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Abstract

A catacondensed polyhex H is a connected subgraph of a hexag-
onal system such that any edge of H lies in a hexagon of H, any
triple of hexagons of H has an empty intersection and the inner dual
of H is a cactus graph. A perfect matching M of a catacondensed
polyhex H is relevant if every cycle of the inner dual of H admits
a vertex that corresponds to the hexagon which contributes three
edges in M . The vertex set of the graph R̃(H) consists of all rele-
vant perfect matchings of H, two perfect matchings being adjacent
whenever their symmetric difference forms the edge set of a hexagon
of H. A labeling that assigns in linear time a binary string to every
relevant perfect matching of a catacondensed polyhex is presented.
The introduced labeling defines an isometric embedding of R̃(H)
into a hypercube.

1 Introduction

A benzenoid system or a hexagonal system or simply a benzenoid is a finite

connected plane graph with no cut vertices in which every interior region

is bounded by a regular hexagon. A benzenoid G is catacondensed if any

triple of hexagons of G has an empty intersection.

A coronoid G is a connected subgraph of a hexagonal system such that

every edge lies in a hexagon of G and G contains at least one non-hexagon
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interior face (called corona hole) which should have a size of at least two

hexagons. A polyhex is either a benzenoid or coronoid. Fig. 1 depicts an

example of a catacondensed benzenoid and a (smallest) coronoid.

Figure 1. A catacondensed benzenoid (left) and coronoid (right).

In general, coronoids can be regarded as benzenoids with holes. Since

benzenoids and coronoids have counterparts in what are called benzenoid

and coronoid hydrocarbons, the studies of such systems are of significant

chemical relevance [7, 9].

A matching of a graph G is a set of pairwise independent edges. A

matching is perfect if it covers all the vertices of G. In chemistry instead of

perfect matchings one speaks of Kekulé structures and the edges contained

in a perfect matching are referred to as the double bonds of the respective

Kekulé structure. A polyhex that admits at least one Kekulé structure

is called Kekuléan. Matchings play an important role in chemical graph

theory, notable examples are the Hosoya index [18] and the forcing number

[32].

The resonance graph was first introduced to model the interaction of

two Kekulé structures of aromatic hydrocarbon molecules (that is, perfect

matchings of the corresponding graphs) that differ in the position of three

double bonds [1, 8, 19]. Formally, the vertex set of the resonance graph

R(G) of a polyhex G consists of all perfect matchings of G, two perfect

matchings being adjacent whenever their symmetric difference is the edge

set of a hexagon of G.

Later, the concept was independently re-invented (without any refer-

ence to aromatic hydrocarbon molecules) under the name Z-transformation

graph [29] and extended to elementary plane bipartite graphs (a connected

graph is elementary if the union of all perfect matchings forms a connected
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subgraph) [30, 31]. Succeeding extensive research showed that resonance

graphs of benzenoids, as well as of a plane elementary bipartite graphs pos-

sess a lot of structure. In particular, it was established that the resonance

graphs of the catacondensed benzenoids belong to the class of median

graphs [15]. Furthermore, the resonance graph of every plane elementary

bipartite graph G is also median [27] and the set of all perfect matchings

of G with a specific partial order is a finite distributive lattice [5, 16].

Some other classes of graphs that admit the concept of resonance

graphs are carbon nanotubes [21], fullerenes [22], and catacondensed even

ring systems [2].

It turned out that the resonance graphs are associated, somewhat sur-

prisingly, with some other well-known families of graphs. A well-known

example are Fibonacci cubes, a class of graphs used in network design,

which are precisely the resonance graphs of zigzag benzenoid chains (also

known as fibonaccenes) [14]. Later, all plane bipartite graphs with per-

fect matchings whose resonance graphs are Fibonacci cubes were deter-

mined [26]. Moreover, it was also established that none of the Lucas cubes,

another class of graphs that can be applied as interconnection topologies,

are resonance graphs. Nevertheless, as shown in [34], Lucas cubes are the

nontrivial component of the resonance graphs of cyclic polyphenanthrenes.

A similar approach was applied in [24] where the so-called matchable Lucas

cube was introduced. It is also worth mentioning that resonance graphs

of kinky benzenoid systems belong to a class of isometric subgraphs of

hypercubes called daisy cubes [33].

Let G be a plane elementary bipartite graph. If H is a subgraph of

G obtained by removing a certain face in the periphery of G (a so-called

reducible face), then the resonance graph G can be obtained by a periph-

eral convex expansion from the resonance graph of H [5]. The concept is

intrinsically connected with a labeling that establishes an isometric em-

bedding of the resonance graph of a plane elementary bipartite graph (for

example, a catacondensed benzenoid graph) into a hypercube [12, 27]. To

shed light on the resonance graphs of coronoids, we consider a family of

coronoids that can be seen as coronoid counterparts of catacondensed ben-

zenoid graphs in this paper. (Note that a graph H of this family can be
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seen as a plane bipartite graph G, where a coronoid hole of H is consid-

ered as a face s of G [6]; however, the resonance graph of H cannot be

obtained by the above-described decomposition with respect to s because

s is not reducible.) Since the resonance graph of a coronoid is not con-

nected in general, we direct our attention to the “main” component of the

resonance graph of a coronoid H. That is to say, we study the subgraph

of the resonance graph induced by the set of those perfect matchings of H

that covers at least one hexagon of each constituent of H.

The paper is organized as follows. In the next section, we define the

class of catacondensed polyhexes. Furthermore, we give other definitions,

concepts, and results needed in the paper. In Section 3, we introduce the

subgraph of the resonance graphs of a catacondensed polyhex H induced

by the set of all relevant matchings of H and denoted by R̃(H). Moreover,

we present a recurrence relation in which R̃(H) of a catacondensed polyhex

G with a hexagon h can be expressed as a peripheral expansion defined

on R̃(H − h), where h is either pendant or forms (with other hexagons)

a cyclic hexagonal chain. In Section 4, we show that every catacondensed

polyhex H admits a sequence of hexagons of H with a property that allows

us to label relevant perfect matchings of H in linear time as described in

Section 5. It is shown that the introduced labeling defines an isometric

embedding of R̃(H) into a hypercube. Moreover, this result allows us to

confirm that R̃(H) of a catacondensed polyhex H is median.

2 Preliminaries

The vertices of the inner dual of a polyhex H, denoted by IH , are all

hexagons of H, two vertices being adjacent if and only if the corresponding

hexagons share an edge in H. Note that compared to the usual definition

of the inner dual, holes of H are not considered as vertices of IH . It is

easy to see that the inner dual of a catacondensed benzenoid is a tree with

a maximum vertex degree equal to three.

A cactus graph is a connected graph in which any two simple cycles

have at most one vertex in common.

We say that a polyhex H is catacondensed if any edge of H lies in a
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hexagon of H, any triple of hexagons of H has an empty intersection and

the inner dual of H is a cactus graph. An example of a catacondensed

polyhex with its inner dual can be seen in Fig. 2.
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Figure 2. A catacondensed polyhex with its inner dual.

Let h denote a hexagon of a polyhexH. ThenH−h denotes a subgraph

of H obtained from H by deleting all the vertices and edges of H that

belong only to h.

Hexagons h and h′ of a polyhex H are adjacent if h and h′ share an

edge. If no hexagon in a catacondensed benzenoid is adjacent to three

other hexagons, we say that the graph is a benzenoid chain.

Let h be a hexagon of a polyhex H. If h is adjacent to exactly two

hexagons, say h′ and h′′, such that h′ and h′′ are not adjacent, then we

say that h′, h, h′′ form a benzenoid chain.

Let L be a subgraph of H induced by a benzenoid chain formed by

hexagons h′, h, h′′. Hexagon h is linearly connected if L − h′ − h′′ is the

graph that consists of exactly two isolated vertices, otherwise, we say that

h is angularly connected (see Fig. 3). If H is composed of two hexagons,

then we will say that both hexagons are angularly connected.

A benzenoid chain is called a fibonaccene if all of its hexagons, apart

from the two terminal ones, are angularly connected.

A graph is unicyclic if admits at most one cycle. A catacondensed
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Figure 3. Linearly (left) and angularly (right) connected hexagon h.

polyhex is a graphene segment if its inner dual is a unicyclic graph [20]. A

graphene segment is a cyclofusene if its inner dual is a cycle. A cyclofusene

is called a cyclic fibonaccene if all of its hexagons are angularly connected.

Let h be a hexagon of a polyhex G. If M is a perfect matching that

contains three edges of h, then h is an M -alternating hexagon. A perfect

matching M of G is relevant if every cycle of the inner dual of G admits a

vertex that corresponds to an M -alternating hexagon.

Trivially, every perfect matching of a catacondensed benzenoid is rele-

vant, while this is not true for a catacondensed coronoid. As an example

observe a perfect matching M of a cyclofusene depicted on the left-hand

side of Fig. 4 which does not admit an M -alternating hexagon.
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Figure 4. A perfect matching M of a cyclic fibonaccene without an
M -alternating hexagon (left); Fibonacci cubes Γh and Lucas
cubes Λh for h ≤ 3 (right)

For a graph G, let M̃(G) be the set of its relevant perfect matchings.

For edges e1, e2, . . . , en of G, let M̃e1,e2...,en(G) denote the set of those

relevant perfect matchings of G that contain these edges, while M̃ē(G)

denote the set of those relevant perfect matchings of G that do not contain
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e.

A hexagon that shares an edge with exactly one other hexagon is called

pendant. Edges with end-vertices of degree three that belong to a pendant

or an angularly connected hexagon will be called join edges. Note that a

pendant and angularly connected hexagon possess one or two join edges,

respectively (see the edge e in the graph on the left-hand side and edges

e′ and e′′ in the graph on the right-hand side of Fig. 5). Let h and h′ be

adjacent hexagons of a catacondensed polyhex. Then the two edges of h

that have exactly one end-vertex in h′ are called the link of h (to h′). Note

for example the links of h depicted in the graph on the right-hand side of

Fig. 5.

Let h be a hexagon of a polyhex H. If e is an edge of h with both end-

vertices of degree two, then e is an expandable edge of H. We say that e

is linearly expandable if h is a pendant hexagon and e is the edge opposite

to the join edge of h. Otherwise, an expandable edge e of h is angularly

expandable. Fig. 5 shows the expandable edges of two hexagons. Note that

the edge el (in the graph on the left-hand side) is linearly expandable, while

the edges ea and e′a are angularly expandable.
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Figure 5. A pendant and angularly connected hexagon.

If x and y are binary strings of equal length, then the Hamming distance

H(x, y) between x and y is the number of positions in which x and y differ.

The hypercube of order h or simply h-cube, denoted by Qh, is the graph

G = (V,E) where the vertex set V (G) is the set of all binary strings

u = u1u2 . . . uh, ui ∈ {0, 1}, and two vertices x, y ∈ V (G) are adjacent in

Qh if and only if the Hamming distance between x and y is equal to one.

The Fibonacci cube Γh, h ≥ 1, is defined as follows. The vertex set of Γh
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Figure 6. The resonance graph of a fibonaccene with four hexagons

is the set of all binary strings b1b2 . . . bh containing no two consecutive 1s.

Two vertices are adjacent in Γh if they differ in precisely one bit. Fibonacci

cubes are an extensively studied class of graphs, for a comprehensive survey

of Fibonacci cubes see [11].

The Fibonacci cube inspired several other families of graphs which can

also serve as interconnection topologies. A well-known example is the

Lucas cube Λh, which is obtained from Γh by removing vertices that start

and end with 1.

Fibonacci cubes Γh and Lucas cubes Λh for h ≤ 3 are depicted on the

right-hand side of Fig. 4, while Γ4 (as the resonance graph of a fibonaccene

with four hexagons) can be seen in Fig. 6.

A subgraph H of a graph G is called convex if it is connected and if

any shortest path of G between vertices of H is already in H. Let H

be a fixed subgraph of a graph G. The peripheral expansion pe(G;H) of

G with respect to H is the graph obtained from the disjoint union of G

and an isomorphic copy of H, in which every vertex of the copy of H is

joined by an edge with the corresponding vertex of H. Note that the ends

of the newly introduced edges induce a subgraph of pe(G;H) isomorphic

to H□K2, where G□H denotes the Cartesian product of graphs G and

H, cf. [10]. If H is a convex subgraph of G, then pe(G;H) is the convex

peripheral expansion of G with respect to H.

As an example of a peripheral expansion pe(G;H) observe the graph
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in Fig. 6, where G is the graph induced by the set of vertices with labels

1000, 0000, 0100, 1010 and 0010, while H is the graph induced by the set

of vertices with labels 1000, 0000, 0100.

If G is a connected graph, then the distance dG(u, v) (or simply d(u, v))

between vertices u and v is the length of a shortest u, v-path, that is, a

shortest path between u and v in G.

If G is a graph and X ⊆ V (G), then G[X] denotes the subgraph of G

induced by X.

Let G = (V,E) be a graph. A mapping ϕ : V (G) → V (Qh) is an

isometric embedding of G into Qh if dQh
(ϕ(u), ϕ(v)) = dG(u, v) for every

u, v ∈ V (G). If u ∈ V (G), we will denote the i-th coordinate of ϕ(u) as

ϕ(u)i.

Graphs that admit an isometric embedding into a hypercube are called

partial cubes. Note that Fibonacci and Lucas cubes are partial cubes.

We will need the following well-known result (see for example [10]).

Proposition 1. Let G be a partial cube with an isometric embedding ϕ.

If x, y ∈ V (G) and ϕ(x)i = ϕ(y)i, then for every vertex z on a shortest

x, y-path it holds that ϕ(z)i = ϕ(x)i.

A median of vertices u, v, w of a graph G is a vertex z that simultane-

ously lies on a shortest u, v-path, on a shortest u,w-path and on a shortest

v, w-path. A graph G is a median graph if every triple of its vertices has a

unique median.

The following result is shown in [17].

Proposition 2. A graph is a median graph if and only if it can be obtained

from K1 by a sequence of convex peripheral expansions.

3 Resonance graphs of catacondensed

polyhexes

Let M̃(G) be the set of relevant matchings of a polyhex G. We will be

interested in the subgraph of R(G) induced by M̃(G) and denoted by

R̃(G).
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We already mentioned that every perfect matching of a catacondensed

benzenoid is trivially relevant. Thus, if G is a catacondensed benzenoid,

we have R̃(G) = R(G).

Let e be a join edge of a pendant hexagon h of G. Remind that M̃e(G)

and M̃ē(G) denote the sets of relevant perfect matchings of G that contain

and do not contain e, respectively. Note that the perfect matchings of

M̃ē(G) either contain the link of h to its neighboring hexagon or not.

We denote the corresponding sets of perfect matchings with M̃ℓ
ē(G) and

M̃ℓ̄
ē(G), respectively.

It is not difficult to see that the relevant perfect matchings of G can

be partitioned as

V (R̃(G)) = M̃e(G) ∪ M̃ℓ
ē(G) ∪ M̃ℓ̄

ē(G).

Moreover, if H is the graph obtained from G by removing h, then M̃e(H)

and M̃ē(H) one-to-one correspond to M̃e(G) and M̃ℓ̄
ē(G), respectively.

The following lemma is a generalization of the well-known result for the

resonance graph of a catacondensed benzenoid. We skip its proof since it

is analogous to the proof presented in [13].

Lemma 1. Let e be a join edge of a pendant hexagon h of a catacondensed

polyhex G. If H is the graph obtained from G by removing h, then R̃(G) =

pe(R̃(H), R̃(H)[M̃e(H)]). Moreover, R̃(H) = R̃(G)[M̃e(G) ∪ M̃ℓ̄
ē(G)]).

The above lemma presents a recurrence relation for R̃(G) with respect

to R̃(G − h), where h is a pendant hexagon of a catacondensed polyhex

G. Since G may possess a cyclic hexagonal chain as its subgraph, we need

a more general result. We first show the following lemma.

Lemma 2. If M is a relevant perfect matching of a catacondensed polyhex

G, then for every link either both edges or none belong to M .

Proof. Let a link ℓ belongs to a hexagon h of G and let vh be a vertex of

IG that corresponds to h. Suppose that M contains exactly one edge, say

e, of ℓ.

If vh does not belong to a cycle of IG, then we can repeat the argu-

ment given in [15] as follows. By removing two adjacent end-vertices of
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ℓ, we obtain the graph with two connected components, say G1 and G2.

Obviously, G1 and G2 are both of even order. We may suppose that an

end-vertex of e belongs to G1. Let G
′
1 denote the graph obtained by adding

e to G1. Obviously, M restricted to G′
1 is a perfect matching of G′

1. The

odd order of G′
1 now yields a contradiction.

Let vh belong to a cycle C of IG. If h is M -resonant, the lemma readily

follows. Otherwise, since M is relevant, C admits a vertex such that the

corresponding hexagon, say h′, is M -resonant. Let e′ and e′′ denote the

join edges of h′. Note that M ∪ {e′, e′′} induces a perfect matching on

G − h′. Since vh does not belong to a cycle of IG−h′ , we can then repeat

the above argument for G− h′ and obtain a contradiction.

Let e be an angularly expandable edge of a hexagon h of a catacon-

densed polyhex G with h′ and h′′ being hexagons adjacent to h, and let

e′ (resp. e′′) denote the join edge between h and h′ (resp. h and h′′).

Let also ℓ1, ℓ2, ℓ
′ and ℓ′′ denote the link from h to h′, from h to h′′, from

h′ to h and from h′′ to h, respectively. Let us denote by M̃ℓ′∨ℓ′′

e (G) the

subset of M̃e(G) that contains link ℓ′ or link ℓ′′, while M̃ℓ1,ℓ2
ē (G) denotes

the subset of M̃ē(G) that contains links ℓ1 and ℓ2.

The following proposition is stated with respect to the above-defined

notions.

Proposition 3. The relevant perfect matchings of a catacondensed polyhex

G can be partitioned as

V (R̃(G)) = M̃e,e′,e′′(G) ∪ M̃ℓ′∨ℓ′′

e (G) ∪ M̃ℓ1,ℓ2
ē (G).

Proof. Obviously, we have V (R̃(G)) = M̃e(G) ∪ M̃ē(G). Since from

Lemma 2 it readily follows that M̃ē(G) = M̃ℓ1,ℓ2
ē (G) and M̃e(G) =

M̃e,e′,e′(G) ∪ M̃ℓ′∨ℓ′′

e (G), the proof is complete.

By using Proposition 3 we obtain the following result.

Lemma 3. Let h be an angularly connected hexagon of a catacondensed

polyhex G such that the corresponding vertex in IG belongs to a cycle of

IG and let H denote the graph obtained from G by removing h. If e is
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the expandable edge of h, while e′ and e′′ denote the join edges of h, then

R̃(G) = pe(R̃(H), R̃(H)[Me′,e′′(H)]). Moreover, R̃(H) = R̃(G)[M̃e(G)].

Proof. Let h′ (resp. h′′) denote the hexagon of G adjacent to h that

contains e′ (resp. e′′) and let ℓ1, ℓ2, ℓ
′ and ℓ′′ denote the link from h to

h′, from h to h′′, from h′ to h and from h′′ to h, respectively.

Note that H is a catacondensed polyhex. If M ∈ M̃e, then, by Lemma

2 and Proposition 3, either e′ ∈ M or ℓ′ ∈ M and either e′′ ∈ M or ℓ′′ ∈ M .

It follows that relevant perfect matchings of Me(G) one-to-one correspond

to relevant perfect matchings of M(H). Thus, R̃(H) = R̃(G)[M̃e(G)].

Note also that every relevant perfect matching M ∈ Me,e′,e′′(G)

is adjacent in R̃(G) to a unique relevant perfect matching M ′ ∈ M̃ℓ1,ℓ2
ē (G).

Moreover, M1,M2 ∈ Me,e′,e′′(G) are adjacent in R̃(G)[M̃e,e′,e′′(G)] if and

only if the corresponding relevant perfect matchings M ′
1,M

′
2 ∈ M̃ℓ1,ℓ2

ē (G))

are adjacent in R̃(G)[M̃ℓ1,ℓ2
ē (G)]. It follows that R̃(G)[M̃e,e′,e′′(G)] and

R̃(G)[M̃ℓ1,ℓ2
ē (G)] are isomorphic and R̃(G) = pe(R̃(H), R̃(H)[Me′,e′′(H)]).

4 Normal sequence of hexagons

Let H be a catacondensed benzenoid with n hexagons. A sequence of

hexagons h1, h2, . . . , hn of H is called normal if for every i ≥ 2 it holds that

hi is adjacent to exactly one hexagon of h1, h2, . . . , hi−1, where hp(i), p(i) <

i, denote the hexagon adjacent to hi. We also state p(i) = p1(i) and

pk(i) = p(pk−1(i)), k ≥ 2.

It is well known, e.g. [27], that every catacondensed benzenoid H ad-

mits a normal sequence of hexagons. Moreover, if h is a hexagon of H we

can find in linear time a normal sequence of hexagons h1, h2, . . . , hn such

that h1 = h by applying the breadth-first search from h in IH (see [12,27]).

We will generalize the concept of a normal sequence of hexagons for

catacondensed polyhexes as follows. Let H be a catacondensed polyhex.

A sequence of hexagons h1, h2, . . . , hn of H is called normal if

• every cycle C of IH admits exactly one angularly connected hexagon

hi (called a cyclic hexagon) adjacent to exactly two hexagons of
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h1, h2, . . . , hi−1 which both belong to C (these hexagons are denoted

by hp(i) and hpk(i)),

• every other hexagon hi (called an acyclic hexagon) is adjacent to

exactly one hexagon of h1, h2, . . . , hi−1 (denoted by hp(i)).

Remind that the inner dual IH of a catacondensed polyhex H is a

cactus graph. Clearly, a graph obtained by removing all cycles from a

cactus graph consists of connected components which are all trees. Since a

connected component obtained by this removal can be seen as a maximal

subtree of IH in this respect, it will be called an m-tree. Thus, we may

view IH as a graph composed of constituents which are cycles and m-trees.

By the definition of a cactus graph, two cycles of a cactus graph have

at most one vertex in common. Nevertheless, since the largest degree of

a vertex in the inner dual IH of catacondensed polyhex H is three, two

cycles of IH cannot admit a common vertex.

Let TH be a graph whose vertex set consists of all constituents of

IH . Two constituents L and L′ are adjacent in TH if IH admits an edge

uv ∈ E(IH) such that u ∈ V (L) and v ∈ V (L′). Since we can say that

u glues L with L′, it is called a g-hexagon of L. If L is a cycle, then u

corresponds to an angularly connected hexagon of H.

Note that IH admits a so-called tree-like structure which is a well-

known property of a cactus graph. Thus, TH is a tree. More details on the

topic can be found in [3], while an example can be seen in Fig. 2 where a

graph with five constituents (three cycles and two m-trees) is shown.

By slight modifications of methods presented in [3], TH can be con-

structed in linear time. Moreover, since a constituent L of IH is either a

cycle or an m-tree we can find all the g-hexagons and angularly connected

hexagons (if H is a cycle) of L within the same time bound. We may also

assume that if L is isomorphic to a cycle C, then C is represented as a

sequence of hexagons h1, h2, . . . , hk, where hi is adjacent to hi+1 (indices

modulo k) for i = 1, . . . , k.

In the sequel, we will present a procedure that for a given catacon-

densed polyhex H (and corresponding IH and TH) with n hexagons con-

structs a normal sequence of hexagons H = (h1, . . . , hn).
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As we noted above, every m-tree T (i.e. a corresponding catacondensed

benzenoid) admits a normal sequence of hexagons that starts in a hexagon,

say ĥ, of T . Let then TREE(T , k, ℓ, ĥ, H) denotes a procedure that

for a m-tree T with k hexagons returns a normal sequence of hexagons

hℓ+1, . . . , hℓ+k such that hℓ+1 = ĥ. Moreover, the procedure returns an

updated value of ℓ, i.e., ℓ := ℓ+ k.

The next procedure returns a normal sequence of hexagons hℓ+1, . . . ,

hℓ+k for a cycle C of TH , where hℓ+1 is equal to a given hexagon ĥ (passed

as a parameter).

Procedure CIRCLE(C, k, ℓ, ĥ, H);

1. Order the hexagons of C in the sequence h1, . . . , ht, . . . , hk such that

hihi+1 ∈ E(C) (indices modulo k), h1 = ĥ, and ht ( ̸= ĥ) is an

angularly connected hexagon of C;

2. For i := 1 to t− 1 do hℓ+i := hi;

3. For i := t to k do hℓ+i := hk+t−i;

4. ℓ := ℓ+ k;

end.

Algorithms TREE and CIRCLE are used in the recursive procedure

NORMAL that for a given catacondensed polyhex H and the correspond-

ing tree TH finds a normal sequence of hexagons H = (h1, . . . , hn).

Procedure NORMAL(TH , L, ℓ, ĥ, H);

1. Label the constituent L of TH as discovered;

2. k := the number of hexagons of L;

3. If L is cycle then CIRCLE(L, k, ℓ, ĥ, H) else TREE(L, k, ℓ, ĥ, H);

4. For every constituent L′ adjacent to L via g-hexagon ĥ′ of L′ do

4.1 If L′ is not discovered then NORMAL(TH , L′, ℓ, ĥ′, H);

end.

Lemma 4. Every catacondensed polyhex admits a normal sequence of

hexagons. Moreover, a normal sequence of hexagons can be found in linear

time.
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Proof. Let H be a catacondensed polyhex with n hexagons. As mentioned

above, the corresponding tree TH can be constructed in linear time.

We call the procedure NORMAL(TH , L, ℓ, ĥ, H) such that L is an

arbitrary vertex of TH (a constituent of IH), ℓ = 0 and ĥ an arbitrary

hexagon of L.

If L is an m-tree, then the corresponding subgraph H is a catacon-

densed benzenoid. Remind that the procedure TREE constructs in linear

time a normal sequence of hexagons for a catacondensed benzenoid that

starts in an arbitrary hexagon of L. Similarly, if L is a cycle, the procedure

CIRCLE performs this task for L within the same time bound. Thus, if

L admits k hexagons, the first k hexagons of H are correctly inserted in a

normal sequence of hexagons H in O(k) time.

The procedure NORMAL is then recursively applied for every undis-

covered constituent L′ of TH . Since the first hexagon of L′ added to H is

the hexagon ĥ′ which is adjacent to a hexagon of L, say h′, ĥ′ is adjacent

only to h′ in H. Thus, the conditions that define a normal sequence of

hexagons are obeyed for every hexagon of L′.

Since TH is a tree, it follows that H is a normal sequence of hexagons.

Moreover, since every recursive call of NORMAL is performed in time

which is linear in the number of hexagons of a constituent of H, the overall

time complexity is O(n).

Note that for the graph in Fig. 2 an ordering that corresponds to a

normal sequence of hexagons is indicated.

5 Labeling

Let h1, h2, . . . , hn be a normal sequence of hexagons of a catacondensed

polyhex H and let Hi be the subgraph of H induced by the sequence

h1, h2, . . . , hi, e.g. , H1 = h1 and Hn = H.

For a binary string b = b1b2 . . . bn, let b0 = b1b2 . . . bn0 and b1 =

b1b2 . . . bn1.

Let Li, 1 ≤ i ≤ n, denote the set of binary strings of length i with
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respect to Hi defined as follows.

L1 = {0, 1},

while for i ≥ 2 we have Li = {x0 | x ∈ Li−1} ∪ L⊕
i−1, where for an acyclic

hi

L⊕
i−1 = {x1 | x ∈ Li−1 and xp(i) = 1 (resp. xp(i) = 0)},

if hp(i) is linearly (resp. angularly) connected;

for a cyclic hi that is adjacent to both hp(i) and hpk(i) we have

L⊕
i−1 = {x1 | x ∈ Li−1 and xp(i) = α and xpk(i) = β},

where α = 1 (resp. α = 0) if hp(i) is linearly (resp. angularly) connected

and β = 1 (resp. β = 0) if hpk(i) is linearly (resp. angularly) connected.

We will denote the set Ln for a catacondensed polyhex H with n

hexagons also as L(R̃(H)) in the sequel.

Proposition 4. Let h1, h2, . . . , hn be a normal sequence of hexagons of a

catacondensed polyhex H, let Hi be the subgraph of H induced by the se-

quence h1, h2, . . . , hi and let Li be the labeling with respect to Hi as defined

above. If n ≥ 2, then

(i) every x ∈ Li corresponds to exactly one perfect matching Mx from

M(Hi),

(ii) if x, y ∈ Li, then H(x, y) = 1 if and only Mx and My are adjacent

in R̃(Hi),

(iii) linearly (resp. angularly) expandable edge e ∈ hj of Hi belongs to

Mx if and only if xj = 1 (resp. xj = 0).

Proof. As we can see in the left-hand side of Fig. 7, where both catacon-

densed polyhexes with up to two hexagons and their resonance graphs with

corresponding labelings are depicted, the proposition holds for i = 2. Let

i > 2 and let’s assume that the proposition holds for i.

Suppose first that hi+1 is acyclic.

Let x ∈ Li. By the induction hypothesis, x corresponds to exactly

one perfect matching Mx ∈ M(Hi). Moreover, a linearly (resp. angularly)
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Figure 7. resonance graphs of catacondensed polyhex with one, two,
or three hexagons.

expandable edge e ∈ hj of Hi belongs to Mx if and only if xj = 1 (resp.

xj = 0). Let e denote the common edge between hi+1 and hp(i+1).

If e is linearly expandable, then, by the induction hypothesis, e ∈
Mx if and only if xp(i+1) = 1. By Lemma 1, it holds that R̃(Hi+1) =

pe(R̃(Hi), R̃(Hi)[M̃e(Hi)]) and M̃(Hi+1) = M̃e(Hi+1) ∪ M̃ℓ
ē(Hi+1) ∪

M̃ℓ̄
ē(Hi+1).

Since hi+1 is acyclic and e is linearly expandable, Li+1 = {x0 | x ∈
Li} ∪ {x1 | x ∈ Li and xp(i+1) = 1}. We can see that every x0 ∈ Li+1

corresponds to exactly one perfect matching from the set M̃e(Hi+1) ∪
M̃ℓ̄

ē(Hi+1), while every x1 ∈ Li+1 corresponds to exactly one perfect

matching from the set M̃ℓ
ē(Hi+1). Note that hi+1 in Hi+1 admits exactly

one linearly expandable edge (say ea) and two angularly expandable edges

(say el1 and el2). It is clear that a perfect matching from the set M̃ℓ
ē(Hi+1)

possesses ea, while a perfect matching from M̃e(Hi+1) ∪ M̃ℓ̄
ē(Hi+1), pos-

sesses el1 and el2 . Thus, every x0 ∈ Li+1 corresponds to a perfect match-

ing that contains two angularly expandable edges, while every x1 ∈ Li+1

corresponds to a perfect matching that contains one linearly expandable

edge.

Since it is easy to see that for y, z ∈ Li+1 we have H(y, z) = 1 if an

only if

a. we can either choose the notation such that y = x0 and z = x1,

x ∈ Li, or

b. it holds that y = wα, z = w′α, α ∈ {0, 1}, w,w′ ∈ Li, and

H(w,w′) = 1,

the case is settled.

If e is angularly expandable, the proof is analogous.
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Finally, suppose that hi+1 is a cyclic hexagon adjacent to hp(i+1) and

hpk(i+1) Let e′ (resp. e′′) denote the join edge of hi+1 that belongs to

hp(i+1) (resp. hpk(i+1)) and e denote the expandable edge of hi+1. Let also

ℓ1, ℓ2, ℓ
′ and ℓ′′ denote the link from h to h′, from h to h′′, from h′ to h

and from h′′ to h, respectively.

Note that e′ and e′′ are linearly or angularly expandable in Hi. Sup-

pose first that e′ and e′′ are both linearly expandable. By the induction

hypothesis, e′ and e′′ both belong to Mx if and only if xp(i+1) = 1 and

xpk(i+1) = 1.

We have R̃(Hi+1) = pe(R̃(Hi), R̃(Hi)[Me′,e′′(Hi)]) and M̃(Hi+1) =

M̃e,e,′e′′(Hi+1) ∪ M̃ℓ′∨ℓ′′

e (Hi+1) ∪ M̃ℓ1,ℓ2
ē (Hi+1) by Proposition 3 and

Lemma 3. Since hi+1 is cyclic, while e
′ and e′′ are both linearly expandable,

Li+1 = {x0 | x ∈ Li}∪{x1 | x ∈ Li and xp(i+1) = 1 and xpk(i+1) = 1}. We

can see that every x0 ∈ Li+1 corresponds to exactly one perfect matching

from the set M̃e,e,′e′′(Hi+1)∪M̃ℓ′∨ℓ′′

e (Hi+1), while every x1 ∈ Li+1 corre-

sponds to exactly one perfect matching from the set M̃ℓ1,ℓ2
ē (Hi+1). Note

that e is the only angularly expandable edge of hi+1 in Hi+1. Thus, every

x0 ∈ Li+1 corresponds to a perfect matching that contains e, while every

x1 ∈ Li+1 corresponds to a perfect matching that does not contain e.

Since it is easy to see that for y, z ∈ Li+1 we have H(y, z) = 1 if an

only if

a. we can either choose the notation such that y = x0 and z = x1,

x ∈ Li, or

b. it holds that y = wα, z = w′α, α ∈ {0, 1}, w,w′ ∈ Li, and

H(w,w′) = 1,

the case is settled.

The proof for the other three cases (if either e′ and e′′ are both angularly

expandable or exactly one of them is linearly and the other angularly

expandable) is analogous.

Observe as an example of the described labeling the resonance graph

of a cyclofusene with eight hexagons, i.e., H = H8, depicted in Fig. 8. The

labeling of L(R̃(H8)) is obtained with respect to the ordering of hexagons

as shown in the graph H bottom right. The left part of the resonance

graph represents R̃(H − h8) = R̃(H7), while the right part shows the
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Figure 8. The resonance graph of a cyclofusene with eight hexagons.

subgraph of R̃(H7) expanded in the peripheral expansion after h8 is added

to H7. The expanded subgraph comprises the vertices of R̃(H7) with

0 in the first and seventh position since the relevant perfect matchings

that correspond to the expanded subgraph admit both join edges of h8,

which are also angularly expanded edges of h1 and h7 in H7. Note that

these matchings also contain two other angularly expandable edges of h1

and h7 (four edges that are fixed in these matchings are depicted in the

figure). It follows that the subgraph of R̃(H7) induced by these matchings

corresponds to the resonance graph of the subgraph of H induced by the

hexagons h2, . . . , h6. Since these hexagons form a fibonaccene with five

hexagons, the expanded subgraph is isomorphic to Γ5.

Theorem 3.1 from [27] together with [28, Theorem 4.3] indicates that

R̃(H) is a median graph. We use the above-defined labeling to provide

proof of this assertion.

We first show that the resonance graph of a catacondensed polyhex is

a partial cube.
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Theorem 5. If H is a catacondensed polyhex with n hexagons, then

L(R̃(H)) defines an isometric embedding of R̃(H) into Qn. Moreover,

this embedding can be found in linear time.

Proof. Let h1, h2, . . . , hn be a normal sequence of hexagons of a catacon-

densed polyhexH and letHi be the subgraph ofH induced by the sequence

h1, h2, . . . , hi. The proof is by induction on i. It is clear that the theorem

holds for i ≤ 2. Let i > 2 and let the theorem hold for i − 1. Note that

every x ∈ Li corresponds to exactly one perfect matching Mx ∈ V (Hi)

by Proposition 4. We have to show that for every x, y ∈ Li we have

dHi
(Mx,My) = H(x, y).

Suppose first the hi is acyclic. If e denote the join edge of hi, then,

since R̃(Hi) = pe(R̃(Hi−1), R̃(Hi−1)[M̃e(Hi−1)]) and M̃(Hi) = M̃e(Hi)

∪ M̃ℓ
ē(Hi) ∪ M̃ℓ̄

ē(Hi) by Lemma 1, from the induction hypothesis, it fol-

lows that dHi
(Mx,My) = H(x, y) if Mx and My both belong to M̃e(Hi)∪

M̃ℓ̄
ē(Hi). Moreover, since R̃(Hi−1[M̃e(Hi)]) is isomorphic to R̃(Hi[M̃ℓ

ē(Hi)]),

we have dHi
(Mx,My) = H(x, y) if Mx and My both belong to M̃ℓ

ē(Hi).

We are left to show that dHi
(Mx,My) = H(x, y) for every Mx ∈

M̃e(Hi) ∪ M̃ℓ̄
ē(Hi) and every My ∈ M̃ℓ

ē(Hi). By the definition of the

labeling Li, we have y = z1 for some z ∈ Li−1. Note that there exists

exactly one perfect matching My′ ∈ M̃e(Hi) adjacent to My. Moreover,

the definition of Li yields y′ = z0. Since by the induction hypothesis

dHi
(Mx,My′) = H(x, y′) = t for some t ≥ 1, we have H(x, y) = t+ 1.

As stated in Section 2, R̃(Hi)[M̃e(Hi) ∪ M̃ℓ
ē(Hi)] is isomorphic to

R̃(Hi)[M̃e(Hi−1)]□K2. Remind also that G□K2 consists of two copies

of G, say G1 and G2. It is well-known (see for example [10]) that for

u ∈ V (G1) and v ∈ V (G2) we have dG□K2
(u, v) = dG(u, v

′) + 1, where

v′ is the vertex of V (G1) adjacent to v. Thus, if Mx ∈ M̃e(Hi), we have

dHi
(Mx,My) = t+ 1 and the case is settled.

Finally, let Mx ∈ M̃ℓ̄
ē(Hi). Since for every My ∈ M̃ℓ

ē(Hi), there exists

exactly one perfect matching My′ ∈ M̃e(Hi) adjacent to My, a short-

est Mx,My-path admits a perfect matching, say Mz, from M̃e(Hi). By

the induction hypothesis, dHi
(Mx,My′) = dHi

(Mx,Mz)+dHi
(Mz,My′) =

H(x, y′) = t. We can conclude from the discussion in the above para-

graph that a shortest Mz,My-path contains My′ . It follows that a shortest
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Mx,My-path also contains My′ . Thus, dHi(Mx,My) = t + 1. This asser-

tion completes the proof for an acyclic hi. Since validation of the theorem

for a cyclic hi is analogous, we are done with the proof of the first part of

the theorem.

Remind that Lemma 4 shows that a normal sequence of hexagons of a

catacondensed polyhex H can be found in linear time. Since for a given

normal sequence of hexagons the corresponding labeling can be clearly

found within the same time bound, the proof is complete.

Theorem 6. If H is a catacondensed polyhex, then R̃(H) is a median

graph.

Proof. Let h1, h2, . . . , hn be a normal sequence of hexagons of a catacon-

densed polyhexH and letHi be the subgraph ofH induced by the sequence

h1, h2, . . . , hi.

The proof is by induction on i. It is clear that the theorem holds for

i ≤ 2. Let i > 2 and suppose that the theorem holds for i− 1.

Suppose first that hi is acyclic and let e denote the join edge of hi.

By Lemma 1, we have that R̃(Hi) = pe(R̃(Hi−1), R̃(Hi−1)[M̃e(Hi−1)]).

Thus, by Proposition 2 we have to show that R̃(Hi−1)[M̃e(Hi−1)] is con-

vex in R̃(Hi−1). In other words, if Mx,My ∈ M̃e(Hi−1),Mx ̸= My, then

we have to show that every shortest Mx,My-path of R̃(Hi−1) is already

in R̃(Hi−1)[M̃e(Hi−1)]. Let x and y be the labels of Li−1 that correspond

to Mx and My, respectively. Since Li−1 is an isometric embedding of

R̃(Hi−1) into a hypercube, we have dHi−1
(Mx,My) = H(x, y) = t > 0.

Suppose that P is a shortest Mx,My-path that contains Mz ∈ M̃ē(Hi−1).

By Proposition 4, we have xp(i) = yp(i) ̸= zp(i). Thus, from Proposition 1 it

follows that P cannot be a shortest Mx,My-path and we obtain a contra-

diction. Since by the induction hypothesis R̃(Hi−1) is median, Proposition

2 settles the case.

If hi is cyclic, the proof is analogous. Let e′ (resp. e′′) denote the

join edge of hi+1 that belongs to hp(i+1) (resp. hpk(i+1)) and e denote

the expandable edge of hi+1. Let also ℓ1, ℓ2, ℓ
′ and ℓ′′ denote the link

from h to h′, from h to h′′, from h′ to h and from h′′ to h, respec-

tively. With respect to Lemma 3, we show that R̃(Hi−1)[M̃e,′e′′(Hi−1)]
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is convex in R̃(Hi−1). Let Mx,My ∈ M̃e,′e′′(Hi−1),Mx ̸= My, and let x

and y be the labels of Li−1 that correspond to Mx and My, respectively.

Since Li−1 is an isometric embedding of R̃(Hi−1) into a hypercube, we

have dHi−1(Mx,My) = H(x, y) = t > 0. Suppose that P is a shortest

Mx,My-path that contains Mz ̸∈ Me′,e′′(Hi−1). By Proposition 4, we

have xp(i) = yp(i) = α ∈ {0, 1} and zp(i) ̸= α or zpk(i) ̸= α. Thus, from

Proposition 1 it follows that P cannot be a shortest Mx,My-path and we

obtain a contradiction. By the induction hypothesis, R̃(Hi−1) is a me-

dian graph. Since R̃(Hi−1)[M̃e,′e′′(Hi−1)] is convex in R̃(Hi−1), we can

conclude analogously as above that R̃(Hi) is a median graph.

It can be derived from [25, Theorem 3.4 (2)] that the resonance graph

of a cyclic fibonaccene with 2n hexagons is isomorphic to the Lucas cube

of dimension 2n. (See also the result from [34], which shows that Lu-

cas cubes are the nontrivial component of the resonance graphs of cyclic

polyphenanthrenes.) We conclude the paper with the observation that the

labeling defined in this section applied on a cyclic fibonaccene gives the

set of vertices of the corresponding Lucas cube.
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