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Abstract

The energy of a graph G, denoted by E(G), is defined as the
sum of the absolute values of all eigenvalues of G. It is proved in
[MATCH Commun. Math. Comput. Chem. 79 (2018) 287–301] by
Alawiah et al. that E(G) ≤ 2

√
∆ +

√
(n− 2)(2m− 2∆) for every

bipartite graph G of order n, size m and maximum degree ∆. We
prove the above bound for all graphs G. We also prove new types
of two bounds of Koolen and Moulton given in [Adv. Appl. Math.
26 (2001) 47-52] and [Graphs Comb. 19 (2003) 131–135].

1 Introduction

For graph theory notation and terminology not given here we refer to [4].

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) =

∗Corresponding author.
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{v1, v2, . . . . , vn} and edge set E. The order and size of G are n = |V |
and m = |E|, respectively. For a vertex vi ∈ V , the degree of vi, denoted

by deg(vi), is the number of edges incident with vi. We denote by ∆(G)

the maximum degree among the vertices of G. A graph G is r-regular if

every vertex has degree r. An r-regular graph G is called strongly regular

if there are integers λ and µ such that every two adjacent vertices have

λ common neighbor and every two non-adjacent vertices have µ common

neighbors, (see [6]). We denote by K1,n−1 a star of order n and by Kn

a complete graph of order n. The adjacency matrix A(G) of a graph G

is defined by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let

λ1 ⩾ λ2 ⩾ · · · ⩾ λn−1 ⩾ λn denote the eigenvalues of A(G). When more

than one graph are under consideration, we write λi(G) instead of λi. The

second Zagreb index of a graph G is defined by M2(G) =
∑

uv∈E dudv

in [12], and is vastly studied, see for example, [5, 17].

The incidence matrix of a 2-(ν, k, λ)-design with ν points x1, ..., xν and

b blocks B1, ..., Bb is the ν × b matrix B = (bij), where bij = 1 if xi ∈ Bj

and 0 otherwise. The incidence graph of a design is defined to be the graph

with adjacency matrix (
0 B

BT 0

)
.

It is known that the incidence graph of a symmetric 2-(ν, k, λ)-desig with

ν > k > λ > 0 has eigenvalues k,
√
k − λ (with multiplicity ν − 1),

−
√
k − λ (with multiplicity ν − 1), and −k, (See [8], 10.3).

The graph energy is an invariant that was defined by Gutman [11] in

his studies of mathematical chemistry. The energy of a graph G is defined

as

E(G) =

n∑
i=1

| λi | .

This concept is now a well studied concept, (see, for example, [1], [9]-

[16], [18]). Many researchers presented bounds for the energy of a graph.

Recently, Alawiah et al. [2] proved the following for bipartite graphs.

Theorem 1 ( [2]). Let G be a non-empty bipartite graph with n ⩾ 2
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vertices, m edges and maximum vertex degrees ∆. Then

E(G) ≤ 2
√
∆+

√
(n− 2)(2m− 2∆),

equality holds if and only if G ∼= n
2K2 or K1,∆

⋃
(n−∆− 1)K1.

Koolen and Moulton [14] and [15] proved the following.

Theorem 2 ( [14]). If 2m ⩾ n and G is a graph with n vertices, m edges,

then

E(G) ≤ 2m

n
+

√
(n− 1)

(
2m− (

2m

n
)2
)
.

Equality holds if and only if G is either n
2K2, Kn, or a non-complete

connected strongly regular graph with two non-trivial eigenvalues both with

absolute value

√
2m−( 2m

n )2

n−1 .

Theorem 3 ( [15]). If 2m ⩾ n and G is a bipartite graph with n ≥ 2

vertices, m edges, then

E(G) ≤ 2

(
2m

n

)
+

√
(n− 2)

(
2m− 2(

2m

n
)2
)
.

Equality holds if and only if G = n
2K2, K√

m,
√
m, where n = 2

√
m, or

G is the incidence graph of a symmetric 2-(ν, k, λ) design, where ν = n
2 ,

k = 2m
n , λ = k(k−1)

n−1 and 2
√
m < n < 2m.

In this paper, we extend Theorem 1 by proving its validity for all

graphs. We also prove new types of Theorems 2 and 3. In Section 3, we

prove an upper bound for the energy of a graph in terms of order, size

and the maximum degree of the graph. In Section 3, we prove two upper

bounds for the energy of a graph in terms of order, size and the second

Zagreb index.

2 Useful lemmas and theorems

The following results play important roles in the proof of our main results.
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Theorem 4 ( [3]). If A = (aij) is a Hermitian matrix with eigenvalues

λ1 ≥ · · · ≥ λn, then

|λ1 − λn|2 ≥ max
i,j

{(aii − ajj)
2 + 2

∑
k ̸=i

|aik|2 + 2
∑
k ̸=j

|ajk|2}.

Theorem 5 ( [4], Corollary 5.6). If G is a connected graph and H is a

proper induced subgraph of G, then λ1(H) < λ1(G).

Lemma 1 ( [7]). If G is a non-empty graph of order n ⩾ 2 and size m,

and λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G, then λ1 + |λi| ≤ 2
√
m

for 2 ≤ i ≤ n.

Lemma 2 ( [17]). If G is a graph with n vertices and m edges, then
M2

m ⩾ 4m2

n2 .

Lemma 3 ( [6]). If a connected graph G has m distinct eigenvalues, then

its diameter D satisfies the inequality D ≤ m− 1.

Theorem 6 ( [6]). A regular connected graph G is strongly regular if and

only if it has exactly three distinct eigenvalues.

3 An upper bound involving maximum de-

gree

We first need to prove the following lemma.

Lemma 4. If G is a non-empty graph of order n ⩾ 2 with maximum degree

∆, and λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of G, then λ1+|λn| ≥ 2
√
∆.

Proof. Let A be the adjacency matrix of G and denote deg(vi) = ∆. By

Theorem 4,

|λ1 − λn|2 ≥ (aii − aii)
2 + 2

∑
k ̸=i

|aik|2 + 2
∑
k ̸=i

|aik|2 = 4∆.

Thus, λ1 + |λn| = |λ1 − λn| ≥ 2
√
∆, as desired.

Now, we prove the main result of this section.
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Theorem 7. Let G be a non-empty graph with n ⩾ 2 vertices, m edges

and maximum vertex degrees ∆. Then

E(G) ≤ 2
√
∆+

√
(n− 2)(2m− 2∆),

equality holds if and only if G ∼= n
2K2 or G ∼= K1,∆

⋃
(n−∆− 1)K1.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G. Using the Cauchy-

Schwartz inequality,

E(G) =

n∑
j=1

|λj | = λ1 + |λn|+
n−1∑
j=2

|λj | (1)

≤ λ1 + |λn|+
√
(n− 2)(2m− λ2

1 − λ2
n) (2)

= λ1 + |λn|+
√
(n− 2)(2m+ 2λ1|λn| − (λ1 + |λn|)2) (3)

≤ λ1 + |λn|+
√
(n− 2)(2m− (λ1 + |λn|)2

2
), (4)

since

2λ1|λn| ≤
(λ1 + |λn|)2

2
. (5)

Let f(x) = 2x +
√
(n− 2)(2m− 2x2). Then f is decreasing for

√
2m
n ≤

x ≤
√
m. By Lemmas 1 and 4,

√
2m

n
≤

√
∆ ≤ λ1 + |λn|

2
≤

√
m. (6)

Thus,

E(G) ≤ f(
λ1 + |λn|

2
) ≤ f(

√
∆) = 2

√
∆+

√
(n− 2)(2m− 2∆). (7)

We next prove the equality part. First it is easy to see that equality

holds if G ∼= n
2K2 or K1,∆

⋃
(n−∆− 1)K1. Thus we prove the converse.

Assume that E(G) = 2
√
∆+

√
(n− 2)(2m− 2∆). Following the proof of

the first part, all inequalities in (2)-(5), the second inequality in (6) and



722

both inequalities in (7) become equalities. From (5) and (6) we obtain

that λ1 = |λn| =
√
∆ and from (2), (4) and (7) we obtain that |λi| =

|λj | =
√

2m−2∆
n−2 for all i, j ∈ {2, ..., n − 1} and i ̸= j, if n > 2. From

λ1 = |λn| =
√
∆, we have λn ̸= 0, since G is a non-empty graph. Thus,

clearly λn < 0. By the Perron–Frobenius theorem G contains a bipartite

component H whose eigenvalues contain λ1 and λn, since λ1 = −λn > 0.

Since K1,∆ is an induced subgraph of G, and λ1(K1,∆) =
√
∆, by Theorem

5, we may assume that H = K1,∆. If ∆ > 1, then H has eigenvalue 0,

and we deduce that |λj | = 0 for all j ∈ {2, ..., n − 1}. Hence each other

component of G is a K1. Consequently, G = K1,∆

⋃
(n−∆− 1)K1. Thus

assume that ∆ = 1. Then λ1 = 1 and each component of G is a K2 or

K1. If m = 1, then G = K1,∆

⋃
(n−∆− 1)K1. Thus assume that m > 1.

Then |λj | =
√

2m−2∆
n−2 ̸= 0 for each j ∈ {2, ..., n − 1}. Consequently,

G ∼= n
2K2.

4 Upper bounds involving the second Zagreb

index

In this section we prove two upper bounds for the energy of a graph in

terms of order, size and the second Zagreb index.

Theorem 8. If 2m ⩾ n and G is a graph of order n and size m, then

E(G) ≤ 3

√
2M2

n
+

√
(n− 1)

(
2m− 3

√
(
2M2

n
)2
)
,

and equality holds if and only if G is n
2K2, Kn or a non-complete con-

nected strongly regular graph of degree k with eigenvalues k,
√

k(n−k)
n−1 and

−
√

k(n−k)
n−1 .

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G. Using the Cauchy-

Schwartz inequality,

E(G) =

n∑
j=1

|λj | = λ1 +

n∑
j=2

|λj | ≤ λ1 +
√

(n− 1)(2m− λ2
1).
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Let g(x) = x +
√
(n− 1)(2m− x2). Then g is decreasing for

√
2m
n ≤

x ≤
√
2m. Clearly λ1 ≤

√
2m. By Lemma 2 we can easily see that√

2m
n ≤ 3

√
2M2

n . It is evident that

2M2 = (d1 d2 . . . dn)A(d1 d2 . . . dn)
T = jTA3j,

where j is an n by 1 vector whose all components is 1. Now by the

Rayleigh’s inequality,

2M2

n
=

jTA3j

jT j
≤ λ3

1. (8)

Thus, √
2m

n
≤ 3

√
2M2

n
≤ λ1 ≤

√
2m. (9)

Then E(G) ≤ g(λ1) ≤ g( 3

√
2M2
n

) = 3

√
2M2
n

+

√
(n− 1)

(
2m− 3

√
( 2M2

n
)2
)
,

as desired.

We next prove the equality part. If G = n
2K2 then E(G) = n and m =

M2 = n
2 and thus the equality holds. If G = Kn, then E(G) = 2(n − 1),

m = n(n−1)
2 and M2 = n(n−1)3

2 , and so the equality holds. Now, assume

that G is a non-complete connected strongly regular graph of degree k with

eigenvalues k,
√

k(n−k)
n−1 and −

√
k(n−k)
n−1 . It can be seen that M2 = nk3

2 .

Clearly, λ1 = k = 2m
n . By Theorem 2,

E(G) =
2m

n
+

√
(n− 1)

(
2m− (

2m

n
)2
)

= k +
√

(n− 1)(2m− k2)

=
3

√
2M2

n
+

√
(n− 1)

(
2m− 3

√
(
2M2

n
)2
)
.

For the converse assume that

E(G) =
3

√
2M2

n
+

√
(n− 1)

(
2m− 3

√
(
2M2

n
)2
)
.
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Following the proof, we obtain that λ1 = 3

√
2M2

n and |λj | =

√
2m− 3

√
(
2M2
n )2

(n−1)

for j = 2, ..., n. From λ1 = 3

√
2M2

n , we have λ1 ̸= 0, since G is a non-empty

graph. If λ1 = |λj | for all j = 2, ..., n, then G has exactly two disctinct

eigenvalues and so by Lemma 3 each component of G is a complete graph.

Since λ1 = |λn| we deduce that G = n
2K2. We next assume that λ1 ̸= |λj |

for all j = 2, ..., n. If λj = λj′ for all j, j′ = 2, ..., n, then by Lemma 3,

G is a complete graph. Thus assume that G has exactly three distinct

eigenvalues.

By (8) we find that jTA3j
jT j

= λ3
1. Let α be an eigenvector corresponding

to λ1 for A. Then A3α = λ3
1α. Since the multiplicity of λ3

1 for A3 is 1,

by the Perron-Frobenius Theorem α = cj for some c, that is, Aj = λ1j.

Consequently, G is a regular graph. By Theorem 6, G is strongly regular,

and the proof is complete.

Theorem 9. If 2m ⩾ n and G is a bipartite graph with n ≥ 2 vertices, m

edges, then

E(G) ≤ 2
3

√
2M2

n
+

√
(n− 2)

(
2m− 2(

3

√
2M2

n
)2
)
.

Equality holds if and only if G = n
2K2, K√

m,
√
m, where n = 2

√
m, or G is

the incidence graph of a symmetric 2-(ν, 3

√
2M2

n , λ) design, where ν = n
2 ,

k = 3

√
2M2

n and λ = k(k−1)
n−1 .

Proof. We follow the proof of Theorem 7. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the

eigenvalues of G. Using the Cauchy-Schwartz inequality,

E(G) =

n∑
j=1

|λj | = λ1 + |λn|+
n−1∑
j=2

|λj |

≤ λ1 + |λn|+
√
(n− 2)(2m− λ2

1 − λ2
n)

≤ λ1 + |λn|+
√
(n− 2)(2m− (λ1 + |λn|)2

2
).

The function f(x) = 2x+
√

(n− 2)(2m− 2x2) is decreasing for
√

2m
n ≤
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x ≤
√
m. Since λ2

1+λ2
n+
∑n−1

i=2 λ2
i = 2m and λ1 = |λn|, we have λ1 ≤

√
m

and from (8) we obtain that,

√
2m

n
≤ 3

√
2M2

n
≤ λ1 + |λn|

2
≤

√
m. (10)

Thus,

E(G) ≤ f(
λ1 + |λn|

2
) ≤ f(

3

√
2M2

n
)

= 2
3

√
2M2

n
+

√
(n− 2)

(
2m− 2(

3

√
2M2

n
)2
)
.

We next prove the equality part. First it is easy to see that equality

holds if G = n
2K2, K√

m,
√
m, where n = 2

√
m. If G is the incidence graph

of a symmetric 2-(ν, k, λ) design, where k = 3

√
2M2

n and λ = k(k−1)
n−1 , then

by [14] (Page 132), we can see that

E(G) = 2k + (2ν − 2)
√
k − λ = 2

3

√
2M2

n
+

√
(n− 2)

(
2m− 2(

3

√
2M2

n
)2
)
.

Now, we prove the converse. Assume that

E(G) = 2
3

√
2M2

n
+

√
(n− 2)

(
2m− 2(

3

√
2M2

n
)2
)
.

Then λ1 = |λn| = 3

√
2M2

n and |λj | =

√
2m−2(

3
√

2M2
n )2

n−2 for all j = 2, ..., n−1,

if n > 2. The result is obvious if n = 2. Assume that n > 2. If G

has exactly two distinct eigenvalues then by Lemma 3, G = n
2K2. If

G has three distinct eigenvalues, then |λj | =

√
2m−2(

3
√

2M2
n )2

n−2 = 0 for all

j = 2, ..., n−1, and so we obtain that λ1 =
√
m and M2 = mn

√
m

2 . Since G

has three distinct eigenvalues, using Lemma 3 we find that G is a complete

bipartite graph. Let X and Y be the partite sets of G, where |X| = x and

|Y | = y. Clearly, n = x+ y and m = xy. Since M2 = (xy)2 = mn
√
m

2 , we

obtain that n = 2
√
m. Consequently, G = K√

m,
√
m. It remains to assume
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that G has four distinct eigenvalues. Since, 3

√
2M2

n >

√
2m−2(

3
√

2M2
n )2

n−2 ,

by [6] (Page 166), G is the incidence graph of a symmetric 2-(ν, 3

√
2M2

n , λ)

design, where ν = n
2 , k = 3

√
2M2

n and λ = k(k−1)
n−1 .

5 Concluding remarks

We note that by Lemma 2 and the inequality chain (9), we can see that√
2m

n
≤ 2m

n
≤ 3

√
2M2

n
≤ λ1 ≤

√
2m. (11)

Now the decreasing property of the function g implies that the bound

of Theorem 8 is better than the bound of Theorem 2. Furthermore, the

bound of Theorem 9 is better than the bound of Theorem 3. Also, in [2]

the following bound is presented for any graph G,

E(G) ≤
√
M2

m
+

√
(n− 1)(2m− M2

m2
) (12)

and the following bound is presented for any bipartite graph G,

E(G) ≤ 2

√
M2

m
+

√
(n− 2)

(
2m− 2M2

m2

)
. (13)

It is known that
√
M2

m ≤ λ1 (see [7]). Thus by Lemma 2 and inequality

chains (10) and (11) we find that
√

2m
n ≤ 2m

n ≤ 3

√
2M2

n ≤
√
M2

m ≤ λ1 ≤
√
2m and

√
2m
n ≤ 2m

n ≤ 3

√
2M2

n ≤
√
M2

m ≤ λ1 ≤
√
m if G is bipartite. Now,

the decreasing property of the functions f and g in the proofs of Theorems

8 and 9, implies that the bound of Theorem 8 is better than the bound

given in (12) and the bound of Theorem 9 is better than the bound given

in (13).
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[5] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb
indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.
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