Sombor Index of c-Cyclic Chemical Graphs

Hechao Liu^{*a*}, Lihua You^{*a*,*}, Yufei Huang^{*b*}

^aSchool of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China

^bDepartment of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403, P. R. China

hechaoliu@m.scnu.edu.cn, ylhua@scnu.edu.cn, fayger@qq.com

(Received January 22, 2023)

Abstract

The Sombor index, introduced by Ivan Gutman in 2020, has received intensive attention. The Sombor index of a graph G is defined as $SO(G) = \sum_{uv \in E(G)} \sqrt{d_u^2 + d_v^2}$, where E(G) denotes the edge set in G and d_u denotes the degree of vertex u in G. A graph with maximum degree at most 4 is called as a chemical graph.

Réti et al. [T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11-18] proposed an open problem about determining the maximum Sombor index among all connected c-cyclic graph for $6 \le c \le n-2$. For c = 1, 2, 3, 4, the problem about finding the minimum (resp. maximum) Sombor index among all connected c-cyclic graph has already been solved. In this paper, we determine the minimum Sombor index among connected c-cyclic chemical graph for $c \ge 3, n \ge 5(c-1)$, which partially extends the results of Liu et al. [H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5-22] and Liu et al. [H. Liu, L. You, Y. Huang, Extremal Sombor indices of tetracyclic (chemical) graphs, MATCH Commun. Math. Comput. Chem. 88 (2022) 573-581].

^{*}Corresponding author.

1 Introduction

1.1 Background

We use |U| to denote the cardinality of set U. Let G be a connected graph with vertex set V(G) and edge set E(G), where |V(G)| = n and |E(G)| = m. Let $N_G(u)$ be the neighbor set of vertex u in G, and $d_u(G) =$ $|N_G(u)|$ is called as the degree of vertex u in G. $\Delta(G) = \max\{d_u(G) : u \in \mathcal{O}\}$ V(G) is called as the maximum degree of G. $\delta(G) = \min\{d_u(G) : u \in U\}$ V(G) is called as the minimum degree of G. Let n_i be the number of vertices of G with degree i, and $m_{i,j}$ the number of edges of G joining a vertex of degree i and a vertex of degree j. An edge with end vertices of degree i and j can be called a (i, j)-edge for simply. A vertex with degree k is called as a k-vertex. A graph with $\Delta \leq 4$ is called a chemical graph. The minimum number of edges of a graph G whose removal makes Gacyclic is known as the cyclomatic number, denoted by c. It also represent the number of linearly independent cycles of G and has the expression c = m - n + 1 for connected graphs [32]. A graph with cyclomatic number c is called a c-cyclic graph. The symbol "(G)" will be omitted if it is clear that G is the graph under consideration. In this paper, all notations and terminologies used but not defined can refer to Bondy and Murty [8].

Inspired by Euclidean metric, the Sombor index [18] of a graph G is defined as

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d_u^2 + d_v^2}.$$

A review paper about Sombor index can be found in [22]. The extremal Sombor index had been considered on (chemical) trees [9, 11, 13, 14, 16, 23, 31, 34], chemical graphs [9, 17, 21, 24, 35], *c*-cyclic graphs [12, 24, 25, 30], chemical applications [16, 21, 28, 29], spectral properties [26, 28] and so on.

Some topological indices of *c*-cyclic graphs had been considered for many years. Such as augmented Zagreb index [20], total irregularity [19], Sombor index [30], the first general Zagreb index and the first multiplicative Zagreb index [7], general Randić index [6], sigma index [1], second Zagreb index [4], symmetric division deg index [3], general sum-connectivity index [5, 32], vertex-degree-based topological indices [33] and so on. Let $\mathcal{G}_{n,c}$ be the set of connected graphs with n vertices and cyclomatic number c. Let $\mathcal{CG}_{n,c}$ be the set of connected chemical graphs with nvertices and cyclomatic number c. The degree set of a graph G is the class of vertex degrees of G. A graph whose degree set has exactly two elements is called a bidegreed graph.

For a connected chemical graph with n vertices, we have

$$\sum_{i=1}^{4} n_i = n,\tag{1}$$

$$\sum_{i=1}^{4} in_i = 2(n+c-1), \tag{2}$$

$$\sum_{1 \le j \le 4, j \ne i} m_{i,j} + 2m_{i,i} = in_i \text{ for } i = 1, 2, 3, 4.$$
(3)

1.2 Main results

Our main results are shown as follows.

Theorem 1.1. Let $c \geq 3$, $n \geq 5(c-1)$, $G \in C\mathcal{G}_{n,c}$ with the minimum Sombor index. Then G is a bidegreed graph with degree set $\{2,3\}$, and $m_{2,3} = 2, m_{2,2} = n - 2c + 1, m_{3,3} = 3c - 4$. Moreover, $SO(G) = (2n + 5c - 10)\sqrt{2} + 2\sqrt{13}$.

Let c = 3, 4. Then by Theorems 1.1, we have the following corollaries immediately, which are the results of [25].

Corollary 1.1. [25] Let $n \ge 10$, $G \in C\mathcal{G}_{n,3}$ with the minimum Sombor index. Then G is a bidegreed graph with degree set $\{2,3\}$, and $m_{2,3} = 2, m_{2,2} = n - 5, m_{3,3} = 5$. Moreover, $SO(G) = (2n + 5)\sqrt{2} + 2\sqrt{13}$.

Corollary 1.2. [25] Let $n \ge 15$, $G \in C\mathcal{G}_{n,4}$ with the minimum Sombor index. Then G is a bidegreed graph with degree set $\{2,3\}$, and $m_{2,3} = 2, m_{2,2} = n - 7, m_{3,3} = 8$. Moreover, $SO(G) = (2n + 10)\sqrt{2} + 2\sqrt{13}$.

Combining Theorem 1.1 with the conclusions of [25], we proposed the following conjecture.

Conjecture 1.1. Let $c \geq 3$, $n \geq 5(c-1)$, $G \in \mathcal{G}_{n,c}$ with the minimum Sombor index. Then G is a bidegreed graph with degree set $\{2,3\}$, and $m_{2,3} = 2, m_{2,2} = n - 2c + 1, m_{3,3} = 3c - 4$. Moreover, $SO(G) = (2n + 5c - 10)\sqrt{2} + 2\sqrt{13}$.

2 Proof of Theorem 1.1

In the following, we first introduce some important lemmas.

Lemma 2.1. [27] Let $x > a \ge 1, y > 0$, and $h(x, y) = \sqrt{x^2 + y^2} - \sqrt{(x-a)^2 + y^2}$. Then h(x, y) is strictly increasing with x, strictly decreasing with y.

Lemma 2.2. Suppose that G is a connected graph, u, x, v, y are distinct vertices in G satisfied that $ux, vy \in E(G)$, $uv, uy, xv, xy \notin E(G)$, $d_u \ge d_v$, $d_y \ge d_x$. Let $G^* = G - \{ux, vy\} + \{uy, vx\}$. Then $SO(G^*) \le SO(G)$, with equality if and only if $d_u = d_v$ or $d_y = d_x$.

Proof. Let $f(x,y) = \sqrt{x^2 + y^2}$. By the definition of Sombor index and Lemma 2.1, we have

$$SO(G) - SO(G^*) = (f(d_u, d_x) - f(d_v, d_x)) - (f(d_u, d_y) - f(d_v, d_y)) \ge 0,$$

with equality if and only if $d_u = d_v$ or $d_y = d_x$.

For convenience, the edges ux, vy in G which satisfied the conditions of Lemma 2.2 are called two disjoint and non-adjacent edges in G. A connected (n, m) graph is a connected graph with n vertices and m edges.

Lemma 2.3. [2] Let G be a connected (n, m) graph. If G has the minimum Sombor index, then $\Delta(G) - \delta(G) \leq 1$.

Since c = m - n + 1, then by Lemma 2.3, we have the following corollary.

Corollary 2.1. Let $c \ge 1$, and $G \in \mathcal{G}_{n,c}$ with the minimum Sombor index. Then $\delta(G) \ge 2$.

Lemma 2.4. [5] Let $n \geq 5(c-1)$, $G \in \mathcal{G}_{n,c}$ and $\delta(G) \geq 2$, $\Delta(G) \geq 4$. Then $n_2 \geq 4$. **Lemma 2.5.** [10] Let $n \ge 5(c-1)$, $G \in \mathcal{G}_{n,c}$ and $\delta(G) \ge 2$, $\Delta(G) \ge 4$. Then $m_{2,2} \ge 1$.

Lemma 2.6. Let $c \geq 3$, $n \geq 5(c-1)$, and $G \in CG_{n,c}$ with the minimum Sombor index. Then $\Delta(G) = 3$.

Proof. Let $f(x, y) = \sqrt{x^2 + y^2}$. On the contrary, we suppose that $\Delta(G) \ge 4$. Since G is a chemical graph, then $\Delta(G) = 4$. By Corollary 2.1 and 2.5, $m_{2,2} \ge 1$.

Case 1. There is a 4-vertex that connecting to a 2-vertex of a (2, 2)-edge in G.

Let $u_1u_2 \in E(G), u_2u_3 \in E(G)$ with $d_{u_1} = d_{u_2} = 2, d_{u_3} = 4$. Let $u_4 \neq u_1$ and $u_4 \in N_G(u_3) \setminus \{u_2\}$.

Subcase 1.1. $u_1 \notin N_G(u_3)$.

Let $G^* = G - u_3 u_4 + u_2 u_4$. Then $G^* \in \mathcal{CG}_{n,c}$. By Lemma 2.1, we have

$$SO(G) - SO(G^*)$$

= $f(2,4) - f(3,3) + f(2,2) - f(2,3) + (f(4,d_{u_4}) - f(3,d_{u_4}))$
+ $\sum_{x \in N_G(u_3) \setminus \{u_2, u_4\}} (f(4,d_x) - f(3,d_x))$
 $\geq f(2,4) - f(3,3) + f(2,2) - f(2,3) + 3(f(4,4) - f(3,4))$
= $11\sqrt{2} + 2\sqrt{5} - \sqrt{13} - 15 \approx 1.4229 > 0.$

Subcase 1.2. $u_1 \in N_G(u_3)$.

Suppose that $N_G(u_3) = \{u_1, u_2, u_4, u_5\}$. Let $G^* = G - u_3u_4 + u_2u_4$. Then $G^* \in C\mathcal{G}_{n,c}$. Since f(4,2) - f(3,2) > f(4,4) - f(3,4), then by Subcase 1.1, we have

$$SO(G) - SO(G^*)$$

= $f(2, 4) - f(3, 3) + f(2, 2) - f(2, 3) + (f(4, d_{u_4}) - f(3, d_{u_4}))$
+ $(f(4, d_{u_5}) - f(3, d_{u_5})) + f(4, 2) - f(3, 2) > 0$.

Case 2. There is no any 4-vertex that connecting to a 2-vertex of a (2,2)-edge in G.

Let $w_1w_2 \in E(G), w_2w_3 \in E(G)$ with $d_{w_1} = d_{w_2} = 2$ and $d_{w_3} \neq 4$. Then $d_{w_3} = 2$ or 3. By Lemma 2.4, we have $n_2 \ge 4$.

Subcase 2.1. There is a 2-vertex that connecting to a 4-vertex in G.

Without loss of generality, we suppose $v_1v_2 \in E(G)$, $v_2v_3 \in E(G)$ with $d_{v_2} = 2$, $d_{v_3} = 4$, then $d_{v_1} = 3$ or 4. Thus $v_2 \neq w_1$ and $v_2 \neq w_2$.

Subcase 2.1.1. $w_1w_3 \notin E(G)$.

If $v_1 \neq w_3$, we let $G^* = G - \{v_1v_2, w_1w_2, w_2w_3\} + \{w_2v_2, w_1w_3, w_2v_1\}$. Then $G^* \in \mathcal{CG}_{n,c}$ and $SO(G) = SO(G^*)$. In this case, there is a 4-vertex that connecting to a 2-vertex of a (2, 2)-edge in G^* . We return to the Case 1. By using the transformation of Case 1, we will obtain a contradiction.

If $v_1 = w_3$, then $d_{w_3} = 3$, otherwise there is a 4-vertex that connecting to a 2-vertex of a (2, 2)-edge in G, which is a contradiction. We let $G^* = G - \{w_1w_2, w_3v_2\} + \{w_1w_3, w_2v_2\}$. Then $G^* \in \mathcal{CG}_{n,c}$ and $SO(G) = SO(G^*)$. In this case, there is a 4-vertex that connecting to a 2-vertex of a (2, 2)-edge in G^* . We return to the Case 1. By using the transformation of Case 1, we will obtain a contradiction.

Subcase 2.1.2. $w_1w_3 \in E(G)$.

In this case, $w_1w_2 \in E(G), w_2w_3 \in E(G)$ with $d_{w_1} = d_{w_2} = 2$ and $d_{w_3} = 3$. $v_1v_2 \in E(G), v_2v_3 \in E(G)$ with $d_{v_2} = 2$, $d_{v_3} = 4$. Let $G^* = G - \{w_1w_3, v_2v_3\} + \{w_1v_2, w_3v_3\}$. Then $G^* \in \mathcal{CG}_{n,c}$ and by Lemma 2.1, $SO(G) - SO(G^*) = (f(2,3) - f(2,2)) - (f(3,4) - f(2,4)) > 0$, which is a contradiction.

Subcase 2.2. There is no any 2-vertex that connecting to a 4-vertex in G, i.e., $m_{2,4} = 0$.

By Lemma 2.2 and $G \in C\mathcal{G}_{n,c}$ with the minimum Sombor index, there are no two disjoint and non-adjacent (3, 4)-edges or (2, 3)-edges in G. Since $m_{2,4} = 0$ and G is a connected chemical graph, then $n_3 \ge 1$, thus $m_{3,4} \ge 1$. If $n_4 \ge 2$, then there are two disjoint and non-adjacent (3, 4)-edges in G, which is a contradiction. Thus $n_4 = 1$ and $m_{3,4} = 4$. By Lemma 2.5, $m_{2,2} \ge 1$. By Lemma 2.4, $n_4 \ge 4$. In this case, there are two disjoint and non-adjacent (2, 3)-edges in G, which is a contradiction.

Thus, the assumption $\Delta(G) \geq 4$ do not hold, and we get $\Delta(G) = 3$.

Lemma 2.7. Let $c \geq 3$, $n \geq 5(c-1)$, and $G \in CG_{n,c}$ with the minimum Sombor index. Then $m_{2,3} = 2$.

Proof. By Corollary 2.1 and Lemma 2.6, we know G is a bidegreed graph with degree set $\{2, 3\}$. Since $c \geq 3$, then $m_{2,3} \geq 2$.

If $m_{2,3} \geq 3$, there are two disjoint and non-adjacent (2,3)-edges in G, by Lemma 2.2, we can obtained the graph G^* and $G^* \in C\mathcal{G}_{n,c}$. Then by Lemma 2.1, we have $SO(G) - SO(G^*) = 2f(2,3) - f(2,2) - f(3,3) =$ (f(2,3) - f(2,2)) - (f(3,3) - f(2,3)) > 0, which is a contradiction with that $G \in C\mathcal{G}_{n,c}$ with the minimum Sombor index. Thus $m_{2,3} = 2$. This completes the proof.

Proof of Theorem 1.1. By Corollary 2.1 and Lemma 2.6, we know *G* is a bidegreed graph with degree set {2,3}. By Lemma 2.7, $m_{2,3} = 2$. By equations (1), (2) and Lemma 2.6, we have $n_2 + n_3 = n$ and $2n_2 + 3n_3 = 2m = 2(n + c - 1)$. Thus we have $n_3 = 2(c - 1), n_2 = n - 2c + 2$. By equation (3) and Lemmas 2.6, 2.7, we have $2m_{2,2} + m_{2,3} = 2n_2$ and $m_{2,3} + 2m_{3,3} = 3n_3$. Since $m_{2,3} = 2$, then $m_{2,2} = n - 2c + 1, m_{3,3} = 3c - 4$, and $SO(G) = (2n + 5c - 10)\sqrt{2} + 2\sqrt{13}$. This completes the proof. ■

3 Conclusions

In this paper, we determine the minimum Sombor index among connected c-cyclic chemical graph for $c \ge 3, n \ge 5(c-1)$, which partially extends the results of [24] and [25] for c = 3, 4. The problem about finding the maximum Sombor index among all connected c-cyclic graph has already been solved for c = 1, 2, 3, 4, 5 in [30] and for c = 6 in [15]. However, the problem of determining the maximum Sombor index among connected c-cyclic (chemical) graph for $c \ge 7$ is still open. We intend to consider Conjecture 1.1 and the above challenging problems in the future.

Acknowledgment: You was supported by the National Natural Science Foundation of China (Grant Nos. 11971180, 12271337) and the Guangdong Provincial Natural Science Foundation (Grant No. 2019A1515012-052). Huang was supported by the Characteristic Innovation Project of General Colleges and Universities in Guangdong Province (Grant No. 2022KTSCX225) and the Guangdong Education and Scientific Research Project (Grant No. 2021GXJK159).

References

- A. Ali, A. M. Albalahi, A. M. Alanazi, A. A. Bhatti, A. E. Hamza, On the maximum sigma index of k-cyclic graphs, *Discr. Appl. Math.* 325 (2023) 58–62.
- [2] A. Aashtab, S. Akbari, S. Madadinia, M. Noei, F. Salehi, On the graphs with minimum Sombor index, MATCH Commun. Math. Comput. Chem. 88 (2022) 553–559.
- [3] A. M. Albalahi, A. Ali, On the maximum symmetric division deg index of k-cyclic graphs, J. Math. 2022 (2022) #7783128.
- [4] A. Ali, K. C. Das, S. Akhter, On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number, *Miskolc Math. Notes* 23 (2022) 41–50.
- [5] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index (χ_{α}) with given cyclomatic number when $\alpha > 1$, *Discr. Appl. Math.* **257** (2019) 19–30.
- [6] A. Ali, B. Selvaraj, S. Elumalai, T. Mansour, On *n*-vertex chemical graphs with a fixed cyclomatic number and minimum general Randić index, *Math. Rep.*, accepted.
- [7] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, New bounds of degree-based topological indices for some classes of *c*-cyclic graphs, *Discr. Appl. Math.* 184 (2015) 62–75.
- [8] J. A. Bondy, U. S. R. Murty, *Graph Theory*, Springer, New York, 2008.
- [9] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) #126018.
- [10] G. Caporossi, P. Hansen, D. Vukičević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 441–451.
- [11] H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022) 23–49.
- [12] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116.
- [13] R. Cruz, J. Rada, J. M. Sigarreta, Sombor index of trees with at most three branch vertices, Appl. Math. Comput. 409 (2021) #126414.

- [14] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Comput. 412 (2022) #126575.
- [15] K. C. Das, A. Ghalavand, A. R. Ashraf, On a conjecture about the Sombor index of graphs, *Symmetry* 13 (2021) #1830.
- [16] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. 121 (2021) #e26622.
- [17] X. Fang, L. You, H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, *Int. J. Quantum Chem.* **121** (2021) #e26740.
- [18] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
- [19] A. Ghalavand, A. R. Ashrafi, Ordering of c-cyclic graphs with respect to total irregularity, J. Appl. Math. Comput. 63 (2020) 707–715.
- [20] M. Liu, K. Cheng, B. Furtula, Minimum augmented Zagreb index of c-cyclic graphs, Discr. Appl. Math. 295 (2021) 32–38.
- [21] H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, *Int. J. Quantum Chem.* **121** (2021) #e26689.
- [22] H. Liu, I. Gutman, L. You, Y. Huang, Sombor index: review of extremal results and bounds, J. Math. Chem. 60 (2022) 771–798.
- [23] S. Li, Z. Wang, M. Zhang, On the extremal Sombor index of trees with a given diameter, Appl. Math. Comput. 416 (2022) #126731.
- [24] H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5–22.
- [25] H. Liu, L. You, Y. Huang, Extremal Sombor indices of tetracyclic (chemical) graphs, MATCH Commun. Math. Comput. Chem. 88 (2022) 573–581.
- [26] H. Liu, L. You, Y. Huang, X. Fang, Spectral properties of p-Sombor matrices and beyond, MATCH Commun. Math. Comput. Chem. 87 (2022) 59–87.
- [27] H. Liu, L. You, Y. Huang, Z. Tang, On extremal Sombor indices of chemical graphs, and beyond, *MATCH Commun. Math. Comput. Chem.* 89 (2023) 415–436.

- [28] H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753.
- [29] I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445–457.
- [30] T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math. 3 (2021) 11–18.
- [31] X. Sun, J. Du, On Sombor index of trees with fixed domination number, Appl. Math. Comput. 421 (2022) #126946.
- [32] I. Tomescu, Proof of a conjecture concerning maximum general sumconnectivity index χ_{α} of graphs with given cyclomatic number when $1 < \alpha < 2$, Discr. Appl. Math. **267** (2019) 219–223.
- [33] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109–114.
- [34] Ż. Kovijanić Vukićević, On the Sombor index of chemical trees, Math. Montisnigri 50 (2021) 5–14.
- [35] W. Zhang, L. You, H. Liu, Y. Huang, The expected values and variances for Sombor indices in a general random chain, *Appl. Math. Comput.* **411** (2021) #126521.