Graph Energy Change on Edge Deletion

Liangwen Tang ${ }^{a, b, *}$, Mugang Lin ${ }^{a, b}$, Qiuping $\mathbf{L i}^{a, b}$
${ }^{a}$ School of Computer Science and Technology, Hengyang Normal University, Hengyang, PR China
${ }^{b}$ Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang, PR China
tanglw@hynu.edu.cn, mglin@hynu.edu.cn, lqp819@hynu.edu.cn

(Received January 24, 2023)

Abstract

The energy $\mathcal{E}(G)$ of a graph G is the sum of the absolute values of all eigenvalues of G. An interesting and "hard-to-crack" problem about graph energy was mentioned by Gutman in [The energy of a graph: old and new results]: characterize the graphs G and their edges e for which $\mathcal{E}(G-e)<\mathcal{E}(G)$. In this paper, we give a new sufficient condition for $\mathcal{E}(G-e)<\mathcal{E}(G)$ where e is not necessarily to be a cut-edge set or a cut edge. This work can be used to generalize some well-known results.

1 Introduction

In this paper we are concerned with undirected simple graphs. Let $G=$ (V, E) be such a graph with n vertices and m edges, and $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Denote $N(v)$ the neighbors of vertex v in G. Let $A(G)$ be the adjacency matrix of G whose (i, j)-entry is 1 if the vertices v_{i} and v_{j} are adjacent and 0 otherwise. Let $\lambda_{i}(\cdot)$ be the eigenvalues of a matrix of order n, and labelled in a non-increasing manner: $\lambda_{1}(\cdot) \geq \lambda_{2}(\cdot) \geq \cdots \geq \lambda_{n}(\cdot)$. The

[^0]energy of graph is defined $[6,7]$ as
$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}(A(G))\right|=2 \sum_{+} \lambda_{i}(A(G))
$$
with \sum_{+}indicating summation over all positive-valued eigenvalues.
In theoretical chemistry, the energy of a graph has been extensively studied since it is related to the total π-electron energy of the molecule represented by that graph (see, e.g., $[5,10,12]$).

An interesting "hard-to-crack" problem about graph energy was mentioned by Gutman [7] in 2001: characterize the graphs G and their edges e for which $\mathcal{E}(G-e)<\mathcal{E}(G)$. This problem and related problems are called graph energy change in [15]. Day and So [3] studied the maximum amount of change of graph energy with edges deleted. Moreover, they gave a sufficient condition for $\mathcal{E}(G-e) \leq \mathcal{E}(G)$, that is, e a cut-edge set or a cut edge in [4]. A similar sufficient condition for weighted graph was pointed out by Gutman and Shao [10]. When G is a complete multipartite graph, the conditions for the sign of $\mathcal{E}(G-e)-\mathcal{E}(G)$ were determined in [1,14]. Additionally, the effects on the energy for adding edges among pendent vertices was explored by Rojo [13]. Even though some partial results along these lines have been obtained, the complete solution of this problem is still far from known.

In this paper, we determine a new sufficient condition for $\mathcal{E}(G-e)<$ $\mathcal{E}(G)$ where e is not necessarily to be a cut-edge set or a cut edge, which can generalize some well-known results.

2 Preliminaries

As usual, let K_{n} be a complete graph of order n, and G^{c} be the complement of G. A k-partite graph is one whose vertices can be partitioned into k parts such that no edge has both ends in the same part. A complete k partite graph is one whose any two vertices in different parts are adjacent. When $k=2$, the graph is called complete bipartite graph and denoted by $K_{a, a}$ with $a=n / 2$. A complete k-partite graph on n vertices whose
parts are of equal or almost equal sizes (that is, $\lfloor n / k\rfloor$ or $\lceil n / k\rceil$) is called a Turán graph and denoted by $T_{k, n}$.

Let T be real $n \times n$ matrix with nonnegative entries. T is called irreducible if for all i, j there is a k such that $\left(T^{k}\right)_{i j}>0$. If graph G is connected, then it is easy to check that $A(G)$ is irreducible.

Let x_{1}, \ldots, x_{n} be n vectors, and $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ be the vector space spanned by those vectors. Let X be a vector space, and let $\operatorname{dim} X$ denote the dimension of X.

3 Main Results

Theorem 1. Suppose G is a graph of order n with a given vertex set U such that induced subgraph $G[U]$ is a complete bipartite graph $K_{a, a}$, and $N(v) \backslash U=N(u) \backslash U$ for any $v, u \in U$. Then $\mathcal{E}(G)>\mathcal{E}(G-E(G[U]))$, i.e., deleting all edges of $G[U]$ from G will decrease $\mathcal{E}(G)$.

Proof. It may be assumed that G is connected, otherwise we only have to consider the component containing vertex set U since the energy of a graph equals to the sum of all its components' energy.

Let $G^{\prime}=G-E(G[U])$. Let $r=|N(v) \backslash U|$ for $v \in U$. If $r=0$, then $G=G[U]$, so $\mathcal{E}(G)>0=\mathcal{E}\left(G^{\prime}\right)$. We may therefore assume that $r>0$, then G^{\prime} is connected because G is connected.

Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $U=\left\{v_{1}, \ldots, v_{2 a}\right\}$, and $H=G-$ U. Let $X=\left(\begin{array}{ll}\mathbf{0}_{a \times a} & J_{a \times a} \\ J_{a \times a} & \mathbf{0}_{a \times a}\end{array}\right), Y=\left(\begin{array}{ll}J_{2 a \times r} & \mathbf{0}_{2 a \times(n-2 a-r)}\end{array}\right)$, and $B=$ $\left(\begin{array}{cc}X & \mathbf{0}_{2 a \times(n-2 a)} \\ \mathbf{0}_{(n-2 a) \times 2 a} & \mathbf{0}_{(n-2 a) \times(n-2 a)}\end{array}\right)$, where $J_{i \times j}$ is an $i \times j$ matrix whose entries are all 1 . Now we can write $A(G)$ and $A\left(G^{\prime}\right)$ as

$$
A\left(G^{\prime}\right)=\left(\begin{array}{cc}
\mathbf{0}_{2 a \times 2 a} & Y \\
Y^{T} & A(H)
\end{array}\right), \quad A(G)=A\left(G^{\prime}\right)+B
$$

Note that G can always be relabelled to make $A(G)$ to have this form.
Let $\left\{p_{i}\right\}_{i=1}^{n},\left\{q_{i}\right\}_{i=1}^{n}$ and $\left\{w_{i}\right\}_{i=1}^{n}$ be orthonormal lists of eigenvectors of $A\left(G^{\prime}\right), B$ and $A(G)$, arranged as the same order as eigenvalues. Note
that the eigenvalues of B are $\left\{a, 0^{n-2},-a\right\}$, and the eigenvector of $-a$ is $q_{n}=\frac{1}{\sqrt{2 a}}\left(\begin{array}{lll}J_{1 \times a} & -J_{1 \times a} & \mathbf{0}_{1 \times(n-2 a)}\end{array}\right)^{T}$. It can be verified that $A\left(G^{\prime}\right) q_{n}=$ $\mathbf{0}$, that is, q_{n} is also an eigenvector of $\lambda_{k}\left(A\left(G^{\prime}\right)\right)=0$. We may assume that $\lambda_{k}\left(A\left(G^{\prime}\right)\right)$ is the first eigenvalue of $A\left(G^{\prime}\right)$ to be zero, i.e., $\lambda_{i}\left(A\left(G^{\prime}\right)\right)>0$ for $i<k$, and $\lambda_{i}\left(A\left(G^{\prime}\right)\right) \leq 0$ otherwise.

For a given $1 \leq j<k$, let $S_{1}=\operatorname{span}\left\{p_{1}, \ldots, p_{j}\right\}, S_{2}=\operatorname{span}\left\{q_{1}, \ldots\right.$, $\left.q_{n-1}\right\}$, and $S_{3}=\operatorname{span}\left\{w_{j}, \ldots, w_{n}\right\}$. Since $q_{n} \in \operatorname{span}\left\{p_{j+1}, \ldots, p_{n}\right\}$, that is $q_{n} \notin S_{1}$ and q_{n} is orthogonal to S_{1}, hence

$$
\begin{aligned}
\operatorname{dim}\left(S_{1} \cap S_{2}\right)+\operatorname{dim} S_{3} & =\operatorname{dim}\left(S_{1} \cap \operatorname{span}\left\{q_{1}, \ldots, q_{n}\right\}\right)+\operatorname{dim} S_{3} \\
& =\operatorname{dim} S_{1}+\operatorname{dim} S_{3}=j+(n-j+1)=n+1>n
\end{aligned}
$$

So there is a unit vector $x \in\left(S_{1} \bigcap S_{2}\right) \bigcap S_{3}$, and by appealing to Rayleigh Theorem [11, Theorem 4.2.2] three times, we get

$$
\begin{aligned}
\lambda_{j}(A(G)) & =w_{j}^{T} A(G) w_{j} \geq x^{T} A(G) x=x^{T} A\left(G^{\prime}\right) x+x^{T} B x \\
& \geq p_{j}^{T} A\left(G^{\prime}\right) p_{j}+q_{n-1}^{T} B q_{n-1} \\
& =\lambda_{j}\left(A\left(G^{\prime}\right)\right)+\lambda_{n-1}(B)=\lambda_{j}\left(A\left(G^{\prime}\right)\right)
\end{aligned}
$$

Furthermore, $A\left(G^{\prime}\right)$ is irreducible and nonnegative since G^{\prime} is connected. By Perron-Frobenius Theorem [11, Theorem 8.4.4], all entries of p_{1} are positive. Therefore

$$
\begin{aligned}
\lambda_{1}(A(G))-\lambda_{1}\left(A\left(G^{\prime}\right)\right) & \geq p_{1}^{T} A(G) p_{1}-p_{1}^{T} A\left(G^{\prime}\right) p_{1} \\
& =p_{1}^{T} B p_{1}>0 . \quad(\text { since } r>0)
\end{aligned}
$$

So we have

$$
\begin{aligned}
\mathcal{E}\left(G^{\prime}\right) & =2 \sum_{+} \lambda_{i}\left(A\left(G^{\prime}\right)\right)=2\left(\lambda_{1}\left(A\left(G^{\prime}\right)\right)+\sum_{j=2}^{k-1} \lambda_{j}\left(A\left(G^{\prime}\right)\right)\right) \\
& <2\left(\lambda_{1}(A(G))+\sum_{j=2}^{k-1} \lambda_{j}(A(G))\right) \leq \mathcal{E}(G)
\end{aligned}
$$

that is, $\mathcal{E}\left(G^{\prime}\right)<\mathcal{E}(G)$ holds as desired.

Set $K_{a, a}=K_{1,1}$, and we have the following corollary immediately.
Corollary 1. Suppose G is a graph with a given edge uv such that $N(v) \backslash$ $\{u\}=N(u) \backslash\{v\}$, then $\mathcal{E}(G)>\mathcal{E}(G-u v)$, i.e., deleting edge uv will decrease the energy of G.

4 Applications

As an example, the assertion that $\mathcal{E}\left(K_{n}\right)>\mathcal{E}\left(K_{n}-e\right)$ for any edge e of K_{n} can be found in [4,9]. The following lemmas generalize this result.

Lemma 1. Suppose M_{1} and M_{2} are two matchings of K_{n} with $n \geq 2$. If $\left|M_{1}\right|<\left|M_{2}\right|$, then $\mathcal{E}\left(K_{n}-M_{1}\right)>\mathcal{E}\left(K_{n}-M_{2}\right)$.

Proof. First consider the case $M_{1} \subset M_{2}$, and let $M_{2} \backslash M_{1}=$ $\left\{v_{1} u_{1}, \ldots, v_{k} u_{k}\right\}$ with $k>0$. Let $G_{0}=K_{n}-M_{1}$, and $G_{i}=G_{i-1}-v_{i} u_{i}$ for $i=1, \ldots, k$. Note that $G_{k}=K_{n}-M_{1}-\left(M_{2} \backslash M_{1}\right)=K_{n}-M_{2}$. And it is not difficult to check that $N\left(v_{i}\right) \backslash\left\{u_{i}\right\}=N\left(u_{i}\right) \backslash\left\{v_{i}\right\}$ in G_{i-1} for $i=1, \ldots, k$. Hence $\mathcal{E}\left(G_{i-1}\right)>\mathcal{E}\left(G_{i}\right)$ by Corollary 1. Therefore, we have $\mathcal{E}\left(K_{n}-M_{1}\right)>\mathcal{E}\left(K_{n}-M_{2}\right)$.

If $M_{1} \not \subset M_{2}$, we claim that $K_{n}-M_{1}$ is isomorphic to $K_{n}-M_{1}^{\prime}$ for any $M_{1}^{\prime} \subset M_{2}$ with $\left|M_{1}\right|=\left|M_{1}^{\prime}\right|$. To prove this, we relabel $K_{n}-M_{1}$ and $K_{n}-M_{1}^{\prime}$ in the following way: first label all vertices of degree $n-1$, then label any vertex v of degree $n-2$ with the one not adjacent to v until all vertices are labelled. Now it is not hard to check that the vertices with the same label in $K_{n}-M_{1}$ and $K_{n}-M_{1}^{\prime}$ have neighbors with the same labels. Therefore $\mathcal{E}\left(K_{n}-M_{1}\right)=\mathcal{E}\left(K_{n}-M_{1}^{\prime}\right)>\mathcal{E}\left(K_{n}-M_{2}\right)$. So the proof is complete.

Remark. Take $M_{1}=\emptyset,\left|M_{2}\right|=1$, and we get the original result.
Lemma 2. Suppose $U=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a subset of vertices of K_{n} with $n \geq 4$. Then $\mathcal{E}\left(K_{n}\right)>\mathcal{E}\left(K_{n}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}\right)>\mathcal{E}\left(K_{n}-E\left(K_{n}[U]\right)\right)$.

Proof. Since $\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$ is a matching of K_{n}, then by Lemma 1 we have $\mathcal{E}\left(K_{n}\right)>\mathcal{E}\left(K_{n}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}\right)$.

Let $G=K_{n}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$, then $K_{n}-E\left(K_{n}[U]\right)=G-G[U]$. Note that $G[U]$ is a $K_{2,2}$, and $N(v) \backslash U=V\left(K_{n}\right) \backslash U$ for each $v \in U$. By appealing to Theorem 1, we obtain $\mathcal{E}\left(K_{n}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}\right)=\mathcal{E}(G)>\mathcal{E}(G-G[U])=$ $\mathcal{E}\left(K_{n}-E\left(K_{n}[U]\right)\right.$. Therefore it follows the result clearly.

Corollary 1 can be restated from the view of edge addition.
Lemma 3. Suppose G is a graph with two non-adjacent vertices u and v such that $N(v)=N(u)$, then $\mathcal{E}(G)<\mathcal{E}(G+u v)$, i.e., adding edge uv to G will increase the energy of G.

Analogously to Lemma 1, we can establish the following relation for complete k-partite graph and matchings of its complement.

Lemma 4. Let G be a complete k-partite graph with $k \geq 2$. Suppose M_{1} and M_{2} are two matchings of G^{c}. If $M_{1} \subset M_{2}$, then $\mathcal{E}\left(G+M_{1}\right)<$ $\mathcal{E}\left(G+M_{2}\right)$.

Proof. Let $M_{2} \backslash M_{1}=\left\{v_{1} u_{1}, \ldots, v_{k} u_{k}\right\}$ with $k>0$. Let $G_{0}=G+M_{1}$, and $G_{i}=G_{i-1}+v_{i} u_{i}$ for $i=1, \ldots, k$. Note that $G_{k}=G+M_{1}+\left(M_{2} \backslash M_{1}\right)=$ $G+M_{2}$. For $i=1, \ldots, k$, we have $N\left(v_{i}\right) \backslash\left\{u_{i}\right\}=N\left(u_{i}\right) \backslash\left\{v_{i}\right\}$ in G_{i}. Hence $\mathcal{E}\left(G_{i-1}\right)<\mathcal{E}\left(G_{i}\right)$ by Corollary 1. Therefore, we have $\mathcal{E}\left(G+M_{1}\right)<$ $\mathcal{E}\left(G+M_{2}\right)$.

Remark. It is not hard to see that Lemma 4 holds when G is a star or a Turán graph.

In 2015, Wang and So [15] suggested following conjecture.
Conjecture 1. There is no graph G such that $\mathcal{E}(G)=\mathcal{E}(G-e)$ for each edge e.

They noted that: since the deletion of a cut-edge from a graph decreases its energy, a counterexample to Conjecture 1 cannot have any cut-edge. Then it is easy to see that a counterexample to Conjecture 1 cannot have an edge $u v$ such that $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. This may be helpful to solve the conjecture.

Acknowledgment: The authors are grateful to the anonymous referee for valuable comments which helped us to improve the manuscript. This
work was supported in part by the National Natural Science Foundation of China (61772179), the Scientific Research Fund of Hunan Provincial Education Department (22A0502), Hunan Provincial Natural Science Foundation of China (2019JJ40005), 14th Five-Year Plan Key Disciplines and Application-oriented Special Disciplines of Hunan Province(Xiangjiaotong [2022] 351), Science and Technology Plan Project of Hunan Province (2016TP1020), Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (2022HSKFJJ012), and Instructiveness Plan Project of Hengyang (Grant No. 202121014362).

References

[1] S. Akbari, E. Ghorbani, M. Oboudi, Edge addition, singular values, and energy of graphs and matrices, Lin. Algebra Appl. 430 (2009) 2192-2199.
[2] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[3] J. Day, W. So, Singular value inequality and graph energy change, El. J. Lin. Algebra 16 (2007) 291-299.
[4] J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl. 428 (2008) 2070-2078.
[5] I. Gutman, Bounds for total π-electron energy, Chem. Phys. Lett. 24 (1974) 283-285.
[6] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz 103 (1978) 1-22.
[7] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[8] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH, Weinheim, 2009, 145-174.
[9] I. Gutman, L. Pavlović, The energy of some graphs with large number of edges, Bull. Acad. Serbe Sci. Arts. (Cl. Math. Natur.) 118 (1999) 35-50.
[10] I. Gutman, J. Shao, The energy change of weighted graphs, Lin. Algebra Appl. 435 (2011) 2425-2431.
[11] R. Horn, C. Johnson, Matrix Analysis, Cambridge Univ. Press, New York, 2013.
[12] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[13] O. Rojo, Effects on the energy and Estrada indices by adding edges among pendent vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 343-358.
[14] H. Shan, C. He, Z. Yu, The energy change of the complete multipartite graph, El. J. Lin. Algebra 36 (2020) 309-317.
[15] W. Wang, W. So, Graph energy change due to any single edge deletion, El. J. Lin. Algebra 29 (2015) 59-73.

[^0]: * Corresponding author.

