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Abstract

The energy E(G) of a graph G is the sum of the absolute values
of all eigenvalues of G. An interesting and “hard-to-crack” problem
about graph energy was mentioned by Gutman in [The energy of
a graph: old and new results]: characterize the graphs G and their
edges e for which E(G − e) < E(G). In this paper, we give a new
sufficient condition for E(G−e) < E(G) where e is not necessarily to
be a cut-edge set or a cut edge. This work can be used to generalize
some well-known results.

1 Introduction

In this paper we are concerned with undirected simple graphs. Let G =

(V,E) be such a graph with n vertices and m edges, and V = {v1, . . . , vn}.
Denote N(v) the neighbors of vertex v in G. Let A(G) be the adjacency

matrix of G whose (i, j)-entry is 1 if the vertices vi and vj are adjacent

and 0 otherwise. Let λi(·) be the eigenvalues of a matrix of order n, and

labelled in a non-increasing manner: λ1(·) ≥ λ2(·) ≥ · · · ≥ λn(·). The

∗Corresponding author.

https://doi.org/10.46793/match.90-3.709T


710

energy of graph is defined [6, 7] as

E(G) =

n∑
i=1

|λi(A(G))| = 2
∑
+

λi(A(G))

with
∑

+ indicating summation over all positive-valued eigenvalues.

In theoretical chemistry, the energy of a graph has been extensively

studied since it is related to the total π-electron energy of the molecule

represented by that graph (see, e.g., [5, 10,12]).

An interesting “hard-to-crack” problem about graph energy was men-

tioned by Gutman [7] in 2001: characterize the graphs G and their edges e

for which E(G− e) < E(G). This problem and related problems are called

graph energy change in [15]. Day and So [3] studied the maximum amount

of change of graph energy with edges deleted. Moreover, they gave a suffi-

cient condition for E(G− e) ≤ E(G), that is, e a cut-edge set or a cut edge

in [4]. A similar sufficient condition for weighted graph was pointed out

by Gutman and Shao [10]. When G is a complete multipartite graph, the

conditions for the sign of E(G−e)−E(G) were determined in [1,14]. Addi-

tionally, the effects on the energy for adding edges among pendent vertices

was explored by Rojo [13]. Even though some partial results along these

lines have been obtained, the complete solution of this problem is still far

from known.

In this paper, we determine a new sufficient condition for E(G − e) <

E(G) where e is not necessarily to be a cut-edge set or a cut edge, which

can generalize some well-known results.

2 Preliminaries

As usual, letKn be a complete graph of order n, and Gc be the complement

of G. A k-partite graph is one whose vertices can be partitioned into k

parts such that no edge has both ends in the same part. A complete k-

partite graph is one whose any two vertices in different parts are adjacent.

When k = 2, the graph is called complete bipartite graph and denoted

by Ka,a with a = n/2. A complete k-partite graph on n vertices whose
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parts are of equal or almost equal sizes (that is, ⌊n/k⌋ or ⌈n/k⌉) is called
a Turán graph and denoted by Tk,n.

Let T be real n × n matrix with nonnegative entries. T is called ir-

reducible if for all i, j there is a k such that (T k)ij > 0. If graph G is

connected, then it is easy to check that A(G) is irreducible.

Let x1, . . . , xn be n vectors, and span{x1, . . . , xn} be the vector space

spanned by those vectors. Let X be a vector space, and let dimX denote

the dimension of X.

3 Main Results

Theorem 1. Suppose G is a graph of order n with a given vertex set U

such that induced subgraph G[U ] is a complete bipartite graph Ka,a, and

N(v) \ U = N(u) \ U for any v, u ∈ U . Then E(G) > E(G − E(G[U ])),

i.e., deleting all edges of G[U ] from G will decrease E(G).

Proof. It may be assumed that G is connected, otherwise we only have

to consider the component containing vertex set U since the energy of a

graph equals to the sum of all its components’ energy.

Let G′ = G − E(G[U ]). Let r = |N(v) \ U | for v ∈ U . If r = 0, then

G = G[U ], so E(G) > 0 = E(G′). We may therefore assume that r > 0,

then G′ is connected because G is connected.

Let V (G) = {v1, v2, . . . , vn} with U = {v1, . . . , v2a}, and H = G −

U . Let X =

(
0a×a Ja×a

Ja×a 0a×a

)
, Y =

(
J2a×r 02a×(n−2a−r)

)
, and B =(

X 02a×(n−2a)

0(n−2a)×2a 0(n−2a)×(n−2a)

)
, where Ji×j is an i× j matrix whose en-

tries are all 1. Now we can write A(G) and A(G′) as

A(G′) =

(
02a×2a Y

Y T A(H)

)
, A(G) = A(G′) +B.

Note that G can always be relabelled to make A(G) to have this form.

Let {pi}ni=1, {qi}ni=1 and {wi}ni=1 be orthonormal lists of eigenvectors

of A(G′), B and A(G), arranged as the same order as eigenvalues. Note
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that the eigenvalues of B are {a, 0n−2,−a}, and the eigenvector of −a is

qn = 1√
2a

(
J1×a −J1×a 01×(n−2a)

)T
. It can be verified that A(G′)qn =

0, that is, qn is also an eigenvector of λk(A(G′)) = 0. We may assume that

λk(A(G′)) is the first eigenvalue of A(G′) to be zero, i.e., λi(A(G′)) > 0

for i < k, and λi(A(G′)) ≤ 0 otherwise.

For a given 1 ≤ j < k, let S1 = span{p1, . . . , pj}, S2 = span{q1, . . . ,
qn−1}, and S3 = span{wj , . . . , wn}. Since qn ∈ span{pj+1, . . . , pn}, that is
qn ̸∈ S1 and qn is orthogonal to S1, hence

dim(S1 ∩ S2) + dimS3 = dim(S1 ∩ span{q1, . . . , qn}) + dimS3

= dimS1 + dimS3 = j + (n− j + 1) = n+ 1 > n.

So there is a unit vector x ∈ (S1

⋂
S2)

⋂
S3, and by appealing to Rayleigh

Theorem [11, Theorem 4.2.2] three times, we get

λj(A(G)) = wT
j A(G)wj ≥ xTA(G)x = xTA(G′)x+ xTBx

≥ pTj A(G′)pj + qTn−1Bqn−1

= λj(A(G′)) + λn−1(B) = λj(A(G′)).

Furthermore, A(G′) is irreducible and nonnegative since G′ is con-

nected. By Perron-Frobenius Theorem [11, Theorem 8.4.4], all entries of

p1 are positive. Therefore

λ1(A(G))− λ1(A(G′)) ≥ pT1 A(G)p1 − pT1 A(G′)p1

= pT1 Bp1 > 0. (since r > 0)

So we have

E(G′) = 2
∑
+

λi(A(G′)) = 2

λ1(A(G′)) +

k−1∑
j=2

λj(A(G′))


< 2

λ1(A(G)) +

k−1∑
j=2

λj(A(G))

 ≤ E(G),

that is, E(G′) < E(G) holds as desired.
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Set Ka,a = K1,1, and we have the following corollary immediately.

Corollary 1. Suppose G is a graph with a given edge uv such that N(v) \
{u} = N(u) \ {v}, then E(G) > E(G − uv), i.e., deleting edge uv will

decrease the energy of G.

4 Applications

As an example, the assertion that E(Kn) > E(Kn − e) for any edge e of

Kn can be found in [4, 9]. The following lemmas generalize this result.

Lemma 1. Suppose M1 and M2 are two matchings of Kn with n ≥ 2. If

|M1| < |M2|, then E(Kn −M1) > E(Kn −M2).

Proof. First consider the case M1 ⊂ M2, and let M2 \M1 =

{v1u1, . . . , vkuk} with k > 0. Let G0 = Kn −M1, and Gi = Gi−1 − viui

for i = 1, . . . , k. Note that Gk = Kn −M1 − (M2 \M1) = Kn −M2. And

it is not difficult to check that N(vi) \ {ui} = N(ui) \ {vi} in Gi−1 for

i = 1, . . . , k. Hence E(Gi−1) > E(Gi) by Corollary 1. Therefore, we have

E(Kn −M1) > E(Kn −M2).

If M1 ̸⊂ M2, we claim that Kn − M1 is isomorphic to Kn − M ′
1 for

any M ′
1 ⊂ M2 with |M1| = |M ′

1|. To prove this, we relabel Kn −M1 and

Kn −M ′
1 in the following way: first label all vertices of degree n− 1, then

label any vertex v of degree n− 2 with the one not adjacent to v until all

vertices are labelled. Now it is not hard to check that the vertices with

the same label in Kn − M1 and Kn − M ′
1 have neighbors with the same

labels. Therefore E(Kn−M1) = E(Kn−M ′
1) > E(Kn−M2). So the proof

is complete.

Remark. Take M1 = ∅, |M2| = 1, and we get the original result.

Lemma 2. Suppose U = {v1, v2, v3, v4} is a subset of vertices of Kn with

n ≥ 4. Then E(Kn) > E(Kn − {v1v2, v3v4}) > E(Kn − E(Kn[U ])).

Proof. Since {v1v2, v3v4} is a matching of Kn, then by Lemma 1 we have

E(Kn) > E(Kn − {v1v2, v3v4}).
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Let G = Kn−{v1v2, v3v4}, then Kn−E(Kn[U ]) = G−G[U ]. Note that

G[U ] is a K2,2, and N(v) \ U = V (Kn) \ U for each v ∈ U . By appealing

to Theorem 1, we obtain E(Kn − {v1v2, v3v4}) = E(G) > E(G − G[U ]) =

E(Kn − E(Kn[U ]). Therefore it follows the result clearly.

Corollary 1 can be restated from the view of edge addition.

Lemma 3. Suppose G is a graph with two non-adjacent vertices u and v

such that N(v) = N(u), then E(G) < E(G + uv), i.e., adding edge uv to

G will increase the energy of G.

Analogously to Lemma 1, we can establish the following relation for

complete k-partite graph and matchings of its complement.

Lemma 4. Let G be a complete k-partite graph with k ≥ 2. Suppose

M1 and M2 are two matchings of Gc. If M1 ⊂ M2, then E(G + M1) <

E(G+M2).

Proof. Let M2\M1 = {v1u1, . . . , vkuk} with k > 0. Let G0 = G+M1, and

Gi = Gi−1 + viui for i = 1, . . . , k. Note that Gk = G+M1 + (M2 \M1) =

G + M2. For i = 1, . . . , k, we have N(vi) \ {ui} = N(ui) \ {vi} in Gi.

Hence E(Gi−1) < E(Gi) by Corollary 1. Therefore, we have E(G+M1) <

E(G+M2).

Remark. It is not hard to see that Lemma 4 holds when G is a star or a

Turán graph.

In 2015, Wang and So [15] suggested following conjecture.

Conjecture 1. There is no graph G such that E(G) = E(G− e) for each

edge e.

They noted that: since the deletion of a cut-edge from a graph decreases

its energy, a counterexample to Conjecture 1 cannot have any cut-edge.

Then it is easy to see that a counterexample to Conjecture 1 cannot have

an edge uv such that N(v) \ {u} = N(u) \ {v}. This may be helpful to

solve the conjecture.
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