the Laplacian spectrum of Ki
1,1 and qS2r are{

0, [2i]2i−1
}

and
{
0q, [1]2rq−2q, [2r]q

}
, respectively. Then the Laplacian

spectrum of G = Ki
1,1

⋃
qS2r can be obtain as follows

{
[0]q+1, [1]2rq−2q, [2i]2i−1, [2r]q

}
. (2)

Let d be the average degree of G = Ki
1,1

⋃
qS2r. Then we have

d =
2i(2i− 1) + 2qr − 2q + 2qr

2i+ 2qr
=

2qr + 2i2 − q − i

i+ qr
.

According to (2), it follows that the Laplacian energy of G is

LE(G) = (q + 1)d+ (2qr − 2q)
∣∣1− d

∣∣+ (2i− 1)
∣∣2i− d

∣∣+ q
∣∣2r − d

∣∣
= (q + 1)

2qr + 2i2 − q − i

i+ qr
+ (2qr − 2q)

∣∣∣∣1− 2qr + 2i2 − q − i

i+ qr

∣∣∣∣
+ (2i− 1)

∣∣∣∣2i− 2qr + 2i2 − q − i

i+ qr

∣∣∣∣+ q

∣∣∣∣2r − 2qr + 2i2 − q − i

i+ qr

∣∣∣∣
= (q + 1)

2qr + 2i2 − q − i

i+ qr
+ (2qr − 2q)

q(r − 1) + 2i(i− 1)

i+ qr
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+ (2i− 1)
2qr(i− 1) + q + i

i+ qr
+ q

∣∣∣∣2qr(r − 1) + 2ri− 2i2 + q + i

i+ qr

∣∣∣∣
Let’s substitute the q = 4ri2−2i2+3i−8ri+3r−1

2r−1 into the 2ri−2i2+q+ i, then

we have

2ri− 2i2 + q + i

=
2i(r − i)(2r − 1) + i(2r − 1) + 4ri2 − 2i2 + 3i− 8ri+ 3r − 1

2r − 1

=
8ri(i− 1) + 4ir2 + 2i+ 3r − 1

2r − 1
> 0.

So we come to the conclusion 2r− d > 0. Therefore, the Laplacian energy

of G minus Laplacian energy of K2(qr+i) is

LE(G)− 4i− 4qr + 2

=
((2− 4r)q + (6r + 6i− 16ri+ 8ri2 − 4i2 − 2))q

rq + i

=
(−2(4ri2 − 2i2 + 3i− 8ri+ 3r − 1)

rq + i

+
(6r + 6i− 16ri+ 8ri2 − 4i2 − 2))q

rq + i
= 0

Hence, it is proven that G = Ki
1,1

⋃
qS2r is L-borderenergetic and L-

noncospectral graph with K2(qr+i).

From the Theorem 6, we can obtain infinite numbers of infinite classes

of L-borderenergetic graphs. For example, the infinite classes of L-border-

energetic graphs can be listed as follows by using Theorem 6.

Example 3. The following examples are all q = 4ri2−2i2+3i−8ri+3r−1
2r−1 ∈

Z+ and r, i ≥ 1.

1. r = 1, q = 2i2 − 5i+2, G1 = Ki
1,1

⋃
(2i2 − 5i+2)S2 is L-borderenergetic

graphs with K4i2−8i+4.

2. r = 2, q = 2i2− 13
3 i+ 5

3 , G2 = Ki
1,1

⋃
(2i2− 13

3 i+ 5
3 )S4 is L-borderenergetic

graphs with K8i2− 46
3 i+ 20

3
.

3. r = 3, q = 2i2− 21
5 i+ 8

5 , G3 = Ki
1,1

⋃
(2i2− 21

5 i+ 8
5 )S6 is L-borderenergetic



740

graphs with K12i2− 116
5 i+ 48

5
.

That is to say, for any r ∈ Z+, an infinite classes can be obtain accord-

ing to the relation between q and i.

4 Conclusion

In this paper, we use the complete bipartite graphs and stars to construct

the L-borderenergetic graphs under the operators union, join and mixed.

We find two infinite numbers of infinite classes L-borderenergetic graphs

and two infinite classes L-borderenergetic graphs. On the one hand, our

structure provided the possibility for other graphs to construct infinite

numbers of infinite classes L-borderenergetic graphs. On the other hand,

these results give some new structures of L-borderenergetic graphs.
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