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Abstract

Let G be a graph, the Sombor matrix S(G) of G was recently
introduced by Wang et al. It is a new matrix based on Sombor
index, where the (4, j) entry S;; = |/d? 4 dZ if vertices i and vertices
j are adjacent in GG, and S;; = 0 for other cases. Xueliang Li and
Junming Wang solved the conjecture for the upper and lower bounds
of the ABC spectral radius for unicyclic graphs by Ghorbani et
all. Inspired by this, we investigate the spectral radius on Sombor
matrix of unicyclic graphs. In the paper, we use the method of
classified discussion and Cauchy-Schwartz inequality to determine
the external Sombor spectral radius of unicyclic graphs and provide
the conditions for the equality.

1 Introduction

Let G = (V,E) be a simple connected graph of order n, where vertex
set V.= {vy,v9, -+ ,v,} and edge set E = {e1,ea, - ,em}. A graph G is
called unicyclic graph if m = n. We denote by d; the degree of vertex v;, by

0 the minimum degree of G, and by A = (A;;)nxn the adjacency matrix
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of a graph G. The eigenvalues of the adjacency matrx A are denoted
by M (G), A2(G), -, \(G), and A (G) > Xa(G) > -+ > M (G). The
spectral radius of G is the largest eigenvalue of the adjacency matrix,
which is denoted by A1(G). For more definitions, the reader can refer
to [1,2].

The Sombor matrix S = S(G) = (8i;)nxn of G is defined as

g — Q/d?-‘rd?, Zf ’UZ"U]‘EE'(G)7
iy —

0, otherwise.

The eigenvalues of the Sombor matrx S(G) are denoted by ui(G),
u2(G), -+, pn(G), and p1(G) > pa(G) > -+ > pun(G). The Sombor
spectral radius of G is the largest eigenvalue of the Sombor matrix, which
is denoted by p1(G). This matrix was recently introduced by Wang et
al [3] based on the concept of Sombor index by Gutman [4] in the chemical
graph theory. This new matrix is related to the forgotten index [5] that is
a well-known degree-based topological index. Up to date, the study of the
Sombor matrix of graphs mainly focuses on the Sombor index of chemical
graphs [6-8] and graph operators [9]. For more related results, the reader
can refer to [10,13,14,17,18].

In 2020, Ghorbani et al posed a conjecture for the upper and lower
bouns of the ABC spectral for unicyclic graphs [11], and Xueliang Li et al
solved the conjecture [15]. In this paper, for unicyclic graphs we investigate
the Sombor matrix and calculate the largest and smallest Sombor spectral

radius and characterize the corresponding extremal graphs.

2 Preliminary

Lemma 1. [12] [16] Let T > 0 be an irreducible matriz. Then R <
p1(T) < Ruax, where R is the average value of row sums of T and Ruyax
is the value of the largest row sum. Either equality holds if and only if the

row sums are equal.

Lemma 2. (Perron-Frobenius Theory) Let T > 0 be an irreducible matriz
with an eigenvalue 0y. Supposet € R,z € R", x > 0,2 # 0. If Tx < tx,
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then t > 0.

Lemma 3. (Cauchy-Schwarz Inequality) Let (a1, az2,--- ,an) and (b1, b,

-, by) be positive real numbers. Then

n n
2 2
> af) b

i=1 =1

n
Zaibi <
i—1

where the equality holds if and only if a; = kb;, 1 <i < mn.

3 Extrend Sombor spectral radius

For convenience’s sake, we denote the star graph, cycle graph of order n
by S, and C), respectively. Let S;r denote a unicyclic graph obtained by
attaching n — 3 vertices to some fixed vertex of C3 . Let U;(1 <4 < 5) and
G;(1 <14 < 4) denote some special graphs in Figure 1 and Figure 2.

K e B

(a) th (b) Us (c) Us (d) Ua (e) Us

Figure 1. U;(1 <13 <5)

< P P O

(a) G1 (b) G2 (c) Gs (d) Ga

Figure 2. G;(1 <i<4)

It is well known that there is only one type C3 of unicyclic graph for
n = 3, and its Sombor spectral radius is 11 (C3) = 4v/2. Then we calculate
Sombor spectral radius of unicyclic graphs for 4 < n < 6(see Figure 3,
Figure 4 and Figure 5), and display the computed result in Tab.1. In the

following section, we consider the case of unicyclic graphs for n > 7.
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(a)a (b b

Figure 3. Unicyclic graphs with n =4

OLLY XY

(a) Bl (b) B2 ( ) B3 d B4 e) B5

Figure 4. Unicyclic graphs with n =5

QQ | 0 X

Ds (f) De  (g) Dz

\XXﬁﬁ/iﬂ

(h) Ds (i) Do () D1o (k) D11 (1) D12 (m) D13

Figure 5. Unicyclic graphs with n = 6

Table 1. Sombor spectral radius of the unicyclic graphs for 4 < n < 6.

n=4 a b

w42 7.2538

n=>5 Bl B2 B3 B4 B5

w42 6.9797 7.4872 9.5328 8.4853

n==~06 D1 D2 D3 D4 D5 D6 D7
pi o 4v/2 6.8356 7.2079 9.1369 8.0039 7.8740 12.3766
n=06 Dg Dy Dy Dii Dy D3

pi o 9.7225 8.1108 7.5467 8.6409 9.5341 10.4129
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3.1 The lower bound for the Sombor spectrial radius

Theorem 1. If G is the unicyclic graph with n vertices, then
11(G) > i (Cr) = 42,

where the equality holds if and only if G = C,.

Proof. Since G is the unicyclic graph with n vertices, we have
di+do+---+d, =2n.

According to Lemma 1, we have

\/5

ViU, GE(G) (G)

m(G) >

SR

By Cauchy-Schwarz Inequality,

V2\/d? + d? > d; + d;,
n n 2

nde > (Zch) = 4n?. (1)
=1 i=1

Then

3\&

11 (G) > Z (d; + dj) fﬁ:d?zzh/i.
(S

(@) i=1

It is easy to check that u;(C,) = 4v/2. So
11 (G) = pa(Cp) = 4V2. (2)

If the equation in (2) holds, then all the above inequalities must be
equalities. By Lemma 3, the equality in (1) holds if and only if d; = d; for
any 1 <i,7 < n. Since G is a unicyclic graph, it implies that G = C,.

Conversely, if G = Cy,, then d; = 2 for 1 < ¢ < n, and so u1(Cp) =
4V/2. u



518
3.2 The upper bound for the Sombor spectrial radius

Let Ay (G) = max{d, + d,|uv € E(G)}, X = (\/d1,Vda, -+ ,/dn)T.

Lemma 4. Let G be an unicyclic graph with n vertices. If Aqq;(G) < n—1,
then 1 (G) < v/n+ 1v/n2 — 6n + 13.

Proof. Since Ayq;(G) <n—1,wehavel <d; <n-3,i=1,2,--- ,n, and

dj, +dj, +---+d;, <n+1, where vj,,vj,, -+ ,vj, denote the adjacent

vertices to the vertice v;.

(SX)i= Y. ,/d$+d§@§\/d§+(n—1—di)2 >V
(@)

’UivjEE ’UinEE(G)

By Cauchy-Schwarz Inequality,

S Vi< [ S ah<VaTiva
viv; €EE(G) v;v; EE(G)

So

(SX)i < (/282 —2(n — 1)d; + (n — 12V T 1V/d;
< V/n? —6n+ 13vn+ 1/d;.

Namely, SX < v/n + 1vn2 — 6n + 13X.
Therefore, by Lemma 2, we can get 11 (G) < vn + 1vn2 —6n+13. N

Lemma 5. Let f(x) :z2+x+%—2n—l,x €[3,n—3] andn >T7.
Then f(x) < n? —6n + 15.

Proof. First, for xz € [3,n — 3],

2
2
f(x)§x2+n—3+w—2n—1
x
2
+on+3
= 2+%7n74ég(x).
Second,
g/(x)zgx_w_

2
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Let ¢'(z) = 0. Then, we have

3/n?+2n+3
T=—
2
<3 n2+2n+3> <nz+2n+3>g
g ¢/ T2 ) g (AR TNy
2 2
1 n
3)=-n*—-+6
9B3) = 3n" - 3 +6,

18
g(n—3):n2—6n+10+m§n2—6n+15.

So, for z € [3,n — 3],
max g(x) = g(n — 3).

Thus, for z € [3,n — 3], f(z) <n?—6n+15,n> 1. |

Lemma 6. [15] Let G be an unicyclic graphs with n vertices. If there exist
two adjacent vertices u,v € V(G) such that dy, + d, > n, then G € U =
{Uy, U, Us, Uy, Us }, see Figure 1.

Lemma 7. If G €Uy \ {G1, G2}, then uy(G) < v/n+ 1v/n2 — 6n + 15.

Proof. Since G € U1\ {G1,G2}, we have that dy +ds =n+1,d3 =2,dy =
coo=dp=1,and 4 < dj,ds <n —3. Then

(SX)n= > Jdi+d2/d;

vlvjEE(G')
= \/d2 + d3\/ds +\/d? + d2+/ds5 + (d1 — 2)4/d? + 1.

By Lemmas 3 and 5, we have

(SX)1 <\ + 3+ + 3+ (dy —2)(d + 1)\/dy + ds + i — 2

= &+ & — 20+ )dy +n? 4+ 20+ 3V T T

2490 +3
SN/ Y U S N M e s S AV

dy
< vVn+1v/n? —6n + 15+/d;.
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Similarly,

(SX)2 < vVn+1vn?2 —6n+ 154/ds.

For ¢ = 3, we have

(SX)s= > \Jdi+d2/d;

V3V €E(G)

VA+ B+ 4+ B ds
<\/84d3 + d3\/dy + dy

242
—VnF1 d%f(nJrl)ler%nJrg\/dg

<Vvn+1 ( —6n +33)y/ds
< vVn+1v/n? —6n+ 154/ds.

For 4 <i < n, we have

(SX)i= > Jd+d2/d;

v;v; EE(G)

=\ + di
= \/1+d2\/dy

<+/(n —3)(n? — 6n + 10)

<vn+1lyn?2—-6n+15 k=12

In summary, we have SX < /(n + 1)(n2 — 6n + 15) X, and so i1 (G) <
Vn+ 1vn2 — 6n + 15. [ |

Lemma 8. If G € Us \ {G2}, then u1(G) < v/n+ 1v/n2 — 6n + 15.

Proof. Since G € Us\{G2}, we have d;+dy =n,ds =3,dy =---=d, =1,
and 3 < dj,dy <n—3. Then

(8X); = Z 43+ d2\/d;

v1v; €EE(G)
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=\/d? + d3\/do + \/d? + d3+\/d3 + (d1 — 2)y/d3 + 1
<\ B B B (d —2)(d + 1)y + s+ dy 2

:\/n+1\/d§+d§+(1—2n)d1+n2+7

247
= Vn+1 d%+d1+1—2n+nd+ Vi,
1

2 on+3
g\/d§+d1—2n—1+n+dfl+\/d1

< vn+1v/n2 —6n+ 15+/d;.

Similarly,

(5X)s < Vn+ 1v/n? —6n+ 151/ds.

For ¢ = 3, we have

(SX)3

B +d2/d;

V3V, EE(G)

= \Jd3 + BNy + ) dE+ d3dy + [ dE+ 1V

< \/3d§+d§+d§+1\/n+l
= \/2d§ —2nd; +n?+28vVn + 1
1
- \/B(Qd% —2ndy +n2 + 28)vn + 11/d3
< vVn+1v/n2 — 6n + 15/ds.

For 4 < i <n, we have

(SX)i = \/d? +d3\/dy

=\/1+didx
<vVn+1lyn?2—6n+15k=1,23.

In summary, we have SX < /(n + 1)(n2 — 6n + 15)X, and so ju1 (G) <
Vn+ 1vn2? — 6n + 15. [ |
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Lemma 9. If G € Us \ {G3}, then u1(G) < /n+ 1v/n2 — 6n + 14.

Proof. Since G € Us \ {G3}, we have d; +ds = n,ds = dy = 2,d5 =
d,=1,and 3 < dj,dy <n—3. Then

(SX)h= > ./dz +d2\/d;

v1v; EE(G

\/d2 +d§\/£+ @3+ d3/ds + [ d2 + d2/dy
+(d1 —3)\/d%—|—1

S\/3d%+d%+d§+di—|—(d1—3)(d%+1)\/d2+d3+d4+d1—3

:\/d§+d§+(1—2n)d1+n2+5\/n+1

245
:\/d§+d1+1—2n+n +

1
<+Vn+1v/n? —6n 4+ 14y/d;.

vn + 1\/@

Similarly,

(SX)s < Vn+ 1v/n? — 6n+ 14\/dy.

For ¢ = 3,4, 5, we have

(SX)s= Y. Jd+d2\/d;

v3v; EE(G)
=/d3 + d3\/dy + \/d3 + d3+\/d>
2d3 + d? + d3+/dy + do

= 8+ + (n—di)2Vn
77,2
= d%—ndl—&-?—i—él\/ﬁ\/i

2
% —3n 4+ 13vnV2
< Vn? —6n+14vVn + 14/ds,
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(SX)a= Y Jdd+d2\/d;

v4v; EE(G)

= \[d2 + d2\/dy + \[d? + d2+\/ds
= \/4+d2\/dV5

< /n?2—6n+14vn + 1V2
< Vn?—6n+14vVn+ 1+/dy,

and

= /& + B\ =2V/T+4< Vn+1vVn?—6n+ 14.

For 6 < i <n, we have

_JETaVE
= \/1+d3\/dy

<V(n3)2+1vn—-3
<+vn+1y/n? —6n + 14.

In summary, we have SX < /(n + 1)(n2 — 6n + 14)X, and so yu1 (G) <
vn+1vn2? — 6n + 14. [ |

Lemma 10. If G € Uy \ {G1,Gs}, then ui(G) < /n+1v/n2 — 6n + 14.

Proof. Since G € U, \ {Gl,Gg}, we have di +do = n,d3 = dy = 2,d5 =
--=d, =1,and 3 <dy,dy <n—3. Then

(SX)n= >, .hﬂ+da/*

v1v; EE(G

wﬁ+@¢£+Wﬁ+ﬁ¢£+wﬁ+ﬁ¢i
+(dy —3)y/d2 + 1

< \f3d2 4 B+ &+ @3+ (dr — 3)(d+ )yt ds +da + ;3

:V@§+ﬁ4wlfmnm+wﬂ+5vn+1
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5
vn 4+ 1+4/dy
<+vn+1v/n? —6n 4+ 14/d;.

2
:v@%+dy+1—2n+n +
1

Similarly,

(SX)2 <vVn+1vn? —6n+ 14+/ds.

For i = 3,4, we have

X)3 = \/d} + d3\/dy + \/d3 + d}/dy
< 1/2d2+d2+d2\/d1+d4

=/d? +12/dy +2
</n?—6n+14vVn+ 1V2,

and

X)4 < V/n2—6n+14vn + 1V2.

For 5 <i < n, we have

=&} +d}/dy

=\/1+d2+\/dy
<Vn+1lyn2—-6n+14, k=1,2.

In summary, we have SX < /(n +1)(n2 — 6n + 14) X, and so u1 (G) <
Vn+ 1vn2 —6n + 14.

Lemma 11. If G € Us \ {G5}, then p1(G) < v/n+ 1v/n? — 6n + 13.

Proof. Since G € Us \ {G4}, we have dy + ds = n,ds =dy = 2,d5 =
d, =1, and 3 <dy,dy <n—3. Then

ZWf

v1v; EE(G

@2+ d2dy 4 /2 + d2/ds + (dy — 2)y/d2 + 1

(SX)
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<2+ &+ o+ (dy — 2)(F 1)V + i+ dy 2

:\/d§+d%+(1—2n)d1+n2+2\/ﬁ

242
:\/d§+d1+1—2n+ndJr Vny/dy

1
<+vn+1v/n? —6n 4+ 13/d;.

Similarly,
(SX)Q § vn+ ].\/ n? —6n+ 13/ dQ.

For i = 3,4, we have

(SX)3 =/} +d3\/dy + [ d} + d3/day
< \/2d3 4 d3 + d3j\/dy + dy
= \/d2+12\/dy + 2

<V/n?2—6n+13vVn+ 1V2,

and
(SX)4 < V/n2?—6n+13vVn+ 1V2.

For 5 < i < n, we have

(SX); = \/d? + d3\/dy, = /1 + d3\/dy

< V14 (n—-3)2vn-3

<Vn+1lyn2—-6n+13, k=1,2.

In summary, we have SX < /(n + 1)(n2 — 6n + 13) X, and so p11(G)

Vn+1vn2 —6n + 13.

<
|

Lemma 12. Let F = {G1,G2,G3,G4}. Then Gy has the largest Sombor

spectral radius among F.

Proof. For G, we have
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0 8 8 e a
6 0 22 0 0
M(Gy) = B 22 0 0 0 ’
a 0 0 0 0
a0 0 0 0 |
where
a=+/(n—-124+1,8=+/(n—-1)2+4.
Then
fa,(A) = det(\ — M(Gy)) = (A +2V2)A" 4 f1 (),
where

F1) = X3 —2v222 — (n® — 3n2 + 4n + 4\ + 2v2(n® — 502 + 8n — 6).
It is easy that
fi(=nvn+1) <0, f1(0) >0,
AWRFIVRZ —5n+8) <0, filnv/n+1)>0.

By zero point theorem, we have

p1(G1) € (Wn+1vn2 —bn+8,nvn+1).

For G5, we have

0 c b 0 a a
c 0 V13 V10 0 0
b V13 0 0 0 0
M(Gy)=| 0 V10 0 0 0 0o |,
a 0 0 0 0 0
| a0 0 o 0 - 0 |
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where

a=+vn-22+1,b=y(n—-22+4,c=+/(n—2)2+09.

Then
fa,(N) = det(A — M(Ga)) = X"~ fo (),

where
fo(N) = At — (n® — 6n? + 13n 4 24)A% 4 23n> — 174n? + 443n — 380.
It is easy that

fa(=vn+1v/n2 —5n+8) >0,

fa <—\/;(n +1)(n2 —Tn + 20)) <0,

f2 (0) > O,

P! <\/;(n + 1)(n? — Tn + 20)) <0,
fo(Vn+1v/n? —5n+8) > 0.

By zero point theorem, we have

p1(G2) < vn+1y/n2? —5n+ 8.

For GGz, we have

_O b b 0 a a_
b 0 22 0 0 0 0
b 22 0 0 0 0 0
M(Gy) = b 0 0 0 V5 0 0 ’
0 0 V5 0 0 0
a 0 0 0 0 0
a 0 0 0 0 0 0 |
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where

a=+v(n—22+1,b=+/(n—2)2+4,

Then
fas(\) = det(A — M(G3)) = (A +2v2)A" % f3(N),

where

F3(N) =X° — 2v22% — (0% — 602 4 13n 4+ 4)A° + 2v2(n® — 8n% + 21n
—12)A2 +5(n® — Tn® + 17n — 9\ — 10v/2(n® — 9n? + 25n — 25).

It is easy that

fa(v/(n + 1)( —8n)) <0,
T1vn2—5n+8) > 0.

fs(=Vn+1)vn2—5n+8) <0,
f3(—=/(n+1)(n2 —9n)) > 0
f3(0)<0,
f3(4v2) >

(

(

3

By zero point theorem, we have

w1 (Gs) < vVn+1y/n? —5n+8.

For G4, we have

0 b 0 b a a a

b 0 22 0 0 0 0

0 22 0 2v2 0 0 0
M(Gy) = b 0 22 0 0 0 0 ’

b 0 22 0 0 0 0

a 0 0 0 0 0 0

a0 0 0 0 0 0
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where
a=+/(n—-22+1b=+/(n—2)2+4.
Then
fa,(N) = det(\T — M(G4)) = A" fa(N),
where

fa0) = A — (n® — 6n% + 13n 4+ 12)A? + 16(n® — 8n? + 21n — 20).
It is easy that

fa(xvn+1vn? —5n+8) > 0,

f4(:|:4) < 0,
f4(0) > 0.

By zero point theorem, we have

w1 (Gq) < vVn+1y/n? —5n+8.

In summary, the Sombor spectral radius of G; among F' is largest. H

Theorem 2. If G is the unicyclic graph of order n > 7, then
11 (G) < pu(S7),

with equality if and only if G = S;'.

Proof. By Lemma 4 and Lemmas 6-11, for all unicyclic graphs of order
n > 7 except G € {G1,G2,G3,G4}, we have

w(G) <vVn+1yn? —5n+8.

By Lemma 12, we have

w1 (G1) > vVn+1vn?2 —5n+8> u(G;), i=2,3,4.
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Therefore, GG; is the unicyclic graph with the largest Sombor spectral

radius, which is isomorphic to ,5'3+ . |

4 Conclusion

Since, evidently, C3 be a special form of S, we obtain our main result

as follows.

Theorem 3. If G is the unicyclic graph of order n > 3, then
W2 = i (Cp) < 1 (G) < (S5,

where the lower bound is achieved by C,, and the upper bound is achieved
by S;'.

Recently, Li et al. proved the conjecture for the upper and lower bounds
of the ABC spectral radius for unicyclic graphs. In this paper, we have
researched the spectral radius of the Sombor matrix from an algebraic
viewpoint, and characterize the corresponding extremal graphs as Theorem
3. Further, we conjecture that for an unicyclic graph of order n > 3, the
spectral radius p of the corresponding matrix based on degree of vertices
must satify that p(C,) < p(G) < p(S7), with equality if and only if
G = C,, for the lower bound, and G = S for the upper bound.
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