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Abstract

The Sombor index, introduced by Ivan Gutman in 2020, has
received intensive attention. The Sombor index of a graph G is
defined as SO(G) =

∑
uv∈E(G)

√
d2u + d2v, where E(G) denotes the

edge set in G and du denotes the degree of vertex u in G. A graph
with maximum degree at most 4 is called as a chemical graph.

Réti et al. [T. Réti, T. Došlić, A. Ali, On the Sombor index of
graphs, Contrib. Math. 3 (2021) 11-18] proposed an open problem
about determining the maximum Sombor index among all connected
c-cyclic graph for 6 ≤ c ≤ n − 2. For c = 1, 2, 3, 4, the problem
about finding the minimum (resp. maximum) Sombor index among
all connected c-cyclic graph has already been solved. In this paper,
we determine the minimum Sombor index among connected c-cyclic
chemical graph for c ≥ 3, n ≥ 5(c − 1), which partially extends the
results of Liu et al. [H. Liu, L. You, Y. Huang, Ordering chemical
graphs by Sombor indices and its applications, MATCH Commun.
Math. Comput. Chem. 87 (2022) 5-22] and Liu et al. [H. Liu, L.
You, Y. Huang, Extremal Sombor indices of tetracyclic (chemical)
graphs, MATCH Commun. Math. Comput. Chem. 88 (2022)
573-581].
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1 Introduction

1.1 Background

We use |U | to denote the cardinality of set U . Let G be a connected

graph with vertex set V (G) and edge set E(G), where |V (G)| = n and

|E(G)| = m. Let NG(u) be the neighbor set of vertex u in G, and du(G) =

|NG(u)| is called as the degree of vertex u in G. ∆(G) = max{du(G) : u ∈
V (G)} is called as the maximum degree of G. δ(G) = min{du(G) : u ∈
V (G)} is called as the minimum degree of G. Let ni be the number of

vertices of G with degree i, and mi,j the number of edges of G joining a

vertex of degree i and a vertex of degree j. An edge with end vertices of

degree i and j can be called a (i, j)-edge for simply. A vertex with degree

k is called as a k-vertex. A graph with ∆ ≤ 4 is called a chemical graph.

The minimum number of edges of a graph G whose removal makes G

acyclic is known as the cyclomatic number, denoted by c. It also represent

the number of linearly independent cycles of G and has the expression

c = m−n+1 for connected graphs [32]. A graph with cyclomatic number

c is called a c-cyclic graph. The symbol “(G)” will be omitted if it is clear

that G is the graph under consideration. In this paper, all notations and

terminologies used but not defined can refer to Bondy and Murty [8].

Inspired by Euclidean metric, the Sombor index [18] of a graph G is

defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

A review paper about Sombor index can be found in [22]. The extremal

Sombor index had been considered on (chemical) trees [9, 11, 13, 14, 16,

23, 31, 34], chemical graphs [9, 17, 21, 24, 35], c-cyclic graphs [12, 24, 25, 30],

chemical applications [16,21,28,29], spectral properties [26,28] and so on.

Some topological indices of c-cyclic graphs had been considered for

many years. Such as augmented Zagreb index [20], total irregularity [19],

Sombor index [30], the first general Zagreb index and the first multiplica-

tive Zagreb index [7], general Randić index [6], sigma index [1], second Za-

greb index [4], symmetric division deg index [3], general sum-connectivity

index [5, 32], vertex-degree-based topological indices [33] and so on.
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Let Gn,c be the set of connected graphs with n vertices and cyclomatic

number c. Let CGn,c be the set of connected chemical graphs with n

vertices and cyclomatic number c. The degree set of a graph G is the class

of vertex degrees of G. A graph whose degree set has exactly two elements

is called a bidegreed graph.

For a connected chemical graph with n vertices, we have

4∑
i=1

ni = n, (1)

4∑
i=1

ini = 2(n+ c− 1), (2)

∑
1≤j≤4,j ̸=i

mi,j + 2mi,i = ini for i = 1, 2, 3, 4. (3)

1.2 Main results

Our main results are shown as follows.

Theorem 1.1. Let c ≥ 3, n ≥ 5(c − 1), G ∈ CGn,c with the minimum

Sombor index. Then G is a bidegreed graph with degree set {2, 3}, and

m2,3 = 2,m2,2 = n−2c+1,m3,3 = 3c−4. Moreover, SO(G) = (2n+5c−
10)

√
2 + 2

√
13.

Let c = 3, 4. Then by Theorems 1.1, we have the following corollaries

immediately, which are the results of [25].

Corollary 1.1. [25] Let n ≥ 10, G ∈ CGn,3 with the minimum Sombor

index. Then G is a bidegreed graph with degree set {2, 3}, and m2,3 =

2,m2,2 = n− 5,m3,3 = 5. Moreover, SO(G) = (2n+ 5)
√
2 + 2

√
13.

Corollary 1.2. [25] Let n ≥ 15, G ∈ CGn,4 with the minimum Sombor

index. Then G is a bidegreed graph with degree set {2, 3}, and m2,3 =

2,m2,2 = n− 7,m3,3 = 8. Moreover, SO(G) = (2n+ 10)
√
2 + 2

√
13.

Combining Theorem 1.1 with the conclusions of [25], we proposed the

following conjecture.
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Conjecture 1.1. Let c ≥ 3, n ≥ 5(c − 1), G ∈ Gn,c with the minimum

Sombor index. Then G is a bidegreed graph with degree set {2, 3}, and

m2,3 = 2,m2,2 = n−2c+1,m3,3 = 3c−4. Moreover, SO(G) = (2n+5c−
10)

√
2 + 2

√
13.

2 Proof of Theorem 1.1

In the following, we first introduce some important lemmas.

Lemma 2.1. [27] Let x > a ≥ 1, y > 0, and h(x, y) =
√
x2 + y2 −√

(x− a)2 + y2. Then h(x, y) is strictly increasing with x, strictly de-

creasing with y.

Lemma 2.2. Suppose that G is a connected graph, u, x, v, y are distinct

vertices in G satisfied that ux, vy ∈ E(G), uv, uy, xv, xy /∈ E(G), du ≥ dv,

dy ≥ dx. Let G∗ = G−{ux, vy}+{uy, vx}. Then SO(G∗) ≤ SO(G), with

equality if and only if du = dv or dy = dx.

Proof. Let f(x, y) =
√

x2 + y2. By the definition of Sombor index and

Lemma 2.1, we have

SO(G)− SO(G∗) =(f(du, dx)− f(dv, dx))− (f(du, dy)− f(dv, dy)) ≥ 0,

with equality if and only if du = dv or dy = dx.

For convenience, the edges ux, vy in G which satisfied the conditions

of Lemma 2.2 are called two disjoint and non-adjacent edges in G. A

connected (n,m) graph is a connected graph with n vertices and m edges.

Lemma 2.3. [2] Let G be a connected (n,m) graph. If G has the minimum

Sombor index, then ∆(G)− δ(G) ≤ 1.

Since c = m−n+1, then by Lemma 2.3, we have the following corollary.

Corollary 2.1. Let c ≥ 1, and G ∈ Gn,c with the minimum Sombor index.

Then δ(G) ≥ 2.

Lemma 2.4. [5] Let n ≥ 5(c − 1), G ∈ Gn,c and δ(G) ≥ 2, ∆(G) ≥ 4.

Then n2 ≥ 4.
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Lemma 2.5. [10] Let n ≥ 5(c − 1), G ∈ Gn,c and δ(G) ≥ 2, ∆(G) ≥ 4.

Then m2,2 ≥ 1.

Lemma 2.6. Let c ≥ 3, n ≥ 5(c − 1), and G ∈ CGn,c with the minimum

Sombor index. Then ∆(G) = 3.

Proof. Let f(x, y) =
√
x2 + y2. On the contrary, we suppose that ∆(G) ≥

4. Since G is a chemical graph, then ∆(G) = 4. By Corollary 2.1 and 2.5,

m2,2 ≥ 1.

Case 1. There is a 4-vertex that connecting to a 2-vertex of a (2, 2)-

edge in G.

Let u1u2 ∈ E(G), u2u3 ∈ E(G) with du1 = du2 = 2, du3 = 4. Let

u4 ̸= u1 and u4 ∈ NG(u3) \ {u2}.
Subcase 1.1. u1 /∈ NG(u3).

Let G∗ = G−u3u4 +u2u4. Then G∗ ∈ CGn,c. By Lemma 2.1, we have

SO(G)− SO(G∗)

=f(2, 4)− f(3, 3) + f(2, 2)− f(2, 3) + (f(4, du4)− f(3, du4))

+
∑

x∈NG(u3)\{u2,u4}

(f(4, dx)− f(3, dx))

≥f(2, 4)− f(3, 3) + f(2, 2)− f(2, 3) + 3(f(4, 4)− f(3, 4))

=11
√
2 + 2

√
5−

√
13− 15 ≈ 1.4229 > 0.

Subcase 1.2. u1 ∈ NG(u3).

Suppose that NG(u3) = {u1, u2, u4, u5}. Let G∗ = G − u3u4 + u2u4.

Then G∗ ∈ CGn,c. Since f(4, 2) − f(3, 2) > f(4, 4) − f(3, 4), then by

Subcase 1.1, we have

SO(G)− SO(G∗)

=f(2, 4)− f(3, 3) + f(2, 2)− f(2, 3) + (f(4, du4
)− f(3, du4

))

+ (f(4, du5
)− f(3, du5

)) + f(4, 2)− f(3, 2) > 0 .

Case 2. There is no any 4-vertex that connecting to a 2-vertex of a

(2, 2)-edge in G.
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Let w1w2 ∈ E(G), w2w3 ∈ E(G) with dw1 = dw2 = 2 and dw3 ̸= 4.

Then dw3 = 2 or 3. By Lemma 2.4, we have n2 ≥ 4.

Subcase 2.1. There is a 2-vertex that connecting to a 4-vertex in G.

Without loss of generality, we suppose v1v2 ∈ E(G), v2v3 ∈ E(G) with

dv2 = 2, dv3 = 4, then dv1 = 3 or 4. Thus v2 ̸= w1 and v2 ̸= w2.

Subcase 2.1.1. w1w3 /∈ E(G).

If v1 ̸= w3, we let G∗ = G−{v1v2, w1w2, w2w3}+ {w2v2, w1w3, w2v1}.
Then G∗ ∈ CGn,c and SO(G) = SO(G∗). In this case, there is a 4-vertex

that connecting to a 2-vertex of a (2, 2)-edge in G∗. We return to the Case

1. By using the transformation of Case 1, we will obtain a contradiction.

If v1 = w3, then dw3 = 3, otherwise there is a 4-vertex that con-

necting to a 2-vertex of a (2, 2)-edge in G, which is a contradiction. We

let G∗ = G − {w1w2, w3v2} + {w1w3, w2v2}. Then G∗ ∈ CGn,c and

SO(G) = SO(G∗). In this case, there is a 4-vertex that connecting to

a 2-vertex of a (2, 2)-edge in G∗. We return to the Case 1. By using the

transformation of Case 1, we will obtain a contradiction.

Subcase 2.1.2. w1w3 ∈ E(G).

In this case, w1w2 ∈ E(G), w2w3 ∈ E(G) with dw1
= dw2

= 2 and

dw3
= 3. v1v2 ∈ E(G), v2v3 ∈ E(G) with dv2 = 2, dv3 = 4. Let G∗ =

G − {w1w3, v2v3} + {w1v2, w3v3}. Then G∗ ∈ CGn,c and by Lemma 2.1,

SO(G)− SO(G∗) = (f(2, 3)− f(2, 2))− (f(3, 4)− f(2, 4)) > 0, which is a

contradiction.

Subcase 2.2. There is no any 2-vertex that connecting to a 4-vertex in

G, i.e., m2,4 = 0.

By Lemma 2.2 and G ∈ CGn,c with the minimum Sombor index, there

are no two disjoint and non-adjacent (3, 4)-edges or (2, 3)-edges in G. Since

m2,4 = 0 and G is a connected chemical graph, then n3 ≥ 1, thus m3,4 ≥ 1.

If n4 ≥ 2, then there are two disjoint and non-adjacent (3, 4)-edges in G,

which is a contradiction. Thus n4 = 1 and m3,4 = 4. By Lemma 2.5,

m2,2 ≥ 1. By Lemma 2.4, n4 ≥ 4. In this case, there are two disjoint and

non-adjacent (2, 3)-edges in G, which is a contradiction.

Thus, the assumption ∆(G) ≥ 4 do not hold, and we get ∆(G) = 3.

Lemma 2.7. Let c ≥ 3, n ≥ 5(c − 1), and G ∈ CGn,c with the minimum

Sombor index. Then m2,3 = 2.
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Proof. By Corollary 2.1 and Lemma 2.6, we know G is a bidegreed graph

with degree set {2, 3}. Since c ≥ 3, then m2,3 ≥ 2.

If m2,3 ≥ 3, there are two disjoint and non-adjacent (2, 3)-edges in G,

by Lemma 2.2, we can obtained the graph G∗ and G∗ ∈ CGn,c. Then by

Lemma 2.1, we have SO(G) − SO(G∗) = 2f(2, 3) − f(2, 2) − f(3, 3) =

(f(2, 3) − f(2, 2)) − (f(3, 3) − f(2, 3)) > 0, which is a contradiction with

that G ∈ CGn,c with the minimum Sombor index. Thus m2,3 = 2. This

completes the proof.

Proof of Theorem 1.1. By Corollary 2.1 and Lemma 2.6, we know G

is a bidegreed graph with degree set {2, 3}. By Lemma 2.7, m2,3 = 2. By

equations (1), (2) and Lemma 2.6, we have n2 + n3 = n and 2n2 + 3n3 =

2m = 2(n + c − 1). Thus we have n3 = 2(c − 1), n2 = n − 2c + 2.

By equation (3) and Lemmas 2.6, 2.7, we have 2m2,2 + m2,3 = 2n2 and

m2,3+2m3,3 = 3n3. Since m2,3 = 2, then m2,2 = n−2c+1,m3,3 = 3c−4,

and SO(G) = (2n+ 5c− 10)
√
2 + 2

√
13. This completes the proof. ■

3 Conclusions

In this paper, we determine the minimum Sombor index among con-

nected c-cyclic chemical graph for c ≥ 3, n ≥ 5(c − 1), which partially

extends the results of [24] and [25] for c = 3, 4. The problem about finding

the maximum Sombor index among all connected c-cyclic graph has al-

ready been solved for c = 1, 2, 3, 4, 5 in [30] and for c = 6 in [15]. However,

the problem of determining the maximum Sombor index among connected

c-cyclic (chemical) graph for c ≥ 7 is still open. We intend to consider

Conjecture 1.1 and the above challenging problems in the future.
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