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Abstract

The aim of this paper is to investigate resonance graphs of 2-
connected outerplane bipartite graphs, which include various fam-
ilies of molecular graphs. Firstly, we present an algorithm for a
binary coding of perfect matchings of these graphs. Further, 2-
connected outerplane bipartite graphs with isomorphic resonance
graphs are considered. In particular, it is shown that if two 2-
connected outerplane bipartite graphs are evenly homeomorphic,
then its resonance graphs are isomorphic. Moreover, we prove that
for any 2-connected outerplane bipartite graph G there exists a cata-
condensed even ring systems H such that the resonance graphs of
G and H are isomorphic. We conclude with the characterization
of 2-connected outerplane bipartite graphs whose resonance graphs
are daisy cubes.
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1 Introduction

Kekulé structures of aromatic hydrocarbons reflect the positions of double
bonds in a molecule. In graph theory, Kekulé structures are modelled by
perfect matchings of the corresponding molecular graph. On the other
hand, the interaction between Kekulé structures is reflected in the reso-
nance graph of a given molecule. Resonance graphs were independently
introduced by chemists (El-Basil [3, 4], Gründler [9]) and also by mathe-
maticians (Zhang, Guo, and Chen [15]) under the name Z-transformation
graph.

Initially, various properties of resonance graphs of hexagonal systems
were established in [15]. Later, the concept of resonance graphs was gener-
alized to all plane (elementary) bipartite graphs (for example, see [17,18]).

In [13, 16], a binary coding procedure of vertices of resonance graphs
of catacondensed hexagonal systems was developed. Later [1], this binary
coding was generalized to catacondensed even ring systems (CERS), which
form a subfamily of 2-connected outerplane bipartite graphs (see also [14]).
In recent years, various structural properties of resonance graphs of 2-
connected (outer)plane bipartite graphs were deduced [5–8]. For example,
in [8] all plane bipartite graphs whose resonance graphs can be constructed
from an edge by a sequence of peripheral convex expansions are character-
ized.

The paper is organized as follows. Firstly, in Section 3 we generalize
the binary coding procedure of perfect matchings from CERS [1] to all
2-connected outerplane bipartite graphs. Next, in Section 4 we study 2-
connected outerplane bipartite graphs with isomorphic resonance graphs.
In particular, we prove that if G and H are evenly homeomorphic, then
its resonance graphs are isomorphic. Furthermore, in Section 5 we prove
that for any 2-connected outerplane bipartite graph G there exists a CERS
H such that the resonance graphs of G and H are isomorphic. Finally,
we characterize 2-connected outerplane bipartite graphs whose resonance
graphs are daisy cubes, which extends results from [19] and [2].
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2 Preliminaries

The distance dG(u, v) between vertices u and v of a graph G is defined as
the usual shortest path distance. The distance between two edges e and f

of G, denoted by dG(e, f), is defined as the distance between corresponding
vertices in the line graph L(G) of G.

The hypercube Qn of dimension n is defined in the following way: all
vertices of Qn are presented as n-tuples x1x2 . . . xn where xi ∈ {0, 1} for
each i ∈ {1, . . . , n}, and two vertices of Qn are adjacent if the correspond-
ing n-tuples differ in precisely one position. A subgraph H of a graph G is
an isometric subgraph if for all u, v ∈ V (H) it holds dH(u, v) = dG(u, v).
If a graph is isomorphic to an isometric subgraph of G, we say that it can
be isometrically embedded in G. Any isometric subgraph of a hypercube
is called a partial cube [11].

If G is a plane graph, then an edge e of G that belongs to two inner
faces of G will be called an inner edge. We say that two faces of G are
adjacent if they have an edge in common. An inner face adjacent to the
outer face is called a peripheral face. In addition, we denote the edges
lying on some face s of G by E(s). The subgraph induced by the edges
in E(s) is the periphery of s and the periphery of the outer face is also
called the periphery of G. Moreover, for a peripheral face s and the outer
face s0, the subgraph induced by the edges in E(s) ∩ E(s0) is called the
common periphery of s and G. The vertices of G that belong to the outer
face are called peripheral vertices and the remaining vertices are interior
vertices. Furthermore, an outerplane graph is a plane graph in which all
vertices are peripheral vertices.

The following definitions can be found, for example, in [5]. A bipar-
tite graph G is elementary if and only if it is connected and each edge is
contained in some perfect matching of G. A peripheral face s of a plane
elementary bipartite graph G is called reducible if the subgraph H of G ob-
tained by removing all internal vertices (if exist) and edges on the common
periphery of s and G is elementary.

An even ring system is a 2-connected plane bipartite graph with all
interior vertices of degree 3 and all peripheral vertices of degree 2 or 3.
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Moreover, an outerplane even ring system is called catacondensed even
ring system or shortly CERS [14].

A 1-factor of a graph G is a spanning subgraph of G such that every
vertex has degree one. The edge set of a 1-factor is called a perfect matching
of G, which is a set of independent edges covering all vertices of G. In
chemical literature, perfect matchings are known as Kekulé structures (see
[10] for more details).

Let G be a 2-connected plane bipartite graph. The resonance graph
R(G) of G is the graph whose vertices are the perfect matchings of G,
and two perfect matchings M1,M2 are adjacent whenever their symmetric
difference forms the edge set of exactly one inner face s of G, i.e.M1⊕M2 =

E(s).

Next, we state the definition of a reducible face decomposition, see
[17] and [5, 6]. Firstly, we introduce the bipartite ear decomposition of
a plane elementary bipartite graph G with n inner faces. Starting from
an edge e of G, join its two end-vertices by a path P1 of odd length and
proceed inductively to build a sequence of bipartite graphs as follows. If
Gi−1 = e+P1+ · · ·+Pi−1 has already been constructed, add the ith ear Pi

of odd length by joining any two vertices belonging to different bipartition
sets of Gi−1 such that Pi has no internal vertices in common with the
vertices of Gi−1. A bipartite ear decomposition of a plane elementary
bipartite graph G is called a reducible face decomposition (shortly RFD)
if G1 is a periphery of a finite face s1 of G, and the ith ear Pi lies in the
exterior of Gi−1 such that Pi and a part of the periphery of Gi−1 surround
a finite face si of G for all i ∈ {2, . . . , n}. For such a decomposition, we
use notation RFD(G1, G2, . . . , Gn), where Gn = G.

Furthermore, if G is a graph and X ⊆ V (G), then the notation G[X]

is used to denote the subgraph of G induced by the set X.

3 Binary coding of perfect matchings

In this section, we develop an algorithm for constructing binary codes
of perfect matchings of 2-connected outerplane bipartite graphs. This
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represents a generalization of the result from [1]. For this purpose, we
firstly need several auxiliary results.

Let G be a 2-connected outerplane bipartite graph and H1, H2 two
induced subgraphs of G such that V (H1) ∪ V (H2) = V (G) and |E(H1) ∩
E(H2)| = 1. If e ∈ E(H1)∩E(H2), we say that H1 and H2 are e-subgraphs
of graph G. Moreover, let M be a perfect matching of G. We say that a
vertex x ∈ V (Hi) is M -covered in Hi, i ∈ {1, 2}, if there exists a vertex
y ∈ V (Hi) such that xy ∈ M . Furthermore, an edge f is M -covered in Hi

if its end-vertices are both M -covered in Hi.

Proposition 1. Let G be a 2-connected outerplane bipartite graph and
H1, H2 two induced subgraphs of G such that V (H1)∪V (H2) = V (G) and
e = uv is the only edge in the set E(H1) ∩ E(H2). Moreover, let M be a
perfect matching of G. Then e is M -covered in H1 or H2.

Proof. Suppose that u is M -covered in H1 but not in H2 and v is M -
covered in H2 but not in H1. It is easy to see that H1 is again a 2-connected
outerplane bipartite graph and therefore, it has an even number of vertices.
Let H ′

1 = H1−v. Then, M \E(H2) is a perfect matching of the graph H ′
1.

However, graph H ′
1 has an odd number of vertices, which is a contradiction

with the existence of a perfect matching.

Proposition 2. Let G be a 2-connected outerplane bipartite graph and
e = uv ∈ E(G) an edge belonging to two inner faces s and s′ of G. Also,
let H be the e-subgraph of G containing s′, f 6= e an edge of face s, and
Hf the f -subgraph of G not containing e. Suppose that M is a perfect
matching of G such that e is M -covered in H. Then dG(e, f) is even if
and only if f is M -covered in Hf .

Proof. Let P = (e, f1, f2, . . . , fk = f) be a shortest path in G between e

and f . Moreover, let Hi be the fi-subgraph of G that does not contain s.
Since e is M -covered in H, by Proposition 1 it follows that f1 is not M -
covered in H1. Using the same argument, the edge f2 must be M -covered
in H2. Inductively, we obtain that fi is M -covered in Hi if and only if i is
even. As a consequence, f is M -covered in Hf if and only if k = dG(e, f)

is even.
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Remark. Let s be an inner face of a 2-connected outerplane bipartite
graph G. Then s is reducible if and only if it is adjacent to exactly one
inner face of G [6].

Let G be a 2-connected outerplane bipartite graph with n inner faces,
s a reducible face of G, and e = uv the edge of s that belongs to exactly
two inner faces of G. Moreover, let G′ be the graph obtained from G by
removing face s. In addition, we denote by H the subgraph of G induced
on the vertices of s. We partition the perfect matchings of G into the sets
Me(G) , MG′

e (G) , and MH
e (G). More precisely, Me(G) is the set of all

perfect matchings of G that contain edge e and MG′

e (G) is the set of all
perfect matchings M of G such that e /∈ M and e is M -covered in G′.
Similarly, MH

e (G) is the set of all perfect matchings M of G such that
e /∈ M and e is M -covered in H.

It is straightforward to see that the subgraph of R(G) induced by the
vertices from Me(G) ∪MG′

e (G), denoted as R(G)[Me(G) ∪MG′

e (G)], is
isomorphic to R(G′). Moreover, R(G)[Me(G)] and R(G)[MH

e (G)] are also
isomorphic. By using these facts, we can obtain binary codes of length n of
perfect matchings of G, where n is the number of inner faces of G. Then,
G′ contains n − 1 inner faces and suppose that we have already obtained
binary codes of perfect matchings of G′.

Every perfect matching M ′ of G′ with binary code b(M ′) can be in
the unique way extended to a perfect matching M of G, see Figure 1 (a).
Binary code b(M) is obtained by concatenation of 0 to b(M ′). In this
way, we obtain the binary codes for perfect matchings in the set Me(G)∪
MG′

e (G).

Figure 1. Two possibilities for the perfect matchings of G. The com-
mon edge of G′ and s is bold iff it is M -covered in G′.

On the other hand, let M ′ be a perfect matching of G′ such that e ∈ M ′.
We define M as the unique perfect matching of G such that M ′ \{e} ⊆ M
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and e /∈ M , see Figure 1 (b). Binary code b(M) is then obtained by
concatenation of 1 to b(M ′). Here, we obtain the binary codes for perfect
matchings in the set MH

e (G).
The obtained binary coding procedure of perfect matchings of a 2-

connected outerplane bipartite graph G follows a peripheral convex expan-
sion described in [6]. Therefore, by Theorem 3.2 [6] our procedure gives
an isometric embedding of the resonance graph R(G) into the hypercube
of dimension n, where n is the number of inner faces of G. Consequently,
two perfect matchings M1 and M2 of G are adjacent in R(G) if and only
if their binary codes differ in exactly one position.

In [1,13] the algorithms for binary coding of perfect matchings of ben-
zenoid graphs and CERS were presented. The mentioned algorithms are
here generalized to 2-connected outerplane bipartite graphs. We first ex-
tend the following definition from [1] to a larger family of graphs.

Definition 1. Let s, s′, s′′ be three inner faces of a 2-connected outerplane
bipartite graph such that s and s′ have common edge e and s′, s′′ have
common edge f . The triple (s, s′, s′′) is called an adjacent triple of
inner faces. Moreover, (s, s′, s′′) is regular if the distance dG(e, f) is an
even number and irregular otherwise.

To show an example, consider the triple (si, sj , sr+1) from Figure 2.
The mentioned triple is regular in case (a) and irregular in case (b).

Figure 2. Perfect matchings of Gr+1 with respect to the regularity of
triple (si, sj , sr+1). An edge f is bold iff it is M -covered in
the f -subgraph that does not contain face sj .

Suppose G is a 2-connected outerplane bipartite graph. Moreover, let
RFD(G1, G2, . . . , Gn), where Gn = G, be a reducible face decomposition
associated with a sequence of inner faces s1, s2, . . . , sn. The set of all
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binary codes for the perfect matchings of Gr will be denoted as Br for
every r ∈ {1, . . . , n}.

If G has only two faces, s1 and s2, we define the binary codes B2 =

{00, 01, 10} in the following way: code 00 represents the perfect matching
that contains the common edge of s1 and s2. Further, let 01 be the per-
fect matching obtained from 00 by rotating the edges in s2, and 10 the
remaining perfect matching, see Figure 3.

Figure 3. Binary coding of perfect matchings of a graph G with two
inner faces.

Assume that Br is the set of all the binary codes for perfect matchings
of the graph Gr, which is composed of faces s1, . . . , sr. Graph Gr+1 is then
obtained from Gr by adding a new face sr+1. Let sj , j ∈ {1, . . . , r}, be the
unique face adjacent to sr+1. Moreover, let si be the inner face adjacent
to sj with the smallest index i ∈ {1, . . . , r}.

The set Br+1 of all binary codes for perfect matchings of the graph
Gr+1 then contains all the strings that are obtained by concatenating 0
to every x = x1x2 . . . xr ∈ Br. Moreover, the set Br+1 also contains
additional codes, which are due to Proposition 2 obtained in one of the
following ways:

(a) If (si, sj , sr+1) is regular, then Br+1 also contains all the strings that
are obtained by concatenating 1 to every x = x1x2 . . . xr ∈ Br with
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xj = 0, see Figure 2 (a).

(b) If (si, sj , sr+1) is irregular, then Br+1 also contains all the strings
that are obtained by concatenating 1 to every x = x1x2 . . . xr ∈ Br

with xj = 1, see Figure 2 (b).

Finally, we present the procedure for binary coding of perfect matchings
for a 2-connected outerplane bipartite graph, see Algorithm 1. In the
algorithm, we denote B := Br and B′ := Br+1.

Algorithm 1: Binary coding of perfect matchings of a 2-
connected outerplane bipartite graph.

Input: RFD(G1, G2, . . . , Gn) of a graph G associated with a
sequence s1, . . . , sn.

Output: Binary codes for all perfect matchings of G.
1 B := {00, 01, 10}
2 for r = 2, . . . , n− 1 do
3 B′ := ∅
4 set j ∈ {1, . . . , r} such that sj is adjacent to sr+1

5 i = min{l | sl is adjacent to sj}
6 if (si, sj , sr+1) is regular then
7 for each x ∈ B do
8 B′ := B′ ∪ {x0}
9 if xj = 0 then

10 B′ := B′ ∪ {x1}
11 end
12 end
13 else
14 for each x ∈ B do
15 B′ := B′ ∪ {x0}
16 if xj = 1 then
17 B′ := B′ ∪ {x1}
18 end
19 end
20 end
21 B := B′

22 end

We now apply Algorithm 1 on graph G from Figure 4. Its faces are
denoted as s1, . . . , s4. As usual, by Gk we denote the subgraph of G that
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contains faces s1, . . . , sk, where k ∈ {2, 3, 4}, and therefore G4 = G. The
resonance graphs obtained by Algorithm 1 are shown in Figure 4.

Figure 4. Binary coding procedure of perfect matchings of a graph G
together with resonance graphs.

4 Evenly homeomorphic 2-connected outer-
plane bipartite graphs

In this section, we consider 2-connected outerplane bipartite graphs with
isomorphic resonance graphs. The main result of the section represents a
generalization of a result from [1]. Firstly, we need to define two trans-
formations. As usual, for a graph G we denote by deg u the degree of a
vertex u ∈ V (G).

Transformation 1. Let G be a 2-connected outerplane bipartite graph
and P = (x, y, z) a path on three vertices in G such that deg y = 2 and the
face containing P is not a 4-cycle. The graph G′ is obtained from G by
deleting y and identifying vertices x and z, see Figure 5.
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Figure 5. Transformation 1.

Transformation 2. Let G be a 2-connected outerplane bipartite graph
and v ∈ V (G) such that deg v = k. Then v belongs to exactly k − 1 inner
faces of G. Moreover, let u1, . . . , uk be the neighbours of v ordered in the
clockwise direction such that vu1 and vuk belong to the outer face.

(i) If k ≥ 3, then the graph G′ is obtained from G be deleting vertex v,
adding the path (v1, v2, v3) and inserting edges v1u1, v1u2, and v3ui

for any i ∈ {3, . . . , k}, see Figure 6 (i).

(ii) If k = 2, then the graph G′ is obtained from G be deleting vertex v,
adding the path (v1, v2, v3) and inserting edges v1u1 and v3u2, see
Figure 6 (ii).

Figure 6. Transformation 2.

Note that if deg(v) = k ≥ 4, then after applying Transformation 2 the
maximum degree of v1 and v3 in graph G′ is k− 1. It is also obvious that
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the graph G′ obtained by Transformation 1 or Transformation 2 is again
a 2-connected outerplane bipartite graph.

In the following definition, we generalize the concept of evenly homeo-
morphic CERS [2] to all 2-connected outerplane bipartite graphs.

Definition 2. Let G and H be two 2-connected outerplane bipartite graphs.
Then G is evenly homeomorphic to H if it is possible to successively
apply Transformation 1 or 2 on G and H to obtain graphs G′ and H ′,
respectively, such that G′ and H ′ are isomorphic. In such a case we write
G

R∼ H.

It is obvious that the relation R∼ is an equivalence relation on the set of all
2-connected outerplane bipartite graphs. Moreover, if G and H are evenly
homeomorphic, then both graphs have the same number of inner faces.

The following two lemmas are also needed.

Lemma 1. Let G and G′ be 2-connected outerplane bipartite graphs such
that G′ is obtained from G by applying Transformation 1 or Transformation
2. Then any two inner edges e, f ∈ E(G) are also in E(G′) and it holds
dG′(e, f)− dG(e, f) ∈ {−2, 0, 2}.

Proof. Obviously, if we apply Transformation 1, then the distance between
two inner edges e and f remains the same or decreases by 2. On the other
hand, after using Transformation 2 the distance between e and f remains
the same or increases by 2.

Lemma 2. Let G and H be evenly homeomorphic 2-connected outerplane
bipartite graphs and let (s1, s2, s3) be an adjacent triple of inner faces in
G. If (s′1, s′2, s′3) denotes the corresponding adjacent triple of inner faces in
H, then the triple (s1, s2, s3) is regular if and only if the triple (s′1, s

′
2, s

′
3)

is regular.

Proof. Let e ∈ E(s1) ∩ E(s2), f ∈ E(s2) ∩ E(s3), e′ ∈ E(s′1) ∩ E(s′2), and
f ′ ∈ E(s′2)∩E(s′3). By the definitions of Transformations 1, 2 and Lemma
1, it holds that dG(e, f) is even if and only if dH(e′, f ′) is even. Therefore,
the triple (s1, s2, s3) is regular if and only if (s′1, s′2, s′3) is regular.

Finally, we can state the main result of this section.
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Theorem 1. Let G and H be 2-connected outerplane bipartite graphs.
If G and H are evenly homeomorphic, then the resonance graph R(G) is
isomorphic to the resonance graph R(H).

Proof. Suppose G is a 2-connected outerplane bipartite graph. Moreover,
let RFD(G1, G2, . . . , Gn), where Gn = G, be a reducible face decom-
position associated with the sequence of inner faces s1, s2, . . . , sn. Also,
denote by s′i, i ∈ {1, . . . , n}, the corresponding inner faces of graph H,
which give the reducible face decomposition RFD(H1,H2, . . . , Hn) such
that Hn = H.

We show that for any r ∈ {2, . . . , n}, the set of binary codes Br of
the graph Gr obtained by Algorithm 1 coincides with the set of binary
codes B′

r of the graph Hr. Consequently, the resonance graphs R(Gr) and
R(Hr) are isomorphic for all r ∈ {2, . . . , n}, which implies that R(G) and
R(H) are isomorphic. We proceed by induction on the number of inner
faces.

Obviously, the sets of binary codes B2 and B′
2 are equal. Next, assume

that for some r ≥ 2 the sets of codes Br and B′
r coincide. Let sj be the

face of Gr+1 from the set {s1, . . . , sr} that is adjacent to sr+1. In addition,
define si as the face with the smallest index among all the adjacent inner
faces of sj . Analogously, we also define s′j and s′i in the graph Hr+1. By
Lemma 2 we obtain that the adjacent triple of inner faces (si, sj , sr+1) is
regular if and only if (s′i, s

′
j , s

′
r+1) is regular. Hence, by Algorithm 1 we

obtain Br+1 = B′
r+1.

We conclude the section with the following open problem.

Problem. Characterize 2-connected outerplane bipartite graphs with iso-
morphic resonance graphs.

5 Resonance graphs of 2-connected outer-
plane bipartite graphs and CERS

In this final section, we firstly show that the set of all resonance graphs of
2-connected outerplane bipartite graphs coincides with the set of all reso-
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nance graphs of CERS. Next, we consider 2-connected outerplane bipartite
graphs whose resonance graphs are daisy cubes.

Theorem 2. For any 2-connected outerplane bipartite graph G there exists
a CERS H such that G and H are evenly homeomorphic. Consequently,
the resonance graphs R(G) and R(H) are isomorphic.

Proof. Let G be a 2-connected outerplane bipartite graph such that G is
not a CERS. Then there exists a vertex v ∈ V (G) for which deg v = k ≥ 4.
After applying Transformation 2 on v, we obtain a 2-connected outerplane
bipartite graph G1 with three new vertices v1, v2, v3, see Figure 6 (i). It is
easy to see that deg v1 = 3, deg v2 = 2, and deg v3 = k−1. Note that G and
G1 are evenly homeomorphic and by Theorem 1 the resonance graphs R(G)

and R(G1) are isomorphic. Then, we repeat the same procedure until every
vertex of the transformed graph has degree at most 3. Consequently, we
obtain a sequence of graphs G1, G2, . . . , Gm, where G and Gm are evenly
homeomorphic and the resonance graphs R(G) and R(Gm) are isomorphic.
Let H = Gm. Since H is a 2-connected outerplane bipartite graph with
the degree of every vertex at most 3, it is a CERS.

Next, we characterize 2-connected outerplane bipartite graphs whose
resonance graphs are daisy cubes [12]. Therefore, some additional defini-
tions are needed.

Let B = {0, 1} and Bn the set of all binary strings of length n.
Moreover, let ≤ be a partial order on Bn defined with (u1, . . . , un) ≤
(v1, . . . , vn) if and only if ui ≤ vi holds for all i ∈ {1, . . . , n}. For
X ⊆ Bn, we define the graph Qn(X) as the subgraph of Qn as Qn(X) =

Qn [{u ∈ Bn | u ≤ x for somex ∈ X}] and say that Qn(X) is a daisy cube
(generated by X).

Furthermore, we generalize the concept of regular CERS from [2] to all
2-connected outerplane bipartite graphs.

Definition 3. If a 2-connected outerplane bipartite graph G has at most
two inner faces or if every adjacent triple of inner faces of G is regular,
then G is called regular.

The following result was proved in [2].
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Theorem 3. [2] If G is a CERS, then G is regular if and only if the
resonance graph R(G) is a daisy cube.

Finally, we generalize the above result to all 2-connected outerplane
bipartite graphs.

Theorem 4. If G is a 2-connected outerplane bipartite graph, then G is
regular if and only if the resonance graph R(G) is a daisy cube.

Proof. Let G be a 2-connected outerplane bipartite graph. By Theorem
2, there exists a CERS H such that G and H are evenly homeomorphic
and the resonance graphs R(G) and R(H) are isomorphic. By Lemma 2,
G is regular if and only if H is regular. Also, by Theorem 3, H is regular
if and only if R(H) is a daisy cube. Therefore, G is regular if and only if
the resonance graph R(H) is a daisy cube and this is further equivalent to
R(G) being a daisy cube.
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