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Abstract

For a graph G = (VG, EG), a subset S ⊆ VG is called a maxi-
mum dissociation set if the induced subgraph G[S] does not contain
P3 as its subgraph, and the subset has maximum cardinality. The
dissociation number of G is the number of vertices in a maximum
dissociation set of G. This paper mainly studies the problem of de-
termining the maximum or minimum values of the Harary indices
among all trees, bipartite graphs and general connected graphs with
fixed order and dissociation number. To be specific, we determine
the sharp upper bound of the Harary index among all connected
graphs (resp. bipartite graphs, trees) with given order and disso-
ciation number. The extremal graphs meeting these upper bounds
are fully characterized. Furthermore, the graphs having the min-
imum Harary indices with fixed order n and dissociation number
φ ∈ {2,

⌈
2
3
n
⌉
, n− 2, n− 1} are also showed.
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1 Introduction

We start with introducing some background information that leads to our

main results. Our main results will also be given in this section.

1.1 Background and definitions

All graphs considered in this paper are undirected, simple and connected.

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. We

call |VG| the order of G. As usual, let Pn, Sn and Kn be a path, a star

and a complete graph with n vertices, respectively. The vertex with degree

n − 1 is called the center of Sn. The distance between vertices u and v,

denoted by dG(u, v), is the length of a shortest path connecting them. The

diameter of G, written as diam(G), is the maximum distance between any

two vertices of G. We follow the notation and terminology in [6] except

otherwise stated.

Let NG(v) be the set of neighbors of a vertex v ∈ VG, and NG[v] :=

NG(v) ∪ {v} be the closed neighborhood of v ∈ VG. We call dG(v) :=

|NG(v)| the degree of v. The subscripts will be omitted without ambiguity.

A vertex of a graph G is called a pendent vertex (or a leaf ) if it is a vertex

with degree one in G, whereas a vertex of G is called a quasi-pendent

vertex if it is adjacent to a pendent vertex in G. For the sake of simplicity,

we use G − v,G − uv to denote the graph obtained from G by deleting

vertex v ∈ VG, or edge uv ∈ EG, respectively. For two graphs G1 and G2,

denote by G1 ∪G2 and G1 ∨G2 the disjoint union and join of G1 and G2,

respectively. For simplicity, we use kG to denote the disjoint union of k

copies of G.

A subset is called an independent set if any two vertices of it are not

adjacent. The independence number of a graph G is the maximum car-

dinality among all independent sets of G. A subset S ⊆ VG is called a

dissociation set if the induced subgraph G[S] does not contain P3 as its

subgraph. A maximum dissociation set of G is a dissociation set with the

maximum cardinality. The dissociation number of G, written as φ(G), is

the cardinality of a maximum dissociation set in G. The problem of com-

puting φ(G) was originally raised by Yannakakis [39] in 1981, and in the
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same paper, he showed this problem is NP-complete for bipartite graphs.

A single number that can be used to describe some properties of a

graph is called a topological index, or graph invariant. Topological index is

a graph theoretic property that is preserved by isomorphism. For quite a

long time, researchers have been interested in the computation of topolog-

ical indices, which is mainly related to the applications of these topological

indices in nonempirical quantitative structure property relationships and

quantitative structure activity relationships. Hundreds of topological in-

dices have been introduced and studied, one may refer to [18,22,24,41–43]

for some recent results.

In 1947, Wiener [25] introduced a well-known distance-based graph

invariant, namely the Wiener index of a graph G, which is defined as

W (G) =
∑

{u,v}⊆VG

dG(u, v).

Wiener index is probably the best known one among hundreds of topologi-

cal indices, and it enjoys a prominent place in chemical graph theory for its

significant theoretical importance and practical applications in modeling

the physical properties of alkanes. Mathematical properties and applica-

tions of Wiener index are extensively studied in the literature, one may be

referred to [13,35] and the references therein.

Comparing with the Wiener index, Plavšić et al. [23] and Ivanciuc et

al. [20] independently proposed another distance-based graph constant,

namely the Harary index, which is defined as

H(G) =
∑

{u,v}⊆VG

1

dG(u, v)
.

In the following years, this invariant is rewritten as the half-sum of the ele-

ments of the so-called reciprocal distance matrix (also known as the Harary

matrix [21]), and it has been verified to have many interesting chemical

and physical properties [19]. It is worth mentioning that the Harary index

and its related molecular descriptors, as well as various modifications have

shown great advantages in structure performance correlations [10–12].
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Up to now, a number of results were obtained on the Harary index of a

graph. Gutman [16] showed that Pn and Sn are, respectively, the unique

tree having the minimum and maximum Harary index among all trees with

n vertices. Upper or lower bounds of the Harary index for some special

classes of graphs were also presented, such as unicyclic graphs [15, 28],

bicyclic graphs [28, 40], bipartite graphs [9], splitting graphs [5], Eulerian

graphs [4], one may refer to [7, 27,29–35,37,38] for more related results.

In recent years, the problem of finding the upper or lower bounds of

the Harry index and their corresponding extremal graphs among graphs

with given order and independence number has attracted more and more

researchers’ attention. Das et al. [8] determined the sharp upper bound

and the corresponding extremal tree on Harary index among all trees with

given order and independence number. Feng et al. [14] characterized all

the extremal trees with order n and independence number α ∈ {n− 3, n−
2, n−1} having the minimum Harary indices. Very recently, Borovićanin et

al. [1] showed that these trees also have the minimum Harary indices among

all connected graphs with the same constraints. In the same paper, they

also determined all the extremal graphs with order n and independence

number n− 4 having the minimum Harary indices.

Note that the dissociation number is a natural generalization of the

independence number. Hence it is natural and interesting to consider the

same problem for the graphs with fixed order and dissociation number.

In this paper, we focus on the problem of determining the maximum or

minimum value of the Harary indices and characterizing the corresponding

extremal graphs for connected graphs (resp. bipartite graphs, trees) with

fixed order and dissociation number.

1.2 Main results

In this subsection, we give some basic notation and then describe our main

results. Let Gn,φ (resp. Bn,φ,Tn,φ) denote the set of connected graphs

(resp. bipartite graphs, trees) with fixed order n and dissociation number

φ.

Note that adding an edge to a connected graph will strictly increase

its Harary index. Then our first main result about the maximum value of
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the Harary index and the corresponding extremal graph over all graphs in

Gn,φ is obvious.

Theorem 1.1. Let G ∈ Gn,φ. Then

H(G) ≤


n(n−1)

2 − φ(φ−2)
4 , if φ is even;

n(n−1)
2 − (φ−1)2

4 , if φ is odd.

with equality if and only if

G ∼=

 Kn−φ ∨
(
φ
2K2

)
, if φ is even;

Kn−φ ∨
(
φ−1
2 K2 ∪K1

)
, if φ is odd.

Our second result establishes a sharp upper bound on the Harary in-

dices of bipartite graphs with fixed order and dissociation number. The

corresponding extremal graph is also characterized.

Theorem 1.2. Let G ∈ Bn,φ (n ≥ 3). Then H(G) ≤ n2+(2φ−1)n−2φ2

4

with equality if and only if G ∼= Kφ,n−φ.

v1 vn−φ−1. . .

. . .

S∗
n,φ

v1 vn−φ−1. . .

. . .

S∗n,φ

Figure 1. Trees S∗
n,φ and S∗n,φ.

Denote by S∗
n,φ the tree on n vertices obtained from the star Sn−φ by

attaching exactly two pendent edges to each leaves of Sn−φ and attaching

3φ − 2n + 2 pendent edges to the center of Sn−φ. Let S∗n,φ be a set of

n-vertex trees obtained from Sn−φ by attaching exactly two pendent edges

or one pendent path of length two to each leaf of Sn−φ and then attaching

3φ− 2n+ 2 pendent edges to the center of Sn−φ. Obviously, S∗
n,φ ∈ S∗n,φ.

Figure 1 gives an example for S∗
n,φ and S∗n,φ, where each ellipse implies two

pendent edges or one pendent path of length two is attached at vertices

v1, v2, . . . , vn−φ+1.
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The next result characterizes all the tree T ∈ Tn,φ having the maximum

Harary index.

Theorem 1.3. Let T ∈ Tn,φ (n ≥ 3). Then H(T ) ≤ 1
12n

2 + 17
12n+ 1

6φ
2 −

5
6φ− 3

2 with equality if and only if T ∼= S∗
n,φ.

Let S(ℓ1, ℓ2) be the tree obtained by attaching ℓ1 pendent edges and ℓ2

pendent paths of length two to an isolated vertex, respectively. Denote by

T1(s1, t1) the tree obtained from P4 by attaching one pendent edge and s1

pendent paths of length two to one leaf of P4, and then attaching t1 pendent

paths of length two to another leaf of P4. Let T2(s2, t2) be the tree obtained

from P4 by attaching s2 and t2 pendent paths of length two to the two

leaves of P4, respectively. Figure 2 gives an example for S(ℓ1, ℓ2), T1(s1, t1)

and T2(s2, t2). Obviously, the orders of S(ℓ1, ℓ2), T1(s1, t1) and T2(s2, t2)

are ℓ1 + 2ℓ2 + 1, 2s1 + 2t1 + 5 and 2s2 + 2t2 + 4, respectively.

. . .

. . .

S(ℓ1, ℓ2)

...
...

T1(s1, t1)

...
...

T2(s2, t2)

Figure 2. Graphs S(ℓ1, ℓ2), T1(s1, t1) and T2(s2, t2)

Our last result characterizes all the graphs with order n and dissoci-

ation number φ ∈ {2,
⌈
2
3n

⌉
, n − 2, n − 1} having the minimum Harary

indices.

Theorem 1.4. Let G be a graph in Gn,φ, where φ ∈ {2,
⌈
2
3n

⌉
, n−2, n−1}.

(i) If φ =
⌈
2
3n

⌉
, then H(G) ≥ n

∑n−1
k=1

1
k −n+1 with equality if and only

if G ∼= Pn.

(ii) If φ = 2, then

H(G) ≥

{
n(2n−3)

4 , if n is even;

(n−1)(2n−1)
4 , if n is odd

with equality if and only if G ∼= Kn − M(Kn), where M(Kn) is a

maximum matching of Kn.
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(iii) If n ≥ 3 and φ = n− 1, then

H(G) ≥

{
17n2+58n−88

96 , if n is even;

(n−1)(17n+69)
96 , if n is odd

with equality if and only if

G ∼=

{
S
(
1, n−2

2

)
, if n is even;

S
(
0, n−1

2

)
, if n is odd

(iv) If n ≥ 6 and φ = n− 2, then

H(G) ≥


85n2+198n−72

480
− 311

420

⌊
n−4
4

⌋ ⌈
n−4
4

⌉
, if n is even;

85n2+116n+375
480

+
⌊
n−4
4

⌋ (
7
15

− 311
420

⌈
n−4
4

⌉)
, if n is odd;

with equality if and only if

G ∼=

 T2

( ⌊
n−4
4

⌋
,
⌈
n−4
4

⌉ )
, if n is even;

T1

( ⌊
n−5
4

⌋
,
⌈
n−5
4

⌉ )
, if n is odd.

The remainder of this paper is organized as follows: In Section 2, we

review some definitions and preliminary results. In Section 3, we give a

proof for Theorem 1.2. In Section 4, we present a proof for Theorem 1.3,

while in Section 5, we give a proof for Theorem 1.4. In the last section,

we give some brief comments on our findings and proposed some problems

for future studies.

2 Preliminary results

In this section, we give some preliminary results, which will be used to

prove our main results. The following result immediately follows from the

definition of dissociation number.

Lemma 2.1. Let G be a simple graph. Then φ(G)−1 ≤ φ(G−v) ≤ φ(G)

for any v ∈ VG.
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Brešar et al. [2] gave a beautiful lower bound on the number of disso-

ciation number of a tree, as showed below.

Lemma 2.2 ( [2]). Let T be a tree with n vertices. Then φ(T ) ≥ 2n
3 .

For a graph G, denote by P(G) (resp. Q(G)) the set of all pendent

vertices (resp. quasi-pendent vertices) of G. In particular, let Q2(G) be

the set of all quasi-pendent vertices of degree 2 in G. The following result

says that there exists a maximum dissociation set of G such that it contains

all vertices of P(G) ∪Q2(G), which will play a crucial role in the proof of

Theorem 1.3.

Lemma 2.3. Let G be a graph with order n ≥ 5. Then there exists a

maximum dissociation set S(G) such that P(G) ∪Q2(G) ⊆ S(G).

Proof. First we show that there exist some maximum dissociation sets

containing all pendent vertices of G. Let Ŝ(G) be a maximum dissociation

set such that |Ŝ(G)∩P(G)| is as large as possible. Suppose that there is a
vertex v ∈ P(G)\Ŝ(G). Let u be the neighbor of v. Then u ∈ Ŝ(G)\P(G).

Let Ŝ′(G) = (Ŝ(G)\{u})∪{v}. Then Ŝ′(G) is a maximum dissociation set

of G such that |Ŝ′(G)∩P(G)| > |Ŝ(G)∩P(G)|, a contradiction. Therefore,

P(G) ⊆ Ŝ(G).

Denote by D(G) the set of all maximum dissociation sets that contain

all pendent vertices of G. Similarly, let S(G) be a set in D(G) such that

|S(G) ∩Q2(G)| is as large as possible. Suppose that there is a vertex u ∈
Q2(G)\S(G). Assume N(u) = {w, v} with d(v) = 1. Then {v, w} ⊆ S(G)

and w /∈ Q2(G)∪P(G) since n ≥ 5. Let S′(G) = (S(G)\{w})∪{u}. Then
S′(G) ∈ D(G) and |S′(G) ∩ Q2(G)| > |S(G) ∩ Q2(G)|, a contradiction.

Consequently, P(G) ∪Q2(G) ⊆ S(G).

This completes the proof.

The next three conclusions involve the change of the Harary index after

some graph transformations.

Lemma 2.4. Let G be a simple connected graph. Then H(G+uv) > H(G)

for any uv /∈ EG.
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Lemma 2.5 ( [36]). Let G1 and G2 be two vertex-disjoint connected graphs

with vi ∈ VGi and |VGi | ≥ 2. Denote by G the graph obtained from G1∪G2

by joining an edge between v1 and v2, and G′ the graph obtained from

G1 ∪G2 by identifying vertices v1 and v2 (the new vertex is labeled by v)

and attaching a pendent edge at v. Then H(G) < H(G′).

The following result immediately follows from Lemma 2.5.

Corollary 2.6. Let G be a connected graph with |VG| ≥ 4. Assume v ∈
Q2(G) with N(v) = {w, u} and w ∈ P(G). Then H(G) < H(G−vw+uw).

3 Proof of Theorems 1.2

In this section, we give the proof for Theorem 1.2, by which we characterize

all the connected bipartite graphs with fixed order and dissociation number

having the maximum Harary index.

Proof of Theorem 1.2. Assume G⋆ = (X,Y ) is a connected bipartite

graph having the maximum Harary index in Bn,φ. Without loss of gener-

ality, assume that |X| ≥ |Y |. Let S be a maximum dissociation set of G⋆.

Then φ = |S| ≥ |X|.
If φ = |X|, then G⋆ ∼= Kφ,n−φ by Lemma 2.4. In the following,

assume that φ > |X|. Then S can be partitioned as S = X1 ∪ Y2 with

X1 ⊆ X and Y2 ⊆ Y . Let X2 = X \ X1 and Y1 = Y \ Y2, and let

|X1| = a, |Y1| = b, |X2| = c and |Y2| = d. Note that |X1 ∪ Y2| > |X| ≥ |Y |.
Then a > b and c < d. Recall that G⋆ is the bipartite graph with the

maximum Harary index. Lemma 2.4 tells us that each vertex in X1 is

adjacent to each vertex in Y1, each vertex in X2 is adjacent to each vertex

in Y , and there are as many matching edges as possible between X1 and

Y2. If d ≥ a, then there exists a set Y21 ⊆ Y2 with |Y21| = d such that



658

G⋆[X1 ∪ Y21] is a perfect matching. By some direct calculations, we get

H(G⋆) =(ac+ bc+ cd+ a) +
1

2

[(
a

2

)
+

(
b

2

)
+

(
c

2

)
+

(
d

2

)
+ ac+ bd

]
+

1

3
[a(a− 1) + a(d− a)]

=
1

4
(a2 + b2 + c2 + d2) +

1

6
(6ab+ 3ac+ 2ad+ 6bc+ 3bd+ 6cd)

+
1

12
(5a− 3b− 3c− 3d).

On the other hand, it is routine to check that

H(Ka+d,b+c) =(a+ d)(b+ c) +
1

2

[(
a+ d

2

)
+

(
b+ c

2

)]
=
1

4
(a2 + b2 + c2 + d2) +

1

2
(2ab+ 2ac+ ad+ bc

+2bd+ 2cd)− 1

4
(a+ b+ c+ d).

Therefore,

H(Ka+d,b+c)−H(G⋆) =
1

6
(3c+ d− 4)a+

1

2
(d− c)b. (1)

Note that n ≥ 3 and G⋆ is connected. Then max{b, c} ≥ 1. If c = 0, then

b ≥ 1 and thus d ≥ a ≥ 2. In view of (1), we get

H(Ka+d,b+c)−H(G⋆) ≥ 1

6
(a+ 3b− 4)a > 0

If c ≥ 1, then d ≥ 2 and thus H(Ka+d,b+c) − H(G⋆) > 0 immediately

follows from (1). All the possible cases yield that H(G⋆) < H(Ka+d,b+c),

contradicting to the choice of G⋆ since φ(Ka+d,b+c) = a + d = φ(G⋆). In

a similar way, there is also a contradiction when d < a. Therefore, G⋆ ∼=
Kφ,n−φ. By a short calculation, we have H(Kφ,n−φ) = n2+(2φ−1)n−2φ2

4

and we are done.
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4 Proof of Theorem 1.3

In this section, we give a proof for Theorem 1.3, by which we establish

a sharp upper bound on the Harary index of a tree with given order and

dissociation number. The extremal tree meeting the upper bound is also

characterized. In order to achieve this goal, we need some crucial results.

Lemma 4.1 ( [16,26]). Let T ∈ Tn. Then

n

n−1∑
k=1

1

k
− n+ 1 ≤ H(T ) ≤ (n− 1)(n+ 2)

4
.

The left equality holds if and only if T ∼= Pn, whereas the right equality

holds if and only if T ∼= Sn.

Lemma 4.2. Let T ∈ Tn,φ (n ≥ 3) and ∆(T ) be the maximum degree of

T . Then ∆(T ) ≤ 2φ− n+ 1 with equality if and only if T ∈ S∗n,φ.

Proof. If 1 ≤ n ≤ 9, then it is straightforward to check that ∆(T ) ≤
2φ−n+1 with equality if and only if T ∈ S∗n,φ. Next, we assume that the

result is true for each tree with order less than n.

Now, let T be a tree with order n (≥ 10) and dissociation number

φ. Choose a diameter path Pℓ = v1v2v3v4 · · · vℓ of T such that dT (v2) is

as large as possible. Then NT (v2) \ {v3} ⊆ P(T ) and NT (v3) \ {v4} ⊆
P(T ) ∪Q(T ).

If dT (v2) ≥ 4, then it follows from Lemma 2.3 that T − v1 ∈ Tn−1,φ−1.

Hence, by the induction hypothesis, one has

∆(T ) ≤ ∆(T − v1) + 1 ≤ 2(φ− 1)− (n− 1) + 1 + 1 = 2φ− n+ 1. (2)

The equality in (2) holds if and only if v2 is the unique vertex with max-

imum degree 2φ− n+ 1 in T and T − v1 ∈ S∗n−1,φ−1. This together with

dT−v1(v2) = ∆(T − v1) = 2φ − n > 3 gives the inequality in (2) with

equality if and only if T ∈ S∗n,φ.
If dT (v2) = 3, then by Lemma 2.3, we have T −v1−v2−w ∈ Tn−3,φ−2,

where w is the unique vertex in NT (v2) \ {v1, v3}. Applying the induction
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hypothesis to T − v1 − v2 − w yields

∆(T ) ≤ ∆(T − v1 − v2 − w) + 1

≤ 2(φ− 2)− (n− 3) + 1 + 1

= 2φ− n+ 1. (3)

The equality in (3) holds if and only if v3 is the unique vertex with maxi-

mum degree 2φ − n + 1 in T and T − v1 − v2 − w ∈ S∗n−3,φ−2. Note that

dT−v1−v2−w(v3) = ∆(T − v1 − v2 − w) = 2φ − n > 3. Therefore, the

equality in (3) holds if and only if T ∈ S∗n,φ.
If dT (v2) = 2 and dT (v3) = 2, then again by Lemma 2.3 and the

induction hypothesis, one has

∆(T ) ≤ ∆(T − v1 − v2 − v3) + 1

≤ 2(φ− 2)− (n− 3) + 1 + 1

= 2φ− n+ 1. (4)

The equality in (4) holds if and only if v4 is the unique vertex with maxi-

mum degree 2φ−n+1 in T and T − v1 − v2 − v3 ∈ S∗n−3,φ−2. In a similar

way as above, the equality in (4) holds if and only if T ∈ S∗n,φ.
If dT (v2) = 2 and dT (v3) ≥ 3, then dT (z) ≤ 2 for every z ∈ NT (v3) \

{v4} and thus T − v1 ∈ Tn−1,φ−1 by Lemma 2.3. This leads to

∆(T ) = ∆(T − v1) ≤ 2(φ− 1)− (n− 1) + 1 < 2φ− n+ 1.

This completes the proof.

Now we are ready to give the proof for Theorem 1.3, by which we

determine the sharp upper bound and the corresponding extremal tree of

the Harary index in Tn,φ.

Proof of Theorem 1.3. We proceed by induction on n. If φ = n − 1,

then Lemma 4.1 gives H(T ) ≤ (n−1)(n+2)
4 with equality if and only if

T ∼= Sn
∼= S∗

n,n−1. If 3 ≤ n ≤ 9, then it is straightforward to check that

H(T ) ≤ 1
12n

2 + 17
12n+ 1

6φ
2 − 5

6φ− 3
2 and the equality holds if and only if
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T ∼= S∗
n,φ, as desired. In the following, we assume that the result holds for

each tree with order less than n and dissociation number φ ≤ n− 2.

Now, choose T ∈ Tn,φ (n ≥ 10, φ ≤ n−2) such that H(T ) is as large as

possible. Let Pk = v1v2v3v4 · · · vk be a diametral path of T. Then it follows

from Lemma 2.1 that φ(T−v1) ∈ {φ,φ−1}. We proceed by distinguishing

the following two cases to complete the proof.

Case 1. φ(T−v1) = φ−1. It follows from Lemma 4.2 that ∆(T−v1) ≤
2φ− n. Then

∑
v∈VT−v1

1

dT−v1(v, v2) + 1
≤1 +

1

2
dT−v1(v2) +

1

3
(n− dT−v1(v2)− 2)

=
1

6
dT−v1(v2) +

1

3
n+

1

3

≤1

6
n+

1

3
φ+

1

3
. (5)

The equality in (5) holds if and only if dT−v1(v2) = ∆(T − v1) = 2φ − n

and dT−v1(v, v2) = 2 for any v /∈ NT−v1 [v2]. Again by Lemma 4.2, we have

(5) holds with equality if and only if T − v1 ∼= S∗
n−1,φ−1 with dT−v1(v2) =

2φ− n.

The induction hypothesis together with (5) yields

H(T ) =H(T − v1) +
∑

v∈VT−v1

1

dT (v, v1)

=H(T − v1) +
∑

v∈VT−v1

1

dT−v1(v, v2) + 1

≤ 1

12
(n− 1)2 +

17

12
(n− 1) +

1

6
(φ− 1)2 − 5

6
(φ− 1)

− 3

2
+

1

6
n+

1

3
φ+

1

3

=
1

12
n2 +

17

12
n+

1

6
φ2 − 5

6
φ− 3

2
. (6)

The equality in (6) holds if and only if T−v1 ∼= S∗
n−1,φ−1 with dT−v1(v2) =

∆(T−v1) = 2φ−n.Note that φ ≥ 2
3n by Lemma 2.2. Then 2φ−n ≥ n

3 > 3,

implying (6) holds with equality if and only if T ∼= S∗
n,φ.
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If φ ≤ n − 3, then there exist at least two pendent vertices such that

the distance between them is 4, contradicting to the fact that v1 lies on

a diameter path of T. Therefore, T ≇ S∗
n,φ and then H(T ) < 1

12n
2 +

17
12n + 1

6φ
2 − 5

6φ − 3
2 = H(S∗

n,φ), which contradicts to the choice of T .

Consequently, φ = n− 2 and H(T ) ≤ 1
4n

2 − 1
12n+ 5

6 with equality if and

only if T ∼= S∗
n,n−2.

Case 2. φ(T − v1) = φ. Then there exists a maximum dissociation

set, say S(T ), such that v1 /∈ S(T ). Combining with Lemma 2.3, we get

d(v2) ≤ 3 and thus d(v2) = 3 by Corollary 2.6. Assume that w is the unique

vertex in N(v2) \ {v1, v3}. Put T ′ := T − v1− v2−w. Then T ′ ∈ Tn−3,φ−2

again by Lemma 2.3. In a similar way as in Case 1, we get

∑
v∈VT ′

1

dT ′(v, v3) + 2
≤ 1

6
n+

1

6
φ− 1

2
,

∑
v∈VT ′

1

dT ′(v, v3) + 1
≤ 1

6
n+

1

3
φ− 1

3
.

(7)

Each equality in (7) holds if and only if T ′ ∼= S∗
n−3,φ−2 with dT ′(v3) =

∆(T ′) = 2φ − n and dT ′(v, v3) = 2 for any v /∈ NT ′ [v3]. The induction

hypothesis together with (7) yields

H(T ) =H(T ′) + 2
∑

v∈VT ′

1

dT (v, v1)
+

∑
v∈VT ′

1

dT (v, v2)
+

5

2

=H(T ′) + 2
∑

v∈VT ′

1

dT ′(v, v3) + 2
+

∑
v∈VT ′

1

dT ′(v, v3) + 1
+

5

2

≤ (n− 3)2

12
+

17(n− 3)

12
+

(φ− 2)2

6
− 5(φ− 2)

6
− 3

2

+ 2

(
n

6
+

φ

6
− 1

2

)
+

(
n

6
+

φ

3
− 1

3

)
+

5

2

=
1

12
n2 +

17

12
n+

1

6
φ2 − 5

6
φ− 3

2
. (8)

The equality in (8) holds if and only if T ′ ∼= S∗
n−3,φ−2 with dT ′(v3) =

∆(T ′) = 2φ − n > 3, which means (8) holds with equality if and only if

T ∼= S∗
n,φ.
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This completes the proof.

5 Proof of Theorem 1.4

In this section, we give the proof for Theorem 1.4, by which we characterize

all the graphs with order n and dissociation number φ ∈ {2,
⌈
2
3n

⌉
, n−2, n−

1} having the minimum Harary indices.

Let T3(s3, t3) (resp. T4(s4, t4)) be the tree obtained from P4 (resp.

P6) by attaching s3 (resp. s4) and t3 (resp. t4) pendent paths of length

two to the two quasi-pendent vertices of P4 (resp. P6), respectively. Let

T5(s5, t5) (resp. T6(s6, t6)) be the tree obtained from K2 (resp. S4) by

attaching s5 (resp. s6) and t5 (resp. t6) pendent paths of length two

to two leaves of K2 (resp. S4), respectively. Let T7(s7, t7) be the tree

obtained from S(1, 2) by attaching s7 and t7 pendent paths of length two

to the two quasi-pendent vertices with degree 2 of S(1, 2), respectively.

Let T8(s8, t8) be the tree obtained from P3 by attaching one pendent edge

and s8 pendent paths of length two to one leaf of P3, and then attaching

t8 pendent paths of length two to another leaf of P3. Figure 3 gives an

example for Ti(si, ti) (3 ≤ i ≤ 8). Obviously, |VTi(si,ti)| = 2si + 2ti + 4

for i ∈ {3, 6, 8}, |VTj(sj ,tj)| = 2sj + 2tj + 6 for j ∈ {4, 7} and |VT5(s5,t5)| =
2s5 + 2t5 + 2.

...
...

T3(s3, t3)

...
...

T4(s4, t4)

...
...

T5(s5, t5)

...
...

T6(s6, t6)

...
...

T7(s7, t7)

...
...

T8(s8, t8)

Figure 3. Tree Ti(si, ti) (3 ≤ i ≤ 8).

In order to show Theorem 1.4, we need some preliminaries. The fol-

lowing result is well known.
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Lemma 5.1 ( [28,40]). Let G be a connected graph with n vertices. Then

H(G) ≥ n

n−1∑
k=1

1

k
− n+ 1

with equality if and only if G ∼= Pn.

Lemma 5.2. If s2 ≥ t2 ≥ 1, then H(T2(s2, t2)) < H(T2(s2 + 1, t2 − 1)).

Proof. Note that T2(s2, t2) can be obtained from T2(s2, t2−1) by attaching

a pendent path of length two to the vertex of degree t2, whereas T2(s2 +

1, t2 − 1) can be obtained from T2(s2, t2 − 1) by attaching a pendent path

of length two to the vertex of degree s2 + 1. Then

H(T2(s2 + 1, t2 − 1))−H(T2(s2, t2))

=

[(
1 +

s2 + 1

2
+

s2 + 1

3
+

1

4
+

t2 − 1

5
+

t2 − 1

6

)
+

(
1

2
+

s2 + 1

3
+

s2 + 1

4

+
1

5
+

t2 − 1

6
+

t2 − 1

7

)]
−
[(

1 +
t2
2

+
t2
3

+
1

4
+

s2
5

+
s2
6

)
+

(
1

2
+

t2
3

+
t2
4

+
1

5
+

s2
6

+
s2
7

)]
=
311

420
(s2 − t2 + 1) > 0.

This completes the proof.

Lemma 5.3. If (s4, t4) ̸= (0, 0), then

H(T4(s4, t4)) > min {H(T2(s4, t4 + 1)), H(T2(s4 + 1, t4))} .

Proof. Assume, without loss of generality, that s4 ≥ t4. Then s4 ≥ 1. A
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short calculation yields

H(T4(s4, t4))−H(T2(s4, t4 + 1))

=

[
1 +

1

2
(s4 + 1) +

1

3
(s4 + 1) +

1

4
+

1

5
(t4 + 1) +

1

6
t4

]
−
[
1 +

1

2
+

1

3
(t4 + 1) +

1

4
(t4 + 1) +

1

5
+

1

6
s4 +

1

7

]
=
11

21
s4 −

13

60
t4 > 0.

This completes the proof.

Now we are ready to give the proof for Theorem 1.4, by which we

concentrate on graphs having the minimum Harary indices with given order

n and dissociation number φ ∈ {2,
⌈
2
3n

⌉
, n− 2, n− 1}.

Proof of Theorem 1.4. (i) It immediately follows from Lemma 5.1 and

φ(Pn) =
⌈
2
3n

⌉
.

(ii) Let G ∈ Gn,2 be the graph having the minimum Harary index.

Then G does not contain 3K1 or K2 ∪K1 as its induced subgraph, which

implies dḠ(v) ≤ 1 for every v ∈ VG, where Ḡ is the complement graph of

G. That is to say, EḠ is a matching of Kn. Combining with Lemma 2.4,

we get G ∼= Kn −M(Kn), where M(Kn) is a maximum matching of Kn.

Some direct calculations yield that H(Kn−M(Kn)) =
n(2n−3)

4 if n is even

and H(Kn −M(Kn)) =
(n−1)(2n−1)

4 otherwise.

(iii) Let G ∈ Gn,n−1 (n ≥ 3) be the graph having the minimum Harary

index and let S = S1 ∪ S2 be a maximum dissociation set of G such that

G[S1] is a perfect matching and S2 is an independent set. Assume that

VG = {v1, v2, . . . , vn} and S = VG \ {v1}. Then S2 ⊆ N(v1) ∩ P(G).

If there exist two vertices, say vn−1 and vn, such that {vn−1, vn} ⊆ S2,

then put G′ = G− v1vn−1 + vnvn−1 and thus G′ ∈ Gn,n−1 by Lemma 2.3.

In view of Corollary 2.6, we have H(G′) < H(G), contradicting to the

choice of G. Therefore, |S2| ≤ 1. This implies G ∼= S
(
1, n−2

2

)
if n is even

and G ∼= S
(
0, n−1

2

)
if n is odd, where S(ℓ1, ℓ2) is the graph as shown in
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Figure 2. Some simple calculations give H(S
(
1, n−2

2

)
) = 17n2+58n−88

96 and

H(S
(
0, n−1

2

)
) = (n−1)(17n+69)

96 .

(iv) Let G ∈ Gn,n−2 (n ≥ 6) be the graph having the minimum Harary

index and let S = S1 ∪ S2 be a maximum dissociation set of G such that

G[S1] is a perfect matching and S2 is an independent set. Assume that

VG = {v1, v2, . . . , vn} and S = VG \ {v1, v2}. Note that φ(G) = n − 2.

Then min{|N(v1) \ {v2}|, |N(v2) \ {v1}|} ≥ 1. Since |N(v1) ∩ N(v2)| ≤ 1

by Lemma 2.4, there are at least |S2| − 1 leaves in S2. In a similar way

as in (iii), we get |S2| ≤ 3. If n is even, then |S2| ∈ {0, 2}. We proceed by

distinguishing the following two cases to complete the proof.

Case 1. N(v1) ∩ N(v2) = ∅. If |S2| = 2 and v1 ∈ N(v2), then

G ∼= T3(s3, t3) for min{s3, t3} ≥ 1 and s3 + t3 = n−4
2 . By Lemma 2.5,

we have H(T2(s3, t3)) < H(T3(s3, t3)). Note that T2(s3, t3) ∈ Gn,n−2, a

contradiction.

If |S2| = 2 and v1 /∈ N(v2), then G ∼= T4(s4, t4) for s4 + t4 = n−6
2 .

Furthermore, if (s4, t4) = (0, 0), then G ∼= T2(1, 0). If (s4, t4) ̸= (0, 0), then

by Lemma 5.3, min {H(T2(s4, t4 + 1)), H(T2(s4 + 1, t4))} < H(G), which

leads to a contradiction since {T2(s4, t4 + 1), T2(s4 + 1, t4)} ⊆ Gn,n−2.

If |S2| = 0 and v1 ∈ N(v2), then G ∼= T5(s5, t5) with min{s5, t5} ≥ 1

and s5 + t5 = n−2
2 . In addition, if s5 = t5 = 1, then G ∼= T2(1, 0). If

(s5, t5) ̸= (1, 1), then it is obvious H(G) >

 H(T2(s5 − 1, t5)), if s5 ≥ 2;

H(T2(s5, t5 − 1)), if t5 ≥ 2,

which is impossible since {T2(s5 − 1, t5), T2(s5, t5 − 1)} ⊆ Gn,n−2.

If |S2| = 0 and v1 /∈ N(v2), then G ∼= T2(s2, t2) with s2 + t2 = n−4
2 .

Case 2. |N(v1) ∩ N(v2)| = 1. In this case, one has v1 /∈ N(v2) by

Lemma 2.4. If |S2| = 0, then G ∼= T6(s6, t6) with (s6, t6) ̸= (0, 0) and

s6 + t6 = n−4
2 , leading to a contradiction since H(T2(s6, t6)) < H(G) by

Lemma 2.5 and T2(s6, t6) ∈ Gn,n−2.

If |S2| = 2 and N(v1)∩N(v2) ⊆ S1, then G ∼= T7(s7, t7) with (s7, t7) ̸=
(0, 0) and s7 + t7 = n−6

2 . Again by Lemma 2.5, H(T4(s7, t7)) < H(G).

Note that T4(s7, t7) ∈ Gn,n−2, a contradiction.

If |S2| = 2 and N(v1)∩N(v2) ⊆ S2, then G ∼= T8(s8, t8) with t8 ≥ 1 and

s8+t8 = n−4
2 . Similarly, G ∼= T2(0, t8) for s8 = 0 andH(T2(s8, t8)) < H(G)
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for s8 ≥ 1, a contradiction.

All the possible cases lead to G ∼= T2(s2, t2) for some s2 + t2 = n−4
2

and then

H(T2(s2, t2)) =n− 1 +
1

2

[(
s2 + 1

2

)
+

(
t2 + 1

2

)
+ s2 + t2 + 2

]
+

1

3

[
2

(
s2
2

)

+2

(
t2
2

)
+ 2s2 + 2t2 + 1

]
+

1

4

[(
s2
2

)
+

(
t2
2

)
+ 2s2 + 2t2

]

+
1

5
(s2 + t2 + s2t2) +

1

6
· 2s2t2 +

1

7
s2t2

=
17

96
n2 +

33

80
n− 3

20
− 311

420
s2t2. (9)

Therefore, G ∼= T2

(⌊
n−4
4

⌋
,
⌈
n−4
4

⌉)
by Lemma 5.2 and then

H(G) =
85n2 + 198n− 72

480
− 311

420

⌊
n− 4

4

⌋⌈
n− 4

4

⌉
by (9).

In a similar way, we obtain G ∼= T1

(⌊
n−5
4

⌋
,
⌈
n−5
4

⌉)
and

H(G) =
85n2 + 116n+ 375

480
+

⌊
n− 4

4

⌋(
7

15
− 311

420

⌈
n− 4

4

⌉)
when n is odd.

This completes the proof.

6 Concluding remarks

In 1986, Brualdi and Solheid [3] put forward the following well-known

problem, which has became to be one of the classical problems in spectral

graph theory.

Problem 1. For a set G of graphs satisfying some certain conditions,

determine min{ρ(G) |G ∈ G} and max{ρ(G) |G ∈ G}, and characterize

the extreme graphs which achieve the minimum or maximum value, where

ρ(G) denotes the spectral radius of G.
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Inspired by Problem 1, it’s natural to consider the following interesting

problem:

Problem 2. For a set G of graphs satisfying some certain conditions,

determine min{H(G) |G ∈ G} and max{H(G) |G ∈ G}, and characterize

the extreme graphs which achieve the minimum or maximum value.

In this paper we focus on Problem 2 for G ∈ {Gn,φ,Bn,φ,Tn,φ}. Theo-
rem 1.1 (resp. Theorem 1.2, Theorem 1.3) characterizes all the connected

graphs (resp. bipartite graphs, trees) having the maximum Harary indices

among all connected graphs (resp. bipartite graphs, trees) with given or-

der and dissociation number. Theorem 1.4 determines the graphs with

fixed order n and dissociation number φ ∈ {2,
⌈
2
3n

⌉
, n − 2, n − 1} having

the minimum Harary indices.

It is nature to extend this study through examining the following ex-

treme graphs:

• trees with fixed order n and dissociation number φ1 having the min-

imum Harary indices, where
⌈
2
3n

⌉
< φ1 < n− 2;

• connected bipartite graphs with fixed order n and dissociation num-

ber φ2 having the minimum Harary indices, where
⌈
n
2

⌉
< φ2 < n−2;

• graphs with fixed order n and dissociation number φ3 having the

minimum Harary indices, where 2 < φ3 < n− 2.
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