Resonance Graphs and a Binary Coding of Perfect Matchings of Outerplane Bipartite Graphs

Simon Brezovnika,, Niko Tratnikb,c,*, Petra Žigert Pleteršekb,d

aUniversity of Ljubljana, Faculty of Mechanical Engineering, Slovenia
bUniversity of Maribor, Faculty of Natural Sciences and Mathematics, Slovenia
cInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
dUniversity of Maribor, Faculty of Chemistry and Chemical Engineering, Slovenia

simon.brezovnik@fs.uni-lj.si, niko.tratnik@um.si, petra.zigert@um.si

(Received February 13, 2023)

Abstract

The aim of this paper is to investigate resonance graphs of 2-connected outerplane bipartite graphs, which include various families of molecular graphs. Firstly, we present an algorithm for a binary coding of perfect matchings of these graphs. Further, 2-connected outerplane bipartite graphs with isomorphic resonance graphs are considered. In particular, it is shown that if two 2-connected outerplane bipartite graphs are evenly homeomorphic, then its resonance graphs are isomorphic. Moreover, we prove that for any 2-connected outerplane bipartite graph G there exists a cata-condensed even ring systems H such that the resonance graphs of G and H are isomorphic. We conclude with the characterization of 2-connected outerplane bipartite graphs whose resonance graphs are daisy cubes.

*Corresponding author.
1 Introduction

Kekulé structures of aromatic hydrocarbons reflect the positions of double bonds in a molecule. In graph theory, Kekulé structures are modelled by perfect matchings of the corresponding molecular graph. On the other hand, the interaction between Kekulé structures is reflected in the resonance graph of a given molecule. Resonance graphs were independently introduced by chemists (El-Basil [3, 4], Gründler [9]) and also by mathematicians (Zhang, Guo, and Chen [15]) under the name Z-transformation graph.

Initially, various properties of resonance graphs of hexagonal systems were established in [15]. Later, the concept of resonance graphs was generalized to all plane (elementary) bipartite graphs (for example, see [17, 18]).

In [13, 16], a binary coding procedure of vertices of resonance graphs of catacondensed hexagonal systems was developed. Later [1], this binary coding was generalized to catacondensed even ring systems (CERS), which form a subfamily of 2-connected outerplane bipartite graphs (see also [14]). In recent years, various structural properties of resonance graphs of 2-connected (outer)plane bipartite graphs were deduced [5–8]. For example, in [8] all plane bipartite graphs whose resonance graphs can be constructed from an edge by a sequence of peripheral convex expansions are characterized.

The paper is organized as follows. Firstly, in Section 3 we generalize the binary coding procedure of perfect matchings from CERS [1] to all 2-connected outerplane bipartite graphs. Next, in Section 4 we study 2-connected outerplane bipartite graphs with isomorphic resonance graphs. In particular, we prove that if G and H are evenly homeomorphic, then its resonance graphs are isomorphic. Furthermore, in Section 5 we prove that for any 2-connected outerplane bipartite graph G there exists a CERS H such that the resonance graphs of G and H are isomorphic. Finally, we characterize 2-connected outerplane bipartite graphs whose resonance graphs are daisy cubes, which extends results from [19] and [2].
2 Preliminaries

The distance $d_{G}(u, v)$ between vertices u and v of a graph G is defined as the usual shortest path distance. The distance between two edges e and f of G, denoted by $d_{G}(e, f)$, is defined as the distance between corresponding vertices in the line graph $L(G)$ of G.

The hypercube Q_n of dimension n is defined in the following way: all vertices of Q_n are presented as n-tuples $x_1x_2\ldots x_n$ where $x_i \in \{0, 1\}$ for each $i \in \{1, \ldots, n\}$, and two vertices of Q_n are adjacent if the corresponding n-tuples differ in precisely one position. A subgraph H of a graph G is an isometric subgraph if for all $u, v \in V(H)$ it holds $d_{H}(u, v) = d_{G}(u, v)$. If a graph is isomorphic to an isometric subgraph of G, we say that it can be isometrically embedded in G. Any isometric subgraph of a hypercube is called a partial cube [11].

If G is a plane graph, then an edge e of G that belongs to two inner faces of G will be called an inner edge. We say that two faces of G are adjacent if they have an edge in common. An inner face adjacent to the outer face is called a peripheral face. In addition, we denote the edges lying on some face s of G by $E(s)$. The subgraph induced by the edges in $E(s)$ is the periphery of s and the periphery of the outer face is also called the periphery of G. Moreover, for a peripheral face s and the outer face s_0, the subgraph induced by the edges in $E(s) \cap E(s_0)$ is called the common periphery of s and G. The vertices of G that belong to the outer face are called peripheral vertices and the remaining vertices are interior vertices. Furthermore, an outerplane graph is a plane graph in which all vertices are peripheral vertices.

The following definitions can be found, for example, in [5]. A bipartite graph G is elementary if and only if it is connected and each edge is contained in some perfect matching of G. A peripheral face s of a plane elementary bipartite graph G is called reducible if the subgraph H of G obtained by removing all internal vertices (if exist) and edges on the common periphery of s and G is elementary.

An even ring system is a 2-connected plane bipartite graph with all interior vertices of degree 3 and all peripheral vertices of degree 2 or 3.
Moreover, an outerplane even ring system is called \textit{catacondensed even ring system} or shortly CERS [14].

A \textit{1-factor} of a graph G is a spanning subgraph of G such that every vertex has degree one. The edge set of a 1-factor is called a \textit{perfect matching} of G, which is a set of independent edges covering all vertices of G. In chemical literature, perfect matchings are known as Kekulé structures (see [10] for more details).

Let G be a 2-connected plane bipartite graph. The \textit{resonance graph} $R(G)$ of G is the graph whose vertices are the perfect matchings of G, and two perfect matchings M_1, M_2 are adjacent whenever their symmetric difference forms the edge set of exactly one inner face s of G, i.e. $M_1 \oplus M_2 = E(s)$.

Next, we state the definition of a reducible face decomposition, see [17] and [5, 6]. Firstly, we introduce the \textit{bipartite ear decomposition} of a plane elementary bipartite graph G with n inner faces. Starting from an edge e of G, join its two end-vertices by a path P_1 of odd length and proceed inductively to build a sequence of bipartite graphs as follows. If $G_{i-1} = e + P_1 + \cdots + P_{i-1}$ has already been constructed, add the ith ear P_i of odd length by joining any two vertices belonging to different bipartition sets of G_{i-1} such that P_i has no internal vertices in common with the vertices of G_{i-1}. A bipartite ear decomposition of a plane elementary bipartite graph G is called a \textit{reducible face decomposition} (shortly RFD) if G_1 is a periphery of a finite face s_1 of G, and the ith ear P_i lies in the exterior of G_{i-1} such that P_i and a part of the periphery of G_{i-1} surround a finite face s_i of G for all $i \in \{2, \ldots, n\}$. For such a decomposition, we use notation $RFD(G_1, G_2, \ldots, G_n)$, where $G_n = G$.

Furthermore, if G is a graph and $X \subseteq V(G)$, then the notation $G[X]$ is used to denote the subgraph of G induced by the set X.

3 Binary coding of perfect matchings

In this section, we develop an algorithm for constructing binary codes of perfect matchings of 2-connected outerplane bipartite graphs. This
represents a generalization of the result from [1]. For this purpose, we firstly need several auxiliary results.

Let G be a 2-connected outerplane bipartite graph and H_1, H_2 two induced subgraphs of G such that $V(H_1) \cup V(H_2) = V(G)$ and $|E(H_1) \cap E(H_2)| = 1$. If $e \in E(H_1) \cap E(H_2)$, we say that H_1 and H_2 are e-subgraphs of graph G. Moreover, let M be a perfect matching of G. We say that a vertex $x \in V(H_i)$ is M-covered in H_i, $i \in \{1, 2\}$, if there exists a vertex $y \in V(H_i)$ such that $xy \in M$. Furthermore, an edge f is M-covered in H_i if its end-vertices are both M-covered in H_i.

Proposition 1. Let G be a 2-connected outerplane bipartite graph and H_1, H_2 two induced subgraphs of G such that $V(H_1) \cup V(H_2) = V(G)$ and $e = uv$ is the only edge in the set $E(H_1) \cap E(H_2)$. Moreover, let M be a perfect matching of G. Then e is M-covered in H_1 or H_2.

Proof. Suppose that u is M-covered in H_1 but not in H_2 and v is M-covered in H_2 but not in H_1. It is easy to see that H_1 is again a 2-connected outerplane bipartite graph and therefore, it has an even number of vertices. Let $H_1' = H_1 - v$. Then, $M \setminus E(H_2)$ is a perfect matching of the graph H_1'. However, graph H_1' has an odd number of vertices, which is a contradiction with the existence of a perfect matching.

Proposition 2. Let G be a 2-connected outerplane bipartite graph and $e = uv \in E(G)$ an edge belonging to two inner faces s and s' of G. Also, let H be the e-subgraph of G containing s', $f \neq e$ an edge of face s, and H_f the f-subgraph of G not containing e. Suppose that M is a perfect matching of G such that e is M-covered in H. Then $d_G(e, f)$ is even if and only if f is M-covered in H_f.

Proof. Let $P = (e, f_1, f_2, \ldots, f_k = f)$ be a shortest path in G between e and f. Moreover, let H_i be the f_i-subgraph of G that does not contain s. Since e is M-covered in H, by Proposition 1 it follows that f_1 is not M-covered in H_1. Using the same argument, the edge f_2 must be M-covered in H_2. Inductively, we obtain that f_i is M-covered in H_i if and only if i is even. As a consequence, f is M-covered in H_f if and only if $k = d_G(e, f)$ is even.
Remark. Let s be an inner face of a 2-connected outerplane bipartite graph G. Then s is reducible if and only if it is adjacent to exactly one inner face of G [6].

Let G be a 2-connected outerplane bipartite graph with n inner faces, s a reducible face of G, and $e = uv$ the edge of s that belongs to exactly two inner faces of G. Moreover, let G' be the graph obtained from G by removing face s. In addition, we denote by H the subgraph of G induced on the vertices of s. We partition the perfect matchings of G into the sets $\mathcal{M}_e(G)$, $\mathcal{M}_{e'}^G(G)$, and $\mathcal{M}_{e'}^H(G)$. More precisely, $\mathcal{M}_e(G)$ is the set of all perfect matchings of G that contain edge e and $\mathcal{M}_{e'}^G(G)$ is the set of all perfect matchings M of G such that $e \notin M$ and e is M-covered in G'. Similarly, $\mathcal{M}_{e'}^H(G)$ is the set of all perfect matchings M of G such that $e \notin M$ and e is M-covered in H.

It is straightforward to see that the subgraph of $R(G)$ induced by the vertices from $\mathcal{M}_e(G) \cup \mathcal{M}_{e'}^G(G)$, denoted as $R(G)[\mathcal{M}_e(G) \cup \mathcal{M}_{e'}^G(G)]$, is isomorphic to $R(G')$. Moreover, $R(G)[\mathcal{M}_e(G)]$ and $R(G)[\mathcal{M}_{e'}^H(G)]$ are also isomorphic. By using these facts, we can obtain binary codes of length n of perfect matchings of G, where n is the number of inner faces of G. Then, G' contains $n - 1$ inner faces and suppose that we have already obtained binary codes of perfect matchings of G'.

Every perfect matching M' of G' with binary code $b(M')$ can be in the unique way extended to a perfect matching M of G, see Figure 1 (a). Binary code $b(M)$ is obtained by concatenation of 0 to $b(M')$. In this way, we obtain the binary codes for perfect matchings in the set $\mathcal{M}_e(G) \cup \mathcal{M}_{e'}^G(G)$.

![Figure 1](image-url)

Figure 1. Two possibilities for the perfect matchings of G. The common edge of G' and s is bold iff it is M-covered in G'.

On the other hand, let M' be a perfect matching of G' such that $e \in M'$. We define M as the unique perfect matching of G such that $M' \setminus \{e\} \subseteq M$.

and $e \notin M$, see Figure 1 (b). Binary code $b(M)$ is then obtained by concatenation of 1 to $b(M')$. Here, we obtain the binary codes for perfect matchings in the set $\mathcal{M}^H_e(G)$.

The obtained binary coding procedure of perfect matchings of a 2-connected outerplane bipartite graph G follows a peripheral convex expansion described in [6]. Therefore, by Theorem 3.2 [6] our procedure gives an isometric embedding of the resonance graph $R(G)$ into the hypercube of dimension n, where n is the number of inner faces of G. Consequently, two perfect matchings M_1 and M_2 of G are adjacent in $R(G)$ if and only if their binary codes differ in exactly one position.

In [1, 13] the algorithms for binary coding of perfect matchings of benzenoid graphs and CERS were presented. The mentioned algorithms are here generalized to 2-connected outerplane bipartite graphs. We first extend the following definition from [1] to a larger family of graphs.

Definition 1. Let s, s', s'' be three inner faces of a 2-connected outerplane bipartite graph such that s and s' have common edge e and s', s'' have common edge f. The triple (s, s', s'') is called an **adjacent triple of inner faces**. Moreover, (s, s', s'') is **regular** if the distance $d_G(e, f)$ is an even number and **irregular** otherwise.

To show an example, consider the triple (s_i, s_j, s_{r+1}) from Figure 2. The mentioned triple is regular in case (a) and irregular in case (b).

![Figure 2](image-url) Perfect matchings of G_{r+1} with respect to the regularity of triple (s_i, s_j, s_{r+1}). An edge f is bold if it is M-covered in the f-subgraph that does not contain face s_j.

Suppose G is a 2-connected outerplane bipartite graph. Moreover, let $RFD(G_1, G_2, \ldots, G_n)$, where $G_n = G$, be a reducible face decomposition associated with a sequence of inner faces s_1, s_2, \ldots, s_n. The set of all
binary codes for the perfect matchings of G_r will be denoted as B_r for every $r \in \{1, \ldots, n\}$.

If G has only two faces, s_1 and s_2, we define the binary codes $B_2 = \{00, 01, 10\}$ in the following way: code 00 represents the perfect matching that contains the common edge of s_1 and s_2. Further, let 01 be the perfect matching obtained from 00 by rotating the edges in s_2, and 10 the remaining perfect matching, see Figure 3.

![Figure 3](image)

Figure 3. Binary coding of perfect matchings of a graph G with two inner faces.

Assume that B_r is the set of all the binary codes for perfect matchings of the graph G_r, which is composed of faces s_1, \ldots, s_r. Graph G_{r+1} is then obtained from G_r by adding a new face s_{r+1}. Let $s_j, j \in \{1, \ldots, r\}$, be the unique face adjacent to s_{r+1}. Moreover, let s_i be the inner face adjacent to s_j with the smallest index $i \in \{1, \ldots, r\}$.

The set B_{r+1} of all binary codes for perfect matchings of the graph G_{r+1} then contains all the strings that are obtained by concatenating 0 to every $x = x_1x_2 \ldots x_r \in B_r$. Moreover, the set B_{r+1} also contains additional codes, which are due to Proposition 2 obtained in one of the following ways:

(a) If (s_i, s_j, s_{r+1}) is regular, then B_{r+1} also contains all the strings that are obtained by concatenating 1 to every $x = x_1x_2 \ldots x_r \in B_r$ with
\(x_j = 0 \), see Figure 2 (a).

(b) If \((s_i, s_j, s_{r+1})\) is irregular, then \(B_{r+1}\) also contains all the strings that are obtained by concatenating 1 to every \(x = x_1x_2\ldots x_r \in B_r\) with \(x_j = 1\), see Figure 2 (b).

Finally, we present the procedure for binary coding of perfect matchings for a 2-connected outerplane bipartite graph, see Algorithm 1. In the algorithm, we denote \(B := B_r\) and \(B' := B_{r+1}\).

Algorithm 1: Binary coding of perfect matchings of a 2-connected outerplane bipartite graph.

Input: \(RFD(G_1, G_2, \ldots, G_n)\) of a graph \(G\) associated with a sequence \(s_1, \ldots, s_n\).

Output: Binary codes for all perfect matchings of \(G\).

1. \(B := \{00, 01, 10\}\)
2. for \(r = 2, \ldots, n - 1\) do
3. \hspace{1em} \(B' := \emptyset\)
4. \hspace{1em} set \(j \in \{1, \ldots, r\}\) such that \(s_j\) is adjacent to \(s_{r+1}\)
5. \hspace{1em} \(i = \min\{l \mid s_l\) is adjacent to \(s_j\}\)
6. \hspace{1em} if \((s_i, s_j, s_{r+1})\) is regular then
7. \hspace{2em} for each \(x \in B\) do
8. \hspace{3em} \(B' := B' \cup \{x0\}\)
9. \hspace{3em} if \(x_j = 0\) then
10. \hspace{4em} \(B' := B' \cup \{x1\}\)
11. \hspace{3em} end
12. \hspace{2em} end
13. else
14. \hspace{2em} for each \(x \in B\) do
15. \hspace{3em} \(B' := B' \cup \{x0\}\)
16. \hspace{3em} if \(x_j = 1\) then
17. \hspace{4em} \(B' := B' \cup \{x1\}\)
18. \hspace{3em} end
19. \hspace{2em} end
20. \hspace{1em} end
21. \(B := B'\)
22. end

We now apply Algorithm 1 on graph \(G\) from Figure 4. Its faces are denoted as \(s_1, \ldots, s_4\). As usual, by \(G_k\) we denote the subgraph of \(G\) that
contains faces s_1, \ldots, s_k, where $k \in \{2, 3, 4\}$, and therefore $G_4 = G$. The resonance graphs obtained by Algorithm 1 are shown in Figure 4.

![Resonance graphs](https://example.com/figure4)

Figure 4. Binary coding procedure of perfect matchings of a graph G together with resonance graphs.

4 Evenly homeomorphic 2-connected outerplane bipartite graphs

In this section, we consider 2-connected outerplane bipartite graphs with isomorphic resonance graphs. The main result of the section represents a generalization of a result from [1]. Firstly, we need to define two transformations. As usual, for a graph G we denote by $\deg u$ the degree of a vertex $u \in V(G)$.

Transformation 1. Let G be a 2-connected outerplane bipartite graph and $P = (x, y, z)$ a path on three vertices in G such that $\deg y = 2$ and the face containing P is not a 4-cycle. The graph G' is obtained from G by deleting y and identifying vertices x and z, see Figure 5.
Transformation 2. Let G be a 2-connected outerplane bipartite graph and $v \in V(G)$ such that $\deg v = k$. Then v belongs to exactly $k - 1$ inner faces of G. Moreover, let u_1, \ldots, u_k be the neighbours of v ordered in the clockwise direction such that vu_1 and vu_k belong to the outer face.

(i) If $k \geq 3$, then the graph G' is obtained from G by deleting vertex v, adding the path (v_1, v_2, v_3) and inserting edges v_1u_1, v_1u_2, and v_3u_i for any $i \in \{3, \ldots, k\}$, see Figure 6 (i).

(ii) If $k = 2$, then the graph G' is obtained from G by deleting vertex v, adding the path (v_1, v_2, v_3) and inserting edges v_1u_1 and v_3u_2, see Figure 6 (ii).

Note that if $\deg(v) = k \geq 4$, then after applying Transformation 2 the maximum degree of v_1 and v_3 in graph G' is $k - 1$. It is also obvious that
the graph G' obtained by Transformation 1 or Transformation 2 is again a 2-connected outerplane bipartite graph.

In the following definition, we generalize the concept of evenly homeomorphic CERS [2] to all 2-connected outerplane bipartite graphs.

Definition 2. Let G and H be two 2-connected outerplane bipartite graphs. Then G is **evenly homeomorphic** to H if it is possible to successively apply Transformation 1 or 2 on G and H to obtain graphs G' and H', respectively, such that G' and H' are isomorphic. In such a case we write $G \overset{R}{\sim} H$.

It is obvious that the relation $\overset{R}{\sim}$ is an equivalence relation on the set of all 2-connected outerplane bipartite graphs. Moreover, if G and H are evenly homeomorphic, then both graphs have the same number of inner faces.

The following two lemmas are also needed.

Lemma 1. Let G and G' be 2-connected outerplane bipartite graphs such that G' is obtained from G by applying Transformation 1 or Transformation 2. Then any two inner edges $e, f \in E(G)$ are also in $E(G')$ and it holds $d_{G'}(e, f) - d_G(e, f) \in \{-2, 0, 2\}$.

Proof. Obviously, if we apply Transformation 1, then the distance between two inner edges e and f remains the same or decreases by 2. On the other hand, after using Transformation 2 the distance between e and f remains the same or increases by 2.

Lemma 2. Let G and H be evenly homeomorphic 2-connected outerplane bipartite graphs and let (s_1, s_2, s_3) be an adjacent triple of inner faces in G. If (s'_1, s'_2, s'_3) denotes the corresponding adjacent triple of inner faces in H, then the triple (s_1, s_2, s_3) is regular if and only if the triple (s'_1, s'_2, s'_3) is regular.

Proof. Let $e \in E(s_1) \cap E(s_2)$, $f \in E(s_2) \cap E(s_3)$, $e' \in E(s'_1) \cap E(s'_2)$, and $f' \in E(s'_2) \cap E(s'_3)$. By the definitions of Transformations 1, 2 and Lemma 1, it holds that $d_G(e, f)$ is even if and only if $d_H(e', f')$ is even. Therefore, the triple (s_1, s_2, s_3) is regular if and only if (s'_1, s'_2, s'_3) is regular.

Finally, we can state the main result of this section.
Theorem 1. Let \(G \) and \(H \) be 2-connected outerplane bipartite graphs. If \(G \) and \(H \) are evenly homeomorphic, then the resonance graph \(R(G) \) is isomorphic to the resonance graph \(R(H) \).

Proof. Suppose \(G \) is a 2-connected outerplane bipartite graph. Moreover, let \(RFD(G_1, G_2, \ldots, G_n) \), where \(G_n = G \), be a reducible face decomposition associated with the sequence of inner faces \(s_1, s_2, \ldots, s_n \). Also, denote by \(s'_i, i \in \{1, \ldots, n\} \), the corresponding inner faces of graph \(H \), which give the reducible face decomposition \(RFD(H_1, H_2, \ldots, H_n) \) such that \(H_n = H \).

We show that for any \(r \in \{2, \ldots, n\} \), the set of binary codes \(B_r \) of the graph \(G_r \) obtained by Algorithm 1 coincides with the set of binary codes \(B'_r \) of the graph \(H_r \). Consequently, the resonance graphs \(R(G_r) \) and \(R(H_r) \) are isomorphic for all \(r \in \{2, \ldots, n\} \), which implies that \(R(G) \) and \(R(H) \) are isomorphic. We proceed by induction on the number of inner faces.

Obviously, the sets of binary codes \(B_2 \) and \(B'_2 \) are equal. Next, assume that for some \(r \geq 2 \) the sets of codes \(B_r \) and \(B'_r \) coincide. Let \(s_j \) be the face of \(G_{r+1} \) from the set \(\{s_1, \ldots, s_r\} \) that is adjacent to \(s_{r+1} \). In addition, define \(s_i \) as the face with the smallest index among all the adjacent inner faces of \(s_j \). Analogously, we also define \(s'_j \) and \(s'_i \) in the graph \(H_{r+1} \). By Lemma 2 we obtain that the adjacent triple of inner faces (\(s_i, s_j, s_{r+1} \)) is regular if and only if (\(s'_i, s'_j, s'_{r+1} \)) is regular. Hence, by Algorithm 1 we obtain \(B_{r+1} = B'_{r+1} \).

We conclude the section with the following open problem.

Problem. Characterize 2-connected outerplane bipartite graphs with isomorphic resonance graphs.

5 Resonance graphs of 2-connected outerplane bipartite graphs and CERS

In this final section, we firstly show that the set of all resonance graphs of 2-connected outerplane bipartite graphs coincides with the set of all reso-
nance graphs of CERS. Next, we consider 2-connected outerplane bipartite graphs whose resonance graphs are daisy cubes.

Theorem 2. For any 2-connected outerplane bipartite graph G there exists a CERS H such that G and H are evenly homeomorphic. Consequently, the resonance graphs $R(G)$ and $R(H)$ are isomorphic.

Proof. Let G be a 2-connected outerplane bipartite graph such that G is not a CERS. Then there exists a vertex $v \in V(G)$ for which $\deg v = k \geq 4$. After applying Transformation 2 on v, we obtain a 2-connected outerplane bipartite graph G_1 with three new vertices v_1, v_2, v_3, see Figure 6 (i). It is easy to see that $\deg v_1 = 3$, $\deg v_2 = 2$, and $\deg v_3 = k-1$. Note that G and G_1 are evenly homeomorphic and by Theorem 1 the resonance graphs $R(G)$ and $R(G_1)$ are isomorphic. Then, we repeat the same procedure until every vertex of the transformed graph has degree at most 3. Consequently, we obtain a sequence of graphs G_1, G_2, \ldots, G_m, where G and G_m are evenly homeomorphic and the resonance graphs $R(G)$ and $R(G_m)$ are isomorphic. Let $H = G_m$. Since H is a 2-connected outerplane bipartite graph with the degree of every vertex at most 3, it is a CERS.

Next, we characterize 2-connected outerplane bipartite graphs whose resonance graphs are daisy cubes [12]. Therefore, some additional definitions are needed.

Let $B = \{0, 1\}$ and B^n the set of all binary strings of length n. Moreover, let \leq be a partial order on B^n defined with $(u_1, \ldots, u_n) \leq (v_1, \ldots, v_n)$ if and only if $u_i \leq v_i$ holds for all $i \in \{1, \ldots, n\}$. For $X \subseteq B^n$, we define the graph $Q_n(X)$ as the subgraph of Q_n as $Q_n(X) = Q_n \left[\{u \in B^n \mid u \leq x \text{ for some } x \in X\}\right]$ and say that $Q_n(X)$ is a *daisy cube* (generated by X).

Furthermore, we generalize the concept of regular CERS from [2] to all 2-connected outerplane bipartite graphs.

Definition 3. If a 2-connected outerplane bipartite graph G has at most two inner faces or if every adjacent triple of inner faces of G is regular, then G is called regular.

The following result was proved in [2].
Theorem 3. [2] If G is a CERS, then G is regular if and only if the resonance graph $R(G)$ is a daisy cube.

Finally, we generalize the above result to all 2-connected outerplane bipartite graphs.

Theorem 4. If G is a 2-connected outerplane bipartite graph, then G is regular if and only if the resonance graph $R(G)$ is a daisy cube.

Proof. Let G be a 2-connected outerplane bipartite graph. By Theorem 2, there exists a CERS H such that G and H are evenly homeomorphic and the resonance graphs $R(G)$ and $R(H)$ are isomorphic. By Lemma 2, G is regular if and only if H is regular. Also, by Theorem 3, H is regular if and only if $R(H)$ is a daisy cube. Therefore, G is regular if and only if the resonance graph $R(H)$ is a daisy cube and this is further equivalent to $R(G)$ being a daisy cube.

Acknowledgment: Niko Tratnik acknowledges the financial support from the Slovenian Research Agency (research programme No. P1-0297 and project No. N1-0285). Petra Žigert Pleteršek acknowledges the financial support from the Slovenian Research Agency (research programme No. P1-0297 and project No. NK-0001).

References

