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Abstract

Szeged, Padmakar-Ivan (PI), and Mostar indices are some of the
most investigated distance-based Szeged-like topological indices. On
the other hand, the polynomials related to these topological indices
were also introduced, for example the Szeged polynomial, the edge-
Szeged polynomial, the PI polynomial, the Mostar polynomial, etc.
In this paper, we introduce a concept of the general Szeged-like poly-
nomial for a connected strength-weighted graph. It turns out that
this concept includes all the above mentioned polynomials and also
infinitely many other graph polynomials. As the main result of the
paper, we prove a cut method which enables us to efficiently calcu-
late a Szeged-like polynomial by using the corresponding polynomi-
als of strength-weighted quotient graphs obtained by a partition of
the edge set that is coarser than Θ∗-partition. To the best of our
knowledge, this represents the first implementation of the famous
cut method to graph polynomials. Finally, we show how the deduced
cut method can be applied to calculate some Szeged-like polynomi-
als and corresponding topological indices of para-polyphenyl chains
and carbon nanocones.
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1 Introduction

Topological indices or topological descriptors are numerical parameters of

graphs whose purpose is to quantitatively describe various structural prop-

erties of the graph topology. When they are used on molecular graphs for

the development of quantitative structure-activity relationships (QSAR)

and quantitative structure-property relationships (QSPR), we call them

molecular descriptors. On the other hand, topological indices also have

numerous other applications in complex networks [20].

One of the oldest molecular descriptors is the well-known Wiener in-

dex [43], which is for a connected graph G defined as the sum of distances

between all (unordered) pairs of vertices in G. Later, Gutman [25] in-

troduced the Szeged index, which is for any connected graph G defined

as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e),

where nu(e) represents the number of vertices of G whose distance to

u is smaller than the distance to v and nv(e) is the number of vertices

of G whose distance to v is smaller than the distance to u. Later, the

Padmakar-Ivan (PI) index was defined [32] with

PI(G) =
∑

e=uv∈E(G)

(
mu(e) +mv(e)

)
,

where the numbers mu(e) and mv(e) are the edge-variants of the numbers

nu(e) and nv(e). Moreover, the Mostar index of G is calculated as

Mo(G) =
∑

e=uv∈E(G)

|nu(e)− nv(e)|.

Firstly, this index was investigated in [28,40] under the name Co-PI index.

However, its current name and notation was proposed in [19].

The Szeged index, the PI index, and the Mostar index are the most

known representitatives of the so-called Szeged-like topological indices [15],

which include also numerous other topological descriptors, for example

the edge-Szeged index [26], weighted Szeged and PI indices [31], weighted
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Mostar indices [5], the Graovac-Ghorbani index [24], and the recently in-

troduced Trinajstić index [21]. Especially the Mostar index was intensively

investigated in the previous few years, see [1, 13, 17, 30, 44] for some rele-

vant recent papers. It is worth mentioning that besides their applications

in chemistry, these indices can be useful also for other purposes, for ex-

ample to measure network bipartivity [39] or distance-unbalancedness of

graphs [37].

In 1988, Hosoya introduced some counting polynomials for chemistry

and among them the well-known Hosoya polynomial (also called Wiener

polynomial), which is closely related to the Wiener index [29]. Similarly,

graph polynomials related to Szeged-like topological indices were also in-

troduced, for example the Szeged polynomial Sz(G, x) [9], the Mostar poly-

nomial Mo(G, x) [2], the PI polynomial PI(G, x) [10], and the edge-Szeged

polynomial Sze(G, x) [11], which are for a connected graph G defined as

Sz(G, x) =
∑

e=uv∈E(G)

xnu(e)nv(e), Mo(G, x) =
∑

e=uv∈E(G)

x|nu(e)−nv(e)|,

P I(G, x) =
∑

e=uv∈E(G)

xmu(e)+mv(e), Sze(G, x) =
∑

e=uv∈E(G)

xmu(e)mv(e).

Some investigations on these polynomials can be found, for example,

in [8, 22, 23, 35, 36, 38]. In addition, as for the Szeged-like indices, the

weighted versions of polynomials can be also considered [9]. If deg(u)

and deg(v) are the degrees of vertices u and v, then the weighted-product

Szeged polynomial w∗Sz(G, x) and the weighted-plus Szeged polynomial

w+Sz(G, x) are defined with the following formulas:

w∗Sz(G, x) =
∑

e=uv∈E(G)

deg(u) deg(v)xnu(e)nv(e),

w+Sz(G, x) =
∑

e=uv∈E(G)

(deg(u) + deg(v))xnu(e)nv(e).

It is worth mentioning that graph polynomials provide much more infor-

mation about a graph than corresponding topological indices, since a poly-

nomial is defined by several numbers (coefficients) which are themselves

topological descriptors. Note also that Szeged-like polynomials were very

recently used to introduce so-called root-indices of graphs, which have
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better discrimination power than the corresponding standard topological

indices [14].

A powerful tool for efficiently calculating various distance-based topo-

logical indices is the well-known cut method [33]. In recent years, the cut

method was investigated in many papers also for Szeged-like topological

indices, see [3–6,15,34,42] as an example. Moreover, the efficacy of the cut

method was considered in [7]. On the other hand, to the best knowledge of

authors of this paper, the cut method for distance-based graph polynomi-

als has never appeared in the literature. Therefore, the aim of this paper

is to fill this gap and provide the cut method for Szeged-like polynomi-

als. For this reason, we firstly define a general concept of the Szeged-like

polynomial for any connected strength-weighted graph, which includes all

the above mentioned polynomials and also infinitely many other graph

polynomials.

The paper reads as follows. In the next section, we present some basic

concepts about relation Θ and quotient graphs. In Section 3, the strength-

weighted graphs are described and the general Szeged-like polynomial is

introduced. In addition, relation between Szeged-like polynomials and

Szeged-like topological indices is pointed out. The main result of the pa-

per is proved in Section 4. More precisely, we show that the Szeged-like

polynomial of any connected strength-weighted graph can be computed

by using the polynomials of strength-weighted quotient graphs. Finally, in

the last section the developed cut method is applied to two infinite families

of molecular graphs: para-polyphenyl chains and carbon nanocones.

2 Preliminaries

In this section, we define some basic concepts from graph theory. More

information can be found, for example, in [27].

For a simple graph G, we denote by V (G) the set of vertices and by

E(G) the set of edges. Moreover, we denote by dG(x, y) the usual distance

between vertices x and y of a graph G and by deg(x) the degree of x. In

addition, the distance between a vertex x and an edge e = uv of G is
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defined as

dG(x, e) = min{dG(x, u), dG(x, v)}.

Next, we define the well-known Djoković-Winkler relation Θ on the set of

edges of a connected graph, for more information see [27]. Let e1 = u1v1

and e2 = u2v2 be two edges of a connected graph G. Then, e1 and e2 are

in relation Θ, denoted as e1Θe2, if

dG(u1, u2) + dG(v1, v2) ̸= dG(u1, v2) + dG(u2, v1).

It turns out that this relation is reflexive and symmetric, but not always

transitive. Therefore, by Θ∗ we denote the transitive closure of relation

Θ (i.e. the smallest transitive relation containing Θ). The partition F =

{F1, . . . , Fr} of the set E(G) with respect to the equivalence relation Θ∗

will be referred to as Θ∗-partition and any set Fi is known as Θ∗-class.

Moreover, any other partition E = {E1, . . . , Ek} of E(G) is coarser than F
if for every i ∈ {1, . . . , k} the set Ei is the union of one or more Θ∗-classes

of G. In this case, we say that E is a c-partition of the set E(G) [15].

Finally, we define the concept of a quotient graph [27]. Let G be a con-

nected graph and F ⊆ E(G) a subset of its edges. By G\F we denote the

graph obtained from G by removing all the edges in F . The quotient graph

G/F has connected components of the graph G\F for vertices. Moreover,

two such vertices (components) X and Y are adjacent in G/F if and only

if there exists x ∈ V (X) and y ∈ V (Y ) such that x and y are adjacent in

G. In addition, if E = XY is an edge in G/F , we write Ê to denote the

set of edges of G that have one end-vertex in X and the other end-vertex

in Y , i.e. Ê = {xy ∈ E(G) |x ∈ V (X), y ∈ V (Y )}.

3 Szeged-like topological indices and polyno-

mials of strength-weighted graphs

In [3], authors defined the strength-weighted graph as a triple Gsw =

(G,SWV , SWE), where G is a simple graph and SWV , SWE are pairs
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of weights on vertices and edges of G, respectively:

• SWV = (wv, sv), where wv, sv : V (Gsw) → R+
0 ,

• SWE = (we, se), where we, se : E(Gsw) → R+
0 .

We also recall that a strength-weighted graph Gsw is normally strength-

weighted [15], if wv ≡ 1, se ≡ 1, sv ≡ 0, and for we one of the following

options holds true:

(i) we ≡ 1,

(ii) we(e) = deg(u) + deg(v) for any e = uv (in this case, we often use

w+
e (e)),

(iii) we(e) = deg(u) deg(v) for any e = uv (in this case, we often use

w∗
e(e)).

Let e = uv ∈ E(G) be an edge of a connected graph G. The following sets

are needed for the definition of the Szeged-like topological index:

Nu(e|G) = {x ∈ V (G) | dG(u, x) < dG(v, x)},

Nv(e|G) = {x ∈ V (G) | dG(v, x) < dG(u, x)},

N0(e|G) = {x ∈ V (G) | dG(u, x) = dG(v, x)},

Mu(e|G) = {f ∈ E(G) | dG(u, f) < dG(v, f)},

Mv(e|G) = {f ∈ E(G) | dG(v, f) < dG(u, f)},

M0(e|G) = {f ∈ E(G) | dG(u, f) = dG(v, f)}.

Moreover, if Gsw is a connected strength-weighted graph and e = uv an

edge of Gsw, we set [15]:

nu(e|Gsw) =
∑

x∈Nu(e|Gsw)

wv(x),

mu(e|Gsw) =
∑

x∈Nu(e|Gsw)

sv(x) +
∑

f∈Mu(e|Gsw)

se(f),
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n0(e|Gsw) =
∑

x∈N0(e|Gsw)

wv(x),

m0(e|Gsw) =
∑

x∈N0(e|Gsw)

sv(x) +
∑

f∈M0(e|Gsw)

se(f).

The numbers nv(e|Gsw) and mv(e|Gsw) are defined in a similar way.

Finally, a regular function of six variables for a strength-weighted graph

was introduced in [15]. Let X ⊆ R6 and let F : X → R be a func-

tion such that F (x1, x2, x3, x4, x5, x6) = F (x2, x1, x4, x3, x5, x6) for all

(x1, x2, x3, x4, x5, x6) ∈ X. Also, for any edge e = uv of a connected

strength-weighted graph Gsw we define:

F (e|Gsw) = F
(
nu(e|Gsw), nv(e|Gsw),mu(e|Gsw),mv(e|Gsw),

n0(e|Gsw),m0(e|Gsw)
)
.

If the number F (e|Gsw) is defined for any edge e ∈ E(Gsw), then F is called

a regular function for a graph Gsw. Consequently, a regular function F

can be considered as a real-valued function defined on the edge set of Gsw.

With this notation, the concept of a general Szeged-like topological index

has been introduced in [15]. More precisely, if F is a regular function for

a strength-weighted connected graph Gsw, then the Szeged-like topological

index of Gsw is defined as

TIF (Gsw) =
∑

e∈E(G)

we(e)F (e|Gsw).

Here, we make a step further and in a similar way define also the

Szeged-like polynomial of a graph.

Definition 1. If F is a regular function for a strength-weighted con-

nected graph Gsw, then the Szeged-like polynomial of Gsw, denoted by

SzPF (Gsw, x), is defined as

SzPF (Gsw, x) =
∑

e∈E(G)

we(e)x
F (e|Gsw).
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It is easy to see that many well-known distance-based polynomials are

just special cases of the general Szeged-like polynomial.

To explain this more precisely, let G be a connected graph and Gsw

the normally strength-weighted quotient graph obtained from G. Then,

the weights we(e), where e = uv ∈ E(G), regular functions F , and the

corresponding Szeged-like polynomials are shown in Table 1.

Szeged-like poly. regular function F we(uv)

Szeged poly. (Sz) x1x2 1

edge-Szeged poly. (Sze) x3x4 1

revised Szeged poly. (Sz∗) (x1 + x5/2)(x2 + x5/2) 1

weigh.-pr. Sz. poly. (w∗Sz) x1x2 deg(u) deg(v)

weigh.-pl. Sz. poly. (w+Sz) x1x2 deg(u) + deg(v)

PI poly. (PI) x3 + x4 1

Mostar poly. (Mo) |x1 − x2| 1

Graovac-Ghor. poly. (GG)
√

(x1 + x2 − 2)/(x1x2) 1

Trinajstić poly. (NT ) (x1 − x2)
2 1

Table 1. Some Szeged-like polynomials, corresponding functions F ,
and weights we.

Moreover, we can easily show the following relation between a Szeged-

like topological index and the corresponding Szeged-like polynomial.

Proposition 1. If F is a regular function for a strength-weighted con-

nected graph Gsw, then

TIF (Gsw) = SzP ′
F (Gsw, 1).

Proof. Firstly, we compute the derivative of SzPF (G, x):

SzP ′
F (Gsw, x) =

∑
e∈E(G)

we(e)F (e|Gsw)x
F (e|Gsw)−1.
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By taking x = 1 to the above equation, we obtain

SzP ′
F (Gsw, 1) =

∑
e∈E(G)

we(e)F (e|Gsw) = TIF (Gsw),

which completes the proof.

4 The generalized cut method for

Szeged-like polynomials

A method for computing a Szeged-like polynomial of a connected strength-

weighted graph from the corresponding weighted quotient graphs is de-

duced in this section. By this result, we provide the cut method for com-

puting infinitely many polynomials of graphs. Firstly, we have to define

strength-weighted quotient graphs, see [3, 5, 15].

Let Gsw be a connected strength-weighted graph and let {E1, . . . , Ek}
be a c-partition of E(G). Moreover, for i ∈ {1, . . . , k} we denote by

Gsw/Ei = (G/Ei, SW
i
v, SW

i
e) the strength-weighted quotient graph, where

the weights wi
v, s

i
v, w

i
e, and sie are defined as follows:

• wi
v : V (Gsw/Ei) → R+

0 , w
i
v(X) =

∑
x∈V (X)

wv(x), ∀ X ∈ V (Gsw/Ei),

• siv : V (Gsw/Ei) → R+
0 , s

i
v(X) =

∑
f∈E(X)

se(f) +
∑

x∈V (X)

sv(x),

∀ X ∈ V (Gsw/Ei),

• wi
e : E(Gsw/Ei) → R+

0 , w
i
e(E) =

∑
e∈Ê

we(e), ∀ E ∈ E(Gsw/Ei),

• sie : E(Gsw/Ei) → R+
0 , s

i
e(E) =

∑
e∈Ê

se(e),∀ E ∈ E(Gsw/Ei).

It was noted in [15] that if Gsw is a normally strength-weighted graph,

then we have:

• wi
v(X) is the number of vertices in a connected component X of

Gsw \ Ei,



410

• siv(X) is the number of edges in a connected componentX ofGsw\Ei,

• sie(E) =
∣∣∣Ê∣∣∣ for E ∈ E(Gsw/Ei). This means that if E = XY , then

sie(E) is the number of edges between connected components X and

Y of Gsw \ Ei.

• for wi
e(E), where E ∈ E(Gsw/Ei), one of the following options holds

true:

(i) if we ≡ 1, then wi
e(E) = sie(E),

(ii) if we = w+
e , then wi

e(E) =
∑

e=uv∈Ê

(deg(u) + deg(v)),

(iii) if we = w∗
e , then wi

e(E) =
∑

e=uv∈Ê

deg(u) deg(v).

In the rest of the paper, we will shortly write Gi to denote the quotient

graph Gsw/Ei, where i ∈ {1, . . . , k}. Also, for any vertex u ∈ V (G) and

i ∈ {1, . . . , k}, let ℓi(u) be the connected component of the graph G \ Ei

that contains u.

The following two lemmas will be applied in the proof of the main

theorem.

Lemma 1. [4,15] Let Gsw be a connected strength-weighted graph. More-

over, if e = uv ∈ Ei, where i ∈ {1, . . . , k}, U = ℓi(u), V = ℓi(v), and

E = UV ∈ E(Gi), then

(i) nu(e|Gsw) = nU (E|Gi) and nv(e|Gsw) = nV (E|Gi),

(ii) mu(e|Gsw) = mU (E|Gi) and mv(e|Gsw) = mV (E|Gi),

(iii) n0(e|Gsw) = n0(E|Gi) and m0(e|Gsw) = m0(E|Gi).

By Lemma 1 one can immediately obtain the following result.
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Lemma 2. [15] Let Gsw be a connected strength-weighted graph and F a

regular function for Gsw. If e = uv ∈ Ei, where i ∈ {1, . . . , k}, U = ℓi(u),

V = ℓi(v), and E = UV ∈ E(Gi), then

F (e|Gsw) = F (E|Gi).

Finally, we can prove the main theorem which states that a Szeged-like

polynomial of a strength-weighted graph can be computed as the sum of

corresponding polynomials of strength-weighted quotient graphs.

Theorem 2. Let Gsw be a connected strength-weighted graph. Moreover,

if {E1, . . . , Ek} is a c-partition of E(Gsw) and F a regular function for

Gsw, then

SzPF (Gsw, x) =

k∑
i=1

SzPF (Gi, x).

Proof. We follow similar reasoning as in the proof of Theorem 4.5 from [15].

It is easy to see that E(G) =

k⋃
i=1

Ei. Moreover, for any i ∈ {1, . . . , k} it

holds

Ei =
⋃

E∈E(Gi)

Ê.

By using Lemma 2 we obtain

SzPF (Gsw, x) =
∑

e∈E(Gsw)

we(e)x
F (e|Gsw)

=

k∑
i=1

( ∑
e∈Ei

we(e)x
F (e|Gsw)

)

=

k∑
i=1

( ∑
E∈E(Gi)

[∑
e∈Ê

we(e)x
F (e|Gsw)

])

=

k∑
i=1

( ∑
E∈E(Gi)

[∑
e∈Ê

we(e)x
F (E|Gi)

])
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=

k∑
i=1

( ∑
E∈E(Gi)

[∑
e∈Ê

we(e)

]
xF (E|Gi)

)

=

k∑
i=1

( ∑
E∈E(Gi)

wi
e(E)xF (E|Gi)

)

=

k∑
i=1

SzPF (Gi, x),

which is what we wanted to prove.

5 Applications to molecular graphs

In this final section, we present applications of the developed cut method

on two families of molecular graphs. In particular, by using the weighted

quotient graphs we compute the Szeged polynomial, the Mostar polyno-

mial, the weighted-product Szeged polynomial, the weighted-plus Szeged

polynomial, and the PI polynomial of para-polyphenyl chains and carbon

nanocones.

5.1 Para-polyphenyl chains

Here we consider a family of chemical graphs called para-polyphenyl chains

[41]. We denote them as PPCn, where n ≥ 2. Every such graph is a

disjoint union of hexagons H1, H2, . . . ,Hn, where Hi and Hi+1 are joined

by an edge for any i ∈ {1, 2, . . . , n− 1}. More precisely, for every hexagon

Hi, i ∈ {2, . . . , n− 1}, (which is connected to exactly two other hexagons)

the two vertices of Hi of degree 3 should be at distance 3. An example of

para-polyphenyl chain with 4 hexagons is depicted in Figure 1.

Figure 1. Para-polyphenyl chain PPC4.
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In the following, we deduce formulas for the desired polynomials of

PPCn. For this purpose, suppose that PPCn is drawn in the plane in

such a way that all the hexagons are regular and that exactly two edges

on every hexagon are horizontal. The edges of hexagons of PPCn have

three different directions and the corresponding sets of these edges will be

denoted by F1, F2, and F3 (the set F3 contains horizontal edges). More-

over, let F4 be the set all the edges of PPCn with one end-vertex in one

hexagon and the other end-vertex in another hexagon. It follows by Lemma

4.3 in [41] that {F1, F2, F3, F4} is a c-partition of the edge set of PPCn. It

is easy to see that the quotient graphs Gi = PPCn/Fi, i ∈ {1, 2, 3, 4}, are
all paths, and that G1, G2, G3 are pairwise isomorphic. We will also use

the same notation Gi, i ∈ {1, 2, 3, 4}, for corresponding strength-weighted

quotient graphs.

In particular, we assume that the para-polyphenyl chains are normally

strength-weighted. Since our polynomials differ in the value of the weight

we, we consider three separate cases. For Szeged, Mostar, and PI poly-

nomial we have we(e) = 1 for any edge e. For weighted-product Szeged

polynomial we take we = w∗
e and for the weighted-plus Szeged polynomial,

this weight is defined as we = w+
e . The corresponding strength-weighted

quotient paths are depicted in Figure 2. Note, that for the sets F1 and F2

we obtain the same strength-weighted quotient paths.

Figure 2. Strength-weighted quotient graphs Gi, i ∈ {1, 2, 3}, and G4

of the graph PPCn.
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The values of weights wv, sv, and se are shown in Figure 2. Since for

the selected graph polynomials different weights we are needed, we next

consider these quantities. Let ej , j ∈ {1, 2, . . . , n}, be the edge of the

quotient graph Gi, i ∈ {1, 2, 3}, see Figure 2. Then it holds:

• wi
e(ej) = sie(ej) = 2 for every j, where we ≡ 1 and i ∈ {1, 2, 3},

• wi
e(e1) = wi

e(en) = 10, where we = w∗
e and i ∈ {1, 2},

• wi
e(ej) = 12 for every j ∈ {2, . . . , n− 1}, where we = w∗

e and

i ∈ {1, 2},

• wi
e(e1) = wi

e(en) = 9, where we = w+
e and i ∈ {1, 2},

• wi
e(ej) = 10 for every j ∈ {2, . . . , n − 1}, where we = w+

e and

i ∈ {1, 2},

• w3
e(ej) = 8 for every j, where we = w∗

e or we = w+
e .

Similarly, if e′l, l ∈ {1, . . . , n − 1}, is the edge of the quotient graph G4,

then we have:

• w4
e(e

′
l) = s4e(e

′
l) = 1 for every l, where we ≡ 1,

• w4
e(e

′
l) = 9 for every l, where we = w∗

e ,

• w4
e(e

′
l) = 6 for every l, where we = w+

e .

By using these weights and assuming that n ≥ 2, the corresponding poly-

nomials of Gi, i ∈ {1, 2}, can be deduced:

Sz(Gi, x) =

4 ·
∑n−1

2
j=1 x(6j−3)(6(n−j)+3) + 2x9n2

;n is odd

4 ·
∑n

2
j=1 x

(6j−3)(6(n−j)+3) ;n is even,

Mo(Gi, x) =

4 ·
∑n−1

2
j=1 x6n−12j+6 + 2 ;n is odd

4 ·
∑n

2
j=1 x

6n−12j+6 ;n is even,
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w∗Sz(Gi, x) =



24 ·
∑n−1

2
j=2 x(6j−3)(6(n−j)+3)

+20x18n−9 + 12x9n2

;n is odd

24 ·
∑n

2
j=2 x

(6j−3)(6(n−j)+3)

+20x18n−9 ;n is even,

w+Sz(Gi, x) =



20 ·
∑n−1

2
j=2 x(6j−3)(6(n−j)+3)

+18x18n−9 + 10x9n2

;n is odd

20 ·
∑n

2
j=2 x

(6j−3)(6(n−j)+3)

+18x18n−9 ;n is even,

P I(Gi, x) = 2nx7n−3.

Similarly, for n ≥ 2 we get:

Sz(G3, x) =

4 ·
∑n−1

2
j=1 x(6j−3)(6(n−j)+3) + 2x9n2

;n is odd

4 ·
∑n

2
j=1 x

(6j−3)(6(n−j)+3) ;n is even,

Mo(G3, x) =

4 ·
∑n−1

2
j=1 x6n−12j+6 + 2 ;n is odd

4 ·
∑n

2
j=1 x

6n−12j+6 ;n is even,

w∗Sz(G3, x) =

16 ·
∑n−1

2
j=1 x(6j−3)(6(n−j)+3) + 8x9n2

;n is odd

16 ·
∑n

2
j=1 x

(6j−3)(6(n−j)+3) ;n is even,

w+Sz(G3, x) =

16 ·
∑n−1

2
j=1 x(6j−3)(6(n−j)+3) + 8x9n2

;n is odd

16 ·
∑n

2
j=1 x

(6j−3)(6(n−j)+3) ;n is even,

P I(G3, x) = 2nx7n−3.

Moreover, for n ≥ 2 we also obtain the polynomials of G4:

Sz(G4, x) =

2 ·
∑n−1

2
j=1 x36j(n−j) ;n is odd

2 ·
∑n−2

2
j=1 x36j(n−j) + x9n2

;n is even,

Mo(G4, x) =

2 ·
∑n−1

2
j=1 x6n−12j ;n is odd

2 ·
∑n−2

2
j=1 x6n−12j + 1 ;n is even,
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w∗Sz(G4, x) =

18 ·
∑n−1

2
j=1 x36j(n−j) ;n is odd

18 ·
∑n−2

2
j=1 x36j(n−j) + 9x9n2

;n is even,

w+Sz(G4, x) =

12 ·
∑n−1

2
j=1 x36j(n−j) ;n is odd

12 ·
∑n−2

2
j=1 x36j(n−j) + 6x9n2

;n is even,

P I(G4, x) = (n− 1)x7n−2.

Finally, we can state the results for all five polynomials of a para-

polyphenyl chain PPCn, which are obtained by applying Theorem 2. In

particular, we know that if SzP denotes any polynomial from the set

{Sz,Mo,w∗Sz,w+Sz, PI}, then

SzP (PPCn, x) = 2 · SzP (G1, x) + SzP (G3, x) + SzP (G4, x).

Theorem 3. Let n ≥ 3 be an odd number and G = PPCn. Then

Sz(G, x) = 12 ·

n−1
2∑

j=1

x(6j−3)(6(n−j)+3) + 2 ·

n−1
2∑

j=1

x36j(n−j) + 6x9n2

,

Mo(G, x) = 12 ·

n−1
2∑

j=1

x6n−12j+6 + 2 ·

n−1
2∑

j=1

x6n−12j + 6,

w∗Sz(G, x) = 64 ·

n−1
2∑

j=2

x(6j−3)(6(n−j)+3) + 18 ·

n−1
2∑

j=1

x36j(n−j)

+ 32x9n2

+ 56x18n−9,

w+Sz(G, x) = 56 ·

n−1
2∑

j=2

x(6j−3)(6(n−j)+3) + 12 ·

n−1
2∑

j=1

x36j(n−j)

+ 28x9n2

+ 52x18n−9,

P I(G, x) = 6nx7n−3 + (n− 1)x7n−2.

Theorem 4. Let n ≥ 2 be an even number and G = PPCn. Then
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Sz(G, x) = 12 ·
n
2∑

j=1

x(6j−3)(6(n−j)+3) + 2 ·

n−2
2∑

j=1

x36j(n−j) + x9n2

,

Mo(G, x) = 12 ·
n
2∑

j=1

x6n−12j+6 + 2 ·

n−2
2∑

j=1

x6n−12j + 1,

w∗Sz(G, x) = 64 ·
n
2∑

j=2

x(6j−3)(6(n−j)+3) + 18 ·

n−2
2∑

j=1

x36j(n−j)

+ 9x9n2

+ 56x18n−9,

w+Sz(G, x) = 56 ·
n
2∑

j=2

x(6j−3)(6(n−j)+3) + 12 ·

n−2
2∑

j=1

x36j(n−j)

+ 6x9n2

+ 52x18n−9,

P I(G, x) = 6nx7n−3 + (n− 1)x7n−2.

From Proposition 1 it follows that by evaluating the first derivative of a

Szeged-like polynomial at x = 1, we obtain the corresponding Szeged-like

topological index. Therefore, we arrive to the final result of this subsection.

It turns out that in the next corollary, the stated formulas are valid also

for n = 1.

Corollary 1. The Szeged index, the Mostar index, the weighted-product

Szeged index, the weighted-plus Szeged index, and the PI index of G =

PPCn, n ≥ 1, are equal to

Sz(G) = Sz′(G, 1) = 42n3 + 12n,

Mo(G) = Mo′(G, 1) =

21n2 − 6n− 15 ;n is odd

21n2 − 6n ;n is even,

w∗Sz(G) = w∗Sz′(G, 1) = 246n3 − 102n+ 72,

w+Sz(G) = w+Sz′(G, 1) = 204n3 − 24n+ 36,

P I(G) = PI ′(G, 1) = 49n2 − 27n+ 2.
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Note that some of the results stated in Corollary 1 were already derived

elsewhere (for example, see [16, 41]). However, in our case these formulas

are obtained by using a different approach, i.e. by applying the cut method

to corresponding Szeged-like polynomials.

5.2 Carbon nanocones

In this subsection, we consider a family of carbon nanocones with a fixed

pentagonal face as its core. More precisely, the family of carbon nanocones

CNC5(n) is formed of one pentagon which is surrounded by n ≥ 1 layers

of hexagons. A representative of the mentioned family, namely CNC5(2),

is depicted in Figure 3.

Figure 3. Carbon nanocone CNC5(2).

Our goal is to deduce formulas for the Szeged polynomial, the Mostar

polynomial, the weighted-product Szeged polynomial, the weighted-plus

Szeged polynomial, and PI polynomial for this infinite family of molecular

graphs.

It is easy to compute that |V (CNC5(n))| = 5(n+1)2 and |E(CNC5(n))| =
5
2 (n + 1)(3n + 2). In [4], Mostar, edge-Mostar, and total-Mostar indices

for these compounds were computed. We use some of the results stated
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there to calculate the above mentioned polynomials. The Θ∗-classes of

CNC5(n) can therefore be seen in [4]. We denote them by Eji, where

j ∈ {1, . . . , 5}, i ∈ {1, . . . , n}, and E2. Due to the better readability, the

main representatives of Θ∗-classes of CNC5(2) are visualized in Figure 3.

In the following discussion, we suppose that CNC5(n) is the normally

strength-weighted graph. Similarly as in the previous subsection, for the

Szeged polynomial, the Mostar, and the PI polynomial we have we ≡
1. On the other hand, for the weighted-product Szeged polynomial we

take we = w∗
e and for the weighted-plus Szeged polynomial we set we =

w+
e . The corresponding strength-weighted quotient graphs Gji and G2 are

illustrated in Figure 4. The associated weights are written in the following

propositions.

Proposition 5. [4] For G = CNC5(n) let Gji be the corresponding

strength-weighted quotient graph and let X,Y ∈ V (Gji), E ∈ E(Gji), see

Figure 4. The weights wji
v (X), sjiv (X), wji

v (Y ), sjiv (Y ), and sjie (E) have

values

wji
v (X) = i(i+ 2n+ 2), sjiv (X) =

1

2

(
3i− 2n+ 6in+ 3i2 − 2

)
,

wji
v (Y ) = |V (G)| − wji

v (X), sjiv (Y ) = |E(G)| − sjiv (X)− (n+ 1 + i),

sjie (E) = n+ 1 + i.

We observe that all vertices (or edges) in the strength-weighted quotient

graph G2 have the same pair of weights. To compute the desired polyno-

mials, the next result is also needed.

Proposition 6. For G = CNC5(n) let G2 be the corresponding strength-

weighted quotient graph and let X ∈ V (G2), E ∈ E(G2), see Figure 4.

The weights w2
v(X), s2e(E), and s2v(X) have values

w2
v(X) = (n+ 1)2, s2e(E) = n+ 1,

s2v(X) =
1

5
(|E(G)| − 5(n+ 1)) =

3n(n+ 1)

2
.
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Again, graph polynomials differ in the weight we, therefore the next

result is given.

Proposition 7. If G = CNC5(n) and E is an edge of a strength-weighted

quotient graph Gji or G2, then

• wji
e (E) = sjie (E) = n+ 1 + i, where we ≡ 1,

• wji
e (E) = 3(3n+ 3i+ 1), where we = w∗

e ,

• wji
e (E) = 2(3n+ 3i+ 2), where we = w+

e ,

• w2
e(E) = s2e(E) = n+ 1, where we ≡ 1,

• w2
e(E) = 9n+ 4, where we = w∗

e ,

• w2
e(E) = 2(3n+ 2), where we = w+

e .

Figure 4. Quotient graphsGji andG2 for carbon nanocone CNC5(n).

Due to Propositions 5 and 7, the corresponding polynomials of Gji can be

obtained:

Sz(Gji, x) = (n+ 1 + i)xwji
v (X)·wji

v (Y )

= (n+ 1 + i)xi(i+2n+2)(5(n+1)2−i(i+2n+2)),

Mo(Gji, x) = (n+ 1 + i)x|wji
v (X)−wji

v (Y )|

= (n+ 1 + i)x|i(i+2n+2)−(5(n+1)2−i(i+2n+2))|

= (n+ 1 + i)x5(1+n)2−2i(2+i+2n),
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w∗Sz(Gji, x) = 3(3n+ 3i+ 1)xwji
v (X)·wji

v (Y )

= 3(3n+ 3i+ 1)xi(i+2n+2)(5(n+1)2−i(i+2n+2)),

w+Sz(Gji, x) = 2(3n+ 3i+ 2)xwji
v (X)·wji

v (Y )

= 2(3n+ 3i+ 2)xi(i+2n+2)(5(n+1)2−i(i+2n+2)),

P I(Gji, x) = (n+ 1 + i)xsjiv (X)+sjiv (Y )

= (n+ 1 + i)xsjiv +|E(G)|−sjiv (X)−(n+1+i)

= (n+ 1 + i)x
5
2 (n+1)(3n+2)−(n+1+i).

Similarly, by Propositions 6 and 7, the corresponding polynomials of G2

are:

Sz(G2, x) = 5 · (n+ 1)x2(n+1)2·2(n+1)2 = 5(n+ 1)x4(n+1)4 ,

Mo(G2, x) = 0

w∗Sz(G2, x) = 5 · (9n+ 4)x2(n+1)2·2(n+1)2 = 5(9n+ 4)x4(n+1)4 ,

w+Sz(G2, x) = 5 · 2(3n+ 2)x2(n+1)2·2(n+1)2 = 10(3n+ 2)x4(n+1)4 ,

P I(G2, x) = 5 · (n+ 1)x4· 3n(n+1)
2 +4(n+1) = 5(n+ 1)x6n2+10n+4.

Finally, by using the main result, Theorem 2, we obtain the following

theorem.

Theorem 8. For carbon nanocone G = CNC5(n), where n ≥ 1, it holds

Sz(G, x) = 5 ·
n∑

i=1

Sz(Gji, x) + Sz(G2, x)

= 5 ·
n∑

i=1

(n+ 1 + i)xi(i+2n+2)(5(n+1)2−i(i+2n+2))

+ 5(n+ 1)x4(n+1)4 ,



422

Mo(G, x) = 5 ·
n∑

i=1

Mo(Gji, x) +Mo(G2, x)

= 5 ·
n∑

i=1

(n+ 1 + i)x5(n+1)2−2i(2+i+2n),

w∗Sz(G, x) = 5 ·
n∑

i=1

w∗Sz(Gji, x) + w∗Sz(G2, x)

= 5 ·
n∑

i=1

3(3n+ 3i+ 1)xi(i+2n+2)(5(n+1)2−i(i+2n+2))

+ 5(9n+ 4) · x4(n+1)4 ,

w+Sz(G, x) = 5 ·
n∑

i=1

w+Sz(Gji, x) + w+Sz(G2, x)

= 5 ·
n∑

i=1

2(3n+ 3i+ 2)xi(i+2n+2)(5(n+1)2−i(i+2n+2))

+ 10(3n+ 2) · x4(n+1)4 ,

P I(G, x) = 5 ·
n∑

i=1

PI(Gji, x) + PI(G2, x)

= 5 ·
n∑

i=1

(n+ 1 + i)x
5
2 (n+1)(3n+2)−(n+1+i)

+ 5(n+ 1)x6n2+10n+4.

Like in the subsection before we compute the first derivative of a

Szeged-like polynomial at x = 1, which gives the corresponding Szeged-

like topological index. Therefore, the last result can be used to obtain

the next corollary (again, some of these results were already obtained else-

where, see [4, 12]).

Corollary 2. The Szeged index, the Mostar index, the weighted-product

Szeged index, the weighted-plus Szeged index, and the PI index of G =

CNC5(n) are equal to
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Sz(G) = Sz′(CNC5(n), 1)

=
1

4

(
135n6 + 770n5 + 1805n4 + 2220n3

+ 1510n2 + 540n+ 80
)
,

Mo(G) = Mo′(CNC5(n), 1)

=
n

2

(
30n3 + 105n2 + 120n+ 45

)
,

w∗Sz(G) = w∗Sz′(CNC5(n), 1)

=
1

4

(
1215n6 + 6434n5 + 13725n4 + 15000n3

+ 8810n2 + 2636n+ 320
)
,

w+Sz(G) = w+Sz′(CNC5(n), 1)

=
1

6

(
1215n6 + 6682n5 + 14945n4 + 17330n3

+ 10960n2 + 3588n+ 480
)
,

P I(G) = PI ′(CNC5(n), 1) =

=
1

12

(
675n4 + 2020n3 + 2265n2 + 1160n+ 240

)
.

6 Conclusion

In the present paper we introduced a concept of the general Szeged-like

polynomial which includes, for example, the Szeged polynomial, weighted

Szeged polynomials, the edge-Szeged polynomial, the PI polynomial, the

Mostar polynomial, etc. This general polynomial was defined for a con-

nected strength-weighted graph, which includes two weights on the ver-

tices and two weights on the edges of a given graph. We were able to

deduce a method for calculating any such polynomial by computing the

same polynomials on strength-weighted quotient graphs, which represents

a new approach to the investigation of distance-based graph polynomials.

Since our method is very general, we presented how it can be used to

compute various Szeged-like polynomials or topological indices on some
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important families of chemical graphs.

It is also worth mentioning that by using the developed method, one can

calculate various Szeged-like polynomials of benzenoid systems, phenylenes

and tree-like polyphenyls in linear time O(n) with respect to the number

of vertices n of a given graph (if we work in the model where addition of

polynomials can be performed in constant time). To prove such results,

one can use similar reasoning as for some topological indices (for example,

see [15,18,41,42]) and the details are therefore omitted.
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