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Abstract

The Graovac-Ghorbani (ABCGG) index of a graph is a distance-
based topological descriptor which is an analog of the atom-bond
connectivity (ABC) index. In [9], Furtula showed that, tested on
alkans, ABCGG gives better prediction in the case of entropy and
acentric factor than ABC index.

In [5] Dimitrov et al. conjectured that among all trees on n
vertices with the maximum degree ∆ almost dendrimers are trees
which maximize ABCGG index. In this paper we present a mathe-
matical proof of the established conjecture by showing that almost
dendrimers are extremal trees among all trees with n vertices and
maximum degree at most ∆.

1 Introduction

Topological descriptors are molecular descriptors which are frequently ap-

plied in various research projects. Among them, Randić connectivity index

is the most conspicuous one and has countless applications in chemistry

and pharmacology [19]. The mathematical properties of this index are

also well elaborated. Thorough investigation of this index has motivated
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scientists to introduce other molecular descriptors that could match for

Randić index. One of them is the atom-bond connectivity (ABC) index

introduced in 1998 by Estrada et al. [7]. For a finite, simple and undirected

graph G with the vertex set V (G) and the edge set E(G), ABC index is

defined as follows

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
, (1)

with d(w) being the degree of a vertex w ∈ V (G). According to [9], ABC

index is one of the best degree–based molecular descriptors [9, 11,14].

In the hope of being successful as ABC index, in 2010 another topolog-

ical invariant appeared, afterwards known as Graovac-Ghorbani (ABCGG)

index [12]. It is defined as

ABCGG(G) =
∑

uv∈E(G)

√
nu + nv − 2

nunv
, (2)

where nu is the number of vertices which are closer to vertex u than to

vertex v and nv is the number of vertices which are closer to v than to

u. In [9] Furtula studied prediction power of ABCGG index and showed

that this distance-based topological descriptor gives better prediction in

the case of entropy and acentric factor than ABC index.

Despite the fact that ABCGG index was introduced thirteen years ago,

there are only several publications concerned with its mathematical prop-

erties. In [20] Rostami et al. proved that among all connected graphs

on n vertices, the minimum value of ABCGG is achieved for the com-

plete graphs Kn. Additionally, they determined lower and upper bounds

of ABCGG index for trees with given number of pendant vertices. Das

et al. in [3] obtained bounds of ABCGG index for unicyclic graphs, while

Pacheco et al. [18] studied ABCGG index for some types of bicyclic graphs.

Dimitrov et al. in [5] showed that amongst all bipartite graphs with n

vertices, the minimum ABCGG index is attained by a complete bipartite

graph K⌊n
2 ⌋,⌈n

2 ⌉, while the maximum ABCGG index is attained by a path

or a cycle-like graph. Brand new results concerning ABCGG index were
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obtained in [8], where Filipovski solved a conjecture posed in [9] by char-

acterizing graphs with given number of vertices that maximize ABCGG

index.

In this paper we solve one of the conjectures posed in [5] concerning

extremal values of ABCGG index of trees. Namely, we prove that almost

dendrimers are trees which maximize ABCGG index among all trees on n

vertices with maximum degree at most ∆.

2 Proof

All graphs in this paper will be finite, simple and undirected, and we

follow the standard graph-theoretic terminology, see for example [4]. For

a simple graph G, by dG(u, v) we denote the distance between vertices

u and v in G, i.e. the length of a shortest path between u and v. The

distance of a vertex u, σG(u) = σ(u), in a connected graph G is defined by

σ(u) :=
∑

v∈V (G) d(u, v). A vertex v in G of minimum distance is called

the centroid of G. Centroid of a tree is either a single vertex or a set of two

adjacent vertices, see Jordan [16]. We will need the following two lemmas:

Lemma 1. [1] A vertex v is the centroid of an n−vertex tree T if and

only if the largest component of T − v has at most n/2 vertices.

Notice that if v is the centroid of T and the largest component of T − v

has exactly n/2 vertices, then the neighbor of v which is in the largest

component of T − v is also the centroid of T . If the largest component of

T − v has less than n/2 vertices, then T has a single centroid.

Lemma 2. [6] Suppose a and b are vertices of a connected graph G. Let

A be the set of vertices closer to a than b and let B be the set of vertices

closer to b then a. Then σ(a) − σ(b) = |B| − |A| = |B′| − |A′|, where

A′ = A− a and B′ = B − b.

It follows that if v = v1, v2, . . . , vk = w is an arbitrary path from a centroid

v to an end vertex w, then

σT (v1) ≤ σT (v2) < · · · < σT (vk). (3)
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If both v1 and v2 are centroids of T , then equality holds in (3), that is

σT (v1) = σT (v2).

Let us consider a tree T with the vertex set V and the edge set E rooted

at the vertex r. The level or depth l(v) of a vertex v in T is the length of

the path from the root r to v. The depth l = l(T ) of T is the maximum

depth among all vertices in T . For 1 ≤ k ≤ l, vertex at the level k which

is adjacent to a vertex v at the level k − 1 is called a child of v.

For n ≥ 3 and ∆ ≥ 2, by Tn,∆ we denote the set of trees with n

vertices and with maximum degree at most ∆. If we consider such trees

to be rooted at some vertex, then the root has at most ∆ children, and all

other vertices have at most ∆− 1 children.

Let us consider trees T, T ′ ∈ Tn,∆ with roots r and r′, respectively. If

there exists an edge-preserving bijection f : V → V ′, then T and T ′ are

isomorphic trees and we write T ∼= T ′. If f is such that f(r) = r′, we write

T ∼=r T ′.

Let us introduce special types of trees with the maximum degree at

most ∆ which are cruical in our study. For ∆ ≥ 2, let T 1
∆+1,∆ ∈ Tn,∆ be a

star with ∆ + 1 vertices rooted at the vertex v0 of a degree ∆. For l ≥ 2,

let T l
n,∆ be a rooted tree obtained by attaching ∆−1 new pendant vertices

to each pendant vertex in m−vertex tree T l−1
m,∆. The tree T l

n,∆ is called a

dendrimer. Notice that T l
n,∆ has ∆(∆− 1)i−1 vertices at level i = 1, . . . , l

and

|V (T l
n,∆)| = 1+

l−1∑
i=0

∆(∆− 1)i =


1 + ∆

∆−2 [(∆− 1)l − 1], ∆ ≥ 3

1 + 2l, ∆ = 2.

(4)

For convenience, neighbors, i.e. children of v0 in T l
n,∆ are denoted by v1i ,

i = 1, . . . ,∆. For 2 ≤ k ≤ l and j = 1, . . . ,∆(∆ − 1)k−2 children of vk−1
j

are denoted by vk1+(j−1)(∆−1), . . . , v
k
j(∆−1).

An almost dendrimer Tn,∆ is a tree with n vertices obtained from

T l
n,∆ by removing s pendant vertices vl∆(∆−1)l−1−i, i = 0, . . . , s, 0 ≤ s ≤

∆(∆ − 1)l−1 − 1. Therefore, every non-pendant vertex in Tn,∆ except

perhaps one (which is at level l − 1), has degree ∆. It is clear that Tn,∆

belongs to Tn,∆ and if n is given by equation (4), then Tn,∆
∼=r T l

n,∆.
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Example of an almost dendrimer is presented in Figure 1.

v0

v11 v12 v13

v21 v22 v23 v24 v25 v26

v31 v32 v33 v34 v35 v36 v37 v38 v39

Figure 1. An almost dendrimer T19,3.

Now we introduce another family of trees which is slightly different

from almost dendrimers. Let p ≥ 2 and let T (p+1, p)1 be a star with p+1

vertices rooted at the vertex u0 of a degree p. For l ≥ 2, let T (n, p)l be a

rooted tree obtained by attaching p new pendant vertices to each pendant

vertex in m−vertex tree T (m, p)l−1. A tree T (n, p)l has pi vertices at level

i = 1, . . . , l and

|V (T l
n,p)| = 1 +

l∑
i=1

pi =
pl+1 − 1

p− 1
. (5)

For i = 1, . . . , p children of u0 in T (n, p)l are denoted by u1
i . For 2 ≤ k ≤ l

and j = 1, . . . , pk−1 children of uk−1
j are denoted by uk

1+(j−1)p, . . . , u
k
jp.

By T (n, p) we denote a tree with n vertices obtained from T (n, p)l by

removing s pendant vertices vlpl−i, i = 0, . . . , s, 0 ≤ s ≤ pl − 1. Therefore,

every non-pendant vertex in T (n, p) except perhaps one (which is at level

l− 1), has p children. It is clear that for p = ∆− 1, p ≥ 3 tree T (n,∆− 1)

belongs to Tn,∆ and if n is given by equation (5), then T (n, p) ∼=r T (n, p)l.

Example of T (n, p) is presented in Figure 2.
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u0

u1
1 u1

2 u1
3

u2
1 u2

2 u2
3 u2

4 u2
5 u2

6 u2
7 u2

8 u2
9

u3
1 u3

2 u3
3 u3

4 u3
5

Figure 2. Tree T (18, 3).

Notice that Tn,2
∼= Pn and its depth is l =

⌊
n
2

⌋
. A tree Tn,2 − v0

consists of two paths with
⌊
n
2

⌋
vertices and according to Lemma 1, vertex

v0 is its centroid. If n is odd, centroid of Tn,2 is not unique, it is the set

{v0, v11}.
Let ∆ ≥ 3 and let Ti be a component of Tn,∆−v0, i = 1, . . . ,∆. Notice

that |T1| ≥ |T2| ≥ · · · ≥ |T∆| and |Ti| ≤ (∆−1)l−1
∆−2 , with equality holding

for each i if and only if Tn,∆
∼=r T l

n,∆.

Lemma 3. For n ≥ 4 and ∆ ≥ 3 we have |V (Tn,∆)| = 2[(∆−1)l−1]
∆−2 if and

only if T1 has the maximum number of vertices, i.e. |T1| = (∆−1)l−1
∆−2 and Ti

has the smallest number of vertices, i.e. |Ti| = (∆−1)l−1−1
∆−2 , i = 2, . . . ,∆.

Proof. Proof of necessity is straightforward. Conditions on T1 and Ti,

i = 2, . . . , n imply n = 1 +
∑∆

i=1 |Ti| = 2[(∆−1)l−1]
∆−2 . Let us prove suffi-

ciency. If n = 2[(∆−1)l−1]
∆−2 , then T1 has the maximum number of vertices,

otherwise |T1| < (∆−1)l−1
∆−2 would imply |Ti| = (∆−1)l−1−1

∆−2 , i = 2, . . . ,∆,

which is impossible since it leads to n < 2[(∆−1)l−1]
∆−2 . However, if T1 has

the maximum number of vertices, then Ti, i = 2, . . . ,∆ has the smallest

number of vertices, i.e. |Ti| = (∆−1)l−1−1
∆−2 , otherwise n would be larger

than 2[(∆−1)l−1]
∆−2 .

The following proposition is useful for further observations.
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Proposition 1. Let n ≥ 4 and ∆ ≥ 3.

(i) Set {v0, v11} is the centroid of Tn,∆ if and only if n = 2[(∆−1)l−1]
∆−2 .

(ii) Vertex v0 is a single centroid of Tn,∆ if and only if n ̸= 2[(∆−1)l−1]
∆−2 .

Proof. (i) It holds n = 2[(∆−1)l−1]
∆−2 if and only if |T1| = n

2 and |R| :=

1 +

∆∑
i=2

|Ti| =
n

2
. Since T1 and R are the largest components of Tn,∆ − v0,

according to Lemma 1, {v0, v11} is the centroid of Tn,∆.

(ii) Let n ̸= 2[(∆−1)l−1]
∆−2 . According to Lemma 3, |T1| < (∆−1)l−1

∆−2 or there

exists k ∈ N, 1 < k ≤ ∆ such that |Tk| > (∆−1)l−1−1
∆−2 . If |T1| < (∆−1)l−1

∆−2 ,

then |Ti| = (∆−1)l−1−1
∆−2 , i = 2, . . . ,∆ (otherwise, tree is not an almost

dendrimer) and n < 2[(∆−1)l−1]
∆−2 . If we assume that |T1| ≥ n/2, then

1 +
∑∆

i=2 |Ti| = (∆−1)l−1
∆−2 ≤ n

2 , which is impossible. Therefore, |T1| < n/2

and we conclude that v0 is a single centroid of Tn,∆.

We are left with the case |Tk| > (∆−1)l−1−1
∆−2 for some k, 1 < k ≤ ∆.

Then |T1| = (∆−1)l−1
∆−2 and we conclude n > 2[(∆−1)l−1]

∆−2 . But this implies

|Ti| < n/2 for all i = 1, . . . ,∆. Therefore, v0 is the centroid of Tn,∆.

Proposition 1 claims that centroid of an arbitrary tree Tn,∆ is its root.

That is not the case for T (n, p). For example, the single centroid of T (22, 3)

is the vertex u1
1.

For proving the main result in our paper, we will need some tools from

the the theory of majorization, see Marshall, Olkin and Arnold [17].

Let Rs := {(x1, . . . , xs) : xi ∈ R, i = 1, . . . , s}. For any x = (x1, . . . , xs) ∈
Rs, let

x(1) ≤ x(2) ≤ · · · ≤ x(s)

denote the components of x in increasing order, and let

x↑ = (x(1), x(2), . . . , x(s))

denote the increasing rearrangement of x.

Definition 1. Let x, y ∈ Rs. We say that x is majorized by y (y majorizes
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x) and write x ≺ y if

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . , s− 1,

s∑
i=1

x(i) =

s∑
i=1

y(i).

(6)

By replacing equality in (6) by an inequality leads to the concept of

weak majorization.

Definition 2. Let x, y ∈ Rs. We say that x is weakly supermajorized by

y (y weakly supermajorizes x) and write x ≺w y if

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . , s. (7)

There are numerous ways to verify that x is majorized by y. One of

them is crucial for our main result and characterizes majorization by using

order-preserving functions.

Theorem 2. [17] Let x, y ∈ Rs. Inequality

s∑
i=1

f(xi) ≤
s∑

i=1

f(yi) (8)

holds for all continuous decreasing convex functions f : R → R if and only

if x ≺w y.

Let T be a rooted tree of depth l. For e = wk−1wk ∈ E, k = 1, . . . , l

by nT (e)
k we denote the number of vertices in T which are closer to wk

than wk−1, that is

nT (e)
k = |{z : dT (w

k, z) < dT (w
k−1, z)}|. (9)

Similarly, by nT (e)
k−1 we denote the number of vertices in T which are

closer to wk−1 than wk. Notice that nT (e)
k is the number of vertices in

component of T − e that contains wk. Moreover, all vertices in T which
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are closer to wk have depth greater than or equal to k.

If we consider a tree in which a root and a centroid coincide, then

Lemma 2 and inequality (3) imply

nT (e)
k ≤ nT (e)

k−1. (10)

Let us consider the sequence N(T ) = (nT (e)
k)e∈E . In 2003 Jelen and

Triesch [15] considered (n, p)−ary treese. i.e., n−vertex trees in which any

vertex has at most p children. They proved the following theorem.

Theorem 3. Let n, p ∈ N with n ≥ 2 and p ≥ 2 and let T be an (n, p)−ary

tree. Then N(T ) ≺w N(T (n, p)) with equality if and only if T ∼=r T (n, p).

Note that for any n−vertex tree T , equation (2) can be written as

ABCGG(T ) = (n− 2)
∑
uv∈E

√
1

nu(n− nu)
(11)

since nu + nv = n. Without the loss of generality we can assume nu ≤ nv

∀uv ∈ E. Let n ≥ 2 and let us consider a function fn :
[
1, n

2

]
→ R given

by

fn(t) =

√
1

t(n− t)
. (12)

By examining properties of fn, we conclude that it is a continuous, strictly

decreasing and strictly convex function. Now ABCGG(T ) can be written

as

ABCGG(T ) = (n− 2)
∑
uv∈E

fn(nu), (13)

and if we assume that T is rooted at its centroid, then according to (10)

we can write

ABCGG(T ) = (n− 2)
∑
e∈E

fn(nT (e)
k). (14)

Bearing in mind properties of fn, according to Theorem 2 the problem

of maximizing ABCGG(T ) given by (14) is equivalent to the problem of

maximizing N(T ) = (nT (e)
k)e∈E in the sense of weak supermajorization.

Now we are ready to state and prove the main result.
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Theorem 4. Let n,∆ ∈ N with n ≥ 3 and ∆ ≥ 2. If T ∈ Tn,∆ has the

maximum Graovac-Ghorbani index, then T ∼= Tn,∆.

Proof. Path Pn is a unique n−vertex tree with maximum degree at most

2, so T (n, 2) ∼= Pn. Let ∆ ≥ 3. For n = ∆ + 1 we have a unique tree: a

star Sn, therefore T (∆ + 1,∆) ∼= Sn+1.

Suppose now that n > ∆ + 1. Let T ∗ ∈ Tn,∆ be a tree rooted at a

centroid z and T ∗ has the maximum Graovac-Ghorbani index. Then, as

we concluded earlier, N(T ∗) = (nT∗(e)k)e∈E is maximum in the sense of

weak supermajorization. By zi, 1 ≤ i ≤ dT∗(z) we denote neighbors of z

and by T ∗(zi) the components of T ∗ − z rooted at zi. Furthermore, by

T ∗
i we denote the subtree induced by V \ V (T ∗(zi)) and that is rooted at

r. Notice that dT∗(z) ≥ 2, otherwise z is not a centroid (it is a pendant

vertex and n ≥ 4). Each vertrex in T ∗
i has at most ∆− 1 children so it is

(|V (T ∗
i )|,∆− 1)−ary tree. From Theorem 3 it follows that

T ∗
i
∼=z T (|V (T ∗

i )|,∆− 1)

for all i = 1, . . . , dT∗(z). This implies dT∗(z) = ∆ and T ∗ ∼=z T (n,∆).
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