New Upper Bounds on the Energy of a Graph

Arman Aashtab ${ }^{a,}$, Saieed Akbari ${ }^{b, *}$, Nader Jafari Rad c, Hailiza Kamarulhaili ${ }^{d}$
${ }^{a}$ Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
${ }^{b}$ Department of Mathematical Science, Sharif University of Technology, Tehran, Iran
${ }^{c}$ Department of Mathematics, Shahed University, Tehran, Iran
${ }^{d}$ School of Mathematical Science, Universiti Sains Malaysia, 11800 USM
Penang, Malaysia
armanpmsht@gmail.com, s-akbari@sharif.edu, n.jafarirad@gmail.com, hailiza@usm.my

(Received February 10, 2023)

Abstract

The energy of a graph G, denoted by $\mathcal{E}(G)$, is defined as the sum of the absolute values of all eigenvalues of G. It is proved in [MATCH Commun. Math. Comput. Chem. 79 (2018) 287-301] by Alawiah et al. that $\mathcal{E}(G) \leq 2 \sqrt{\Delta}+\sqrt{(n-2)(2 m-2 \Delta)}$ for every bipartite graph G of order n, size m and maximum degree Δ. We prove the above bound for all graphs G. We also prove new types of two bounds of Koolen and Moulton given in [Adv. Appl. Math. 26 (2001) 47-52] and [Graphs Comb. 19 (2003) 131-135].

1 Introduction

For graph theory notation and terminology not given here we refer to [4]. Let $G=(V, E)$ be a simple undirected graph with vertex set $V=V(G)=$

[^0]$\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E. The order and size of G are $n=|V|$ and $m=|E|$, respectively. For a vertex $v_{i} \in V$, the degree of v_{i}, denoted by $\operatorname{deg}\left(v_{i}\right)$, is the number of edges incident with v_{i}. We denote by $\Delta(G)$ the maximum degree among the vertices of G. A graph G is r-regular if every vertex has degree r. An r-regular graph G is called strongly regular if there are integers λ and μ such that every two adjacent vertices have λ common neighbor and every two non-adjacent vertices have μ common neighbors, (see [6]). We denote by $K_{1, n-1}$ a star of order n and by K_{n} a complete graph of order n. The adjacency matrix $A(G)$ of a graph G is defined by its entries as $a_{i j}=1$ if $v_{i} v_{j} \in E(G)$ and 0 otherwise. Let $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n-1} \geqslant \lambda_{n}$ denote the eigenvalues of $A(G)$. When more than one graph are under consideration, we write $\lambda_{i}(G)$ instead of λ_{i}. The second Zagreb index of a graph G is defined by $M_{2}(G)=\sum_{u v \in E} d_{u} d_{v}$ in [12], and is vastly studied, see for example, $[5,17]$.

The incidence matrix of a $2-(\nu, k, \lambda)$-design with ν points x_{1}, \ldots, x_{ν} and b blocks B_{1}, \ldots, B_{b} is the $\nu \times b$ matrix $B=\left(b_{i j}\right)$, where $b_{i j}=1$ if $x_{i} \in B_{j}$ and 0 otherwise. The incidence graph of a design is defined to be the graph with adjacency matrix

$$
\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right)
$$

It is known that the incidence graph of a symmetric $2-(\nu, k, \lambda)$-desig with $\nu>k>\lambda>0$ has eigenvalues $k, \sqrt{k-\lambda}$ (with multiplicity $\nu-1$), $-\sqrt{k-\lambda}$ (with multiplicity $\nu-1$), and $-k$, (See [8], 10.3).

The graph energy is an invariant that was defined by Gutman [11] in his studies of mathematical chemistry. The energy of a graph G is defined as

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

This concept is now a well studied concept, (see, for example, [1], [9][16], [18]). Many researchers presented bounds for the energy of a graph. Recently, Alawiah et al. [2] proved the following for bipartite graphs.

Theorem 1 ([2]). Let G be a non-empty bipartite graph with $n \geqslant 2$
vertices, m edges and maximum vertex degrees Δ. Then

$$
\mathcal{E}(G) \leq 2 \sqrt{\Delta}+\sqrt{(n-2)(2 m-2 \Delta)}
$$

equality holds if and only if $G \cong \frac{n}{2} K_{2}$ or $K_{1, \Delta} \bigcup(n-\Delta-1) K_{1}$.
Koolen and Moulton [14] and [15] proved the following.
Theorem 2 ([14]). If $2 m \geqslant n$ and G is a graph with n vertices, m edges, then

$$
\left.\mathcal{E}(G) \leq \frac{2 m}{n}+\sqrt{(n-1)\left(2 m-\left(\frac{2 m}{n}\right)^{2}\right.}\right)
$$

Equality holds if and only if G is either $\frac{n}{2} K_{2}, K_{n}$, or a non-complete connected strongly regular graph with two non-trivial eigenvalues both with absolute value $\sqrt{\frac{2 m-\left(\frac{2 m}{n}\right)^{2}}{n-1}}$.

Theorem 3 ([15]). If $2 m \geqslant n$ and G is a bipartite graph with $n \geq 2$ vertices, m edges, then

$$
\mathcal{E}(G) \leq 2\left(\frac{2 m}{n}\right)+\sqrt{(n-2)\left(2 m-2\left(\frac{2 m}{n}\right)^{2}\right)} .
$$

Equality holds if and only if $G=\frac{n}{2} K_{2}, K_{\sqrt{m}, \sqrt{m}}$, where $n=2 \sqrt{m}$, or G is the incidence graph of a symmetric $2-(\nu, k, \lambda)$ design, where $\nu=\frac{n}{2}$, $k=\frac{2 m}{n}, \lambda=\frac{k(k-1)}{n-1}$ and $2 \sqrt{m}<n<2 m$.

In this paper, we extend Theorem 1 by proving its validity for all graphs. We also prove new types of Theorems 2 and 3. In Section 3, we prove an upper bound for the energy of a graph in terms of order, size and the maximum degree of the graph. In Section 3, we prove two upper bounds for the energy of a graph in terms of order, size and the second Zagreb index.

2 Useful lemmas and theorems

The following results play important roles in the proof of our main results.

Theorem 4 ([3]). If $A=\left(a_{i j}\right)$ is a Hermitian matrix with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\left|\lambda_{1}-\lambda_{n}\right|^{2} \geq \max _{i, j}\left\{\left(a_{i i}-a_{j j}\right)^{2}+2 \sum_{k \neq i}\left|a_{i k}\right|^{2}+2 \sum_{k \neq j}\left|a_{j k}\right|^{2}\right\}
$$

Theorem 5 ([4], Corollary 5.6). If G is a connected graph and H is a proper induced subgraph of G, then $\lambda_{1}(H)<\lambda_{1}(G)$.

Lemma 1 ([7]). If G is a non-empty graph of order $n \geqslant 2$ and size m, and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of G, then $\lambda_{1}+\left|\lambda_{i}\right| \leq 2 \sqrt{m}$ for $2 \leq i \leq n$.

Lemma 2 ([17]). If G is a graph with n vertices and m edges, then $\frac{M_{2}}{m} \geqslant \frac{4 m^{2}}{n^{2}}$.

Lemma 3 ([6]). If a connected graph G has m distinct eigenvalues, then its diameter D satisfies the inequality $D \leq m-1$.

Theorem 6 ([6]). A regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues.

3 An upper bound involving maximum degree

We first need to prove the following lemma.
Lemma 4. If G is a non-empty graph of order $n \geqslant 2$ with maximum degree Δ, and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of G, then $\lambda_{1}+\left|\lambda_{n}\right| \geq 2 \sqrt{\Delta}$. Proof. Let A be the adjacency matrix of G and denote $\operatorname{deg}\left(v_{i}\right)=\Delta$. By Theorem 4,

$$
\left|\lambda_{1}-\lambda_{n}\right|^{2} \geq\left(a_{i i}-a_{i i}\right)^{2}+2 \sum_{k \neq i}\left|a_{i k}\right|^{2}+2 \sum_{k \neq i}\left|a_{i k}\right|^{2}=4 \Delta
$$

Thus, $\lambda_{1}+\left|\lambda_{n}\right|=\left|\lambda_{1}-\lambda_{n}\right| \geq 2 \sqrt{\Delta}$, as desired.
Now, we prove the main result of this section.

Theorem 7. Let G be a non-empty graph with $n \geqslant 2$ vertices, m edges and maximum vertex degrees Δ. Then

$$
\mathcal{E}(G) \leq 2 \sqrt{\Delta}+\sqrt{(n-2)(2 m-2 \Delta)}
$$

equality holds if and only if $G \cong \frac{n}{2} K_{2}$ or $G \cong K_{1, \Delta} \bigcup(n-\Delta-1) K_{1}$.
Proof. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of G. Using the CauchySchwartz inequality,

$$
\begin{align*}
\mathcal{E}(G) & =\sum_{j=1}^{n}\left|\lambda_{j}\right|=\lambda_{1}+\left|\lambda_{n}\right|+\sum_{j=2}^{n-1}\left|\lambda_{j}\right| \tag{1}\\
& \leq \lambda_{1}+\left|\lambda_{n}\right|+\sqrt{(n-2)\left(2 m-\lambda_{1}^{2}-\lambda_{n}^{2}\right)} \tag{2}\\
& =\lambda_{1}+\left|\lambda_{n}\right|+\sqrt{(n-2)\left(2 m+2 \lambda_{1}\left|\lambda_{n}\right|-\left(\lambda_{1}+\left|\lambda_{n}\right|\right)^{2}\right)} \tag{3}\\
& \leq \lambda_{1}+\left|\lambda_{n}\right|+\sqrt{(n-2)\left(2 m-\frac{\left(\lambda_{1}+\left|\lambda_{n}\right|\right)^{2}}{2}\right)} \tag{4}
\end{align*}
$$

since

$$
\begin{equation*}
2 \lambda_{1}\left|\lambda_{n}\right| \leq \frac{\left(\lambda_{1}+\left|\lambda_{n}\right|\right)^{2}}{2} \tag{5}
\end{equation*}
$$

Let $f(x)=2 x+\sqrt{(n-2)\left(2 m-2 x^{2}\right)}$. Then f is decreasing for $\sqrt{\frac{2 m}{n}} \leq$ $x \leq \sqrt{m}$. By Lemmas 1 and 4 ,

$$
\begin{equation*}
\sqrt{\frac{2 m}{n}} \leq \sqrt{\Delta} \leq \frac{\lambda_{1}+\left|\lambda_{n}\right|}{2} \leq \sqrt{m} \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathcal{E}(G) \leq f\left(\frac{\lambda_{1}+\left|\lambda_{n}\right|}{2}\right) \leq f(\sqrt{\Delta})=2 \sqrt{\Delta}+\sqrt{(n-2)(2 m-2 \Delta)} \tag{7}
\end{equation*}
$$

We next prove the equality part. First it is easy to see that equality holds if $G \cong \frac{n}{2} K_{2}$ or $K_{1, \Delta} \bigcup(n-\Delta-1) K_{1}$. Thus we prove the converse. Assume that $\mathcal{E}(G)=2 \sqrt{\Delta}+\sqrt{(n-2)(2 m-2 \Delta)}$. Following the proof of the first part, all inequalities in (2)-(5), the second inequality in (6) and
both inequalities in (7) become equalities. From (5) and (6) we obtain that $\lambda_{1}=\left|\lambda_{n}\right|=\sqrt{\Delta}$ and from (2), (4) and (7) we obtain that $\left|\lambda_{i}\right|=$ $\left|\lambda_{j}\right|=\sqrt{\frac{2 m-2 \Delta}{n-2}}$ for all $i, j \in\{2, \ldots, n-1\}$ and $i \neq j$, if $n>2$. From $\lambda_{1}=\left|\lambda_{n}\right|=\sqrt{\Delta}$, we have $\lambda_{n} \neq 0$, since G is a non-empty graph. Thus, clearly $\lambda_{n}<0$. By the Perron-Frobenius theorem G contains a bipartite component H whose eigenvalues contain λ_{1} and λ_{n}, since $\lambda_{1}=-\lambda_{n}>0$. Since $K_{1, \Delta}$ is an induced subgraph of G, and $\lambda_{1}\left(K_{1, \Delta}\right)=\sqrt{\Delta}$, by Theorem 5 , we may assume that $H=K_{1, \Delta}$. If $\Delta>1$, then H has eigenvalue 0 , and we deduce that $\left|\lambda_{j}\right|=0$ for all $j \in\{2, \ldots, n-1\}$. Hence each other component of G is a K_{1}. Consequently, $G=K_{1, \Delta} \bigcup(n-\Delta-1) K_{1}$. Thus assume that $\Delta=1$. Then $\lambda_{1}=1$ and each component of G is a K_{2} or K_{1}. If $m=1$, then $G=K_{1, \Delta} \bigcup(n-\Delta-1) K_{1}$. Thus assume that $m>1$. Then $\left|\lambda_{j}\right|=\sqrt{\frac{2 m-2 \Delta}{n-2}} \neq 0$ for each $j \in\{2, \ldots, n-1\}$. Consequently, $G \cong \frac{n}{2} K_{2}$.

4 Upper bounds involving the second Zagreb index

In this section we prove two upper bounds for the energy of a graph in terms of order, size and the second Zagreb index.

Theorem 8. If $2 m \geqslant n$ and G is a graph of order n and size m, then

$$
\mathcal{E}(G) \leq \sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-1)\left(2 m-\sqrt[3]{\left(\frac{2 M_{2}}{n}\right)^{2}}\right)}
$$

and equality holds if and only if G is $\frac{n}{2} K_{2}, K_{n}$ or a non-complete connected strongly regular graph of degree k with eigenvalues $k, \sqrt{\frac{k(n-k)}{n-1}}$ and $-\sqrt{\frac{k(n-k)}{n-1}}$.

Proof. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of G. Using the CauchySchwartz inequality,

$$
\mathcal{E}(G)=\sum_{j=1}^{n}\left|\lambda_{j}\right|=\lambda_{1}+\sum_{j=2}^{n}\left|\lambda_{j}\right| \leq \lambda_{1}+\sqrt{(n-1)\left(2 m-\lambda_{1}^{2}\right)}
$$

Let $g(x)=x+\sqrt{(n-1)\left(2 m-x^{2}\right)}$. Then g is decreasing for $\sqrt{\frac{2 m}{n}} \leq$ $x \leq \sqrt{2 m}$. Clearly $\lambda_{1} \leq \sqrt{2 m}$. By Lemma 2 we can easily see that $\sqrt{\frac{2 m}{n}} \leq \sqrt[3]{\frac{2 M_{2}}{n}}$. It is evident that

$$
2 M_{2}=\left(d_{1} d_{2} \ldots d_{n}\right) A\left(d_{1} d_{2} \ldots d_{n}\right)^{T}=j^{T} A^{3} j
$$

where j is an n by 1 vector whose all components is 1 . Now by the Rayleigh's inequality,

$$
\begin{equation*}
\frac{2 M_{2}}{n}=\frac{j^{T} A^{3} j}{j^{T} j} \leq \lambda_{1}^{3} \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sqrt{\frac{2 m}{n}} \leq \sqrt[3]{\frac{2 M_{2}}{n}} \leq \lambda_{1} \leq \sqrt{2 m} \tag{9}
\end{equation*}
$$

Then $\mathcal{E}(G) \leq g\left(\lambda_{1}\right) \leq g\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)=\sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-1)\left(2 m-\sqrt[3]{\left(\frac{2 M_{2}}{n}\right)^{2}}\right)}$, as desired.

We next prove the equality part. If $G=\frac{n}{2} K_{2}$ then $\mathcal{E}(G)=n$ and $m=$ $M_{2}=\frac{n}{2}$ and thus the equality holds. If $G=K_{n}$, then $\mathcal{E}(G)=2(n-1)$, $m=\frac{n(n-1)}{2}$ and $M_{2}=\frac{n(n-1)^{3}}{2}$, and so the equality holds. Now, assume that G is a non-complete connected strongly regular graph of degree k with eigenvalues $k, \sqrt{\frac{k(n-k)}{n-1}}$ and $-\sqrt{\frac{k(n-k)}{n-1}}$. It can be seen that $M_{2}=\frac{n k^{3}}{2}$. Clearly, $\lambda_{1}=k=\frac{2 m}{n}$. By Theorem 2,

$$
\begin{aligned}
\mathcal{E}(G) & =\frac{2 m}{n}+\sqrt{(n-1)\left(2 m-\left(\frac{2 m}{n}\right)^{2}\right)}=k+\sqrt{(n-1)\left(2 m-k^{2}\right)} \\
& =\sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-1)\left(2 m-\sqrt[3]{\left(\frac{2 M_{2}}{n}\right)^{2}}\right)}
\end{aligned}
$$

For the converse assume that

$$
\mathcal{E}(G)=\sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-1)\left(2 m-\sqrt[3]{\left(\frac{2 M_{2}}{n}\right)^{2}}\right)}
$$

Following the proof, we obtain that $\lambda_{1}=\sqrt[3]{\frac{2 M_{2}}{n}}$ and $\left|\lambda_{j}\right|=\sqrt{\frac{2 m-\sqrt[3]{\left(\frac{2 M_{2}}{n}\right)^{2}}}{(n-1)}}$ for $j=2, \ldots, n$. From $\lambda_{1}=\sqrt[3]{\frac{2 M_{2}}{n}}$, we have $\lambda_{1} \neq 0$, since G is a non-empty graph. If $\lambda_{1}=\left|\lambda_{j}\right|$ for all $j=2, \ldots, n$, then G has exactly two disctinct eigenvalues and so by Lemma 3 each component of G is a complete graph. Since $\lambda_{1}=\left|\lambda_{n}\right|$ we deduce that $G=\frac{n}{2} K_{2}$. We next assume that $\lambda_{1} \neq\left|\lambda_{j}\right|$ for all $j=2, \ldots, n$. If $\lambda_{j}=\lambda_{j^{\prime}}$ for all $j, j^{\prime}=2, \ldots, n$, then by Lemma 3 , G is a complete graph. Thus assume that G has exactly three distinct eigenvalues.

By (8) we find that $\frac{j^{T} A^{3} j}{j^{T} j}=\lambda_{1}^{3}$. Let α be an eigenvector corresponding to λ_{1} for A. Then $A^{3} \alpha=\lambda_{1}^{3} \alpha$. Since the multiplicity of λ_{1}^{3} for A^{3} is 1 , by the Perron-Frobenius Theorem $\alpha=c j$ for some c, that is, $A j=\lambda_{1} j$. Consequently, G is a regular graph. By Theorem $6, G$ is strongly regular, and the proof is complete.

Theorem 9. If $2 m \geqslant n$ and G is a bipartite graph with $n \geq 2$ vertices, m edges, then

$$
\left.\mathcal{E}(G) \leq 2 \sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-2)\left(2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}\right.}\right)
$$

Equality holds if and only if $G=\frac{n}{2} K_{2}, K_{\sqrt{m}, \sqrt{m}}$, where $n=2 \sqrt{m}$, or G is the incidence graph of a symmetric $2-\left(\nu, \sqrt[3]{\frac{2 M_{2}}{n}}, \lambda\right)$ design, where $\nu=\frac{n}{2}$, $k=\sqrt[3]{\frac{2 M_{2}}{n}}$ and $\lambda=\frac{k(k-1)}{n-1}$.

Proof. We follow the proof of Theorem 7. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of G. Using the Cauchy-Schwartz inequality,

$$
\begin{aligned}
\mathcal{E}(G) & =\sum_{j=1}^{n}\left|\lambda_{j}\right|=\lambda_{1}+\left|\lambda_{n}\right|+\sum_{j=2}^{n-1}\left|\lambda_{j}\right| \\
& \leq \lambda_{1}+\left|\lambda_{n}\right|+\sqrt{(n-2)\left(2 m-\lambda_{1}^{2}-\lambda_{n}^{2}\right)} \\
& \leq \lambda_{1}+\left|\lambda_{n}\right|+\sqrt{(n-2)\left(2 m-\frac{\left(\lambda_{1}+\left|\lambda_{n}\right|\right)^{2}}{2}\right)}
\end{aligned}
$$

The function $f(x)=2 x+\sqrt{(n-2)\left(2 m-2 x^{2}\right)}$ is decreasing for $\sqrt{\frac{2 m}{n}} \leq$
$x \leq \sqrt{m}$. Since $\lambda_{1}^{2}+\lambda_{n}^{2}+\sum_{i=2}^{n-1} \lambda_{i}^{2}=2 m$ and $\lambda_{1}=\left|\lambda_{n}\right|$, we have $\lambda_{1} \leq \sqrt{m}$ and from (8) we obtain that,

$$
\begin{equation*}
\sqrt{\frac{2 m}{n}} \leq \sqrt[3]{\frac{2 M_{2}}{n}} \leq \frac{\lambda_{1}+\left|\lambda_{n}\right|}{2} \leq \sqrt{m} \tag{10}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\mathcal{E}(G) \leq f\left(\frac{\lambda_{1}+\left|\lambda_{n}\right|}{2}\right) & \leq f\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right) \\
& \left.=2 \sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-2)\left(2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}\right.}\right)
\end{aligned}
$$

We next prove the equality part. First it is easy to see that equality holds if $G=\frac{n}{2} K_{2}, K_{\sqrt{m}, \sqrt{m}}$, where $n=2 \sqrt{m}$. If G is the incidence graph of a symmetric $2-(\nu, k, \lambda)$ design, where $k=\sqrt[3]{\frac{2 M_{2}}{n}}$ and $\lambda=\frac{k(k-1)}{n-1}$, then by [14] (Page 132), we can see that

$$
\left.\mathcal{E}(G)=2 k+(2 \nu-2) \sqrt{k-\lambda}=2 \sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-2)\left(2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}\right.}\right)
$$

Now, we prove the converse. Assume that

$$
\left.\mathcal{E}(G)=2 \sqrt[3]{\frac{2 M_{2}}{n}}+\sqrt{(n-2)\left(2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}\right.}\right)
$$

Then $\lambda_{1}=\left|\lambda_{n}\right|=\sqrt[3]{\frac{2 M_{2}}{n}}$ and $\left|\lambda_{j}\right|=\sqrt{\frac{2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}}{n-2}}$ for all $j=2, \ldots, n-1$, if $n>2$. The result is obvious if $n=2$. Assume that $n>2$. If G has exactly two distinct eigenvalues then by Lemma $3, G=\frac{n}{2} K_{2}$. If G has three distinct eigenvalues, then $\left|\lambda_{j}\right|=\sqrt{\frac{2 m-2\left(\sqrt[3]{\frac{2 M_{2}}{n}}\right)^{2}}{n-2}}=0$ for all $j=2, \ldots, n-1$, and so we obtain that $\lambda_{1}=\sqrt{m}$ and $M_{2}=\frac{m n \sqrt{m}}{2}$. Since G has three distinct eigenvalues, using Lemma 3 we find that G is a complete bipartite graph. Let X and Y be the partite sets of G, where $|X|=x$ and $|Y|=y$. Clearly, $n=x+y$ and $m=x y$. Since $M_{2}=(x y)^{2}=\frac{m n \sqrt{m}}{2}$, we obtain that $n=2 \sqrt{m}$. Consequently, $G=K_{\sqrt{m}, \sqrt{m}}$. It remains to assume
that G has four distinct eigenvalues. Since, $\sqrt[3]{\frac{2 M_{2}}{n}}>\sqrt{\frac{2 m-2\left(\sqrt[3]{\left.\frac{2 M_{2}}{n}\right)^{2}}\right.}{n-2}}$, by [6] (Page 166), G is the incidence graph of a symmetric $2-\left(\nu, \sqrt[3]{\frac{2 M_{2}}{n}}, \lambda\right)$ design, where $\nu=\frac{n}{2}, k=\sqrt[3]{\frac{2 M_{2}}{n}}$ and $\lambda=\frac{k(k-1)}{n-1}$.

5 Concluding remarks

We note that by Lemma 2 and the inequality chain (9), we can see that

$$
\begin{equation*}
\sqrt{\frac{2 m}{n}} \leq \frac{2 m}{n} \leq \sqrt[3]{\frac{2 M_{2}}{n}} \leq \lambda_{1} \leq \sqrt{2 m} \tag{11}
\end{equation*}
$$

Now the decreasing property of the function g implies that the bound of Theorem 8 is better than the bound of Theorem 2. Furthermore, the bound of Theorem 9 is better than the bound of Theorem 3. Also, in [2] the following bound is presented for any graph G,

$$
\begin{equation*}
\mathcal{E}(G) \leq \frac{\sqrt{M_{2}}}{m}+\sqrt{(n-1)\left(2 m-\frac{M_{2}}{m^{2}}\right)} \tag{12}
\end{equation*}
$$

and the following bound is presented for any bipartite graph G,

$$
\begin{equation*}
\mathcal{E}(G) \leq 2 \frac{\sqrt{M_{2}}}{m}+\sqrt{(n-2)\left(2 m-\frac{2 M_{2}}{m^{2}}\right)} \tag{13}
\end{equation*}
$$

It is known that $\frac{\sqrt{M_{2}}}{m} \leq \lambda_{1}$ (see [7]). Thus by Lemma 2 and inequality chains (10) and (11) we find that $\sqrt{\frac{2 m}{n}} \leq \frac{2 m}{n} \leq \sqrt[3]{\frac{2 M_{2}}{n}} \leq \frac{\sqrt{M_{2}}}{m} \leq \lambda_{1} \leq$ $\sqrt{2 m}$ and $\sqrt{\frac{2 m}{n}} \leq \frac{2 m}{n} \leq \sqrt[3]{\frac{2 M_{2}}{n}} \leq \frac{\sqrt{M_{2}}}{m} \leq \lambda_{1} \leq \sqrt{m}$ if G is bipartite. Now, the decreasing property of the functions f and g in the proofs of Theorems 8 and 9 , implies that the bound of Theorem 8 is better than the bound given in (12) and the bound of Theorem 9 is better than the bound given in (13).

Acknowledgment: The research of this paper was done while Prof. Saieed Akbari was visiting the School of Mathematical Sciences, Univer-
sity Sains Malaysia, as a visiting professor; he would like to thank the institute for the invitation and partial financial support. The research of the second author was supported by grant number G981202 from Sharif University of Technology.

References

[1] S. Akbari, M. Ghahremani, M. A. Hosseinzadeh, S. KhalashiGhezelahmad, H. Rasouli, A. Tehranian, A lower bound for graph energy in terms of minimum and maximum degrees, MATCH Commun. Math. Comput. Chem. 86 (2021) 549-558.
[2] N. Alawiah, N. Jafari Rad, A. Jahanbani, H. Kamarulhaili, New upper bounds on the energy of a graph, MATCH Commun. Math. Comput. Chem. 79 (2018) 287-301.
[3] E. R. Barnes, A. J. Hoffman, Bounds for the spectrum of normal matrices, Lin. Algebra Appl. 201 (1994) 79-90.
[4] L. W. Beineke, R. J. Wilson, Topics in Algebraic Graph Theory, Cambridge Univ. Press, New York, 2004.
[5] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.
[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.
[7] O. Favaron, M. Mahéo, J. F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti. II), Discr. Math. 111 (1993) 197-220.
[8] C. Godsil, Algebraic Combinatorics, Chapman \& Hall, New York, 1993.
[9] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[10] I. Gutman, O. E. Polansky, Mathatical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
[11] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz 103 (1978) 1-22.
[12] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[13] A. Jahanbani, J. R. Zambrano, Koolen-Moulton-type upper bounds on the energy of a graph, MATCH Commun. Math. Comput. Chem. 83 (2020) 497-518.
[14] J. H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
[15] J. H. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs Comb. 19 (2003) 131-135.
[16] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2010.
[17] B. Liu, Z. You, A survey on comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 65 (2011) 581-593.
[18] X. Ma, A low bound on graph energy in terms of minimum degree, MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404.

[^0]: * Corresponding author.

