Solutions to Some Open Problems About Four Sombor–Index–Like Graph Invariants

Akbar Alia,\,*, Igor Ž. Milovanovićb, Abeer M. Albalahia
Abdulaziz M. Alanazic, Amjad E. Hamzaa

aDepartment of Mathematics, Faculty of Science, University of Ha’il, Ha’il, Saudi Arabia
bFaculty of Electronic Engineering, University of Niš, Niš, Serbia
cDepartment of Mathematics, University of Tabuk, Tabuk, Saudi Arabia
akbarali.maths@gmail.com, igor.Milovanovic@elfak.ni.ac.rs,
a.albalahi@uoh.edu.sa, am.alenezi@ut.edu.sa, boaljod2@hotmail.com

(Received February 23, 2023)

Abstract

1 Introduction and statements of problems

Throughout this paper, only finite graphs are considered. For notation and terminology from (chemical) graph theory, we refer the reader to relevant standard books; for example, [1,2,10,11].

A graph invariant I_g is a function defined on the set of all graphs with the following property: $I_g(G_1) = I_g(G_2)$ whenever G_1 and G_2 are

*Corresponding author.
isomorphic. Recently, Gutman [6] proposed six graph invariants in view of geometric considerations and referred them to as Sombor-index-like graph invariants. (Detail about the classical Sombor indices can be found in [4,5,8].) This paper is concerned with four such Sombor-index-like graph invariants, which are defined for a graph G as

$$SO_3(G) = \sqrt{2} \pi \sum_{vw \in E(G)} \frac{d_v^2 + d_w^2}{d_v + d_w},$$

$$SO_4(G) = \frac{\pi}{2} \sum_{uv \in E(G)} \left(\frac{d_v^2 + d_w^2}{d_v + d_w} \right)^2,$$

$$SO_5(G) = 2 \pi \sum_{uv \in E(G)} \frac{|d_v^2 - d_w^2|}{\sqrt{2} + 2 \sqrt{d_v^2 + d_w^2}},$$

$$SO_6(G) = \pi \sum_{uv \in E(G)} \left(\frac{d_v^2 - d_w^2}{\sqrt{2} + 2 \sqrt{d_v^2 + d_w^2}} \right)^2,$$

where $E(G)$ denotes the set of edges of G and d_u represents the degree of a vertex u in G.

By a chemical tree, we mean a tree of maximum degree at most 4. Let T_n, CT_n and CG_n be the classes of all trees, chemical trees and connected graphs, respectively, of order n. Quite recently, Tang et al. [9] investigated some extremal properties of Sombor-index-like graph invariants and posed following open problems.

Problem 1. Find the extremal values of the graph invariants SO_5 and SO_6 in the classes T_n and CT_n.

Problem 2. Find the maximum value of the graph invariants SO_4 in the class T_n.

Problem 3. Find the extremal values of the graph invariants SO_5 and SO_6 in the class CG_n.

Problem 4. Find the maximum values of the graph invariants SO_3 and SO_4 in the class CG_n.
In this paper, Problems 2 and 4 are solved completely. Also, partial solutions to Problems 1 and 3 are provided; more precisely, Problem 1 is solved for the class \(T_n \) (this solution also resolve the minimal part of Problem 1 regarding \(CT_n \)) and a solution to the minimal part of Problem 3 is indicated.

2 Results

A vertex \(x \) in a graph is said to be a pendent vertex if \(d_x = 1 \). An edge incident to a pendent vertex is known as a pendent edge. For an edge \(vw \) of a graph, define

\[
SO_5(vw) = \frac{2\pi |d_v^2 - d_w^2|}{\sqrt{2} + 2\sqrt{d_v^2 + d_w^2}}.
\]

The following result gives the solution to the minimal part of Problem 1.

Proposition 1. If \(T \) is a tree of order at least 3, then

\[
SO_5(T) \geq \frac{12\pi}{\sqrt{2} + 2\sqrt{5}} \quad \text{and} \quad SO_6(T) \geq \frac{18\pi}{(\sqrt{2} + 2\sqrt{5})^2},
\]

where the equality in any of these two inequalities holds if and only if \(T \) is a path graph. Particularly, the path graph \(P_n \) uniquely attains the minimum values of \(SO_5 \) and \(SO_6 \) in the classes \(T_n \) and \(CT_n \) for each \(n \in \{4, 5, 6, \ldots\} \).

Proof. Since the proofs of both desired inequalities are similar to each other, we prove one of them; namely, the one involving \(SO_5 \). Consider a pendent vertex \(u \in V(T) \) adjacent to a vertex \(v \). Then

\[
SO_5(uv) = \frac{2\pi (d_v^2 - 1)}{\sqrt{2} + 2\sqrt{d_v^2 + 1}} \geq \frac{6\pi}{\sqrt{2} + 2\sqrt{5}}
\]

where the equation \(SO_5(uv) = 6\pi/(\sqrt{2} + 2\sqrt{5}) \) holds if and only if \(d_v = 2 \). Denote by \(PE(T) \) the set consisting of all pendent edges in \(T \). By utilizing
the definition of SO_5, we have

$$SO_5(T) = \sum_{uv \in P_E(T)} SO_5(uv) + \sum_{xy \in E(T) \setminus P_E(T)} SO_5(xy)$$

$$\geq \sum_{uv \in P_E(T)} \frac{6\pi}{\sqrt{2} + 2\sqrt{5}} + \sum_{xy \in E(T) \setminus P_E(T)} (0) \quad (1)$$

$$= \frac{6\pi}{\sqrt{2} + 2\sqrt{5}} |P_E(T)|$$

$$\geq \frac{12\pi}{\sqrt{2} + 2\sqrt{5}}. \quad (2)$$

Certainly, the equality in (1) holds if and only if $\max\{d_v, d_u\} = 2$ for each edge $uv \in P_E(T)$ and $d_y = d_x$ for each edge $xy \in E(T) \setminus P_E(T)$. Note also that the equality in (2) holds if and only if the set $P_E(T)$ has only two elements.

Remark. The proof of Proposition 1 suggests slightly general lower bounds on SO_5 and SO_6 as given below. For a connected graph G with at least two edges and with n_1 pendant vertices, the following inequalities hold

$$SO_5(G) \geq \frac{6\pi}{\sqrt{2} + 2\sqrt{5}} n_1 \quad \text{and} \quad SO_6(G) \geq \frac{9\pi}{(\sqrt{2} + 2\sqrt{5})^2} n_1,$$

where the equality in any of these two inequalities holds if and only if G is either a path graph or a regular graph.

Next, we move towards a solution to the maximal part of Problem 1 for the case of trees. For this, we need the following lemma.

Lemma 1. The functions f and g defined by

$$f(x, y) = \frac{2\pi|x^2 - y^2|}{\sqrt{2} + 2\sqrt{x^2 + y^2}} \quad \text{and} \quad g(x, y) = \pi \left(\frac{x^2 - y^2}{\sqrt{2} + 2\sqrt{x^2 + y^2}} \right)^2$$

are strictly decreasing in x whenever $1 \leq x \leq y$.

The next lemma not only provides the solution to the maximal part of Problem 1 ($m = n - 1$) concerning the class T_n but also indicates the
trivial solution to the minimal part of Problem 3.

Lemma 2. For $n \geq 3$, if G is a connected graph of order n and size m, then

$$0 \leq SO_5(G) \leq \frac{2\pi m((n-1)^2 - 1)}{\sqrt{2} + 2\sqrt{(n-1)^2 + 1}}$$

and

$$0 \leq SO_6(G) \leq \pi m \left(\frac{(n-1)^2 - 1}{\sqrt{2} + 2\sqrt{(n-1)^2 + 1}}\right)^2$$

where the left equality in either of the inequalities (3) and (4) holds if and only if G is regular, while the right equality in either of the inequalities (3) and (4) holds if and only if G is the star graph S_n.

Proof. Since the proofs of both desired inequalities are similar to each other, we prove one of them; namely, the inequality (3). It is obvious that $SO_5(G) \geq 0$ with equality if and only if G is regular. Now, consider an arbitrary edge $uv \in E(G)$ with the condition $d_u \leq d_v$. By utilizing the function f defined in Lemma 1, we have

$$f(d_u, d_v) \leq f(1, d_v) \leq f(1, n-1)$$

where the equation $f(d_u, d_v) = f(1, n-1)$ holds if and only if $(d_u, d_v) = (1, n-1)$. Thus,

$$SO_5(G) = \sum_{uv \in E(G)} f(d_u, d_v) \leq \sum_{uv \in E(G)} f(1, n-1) = m f(1, n-1),$$

where the equation $SO_5(G) = m f(1, n-1)$ holds if and only if G is the star graph S_n.

From Lemma 2, the next result follows.

Proposition 2. The star graph S_n uniquely attains the maximum values of SO_5 and SO_6 in the class \mathcal{T}_n for each $n \in \{4, 5, 6, \ldots\}$.

Now, we pay attention to solving Problem 2. For this, we need the following lemma.
Lemma 3. If G is a connected graph of order at least 3 with the minimum degree 1 and the maximum degree Δ, then

$$SO_4(G) \leq \frac{\pi(\Delta^2 + 1)}{2(\Delta + 1)^2} F(G)$$

with equality if and only if $\{d_v, d_w\} = \{1, \Delta\}$ for every edge $vw \in E(G)$, where $F(G) = \sum_{x \in V(G)} d_x^3$, known as the forgotten topological index [3].

Proof. Note that the function f defined by

$$f(x, y) = \frac{\pi(x^2 + y^2)}{2(x + y)^2},$$

is strictly decreasing in x whenever $1 \leq x \leq y$. Thereby, for any edge $vw \in E(G)$ with $d_v \leq d_w$, it holds that

$$f(d_v, d_w) \leq f(1, d_w) \leq f(1, \Delta) \quad (5)$$

where the equation $f(d_v, d_w) = f(1, \Delta)$ holds if and only if $d_v = 1$ and $d_w = \Delta$. From (5) it follows that

$$\frac{\pi}{2} \left(\frac{d_v^2 + d_w^2}{d_v + d_w} \right)^2 \leq (d_v^2 + d_w^2) f(1, \Delta). \quad (6)$$

Now, applying the summation over the edge set $E(G)$ on (6) yields the desired result. \qed

From a general result of [7], it follows that the inequality $F(T) < F(S_n)$ holds for any tree T of order n different from the star graph S_n. Also, for $\Delta \leq n - 1$, it holds that

$$\frac{\pi(\Delta^2 + 1)}{2(\Delta + 1)^2} \leq \frac{\pi((n - 1)^2 + 1)}{2n^2}$$

with equality if and only if $\Delta = n - 1$. These observations together with Lemma 3 give the next result, which provides the solution to Problem 2.
Proposition 3. For \(n \geq 3 \), if \(T \) is a tree of order \(n \) different from the star graph \(S_n \), then

\[
SO_4(T) < \frac{\pi(n-1)((n-1)^2+1)}{2n^2}.
\]

Particularly, the star graph \(S_n \) uniquely attains the maximum value of \(SO_4 \) in the class \(T_n \) for each \(n \in \{4, 5, 6, \ldots\} \).

Finally, in order to providing the solution to Problem 4, we give the following lemma.

Lemma 4. If \(G \) is a connected graph with the maximum degree \(\Delta \) and size \(m \), then

\[
SO_3(G) \leq \sqrt{2} \pi \Delta m \quad \text{and} \quad SO_4(G) \leq \frac{\pi \Delta^2 m}{2},
\]

where the equality in either of the two inequalities holds if and only if \(G \) is a \(\Delta \)-regular graph.

Proof. For any edge \(vw \in E(G) \), it holds that \(d_v^2 + d_w^2 \leq \Delta d_v + \Delta d_w \) and \((d_v^2 + d_w^2)^2 \leq (\Delta d_v + \Delta d_w)^2 \), where the equality in either of the two inequalities holds if and only if \(d_v = d_w = \Delta \).

The next result gives the solution to Problem 4.

Proposition 4. If \(G \) is a connected graph of order \(n \), then

\[
SO_3(G) \leq \frac{\pi n(n-1)^2}{\sqrt{2}} \quad \text{and} \quad SO_4(G) \leq \frac{\pi n(n-1)^3}{4}
\]

where the equality in either of the two inequalities holds if and only if \(G \) is the complete graph \(K_n \).

Proof. Let \(\Delta \) and \(m \) be the maximum degree and size of \(G \). Then, by utilizing Lemma 4, we get

\[
SO_3(G) \leq \sqrt{2} \pi \Delta m \leq \frac{\pi n(n-1)^2}{\sqrt{2}} \quad \text{and} \quad SO_4(G) \leq \frac{\pi \Delta^2 m}{2} \leq \frac{\pi n(n-1)^3}{4}.
\]
Acknowledgment: This research has been funded by the Scientific Research Deanship, University of Ha'il, Saudi Arabia, through project number RG-22 005.

References

