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Abstract

This paper reports the Hopf bifurcation and self-organization
pattern of a modified Brusselator model. The model is a non-
standard Brusselator model, it involves the nonlinear restraint term.
For the non-diffusive model, we give the types of unique positive
equilibrium. It is found that the unique positive equilibrium may
be focus, node, or center and we establish their stability, respec-
tively. Especially, there exists the spatial homogeneous Hopf bifur-
cation when the equilibrium is a center. The first Lyapunov number
technique is applied to perform the direction of the spatial homo-
geneous Hopf bifurcation. In the sequel, the occurrence conditions
of the Turing instability and the spatial inhomogeneous Hopf bi-
furcation are given for the diffusive model. Moreover, by using the
normal form theory, we show that the Hopf bifurcation is supercrit-
ical or subcritical. Finally, the self-organization patterns induced
by the Turing instability and periodic solutions resulting from the
Hopf bifurcation are displayed by employing numerical simulations.
Our theoretical predictions and numerical results reveal that the
modified Brusselator model enjoys the temporal period oscillation
and spatial oscillation due to the Hopf bifurcation and Turing in-
stability, respectively. These results may help us to figure out the
spatio-temporal dynamics of such modified Brusselator model.
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1 Introduction

Various chemical models are usually used to investigate the self-organiza-

tion pattern due to the interactions between the reactants. Pattern phe-

nomenon is a vital aspect to understand the spatial dynamic profiles of the

chemical models. Generally, the models involve the diffusion effect since

the random movements of the reactants. Nowadays, there are many exist-

ing results that report the self-organization pattern of diffusive chemical

models. Asheghi [1] given the influence of the diffusion coefficient of the ho-

mogeneous steady state and obtained the direction of the Hopf bifurcation

by investigating a reduced Gierer-Meinhardt model. Chen and Wang [2]

reported the boundedness of the solution and studied the properties of the

Hopf bifurcation for a generalized Lengyel-Epstein model. Muntari and

Sengül [3] performed a rigorous characterization of the types and structure

of the dynamic transitions and showed the relation between the dynamic

transitions and the pattern formations of a Brusselator model in a 2D rect-

angular box. Wong and Ward [4] developed a hybrid asymptotic-numerical

theory with respect to the effect of different types of localized hetero-

geneities on the existence, stability, and slow dynamics of spot patterns

for the Schnakenberg reaction-diffusion model in a 2-D domain. Please re-

fer to [5–9] for more dynamic results with respect to the chemical models.

In this paper, we are especially interested in the bifurcation and self-

organization pattern of the Brusselator model. As usual, this model follows

the reaction steps

A −→ U, B + U −→ V +D, 2U + V −→ 3U, U −→ E,

where A,B,D,E,U and V are chemical reactants or products. Accord-

ingly, Prigogene and Lefever in [10] built the following diffusive version

Brusselator model{
∂U
∂T = D1∆U +A− (B + 1)U + U2V,
∂V
∂T = D2∆V +BU − U2V,

(1)

where D1 and D2 are two positive constants and describe the diffusion
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rates of two intermediary reactants U(X,T ) and V (X,T ) at time T and

location X, respectively; A and B are two positive constants in the model

and ∆ is the Laplacian operator. Now setting

t = T, d1 = D1, d2 = D2, a = A, γ = B, u = U, v = V,

and introducing ū = u/a, v̄ = av/γ. Then if we drop the headlines, the

following model is obtained.{
∂u
∂t = d1∆u+ 1− (γ + 1)u+ γu2v,
∂v
∂t = d2∆v + bu− bu2v,

(2)

where we set b = a2, parameters d1, d2, b, γ are positive constants and the

nonlinear term u2v describe the autocatalytic step. We need to mention

that model (2) is a standard Brusselator equation, and it has attracted

many scholars to investigate the various dynamic phenomena, see Refs.

[11–14] and the reference cited therein. Note that the concentration of

reactants will affect the reaction process and the production of reaction

products. Thereby, if we suppose the autocatalytic step is a shorter term,

namely, one replaces the term u2v by nonlinear restraint term u2v
1+u in the

model (2), this gives the following modified Brusselator model
∂u
∂t = d1∆u+ 1− (γ + 1)u+ γu2v

1+u , x ∈ Ω, t > 0,
∂v
∂t = d2∆v + bu− bu2v

1+u , x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(3)

where Ω ⊂ RN is a bounded domain for N ≥ 1, ν is the outward unit

normal vector along the smooth boundary ∂Ω; u0(x) ≥ 0 and v0(x) ≥ 0

imply that the initial concentrations of two intermediary reactants u and

v, respectively. If the diffusion effect is absent, we get the following spatial

homogeneous modified Brusselator model:{
du
dt = 1− (γ + 1)u+ γu2v

1+u ,
dv
dt = bu

(
1− uv

1+u

)
.

(4)
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In this paper, we mainly focus on the dynamic profiles of the modified

Brusselator model (3) and its local spatial homogeneous model (4) around

the equilibrium E∗. Now an easy computation shows that E∗ = (1, 2) is a

unique positive equilibrium of the model (3) and (4). Obviously, it is inde-

pendent of the parameters b and γ. However, we can find some interesting

phenomena by investigating the types of E∗ based on the homogeneous

model (4). To be exact, we have that (1) If 0 < γ ≤ b + 2 − 2
√
2b or

γ ≥ b + 2 + 2
√
2b, then E∗ is a node. (2) If b + 2 − 2

√
2b < γ < b + 2 or

b + 2 < γ < b + 2 + 2
√
2b, then E∗ is a focus. (3) If γ = b + 2, then E∗

is a center, and there is the spatial homogeneous Hopf bifurcation for all

b > 0. Of course, we perform the stability of the equilibrium E∗ and give

the direction of the Hopf bifurcation by using the first Lyapunov num-

ber [15]. For the diffusive model (3), we respectively give the occurrence

conditions of the Turing instability and the spatial inhomogeneous Hopf

bifurcation by treating γ as the critical parameter. In the sequel, we can

illustrate that the modified Brusselator model (3) admits the supercritical

or subcritical Hopf bifurcation with the help of the center manifold reduc-

tion and normal form theory [16–20]. In this fashion, we can ensure that

the stability of the periodic solution resulted from the Hopf bifurcation.

Finally, we present the self-organization pattern of the Brusselator model

(3) around the Turing instability onset by employing numerical experi-

ments. We conclude that the Brusseletor model with nonlinear restraint

term could exhibit wealthy temporal and spatial dynamic behaviours. To

summarize, our main contributions of the paper are as follows.

(1) The detailed classification conditions of the unique positive equi-

librium are performed.

(2) We provide the exact formulas to determine the directions of the

Hopf bifurcation so that we can ensure the stability of the periodic solu-

tions.

(3) Complicated self-organization patterns are observed around the

Turing instability threshold.

This paper is structured as follows. In Sec. 2, the stability of the posi-

tive equilibrium E∗ and homogeneous Hopf bifurcation of the local model

(4) are reported. In Sec. 3, we perform the occurrence conditions of the
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Turing instability and Hopf bifurcation. Also, we investigate the direction

of the Hopf bifurcation. In Sec. 4, we conduct numerical simulations to

confirm the validity of the theoretical analysis. Some conclusions are made

in Sec. 5.

2 Stability and Hopf bifurcation of (4)

Define f(u, v) = 1− (γ + 1)u+ γu2v
1+u and g(u, v) = bu− bu2v

1+u . Throughout

a direct computation, we can find that model (4) has a unique positive

equilibrium E∗ = (1, 2) by setting f(u, v) = g(u, v) = 0.

Around the unique positive equilibrium E∗ = (1, 2), we can determine

the Jacobian matrix as below

J0 =

(
γ
2 − 1 γ

2

− b
2 − b

2

)
.

As a consequence, the characteristic equation is given by

λ2 − T0(γ)λ+D0(γ) = 0, (5)

where T0(γ) =
γ
2 − b

2 − 1, D0(γ) =
b
2 > 0. To perform the stability of the

positive equilibrium E∗, we introduce H(γ) = T 2
0 (γ) − 4D0(γ). A direct

calculation shows that

H(γ) =
1

4
γ2 − b+ 2

2
γ +

(b− 2)2

4
.

Obviously, H(γ) = 0 must has two real roots, say γ1 and γ2, where

γ1 = b+ 2− 2
√
2b > 0, γ2 = b+ 2 + 2

√
2b > 0.

Accordingly, we claim that H(γ) ≥ 0 when 0 < γ ≤ γ1 or γ ≥ γ2. More-

over, H(γ) < 0 if γ1 < γ < γ2 is valid. Now if 0 < γ ≤ γ1 holds, namely,

0 < γ ≤ b+2−2
√
2b, we infer that − b

2 −1 < γ
2 −

b
2 −1 ≤ −

√
2b. This gives

that T0(γ) = γ
2 − b

2 − 1 < 0 is valid. Consequently, the unique positive

equilibrium E∗ is a node, and it is locally asymptotically stable. Next if

b + 2 − 2
√
2b < γ < b + 2 is valid, we immediately have H(γ) < 0 and
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−
√
2b < γ

2 − b
2 − 1 = T0(γ) < 0. As a result, the unique positive equi-

librium E∗ is a focus, and it is locally asymptotically stable. Now for the

case b+2 < γ < b+2+2
√
2b, we deduce that 0 < γ

2 −
b
2 −1 = T0(γ) ≤

√
2b

and H(γ) < 0 are true. Thereby, the unique positive equilibrium E∗ is a

focus, and it is unstable. If γ ≥ γ2 holds, i.e., γ ≥ b+2+2
√
2b, one yields

γ
2−

b
2−1 ≥

√
2b > 0. This means that T0(γ) =

γ
2−

b
2−1 > 0 andH(γ) > 0.

As such, the unique positive equilibrium E∗ is a node, and it is unstable.

Finally, if γ = b + 2, then it is easy to compute that the characteristic

equation (5) has a pair of purely imaginary roots λ = ±i
√

b
2 . Hence, we

claim that E∗ is a center. In addition, if we denote by γH
0 = b + 2 and

suppose that λ = α(γ) ± iω(γ) are the eigenvalues of the characteristic

equation (5), then we can determine

α(γ) =
γ

4
− b

4
− 1

2
, ω(γ) =

√
2b−

(
γ
2 − b

2 − 1
)2

2
. (6)

Therefore, we can check that α(γH
0 ) = 0 and ω(γH

0 ) =
√

b
2 > 0. In

addition, one obtains α′(γ)|γ=γH
0

= 1
4 > 0. Benefiting from the Poincaré

Andronov-Hopf bifurcation theory, we know that model (4) undergoes the

spatial homogeneous Hopf bifurcation at E∗ when γ = γH
0 .

To summarize the above analysis, we build the following stability result.

Theorem 1. For the positive equilibrium E∗ = (1, 2) of the model (4), we

have the following.

(1) If 0 < γ ≤ b + 2 − 2
√
2b, then E∗ is a node and it is locally

asymptotically stable;

(2) If b + 2 − 2
√
2b < γ < b + 2, then E∗ is a focus and it is locally

asymptotically stable;

(3) If b+ 2 < γ < b+ 2 + 2
√
2b, then E∗ is a focus and it is unstable;

(4) If γ ≥ b+ 2 + 2
√
2b, then E∗ is a node and it is unstable;

(5) If γ = b+ 2, then E∗ is a center, and there is the spatial homoge-

neous Hopf bifurcation.

The following result concerns the direction of the Hopf bifurcation.

Theorem 2. If γ = γH
0 = b+2, then the direction of the Hopf bifurcation
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is supercritical.

Proof. Let ǔ = u− 1
β , v̌ = v − 1

β2 and still denote ǔ, v̌ by u, v, respec-

tively. Then we obtain
du
dt = a10u+ a01v + a20u

2 + a11uv + a02v
2 + a30u

3 + a21u
2v

+a12uv
2 + a03v

3 +O(|u, v|4),
dv
dt = b10u+ b01v + b20u

2 + b11uv + b02v
2 + b30u

3 + b21u
2v

+b12uv
2 + b03v

3 +O(|u, v|4),

(7)

where O(|u, v|4) are higher terms and

a10 =
γ

2
− 1, a01 =

γ

2
, a20 =

γ

4
, a11 =

3γ

4
,

a02 = 0, a30 = −γ

8
, a21 =

γ

8
, a03 = 0, a12 = 0,

b10 = − b

2
, b01 = − b

2
, b20 = − b

4
, b11 = −3b

4
,

b02 = 0, b30 =
b

8
, b12 = 0, b21 = − b

8
, b03 = 0.

From [15], we yield

L1 =
−3π

2a01D0(γ)3/2
{[a10b10(a211 + a11b02 + a02b11)

+ a10a01(b
2
11 + a20b11 + a11b02) + b210(a11a02 + 2a02b02)

− 2a10b10(b
2
02 − a20a02)− 2a10a01(a

2
20 − b20b02)

− a201(2b20a20 + b11b20) + (a01b10 − 2a210)(b11b02 − a11a20)]

− (a210 + a01b10)[3(b10b03 − a01a30) + 2a10(a21 + b12)

+ (b10a12 − a01b21)]}

=
−3π

2a01D0(γ)3/2
{[a10b10a211 + a10a01(b

2
11 + a20b11)

− 2a10a01a
2
20 − a201(2b20a20 + b11b20) + (a01b10 − 2a210)

× (−a11a20)]− (a210 + a01b10)(−3a01a30 + 2a10a21 − a01b21)}

=
−3π

2a01D0(γ)3/2
{[ 9bγ

2

32
− 9bγ3

64
+

9b2γ2

64
− 3bγ3

64
− 9b2γ

32
+

3bγ2

32

+
γ3

16
− γ4

32
+

bγ3

32
− 3b2γ2

64
+

3bγ3

64
+

3γ4

32
− 3γ3

8
+

3γ2

8
]
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− 5γ4

64
+

3γ3

8
+

bγ3

16
+

b2γ2

64
− 9γ2

16
+

γ

4
− bγ

16
}

=
−3π

D0(γ)3/2

{
3bγ

8
− 3bγ2

64
+

7b2γ

64
− 9b2

32
+

γ2

16
− γ3

64
− 3γ

16
+

1

4
− b

16

}
=

−3π

64D0(γ)3/2
{
(24b+ 7b2 − 12)γ − γ3 + (4− 3b)γ2 − 18b2 − 4b+ 16

}
.

Consequently, around the spatial homogeneous Hopf bifurcation threshold

γ = γH
0 = b+ 2, we get the first Lyapunov number

L1 =
−9πb(b2 + 2b+ 8)

64D0

(
γH
0

)3/2 < 0.

Thereby, the Hopf bifurcation is supercritical and the periodic solution

bifurcated from the Hopf bifurcation is stable. The proof is completed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b

0

1

2

3

4

5

6

γ

γ
0

H

γ
1

γ
2

unstable node

unstable focus

stable focus

stable node

Figure 1. Stability domains of the unique positive equilibrium E∗ in
the plane of b− γ.

Remark 1. Figure 1 illustrates the stability domains of the unique posi-

tive equilibrium E∗ in b− γ plane. It is demonstrated that there are four

domains, namely, stable node/focus domains and unstable node/focus do-

mains.

Remark 2. In order to confirm the validity of some stability conclusions

performed in Theorem 1, we display some phase portraits of the model

(4) by using the ode45 numerical scheme. Treating b = 0.5, then one has

γ1 = b+2−2
√
2b = 0.5 and b+2 = 2.5. Now we choose γ = 0.35 ∈ (0, 0.5).
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It is found that the unique positive equilibrium E∗ = (1, 2) is a node, and

it is stable, see Fig. 2(a). When taking γ = 1.8 ∈ (0.5, 2.5), our numerical

experiment shows E∗ = (1, 2) is a stable focus, see Fig. 2(b). In what

follows, let us set b = 3, then we have γ1 = b + 2 − 2
√
2b = 0.1010

and b + 2 = 5. Taking 3.5 = γ ∈ (0.1010, 5), then we claim that the

unique positive equilibrium E∗ = (1, 2) is a stable focus, see Fig. 2(c).

Finally, let us set b = 1, then we have γ1 = b + 2 − 2
√
2b = 1.1716 and

b+ 2 = 3. Taking 2.5 = γ ∈ (0.1716, 3), then one declares that the unique

positive equilibrium E∗ = (1, 2) is a stable focus, see Fig. 2(d). Thereby,

conclusions (1) and (2) are valid.
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Figure 2. The phase portraits of model (4). (a): E∗ = (1, 2) is a stable
node with b = 0.5 and γ = 0.35 ∈ (0, 0.5); (b): E∗ = (1, 2)
is a stable focus with b = 0.5 and γ = 1.8 ∈ (0.5, 2.5); (c):
E∗ = (1, 2) is a stable focus with b = 2 and 3.5 = γ ∈ (0, 4);
(d): E∗ = (1, 2) is a stable focus with b = 1 and 2.5 = γ ∈
(0, 3).

Remark 3. Benefiting from Theorem 2, we know that model (4) under-

goes the spatial homogeneous Hopf bifurcation and the periodic solu-

tion bifurcated from the Hopf bifurcation is stable around the threshold

γ = γH
0 = b + 2. As a result, we want to display the stable periodic so-

lution through numerical experiments. Firstly, let us fix b = 0.5, then we
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get γH
0 = 2.5. Our numerical simulation shows there is the stable periodic

solution, see Fig. 3(a). Fig. 3(b) displays the stable periodic solution near

the Hopf bifurcation point γH
0 = 3.5 with b = 1.5.
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Figure 3. There are stable periodic solutions bifurcated from the Hopf
bifurcation. (a): b = 0.5 and γ = 2.5; (b): b = 1.5 and
γ = 3.5.

3 Turing instability and Hopf bifurcation of

the diffusive model (3)

Near the unique positive equilibrium E∗, the linearization system of (3)

has the form
∂u
∂t ≈ d1∆u+

(
γ
2 − 1

)
u+ γ

2 v, x ∈ Ω, t > 0,
∂v
∂t ≈ d2∆v − b

2u− b
2v, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

This is (
ut

vt

)
= L

(
u

v

)
= D

(
u

v

)
+ J0

(
u

v

)
, (8)

where

D =

(
d1∆ 0

0 d2∆

)
, J0 =

(
γ
2 − 1 γ

2

− b
2 − b

2

)
.
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Considering the eigenvalue problem

L

(
Φ1

Φ2

)
= λk

(
Φ1

Φ2

)
.

As such, let (
Φ1

Φ2

)
=

∞∑
k=0

(
ak

bk

)
cos(kx),

be an eigenfunction about matrix Jk with eigenvalue λk, where ak, bk are

constants. Then, one has

∞∑
k=0

(Jk − λkI)

(
ak

bk

)
cos(kx) = 0,

where

Jk =

(
γ
2 − 1− d1k

2 γ
2

− b
2 − b

2 − d2k
2

)
.

Therefore, we get the following characteristic equation

λ2
k − Tk(γ)λk +Dk(γ) = 0, k ∈ N0 = {0, 1, 2, · · · }, (9)

where {
Tk(γ) = −(d1 + d2)k

2 + γ
2 − b

2 − 1,

Dk(γ) = d1d2k
4 −

[(
γ
2 − 1

)
d2 − b

2d1
]
k2 + b

2 .

3.1 Turing instability

To yield the occurrence conditions of the Turing instability, we should

ensure the positive equilibrium E∗ is stable for the local model (4), while

it becomes unstable for the diffusive model (3). To this end, we always

assume that one of the conclusions (1) and (2) in Theorem 1 is valid. By

this way, we immediately have Tk(γ) < 0 for all k ∈ N0. Accordingly, we

only need to focus on the sign of Dk(γ) to seek the conditions of the Turing
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instability. Considering the critical condition of the Turing instability

mink∈N0{0} Dk(γ) = 0. This gives mink∈N0{0} Dk(γ) := −h(γ) = 0, where

h(γ) = d22γ
2 − 2d2(2d2 + bd1)γ + (2d2 − bd1)

2.

Now a direct calculation illustrates that h(γ) = 0 has two different positive

real roots, say γ∗
1 , γ

∗
2 , where

γ∗
1 =

2d2 + bd1 − 2
√
2bd1d2

d2
> 0, γ∗

2 =
2d2 + bd1 + 2

√
2bd1d2

d2
> 0.

We claim that h(γ) < 0 when γ∗
1 < γ < γ∗

2 and h(γ) > 0 when γ > γ∗
2 or

0 < γ < γ∗
1 . As a consequence, one has Dk(γ) > 0 when γ∗

1 < γ < γ∗
2 and

Dk(γ) < 0 when γ > γ∗
2 or 0 < γ < γ∗

1 . It is suggested that the unique

positive equilibrium E∗ is locally asymptotically stable when γ∗
1 < γ < γ∗

2

and it is unstable as γ > γ∗
2 or 0 < γ < γ∗

1 . Now if we treat γ as the Turing

instability parameter, the diffusive model (3) may undergo the Turing

instability near γ∗
1 or γ∗

2 . Also, again using mink∈N0{0} Dk(γ) = 0, we get

the critical wave number of the Turing instability is k2 = k2c =
√

b
2d1d2

.

Based on the analysis above, we build the following.

Theorem 3. Assume that one of the conclusions (1), (2) in Theorem 1

is valid.

(1) E∗ is locally asymptotically stable when γ∗
1 < γ < γ∗

2 ;

(2) E∗ is unstable and there exists the Turing instability as γ > γ∗
2 or

0 < γ < γ∗
1 , where

γ∗
1 =

2d2 + bd1 − 2
√
2bd1d2

d2
> 0, γ∗

2 =
2d2 + bd1 + 2

√
2bd1d2

d2
> 0.

3.2 Hopf bifurcation

In what follows, we shall explore the spatial inhomogeneous Hopf bifur-

cation of the model (3). To this purpose, let Tk(γ) = 0 for k ∈ N0/{0},
then we obtain γ := γH

k = 2(d1 + d2)k
2 + b + 2. Now supposing that

λ = α(γ) ± iω(γ) are the eigenvalues of the characteristic equation (9),
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then one has

α(γ) =
Tk(γ)

2
, ω(γ) =

√
4Dk(γ)− T 2

k (γ)

2
. (10)

Obviously, if γ := γH
k = 2(d1 + d2)k

2 + b+ 2 for k ∈ N0/{0}, we have

α(γH
k ) = 0, ω(γH

k ) =
√
Dk(γH

k ).

Now we shall look for some conditions such that ω(γH
k ) =

√
Dk(γH

k ) > 0

is valid. In fact, if γ := γH
k = 2(d1 + d2)k

2 + b + 2 for k ∈ N0/{0}, one
yields

Dk(γ
H
k ) =d1d2k

4 −
[(

γH
k

2
− 1

)
d2 −

b

2
d1

]
k2 +

b

2

=− d22k
4 +

b

2
(d1 − d2)k

2 +
b

2
.

Let z = k2 > 0, then Dk(γ
H
k ) = 0 has a unique positive real root

z =
b(d1 − d2) +

√
b2(d1 − d2)2 + 8bd22
4d22

> 0.

Hence, for the spatial inhomogeneous Hopf bifurcation, we take k = kH ,

where kH enjoys

k2H =



[
b(d1−d2)+

√
b2(d1−d2)2+8bd2

2

4d2
2

]
+ 1, if Dk([z]) ≤ Dk([z] + 1),

[
b(d1−d2)+

√
b2(d1−d2)2+8bd2

2

4d2
2

]
, if Dk([z]) > Dk([z] + 1),

(11)

where [·] is the integer function. In this fashion, we know that ω(γH
k ) =√

Dk(γH
k ) > 0 is valid for some k = kH ∈ N0/{0}. On the other hand, a

straightforward computation gives that

dRe(λ)

dγ

∣∣∣
γ=γH

k

=
1

4
> 0.
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As a result, the model admits the Hopf bifurcation as γ = γH
k for some

k = kH ∈ N0/{0}.
We establish the following.

Theorem 4. The diffusive model (3) enjoys the spatial inhomogeneous

Hopf bifurcation around γ := γH
k = 2(d1+ d2)k

2+ b+2 for k = kH , where

kH has been defined by (11).

3.3 The direction of the Hopf bifurcation

Define

X = {(u, v) ∈ H2([0, π])×H2([0, π]) :

ux(0, t) = ux(π, t) = 0 = vx(0, t) = vx(π, t)},

where H2([0, π]) is the standard Sobolev space. Moreover, DL := XC

= X ⊕ iX = {a + ib : a, b ∈ X}. Let L∗ be the adjoint operator of the

operator L, where L can be found in (8). Making use of a transformation

(u− 1, v − 2) → (u1, u2), then model (3) becomes{
∂U
∂t = L(γ)U + F (γ, U),
∂U
∂x (0, t) =

∂U
∂x (π, t) = (0, 0)T ,

(12)

where U = (u1, u2)
T , F (γ, U) = (f(γ, u1, u2), g(γ, u1, u2))

T and

L(γ) =

(
d1∆+ γ

2 − 1 γ
2

− b
2 d2∆− b

2

)

and

F (γ, U) =

(
f(u1, u2)−

(
γ
2 − 1

)
u1 − γ

2u2

g(u1, u2) +
b
2u1 +

b
2u2

)
.
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Accordingly, around the Hopf bifurcation threshold γ = γH
0 , model (12)

takes the form {
∂U
∂t = L(γH

0 )U + F (γH
0 , U),

∂U
∂x (0, t) =

∂U
∂x (π, t) = (0, 0)T ,

(13)

where

L(γH
0 ) =

(
d1∆+ b

2
b+2
2

− b
2 d2∆− b

2

)

and

F (γH
0 , U) =

(
f(u1, u2)− b

2u1 − b+2
2 u2

g(u1, u2) +
b
2u1 +

b
2u2

)
.

Moreover, F (γH
0 , U) can be expressed as follows

F (γH
0 , U) =

1

2
R(U,U) +

1

6
N(U,U, U) +O(|U |4),

where R and N admit

R(U, V ) =

(
R1(U, V )

R2(U, V )

)
, N(U, V,w) =

(
N1(U, V,w)

N2(U, V,w)

)
,

and

R1(U, V ) =a′20u1v1 + a′11(u1v2 + u2v1),

R2(U, V ) =b′20u1v1 + b′11(u1v2 + u2v1),

N1(U, V,w) =a′30u1v1w1 + a′21(u1v1w2 + u1v2w1 + u2v1w1),

N2(U, V,w) =b′30u1v1w1 + b′21(u1v1w2 + u1v2w1 + u2v1w1),

with

a′20 =
γH
0

2
, a′11 =

3γH
0

2
, a′30 = −3γH

0

4
, a′21 =

3γH
0

4
,

b′20 = − b

2
, b′11 = −3b

2
, b′30 =

3b

4
, b′21 = −3b

4
,
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for U = (u1, u2)
T , V = (v1, v2)

T , w = (w1, w2)
T and U, V,w in H2([0, π])×

H2([0, π]).

Let

q =

(
q1

q2

)
=

(
− b+2iω∗

γH
0 b−(b+2iω∗)2

b
γH
0 b−(b+2iω∗)2

,

)
, q∗ =

(
q∗1

q∗2

)
=

(
b− 2iω∗

γH
0

)
.

Hence, we can confirm that ⟨L∗(γH
0 )U1, U2⟩ = ⟨U1, L(γ

H
0 )U2⟩, L(γH

0 )q =

iω∗q, L
∗(γH

0 )q∗ = −iω∗q
∗, ⟨q∗, q⟩ = 1 and ⟨q∗, q⟩ = 0, where ⟨·, ·⟩ is an

inner product enjoys ⟨z1, z2⟩ = 1
π ×

∫ π

0
z̄1

T z2dx for z1 ∈ DL, z2 ∈ DL∗ and

ω∗ =
√

b
2 > 0. In addition, L∗(γH

0 ) is given by

L∗(γH
0 ) =

(
d1∆+

γH
0

2 − 1 − b
2

γH
0

2 d2∆− b
2

)
=

(
d1∆+ b

2 − b
2

b
2 + 1 d2∆− b

2

)
.

Benefiting from [16], one has X = Xc⊕Xs with Xc := {zq+zq|z ∈ C}
and Xs = {w ∈ X|⟨q∗, w⟩ = 0}, where z = ⟨q∗, U⟩ with U = (u1, u2)

T .

Consequently, for any U ∈ X, there exists z ∈ C and w = (w1, w2) ∈ Xs

such that (
u1

u2

)
= zq + z̄q̄ +

(
w1

w2

)
.

In this fashion, model (13) takes the form{
dz
dt = iω∗z + ⟨q∗, f̃⟩,
dw
dt = L(γH

0 )w +K(z, z, w),
(14)

where

f̃ = F (zq + z̄q̄ + w, γH
0 ), K(z, z, w) = f̃ − ⟨q∗, f̃⟩q − ⟨q̄∗, f̃⟩q.

Some straightforward calculations give

f̃ =
1

2
R(q, q)z2 +R(q, q)zz +

1

2
R(q, q)z2 +O(|z|3, |z| · |w|, |w|2),



597

⟨q∗, f̃⟩ =1

2
⟨q∗, R(q, q)⟩z2 + ⟨q∗, R(q, q)⟩zz

+
1

2
⟨q∗, R(q, q)⟩z̄2 +O(|z|3, |z| · |w|, |w|2),

⟨q̄∗, f̃⟩ =1

2
⟨q̄∗, R(q, q)⟩z2 + ⟨q̄∗, R(q, q)⟩zz

+
1

2
⟨q̄∗, R(q, q)⟩z̄2 +O(|z|3, |z| · |w|, |w|2).

Consequently, one yields

K(z, z, w) =
1

2
z2K20 + zzK11 +

1

2
z2K02 +O(|z|3, |z| · |w|, |w|2),

where

K20 = R(q, q)− ⟨q∗, R(q, q)⟩q − ⟨q̄∗, R(q, q)⟩q,
K11 = R(q, q̄)− ⟨q∗, R(q, q)⟩q − ⟨q̄∗, R(q, q)⟩q,
K02 = R(q, q)− ⟨q̄∗, R(q̄, q)⟩q − ⟨q̄∗, R(q, q)⟩q.

Some computations imply that

K20 = K11 = K02 = (0, 0)T .

Hence, we get

K(z, z, w) = O(|z|3, |z| · |w|, |w|2).

By employing [16], we deduce that system (14) has a center manifold as

below

w =
1

2
z2w20 + zzw11 +

1

2
z2w02 +O(|z|3).

It is noticed that

Lw +K(z, z, w) =
dw

dt
=

∂w

∂z

dz

dt
+

∂w

∂z

dz

dt
.

As such, we have

w20 =[2iω∗ − L(γH
0 )]−1K20 = (0, 0)T ,
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w11 =− L−1(γH
0 )K11 = (0, 0)T ,

w02 =[−2iω∗ − L(γH
0 )]−1K02 = (0, 0)T .

Consequently, the diffusive model (3) restricts to the center manifold is

dz

dt
= iω∗z + ⟨q∗, f̃⟩ = iω∗z +

∑
2≤i+j≤3

gij
i!j!

zizj +O(|z|4), (15)

where

g02 = ⟨q∗, R(q, q)⟩, g20 = ⟨q∗, R(q, q)⟩, g11 = ⟨q∗, R(q, q)⟩,

g21 = 2⟨q∗, R(w11, q)⟩+ ⟨q∗, R(w20, q)⟩+ ⟨q∗, N(q, q, q)⟩ = ⟨q∗, N(q, q, q)⟩.

Now rewriting (15) as the Poincaré normal form

dz

dt
= (α(γ) + iω(γ))z + z

N∑
j=1

τj(γ)(zz)
j , (16)

where z is a complex variable and τj(γ) are coefficients. By computing,

we get

τ1(γ) =
g20g11[3α(γ) + iω(γ)]

2[α2(γ) + ω2(γ)]
+

|g11|2

α(γ) + iω(γ)
+

g21
2

+
|g02|2

2[α(γ) + 3iω(γ)]
.

It is noticed that α(γH
0 ) = 0 and ω(γH

0 ) = ω∗ > 0, so we have

τ1(γ
H
0 ) =

g20g11i

2ω∗
+

|g11|2

iω∗
+

g21
2

+
|g02|2

6iω∗

=
i

2ω∗

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

g21
2

.

It gives

Re{τ1(γH
0 )} = − 1

2ω∗
(Re{g20}Im{g11}+ Im{g20}Re{g11}) +

1

2
Re{g21}.

By computation, one yields

g20 =q∗1(a
′
20q

2
1 + 2a′

11q1q2) + q∗2(b
′
20q

2
1 + 2b′11q1q2),
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g11 =q∗1[a
′
20q1q1 + a′

11(q1q2 + q2q1)] + q∗2[b
′
20q1q1 + b′11(q1q2 + q2q1)],

g21 =q∗1[a
′
30q

2
1q1 + a′

21(q
2
1q2 + 2q2q1q1)] + q∗2[b

′
30q

2
1q1 + b′21(q

2
1q2 + 2q2q1q1)].

We have the following result.
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Figure 4. Stability diagram of E∗ in the plane of b− γ.

Theorem 5. For d1 > 0 and d2 > 0, the modified Brusselator model (3)

undergoes the Hopf bifurcation around γ = γH
0 . Moreover,

(1) the Hopf bifurcation is supercritical if Re{τ1(γH
0 )} < 0 and the

periodic solution induced by the Hopf bifurcation is stable if Re{τ1(γH
0 )} <

0;

(2) the Hopf bifurcation is subcritical if Re{τ1(γH
0 )} > 0 and the peri-

odic solution induced by the Hopf bifurcation is stable if Re{τ1(γH
0 )} > 0.

(a) γ = 2.32 (b) γ = 2.34

Figure 5. Self-organization pattern induced by the Turing instability
when fixing b = 0.5, d1 = 0.2, d2 = 8.5, while taking different
γ. (a): γ = 2.32; (b): γ = 2.34.
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4 Numerical simulations

4.1 Self-organization pattern induced by the Turing

instability

(a) γ = 3.09 (b) γ = 3.11

(c) γ = 3.45 (d) γ = 3.50

Figure 6. Self-organization pattern induced by the Turing instability
when fixing b = 2, d1 = 0.2, d2 = 8.5, while taking different
γ. (a): γ = 3.09; (b): γ = 3.11; (c): γ = 3.45; (d): γ = 3.50.

In this subsection, we perform some self-organization patterns by using

numerical simulations. Firstly, benefiting from Theorem 1 and Theorem 3,

we give a stability classification of the unique positive equilibrium E∗. In

Fig. 4, the parameter plane b−γ is divided into four domains by the Turing

instability critical curves γ∗
1 , γ

∗
2 and the Hopf bifurcation curve γH

0 , say

I, II, III, and IV , respectively. In the domain I, we know that equilibrium

E∗ is unstable for the local model (4) due to γ > γH
0 . Consequently, it

is the non-Turing domain. In the domain II, clearly, one claims that

γ∗
2 < γ < γH

0 . Accordingly, equilibrium E∗ is locally asymptotically stable

for the local model (ODEs) (4), and it becomes unstable for the model

(3) (PDEs), so this domain is the Turing domain. In a similar fashion, we

claim that IV is the Turing domain. Next, in the domain III, we find that

γ∗
1 < γ < γ∗

2 (< γH
0 ) is valid. This implies that the equilibrium E∗ is locally
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asymptotically stable for the ODEs and it is also stable for the PDEs. As

such, we think that III is a bi-stable domain. Consequently, we should

restrict the parameters (b, γ) ∈ II or (b, γ) ∈ IV for the self-organization

patterns of the modified Brusselator model (3).

Now we are especially interested in the self-organization patterns in 2D

space for the modified Brusselator model (3) by employing two-dimensional

finite-difference method. Accordingly, we fix the bounded domain Ω =

[0, 100] × [0, 100], the time step length is ∆t = 0.25, and the spatial step

length is ∆h = 0.5. Also, the initial data we choose is

u(x, y, 0) = u∗ − 0.0015× ζ∗, v(x, y, 0) = v∗ − 0.0015× ζ∗,

where ζ∗ is the uniformly random perturbation.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Self-organization pattern evolutions of the model (3) with
b = 2, d1 = 0.2, d2 = 8.5, and γ = 3.09.

Firstly, let us take b = 0.5, d1 = 0.2, d2 = 8.5, then one obtains γ1 =

b + 2 − 2
√
2b = 0.5, b + 2 = 2.5, γ∗

1 = 1.7050, and γ∗
2 = 2.3186. Then by

using (2) in Theorem 1, we know that the unique positive equilibrium E∗
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Table 1. Values of parameters.

b d1 d2 γ γH
0 Re{τ1(γH

0 )} Figure
0.25 0.20 1.50 2.25 2.25 -0.4219 Fig. 9(a)
0.50 0.20 1.50 2.50 2.50 -0.1406 Fig. 9(b)
0.75 0.20 1.50 2.75 2.75 -0.0469 Fig. 9(c)
0.90 0.50 1.50 2.90 2.90 -0.0156 Fig. 9(d)

is locally asymptotically stable for the non-diffusive model (4). Also, by

virtue of (2) in Theorem 3, we claim that there exists the Turing instability

for the diffusive Brusselator-type model (3) when γ ∈ (2.3186, 2.5). Our

numerical simulation checks the validity of this aspect. We can observe

that there is the spatial pattern formation of the model (3) in the bounded

domain Ω with the different values of the control parameter γ, see Fig. 5.

Figure 5 gives the pattern formation of the diffusive Brusselator model

(3) for 0 < b < 1. In what follows, we want to exhibit the self-organization

patterns of the model (3) when b ≥ 1 with different control parameters

γ. For this purpose, one chooses b = 2, d1 = 0.5, d2 = 8.5, then one

obtains b + 2 = 4, γ∗
1 = 1.1475, and γ∗

2 = 3.0878. Then by employing

(2) in Theorem 1, we know that the unique positive equilibrium E∗ is

locally asymptotically stable for the non-diffusive model (4). Moreover,

from (2) in Theorem 3, we deduce that there is the Turing instability

for the diffusive Brusselator-type model (3) when taking γ ∈ (3.0878, 4).

To display the self-organization patterns of model (3), we respectively

treat γ = 3.09, 3.11, 3.45, and 3.5, we can observe that there is the spatial

pattern formation of the model (3) in the bounded domain Ω, see Fig.

6. Figure 7 gives the detailed self-organization pattern evolutions when

fixing the control parameter γ = 3.09 with different moments. Hence, the

theoretical predictions are confirmed by the numerical experiments, and

there are self-organization patterns in the model (3).

4.2 Periodic solution induced by the Hopf bifurcation

In this subsection, let us check the validity of Theorem 5. In fact, we

mainly want to display the stable periodic solution bifurcated from the su-

percritical Hopf bifurcation. To do so, we fix the diffusion coefficients d1 =
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(a)

(b)

Figure 8. Stable periodic solution emerges in the model (3) with b =
0.2, d1 = 0.2, d2 = 1.5, and γ = 2.2. Initial data are u0(x) =
1− 0.02 cos(x) and u0(x) = 2− 0.02 cos(x).

0.2, d2 = 1.5 and parameter b = 0.2. Then we obtain q1 = −0.7906i, q2 =

0.2273+0.0719i, q∗1 = 0.2− 0.6325i, q∗2 = 2.2, g20 = 0.7500− 0.1976i, g11 =

0.1976i, g21 = −0.6562+0.1482i. So we obtain Re{g20} = 0.75,Re{g11} =

0, Im{g11} = 0.1976, Im{g20} = −0.1976,Re{g21} = −0.6562, and γH
0 =

2.2. These give that Re{τ1(γH
0 )} = −0.5625 < 0. Therefore, by employ-

ing (1) in Theorem 5, we know that there is the stable periodic solution.

Our numerical simulations confirm this theoretical prediction, see Fig. 8.

Finally, Fig. 9 shows the stable periodic solutions with different parame-

ter values of the Hopf bifurcation thresholds γ = γH
0 and we organize the

specific parameter values in Table 1.

5 Conclusions

In this paper, we study the Hopf bifurcation and self-organization pattern

of a modified Brusselator model. For the local model (4), we investigate

the types and stability of the unique positive equilibrium E∗. It is found
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Figure 9. Stable periodic solution bifurcated from the Hopf bifurca-
tion. (a): b = 0.25, d1 = 0.20, d2 = 1.50, γ = 2.25; (b):
b = 0.50, d1 = 0.20, d2 = 1.50, γ = 2.5; (c): b = 0.75, d1 =
0.20, d2 = 1.50, γ = 2.75; (d): b = 0.90, d1 = 0.50, d2 =
1.50, γ = 2.9; Initial data are u0(x) = 1 − 0.02 cos(x) and
u0(x) = 2− 0.02 cos(x).

that equilibrium E∗ may be node, focus, or center, see Theorem 1. If it

is a center, then the local model (4) may undergo the Hopf bifurcation,

and it is the supercritical type by using the first Lyapunov number, see

Theorem 2. We also recommend some known results about Hopf bifur-

cation for the delayed models, see Refs. [21–24]. In what follows, we focus

on the spatial dynamics of the diffusive Brusselator model (3). By direct

analysis, we give the occurrence conditions of the Turing instability and

spatial inhomogeneous Hopf bifurcation, see Theorem 3 and Theorem 4,

respectively. It is noticed that there is the periodic solution bifurcated

from the Hopf bifurcation. Thereby, one adopts the center manifold re-

duction and normal form theory to determine the stability of the periodic

solution. The stable and unstable periodic solution can be classified, see

Theorem 5. Numerical simulations confirm the validity of our theoretical

results. In this fashion, the self-organization patterns induced by the Tur-

ing instability and periodic solutions bifurcated from the Hopf bifurcation
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with different parameter values are displayed, see Figs. 5-7 and Figs. 8-9,

respectively. Chemically, the Hopf bifurcation implies that there is a nat-

ural phenomenon that appears cyclical behavior in reaction progress. Of

course, we can avoid such behavior by adjusting the control parameter γ.

On the other hand, the self-organization patterns reveal the spatial oscil-

lation phenomenon of the model. Generally, this phenomenon is caused

by the movement of chemical reactants. Therefore, the spatial oscillation

behavior could be controlled by regulating the movement rates of the chem-

ical reactants. Overall, our theoretical predictions and numerical results

illustrate that the modified Brusselator model admits wealthy temporal

and spatial dynamic profiles. More dynamic profiles of such a modified

Brusselator model will be further considered.
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