# Solutions to Some Open Problems About Four Sombor-Index-Like Graph Invariants 

Akbar Ali ${ }^{a, *}$, Igor Ž. Milovanović ${ }^{b}$, Abeer M. Albalahi ${ }^{a}$ Abdulaziz M. Alanazi ${ }^{c}$, Amjad E. Hamza ${ }^{a}$<br>${ }^{a}$ Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia<br>${ }^{b}$ Faculty of Electronic Engineering, University of Niš, Niš, Serbia<br>${ }^{c}$ Department of Mathematics, University of Tabuk, Tabuk, Saudi Arabia<br>akbarali.maths@gmail.com, igor.Milovanovic@elfak.ni.ac.rs, a.albalahi@uoh.edu.sa, am.alenezi@ut.edu.sa, boaljod2@hotmail.com

(Received February 23, 2023)


#### Abstract

This paper gives solutions to most of the open problems posed in the very recent paper [Z. Tang, Q. Li, H. Deng, Trees with extremal values of the Sombor-index-like graph invariants, MATCH Commun. Math. Comput. Chem. 90 (2023) 203-222].


## 1 Introduction and statements of problems

Throughout this paper, only finite graphs are considered. For notation and terminology from (chemical) graph theory, we refer the reader to relevant standard books; for example, $[1,2,10,11]$.

A graph invariant $I_{g}$ is a function defined on the set of all graphs with the following property: $I_{g}\left(G_{1}\right)=I_{g}\left(G_{2}\right)$ whenever $G_{1}$ and $G_{2}$ are

[^0]isomorphic. Recently, Gutman [6] proposed six graph invariants in view of geometric considerations and referred them to as Sombor-index-like graph invariants. (Detail about the classical Sombor indices can be found in $[4,5,8]$.) This paper is concerned with four such Sombor-index-like graph invariants, which are defined for a graph $G$ as
\[

$$
\begin{gathered}
S O_{3}(G)=\sqrt{2} \pi \sum_{v w \in E(G)} \frac{d_{v}^{2}+d_{w}^{2}}{d_{v}+d_{w}} \\
S O_{4}(G)=\frac{\pi}{2} \sum_{u v \in E(G)}\left(\frac{d_{v}^{2}+d_{w}^{2}}{d_{v}+d_{w}}\right)^{2} \\
S O_{5}(G)=2 \pi \sum_{u v \in E(G)} \frac{\left|d_{v}^{2}-d_{w}^{2}\right|}{\sqrt{2}+2 \sqrt{d_{v}^{2}+d_{w}^{2}}} \\
S O_{6}(G)=\pi \sum_{u v \in E(G)}\left(\frac{d_{v}^{2}-d_{w}^{2}}{\sqrt{2}+2 \sqrt{d_{v}^{2}+d_{w}^{2}}}\right)^{2}
\end{gathered}
$$
\]

where $E(G)$ denotes the set of edges of $G$ and $d_{u}$ represents the degree of a vertex $u$ in $G$.

By a chemical tree, we mean a tree of maximum degree at most 4. Let $\mathcal{T}_{n}, \mathcal{C} \mathcal{T}_{n}$ and $\mathcal{C} \mathcal{G}_{n}$ be the classes of all trees, chemical trees and connected graphs, respectively, of order $n$. Quite recently, Tang et al. [9] investigated some extremal properties of Sombor-index-like graph invariants and posed following open problems.

Problem 1. Find the extremal values of the graph invariants $S_{5}$ and $S O_{6}$ in the classes $\mathcal{T}_{n}$ and $\mathcal{C} \mathcal{T}_{n}$.

Problem 2. Find the maximum value of the graph invariants $\mathrm{SO}_{4}$ in the class $\mathcal{T}_{n}$.

Problem 3. Find the extremal values of the graph invariants $\mathrm{SO}_{5}$ and $S O_{6}$ in the class $\mathcal{C G}_{n}$.

Problem 4. Find the maximum values of the graph invariants $\mathrm{SO}_{3}$ and $\mathrm{SO}_{4}$ in the class $\mathcal{C G}_{n}$.

In this paper, Problems 2 and 4 are solved completely. Also, partial solutions to Problems 1 and 3 are provided; more precisely, Problem 1 is solved for the class $\mathcal{T}_{n}$ (this solution also resolve the minimal part of Problem 1 regarding $\mathcal{C} \mathcal{T}_{n}$ ) and a solution to the minimal part of Problem 3 is indicated.

## 2 Results

A vertex $x$ in a graph is said to be a pendent vertex if $d_{x}=1$. An edge incident to a pendent vertex is known as a pendent edge. For an edge $v w$ of a graph, define

$$
S O_{5}(v w)=\frac{2 \pi\left|d_{v}^{2}-d_{w}^{2}\right|}{\sqrt{2}+2 \sqrt{d_{v}^{2}+d_{w}^{2}}}
$$

The following result gives the solution to the minimal part of Problem 1.
Proposition 1. If $T$ is a tree of order at least 3, then

$$
S O_{5}(T) \geq \frac{12 \pi}{\sqrt{2}+2 \sqrt{5}} \quad \text { and } \quad S O_{6}(T) \geq \frac{18 \pi}{(\sqrt{2}+2 \sqrt{5})^{2}}
$$

where the equality in any of these two inequalities holds if and only if $T$ is a path graph. Particularly, the path graph $P_{n}$ uniquely attains the minimum values of $S_{5}$ and $S O_{6}$ in the classes $\mathcal{T}_{n}$ and $\mathcal{C} \mathcal{T}_{n}$ for each $n \in\{4,5,6, \ldots\}$.

Proof. Since the proofs of both desired inequalities are similar to each other, we prove one of them; namely, the one involving $S O_{5}$. Consider a pendent vertex $u \in V(T)$ adjacent to a vertex $v$. Then

$$
S O_{5}(u v)=\frac{2 \pi\left(d_{v}^{2}-1\right)}{\sqrt{2}+2 \sqrt{d_{v}^{2}+1}} \geq \frac{6 \pi}{\sqrt{2}+2 \sqrt{5}}
$$

where the equation $S O_{5}(u v)=6 \pi /(\sqrt{2}+2 \sqrt{5})$ holds if and only if $d_{v}=2$. Denote by $P_{E}(T)$ the set consisting of all pendent edges in $T$. By utilizing
the definition of $\mathrm{SO}_{5}$, we have

$$
\begin{align*}
S O_{5}(T) & =\sum_{u v \in P_{E}(T)} S O_{5}(u v)+\sum_{x y \in E(T) \backslash P_{E}(T)} S O_{5}(x y) \\
& \geq \sum_{u v \in P_{E}(T)} \frac{6 \pi}{\sqrt{2}+2 \sqrt{5}}+\sum_{x y \in E(T) \backslash P_{E}(T)}(0)  \tag{1}\\
& =\frac{6 \pi}{\sqrt{2}+2 \sqrt{5}}\left|P_{E}(T)\right| \\
& \geq \frac{12 \pi}{\sqrt{2}+2 \sqrt{5}} \tag{2}
\end{align*}
$$

Certainly, the equality in (1) holds if and only if $\max \left\{d_{v}, d_{u}\right\}=2$ for each edge $u v \in P_{E}(T)$ and $d_{y}=d_{x}$ for each edge $x y \in E(T) \backslash P_{E}(T)$. Note also that the equality in (2) holds if and only if the set $P_{E}(T)$ has only two elements.

Remark. The proof of Proposition 1 suggests slightly general lower bounds on $S O_{5}$ and $S O_{6}$ as given below. For a connected graph $G$ with at least two edges and with $n_{1}$ pendent vertices, the following inequalities hold

$$
S O_{5}(G) \geq \frac{6 \pi}{\sqrt{2}+2 \sqrt{5}} n_{1} \quad \text { and } \quad S O_{6}(G) \geq \frac{9 \pi}{(\sqrt{2}+2 \sqrt{5})^{2}} n_{1}
$$

where the equality in any of these two inequalities holds if and only if $G$ is either a path graph or a regular graph.

Next, we move towards a solution to the maximal part of Problem 1 for the case of trees. For this, we need the following lemma.

Lemma 1. The functions $f$ and $g$ defined by

$$
f(x, y)=\frac{2 \pi\left|x^{2}-y^{2}\right|}{\sqrt{2}+2 \sqrt{x^{2}+y^{2}}} \quad \text { and } \quad g(x, y)=\pi\left(\frac{x^{2}-y^{2}}{\sqrt{2}+2 \sqrt{x^{2}+y^{2}}}\right)^{2}
$$

are strictly decreasing in $x$ whenever $1 \leq x \leq y$.
The next lemma not only provides the solution to the maximal part of Problem 1 (take $m=n-1$ ) concerning the class $\mathcal{T}_{n}$ but also indicates the
trivial solution to the minimal part of Problem 3.
Lemma 2. For $n \geq 3$, if $G$ is a connected graph of order $n$ and size $m$, then

$$
\begin{equation*}
0 \leq S O_{5}(G) \leq \frac{2 \pi m\left((n-1)^{2}-1\right)}{\sqrt{2}+2 \sqrt{(n-1)^{2}+1}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq S O_{6}(G) \leq \pi m\left(\frac{(n-1)^{2}-1}{\sqrt{2}+2 \sqrt{(n-1)^{2}+1}}\right)^{2} \tag{4}
\end{equation*}
$$

where the left equality in either of the inequalities (3) and (4) holds if and only if $G$ is regular, while the right equality in either of the inequalities (3) and (4) holds if and only if $G$ is the star graph $S_{n}$.

Proof. Since the proofs of both desired inequalities are similar to each other, we prove one of them; namely, the inequality (3). It is obvious that $S O_{5}(G) \geq 0$ with equality if and only if $G$ is regular. Now, consider an arbitrary edge $u v \in E(G)$ with the condition $d_{u} \leq d_{v}$. By utilizing the function $f$ defined in Lemma 1, we have

$$
f\left(d_{u}, d_{v}\right) \leq f\left(1, d_{v}\right) \leq f(1, n-1)
$$

where the equation $f\left(d_{u}, d_{v}\right)=f(1, n-1)$ holds if and only if $\left(d_{u}, d_{v}\right)=$ (1, $n-1$ ). Thus,

$$
S O_{5}(G)=\sum_{u v \in E(G)} f\left(d_{u}, d_{v}\right) \leq \sum_{u v \in E(G)} f(1, n-1)=m f(1, n-1)
$$

where the equation $S O_{5}(G)=m f(1, n-1)$ holds if and only if $G$ is the star graph $S_{n}$.

From Lemma 2, the next result follows.
Proposition 2. The star graph $S_{n}$ uniquely attains the maximum values of $S O_{5}$ and $S_{6}$ in the class $\mathcal{T}_{n}$ for each $n \in\{4,5,6, \ldots\}$.

Now, we pay attention to solving Problem 2. For this, we need the following lemma.

Lemma 3. If $G$ is a connected graph of order at least 3 with the minimum degree 1 and the maximum degree $\Delta$, then

$$
S O_{4}(G) \leq \frac{\pi\left(\Delta^{2}+1\right)}{2(\Delta+1)^{2}} F(G)
$$

with equality if and only if $\left\{d_{v}, d_{w}\right\}=\{1, \Delta\}$ for every edge $v w \in E(G)$, where $F(G)=\sum_{x \in V(G)} d_{x}^{3}$, known as the forgotten topological index [3].

Proof. Note that the function $f$ defined by

$$
f(x, y)=\frac{\pi\left(x^{2}+y^{2}\right)}{2(x+y)^{2}}
$$

is strictly decreasing in $x$ whenever $1 \leq x \leq y$. Thereby, for any edge $v w \in E(G)$ with $d_{v} \leq d_{w}$, it holds that

$$
\begin{equation*}
f\left(d_{v}, d_{w}\right) \leq f\left(1, d_{w}\right) \leq f(1, \Delta) \tag{5}
\end{equation*}
$$

where the equation $f\left(d_{v}, d_{w}\right)=f(1, \Delta)$ holds if and only if $d_{v}=1$ and $d_{w}=\Delta$. From (5) it follows that

$$
\begin{equation*}
\frac{\pi}{2}\left(\frac{d_{v}^{2}+d_{w}^{2}}{d_{v}+d_{w}}\right)^{2} \leq\left(d_{v}^{2}+d_{w}^{2}\right) f(1, \Delta) \tag{6}
\end{equation*}
$$

Now, applying the summation over the edge set $E(G)$ on (6) yields the desired result.

From a general result of [7], it follows that the inequality $F(T)<F\left(S_{n}\right)$ holds for any tree $T$ of order $n$ different from the star graph $S_{n}$. Also, for $\Delta \leq n-1$, it holds that

$$
\frac{\pi\left(\Delta^{2}+1\right)}{2(\Delta+1)^{2}} \leq \frac{\pi\left((n-1)^{2}+1\right)}{2 n^{2}}
$$

with equality if and only if $\Delta=n-1$. These observations together with Lemma 3 give the next result, which provides the solution to Problem 2.

Proposition 3. For $n \geq 3$, if $T$ is a tree of order $n$ different from the star graph $S_{n}$, then

$$
S O_{4}(T)<\frac{\pi(n-1)\left((n-1)^{2}+1\right)^{2}}{2 n^{2}}
$$

Particularly, the star graph $S_{n}$ uniquely attains the maximum value of $\mathrm{SO}_{4}$ in the class $\mathcal{T}_{n}$ for each $n \in\{4,5,6, \ldots\}$.

Finally, in order to providing the solution to Problem 4, we give the following lemma.

Lemma 4. If $G$ is a connected graph with the maximum degree $\Delta$ and size $m$, then

$$
S O_{3}(G) \leq \sqrt{2} \pi \Delta m \quad \text { and } \quad S O_{4}(G) \leq \frac{\pi \Delta^{2} m}{2}
$$

where the equality in either of the two inequalities holds if and only if $G$ is a $\Delta$-regular graph.

Proof. For any edge $v w \in E(G)$, it holds that $d_{v}^{2}+d_{w}^{2} \leq \Delta d_{v}+\Delta d_{w}$ and $\left(d_{v}^{2}+d_{w}^{2}\right)^{2} \leq\left(\Delta d_{v}+\Delta d_{w}\right)^{2}$, where the equality in either of the two inequalities holds if and only if $d_{v}=d_{w}=\Delta$.

The next result gives the solution to Problem 4.
Proposition 4. If $G$ is a connected graph of order n, then

$$
\mathrm{SO}_{3}(G) \leq \frac{\pi n(n-1)^{2}}{\sqrt{2}} \quad \text { and } \quad \mathrm{SO}_{4}(G) \leq \frac{\pi n(n-1)^{3}}{4}
$$

where the equality in either of the two inequalities holds if and only if $G$ is the complete graph $K_{n}$.

Proof. Let $\Delta$ and $m$ be the maximum degree and size of $G$. Then, by utilizing Lemma 4 , we get

$$
S O_{3}(G) \leq \sqrt{2} \pi \Delta m \leq \frac{\pi n(n-1)^{2}}{\sqrt{2}} \text { and } S O_{4}(G) \leq \frac{\pi \Delta^{2} m}{2} \leq \frac{\pi n(n-1)^{3}}{4}
$$

Acknowledgment: This research has been funded by the Scientific Research Deanship, University of Hàil, Saudi Arabia, through project number RG-22 005.

## References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[2] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, CRC Press, Boca Raton, 2016.
[3] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[4] I. Gutman, Sombor index - one year later, Bull. Acad. Serb. Sci. Arts 153 (2020) 43-55.
[5] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[6] I. Gutman, Sombor indices - back to geometry, Open J. Discr. Appl. Math. 5 (2022) 1-5.
[7] X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
[8] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem. 60 (2022) 771-798.
[9] Z. Tang, Q. Li, H. Deng, Trees with extremal values of the Sombor-index-like graph invariants, MATCH Commun. Math. Comput. Chem. 90 (2023) 203-222.
[10] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992.
[11] S. Wagner, H. Wang, Introduction to Chemical Graph Theory, CRC Press, Boca Raton, 2018.


[^0]:    * Corresponding author.

