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Abstract

In this paper, we propose a new fast alignment-free method for
protein sequence similarity and evolutionary analysis. First 20 nat-
ural amino acids are clustered into 6 groups based on their physic-
ochemical properties, then a 12-dimensional vector is constructed
based on the frequency and the average position of occurrence of
amino acids in each reduced amino acid sequences. Finally, the
Euclidean distance is used to measure the similarity and evolution-
ary distance between protein sequences. The test on three datasets
shows that our method can cluster each protein sequence accurately,
which illustrates the effective of our method.

1 Introduction

Similarity analysis of biological sequences is one of the important re-

search directions in bioinformatics. In early research, multiple sequence

alignment is usually used to compare and analyze sequences. Many al-

gorithms are very mature [1–3], such as ClustalW algorithm. However,

multiple sequence alignment is based on the assumption that homologous
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sequence fragments are adjacent and conservative, which conflicts with

genetic recombination. Moreover, when the sample size is large or the

sequence length is long, the time cost of the alignment algorithm is high.

Therefore, as soon as the alignment-free method [4] was introduced, it re-

ceived extensive attention from researchers immediately. The alignment-

free method doesn’t compare base pair, it takes the sequence as a whole

and converts it into a numerical vector for analysis and comparison. Its

advantage is that the calculation is fast on the computer and the results

are accurate.

The comparison of protein sequences can be roughly divided into two

categories: graphical representation methods and numerical vector charac-

terization methods. The basic idea of graphical representation method is

mapping amino acids into points in planar or spatial, and then connect the

points to obtain spatial curves. Furthermore, we can extract the numer-

ical features of biological sequences from these graphical representations,

and use these numerical features for sequence analysis [5–15]. The nu-

merical vector characterization method mainly used to convert the protein

sequence into multi-dimensional numerical vector. For example, Chou [16]

and Chen et al. [17] combine the 20-dimensional frequency vector of amino

acids with the physicochemical properties or interactions between amino

acids to construct a 20 + λ dimensional vector to represent the protein

sequence, in which λ refers to the number of physicochemical properties

or indicators of interactions between amino acids. Xie et al. [18] used

the relative deviation between the random and independently placed se-

quence distribution maps of amino acids to define the differences among

sequences. Li et al. [19] combined the probability of amino acids, the av-

erage occurrence location probability and the Markov transfer probability

distribution of two adjacent amino acids to construct the protein numer-

ical vector representation. Li et al. [20] used the number of amino acids,

the average position and the secondary central moment of normalization of

position of 20 amino acids in the protein sequence to form a 60-dimensional

numerical vector to measure the similarity between viruses. He et al. [21]

selected three biochemical properties of amino acids: the hydropathy in-

dex, polar requirement and chemical composition of the side chain, and
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proposed a 24 dimensional feature vector to compare protein sequences.

Mu et al. [22] introduce the concept of distance frequency of amino acid

pairs and propose a new numerical characterization of protein sequences,

which converts any protein sequence into a distance frequency matrix.

Proteins are composed of amino acids. Previous studies have shown

that the physicochemical properties of amino acids are important for pro-

tein sequence classification and evolution [23,24]. In this paper, we cluster

20 natural amino acids into 6 groups based on their physicochemical prop-

erties, then a 12-dimensional vector is constructed based on the frequency

and the average position of occurrence of amino acids in each reduced

amino acid sequences. The similarity between protein sequences is mea-

sured by Euclidean distance and the phylogenetic trees are constructed for

three data sets. The test indicates that our method is fast and accurate

for classifying and inferring the phylogeny of proteins.

2 Materials and methods

2.1 Reduced amino acid sequences

The physicochemical properties of amino acids play an important role

in protein sequence classification and evolution [23, 24]. In this paper, 20

natural amino acids are sorted into six groups based on their four physic-

ochemical properties, then a 20-letter protein primary sequence can be

converted into a 6-letter reduced protein sequence. The four physicochem-

ical properties are dissociation constant value (pKa), hydropathy index

(Hy), polar requirement (Pr) and chemical composition of the side chain

(Cc), the values of these properties are listed in Table 1.

In order to eliminate the impact of inconsistency in magnitude of

physicochemical properties, we normalize them by equation (1).

x
′

ik =
xik − x̄k

σk
i = 1, 2, ..., 20; k = 1, 2, 3, 4 (1)

where x
′

ik is the normalized value, xik is the component of the ith row and

the kth column in Table 1,
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Table 1. Four physicochemical properties of 20 amino acids

pKa Hy Pr Cc
A(Ala) 0 1.8 7 0
C(Cys) 1 2.5 9.1 0.65
D(Asp) 0 -3.5 10 1.33
E(Glu) 1 -3.5 13 1.38
F(Phe) 1 2.8 4.8 2.75
G(Gly) 0 -0.4 8.6 0.89
H(His) 1 -3.2 12.5 0.92
I(Ile) 0 4.5 7.9 0.74
K(Lys) 1 -3.9 8.4 0.58
L(Leu) 0 3.8 4.9 0
M(Met) 0 1.9 4.9 0
N(Asn) 1 -3.5 10.1 0.33
P(Pro) 0 -1.6 5.3 0
Q(Gln) 0 -3.5 5 0
R(Arg) 0 -4.5 6.6 0.39
S(Ser) 0 -0.8 7.5 1.42
T(Thr) 0 -0.7 6.6 0.71
V(Val) 0 4.2 5.2 0.13
W(Trp) 1 -0.9 5.4 0.2
Y(Tyr) 0 -1.3 5.6 0

x̄k =
1

20

20∑
i=1

xik (2)

and

σk =

√√√√ 1

20− 1

20∑
i=1

(xik − x̄k)2 (3)

are the mean value and the standard deviation of the corresponding prop-

erty, respectively.

We then cluster 20 amino acids into groups based on the normalized

physicochemical property values. The similarities between each two amino

acids are calculated by Euclidean distance:
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dij =

√√√√ 4∑
k=1

(x
′
ik − x

′
jk)

2 i, j = 1, 2, ..., 20 (4)

The average linkage method is a good systematic clustering method in

many cases, it makes full use of the information between all samples [25].

Here we use the average linkage method to measure the distance between

two groups, suppose nK and nL are the number of samples in groups GK

and GL, respectively, and dij is the distance between sample i in group

GK and sample j in GL, then the distance between groups GK and GL is:

DKL =
1

nK × nL

∑
i∈GK ,j∈GL

dij (5)

For example, as shown in Figure 1, the distance between two groups is

(d13 + d14 + d15 + d23 + d24 + d25)/(2× 3).

Figure 1. Schematic diagram of the average linkage method.

Based on the normalized physicochemical property values, we calculate

the similarities of 20 amino acids and obtain a 20 × 20 distance matrix,

then we use the distance matrix to conduct cluster analysis, the average

linkage method is used to measure the distance between two groups. In

Figure 2, we list the cluster results of 20 natural amino acids based on

four physicochemical properties. In order to determine the appropriate

groups of amino acids, we divide 20 natural amino acids into 3 to 10

groups according to Figure 2, and then construct phylogenetic trees for

three data sets in this paper under different groups. Finally, we find that
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the best result occurs when 20 amino acids are divided into six groups.

Therefore, we cluster 20 natural amino acids into six groups, they are

{C}, {A,V,I,L,F,M}, {W,P,G,T,S,N,Q}, {Y}, {D,E} and {K,H,R}. We

use C,A,W,Y,D and K to denote these six categories respectively, as shown

in Table 2.

Figure 2. Cluster results of 20 natural amino acids.

Table 2. Classification of the 20 natural amino acids

Amino acids Denote
C C

A,V,I,L,F,M A
W,P,G,T,S,N,Q W

Y Y
D,E D

K,H,R K

According to Table 2, a 20-letter protein primary sequence can be con-

verted into a 6-letter reduced amino acid sequence. For example, the

first 20 characters of human rhinovirus (A hrv-02) are MGAQVSRQN-

VGTHSTQNSVS, its reduced alphabet representation is AWAWAWK-

WWAWWKWWWWWAW.
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2.2 Feature vectors of protein sequences

A reduced amino acid sequence S = s1s2s3...sN can be viewed as a

linear sequence of N symbols from a finite alphabet Ω ={C,A,W,Y,D,K},
that is si ∈ Ω, i = 1, 2, ..., N . We consider two features for each reduced

amino sequence, one is the frequency of occurrence of amino acid α, α ∈
Ω, which is denoted as fα, and another is the average position of the

occurrence of α [21], which is denoted as µα. fα and µα are defined as

follows:

fα =

∑N
i=1 I{si=α}

N
µα =

∑N
i=1 i× I{si=α}∑N

i=1 I{si=α}
(6)

in which

I{si=α} =

{
0 , si ̸= α

1 , si = α
(7)

Thus for a reduced amino acid sequence, we can obtain a 12-dimensi-

onal vector V = (fC , fA, fW , fY , fD, fK , µC , µA, µW , µY , µD, µK), which

can represent the original protein sequence.

2.3 Comparison of proteins

To illustrate the utility of the above feature vectors of protein se-

quences, we will apply it to the comparison of protein primary sequences.

Due to the different magnitudes of the two features, the 12-dimensional

vector needs to be normalized. The similarities between two protein se-

quences Si and Sj are computed by using the Euclidean distance:

dij =

√√√√ 12∑
k=1

(V
′
ik − V

′
jk)

2 i, j = 1, 2, ..., N (8)

The smaller the Euclidean distance is, the more similar the sequences are.
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3 Results and discussion

In this section, the method is tested against three data sets. Given

N protein primary sequences that are under research, we first convert

them into corresponding reduced amino acid sequences. Then the distance

of each two sequences are calculated according to Formula (8). At last,

we arrange all these values into a matrix, a pair-wise distance matrix is

derived. The distance matrix contains the similarity information on the N

protein primary sequences, and it can be input to the UPGMA program in

the MEGA package (https://www.megasoftware.net/) for phylogenetic

analysis.

3.1 Phylogenetic analysis of influenza A viruses pro-

teins

Influenza A virus has caused many pandemics around the world, its

several subtypes are labeled according to H numbers (hemagglutinin type)

and N numbers (neuraminidase type), in which the most lethal subtypes

are H1N1, H2N2, H5N1, H7N3, and H7N9. In this section, we consider

inferring the phylogenetic relationships of 35 influenza A virus protein

sequences [21]. A phylogenetic tree is constructed using our method for

this protein sequence dataset and the result is shown in Figure 3.

As we can see from Figure 3, the five influenza A virus subtypes H1N1,

H2N2, H5N1, H7N3 and H7N9 are clustered accurately. In contrast, the

phylogenetic tree constructed by conventional ClustalW has three sub-

types clustered incorrectly, ACZ36780.1 (H5N1), ADI52832.1 (H1N1) and

AIK26325.1 (H1N1) are misplaced as shown in Figure 4.

3.2 Phylogenetic analysis of human rhinovirus pro-

teins

Next, we applied our method to analyze 115 human rhinoviruses

(HRV) with three sequences of HEV-C as an outgroup for analysis. In past

studies, researchers have found that HRV-A and HRV-C share a common

ancestor which is a sister group to the HRV-B [26, 27], the phylogenetic

https://www.megasoftware.net/
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Figure 3. Phylogenetic tree of 35 influenza A virus protein sequences
constructed by our method. The dataset includes 5 groups:
H1N1 (red), H5N1 (green), H7N9 (pink), H2N2 (orange),
H7N3 (blue).

tree constructed using our method (Figure 5) is consistent with theirs.
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Figure 4. Phylogenetic tree of 35 influenza A virus protein sequences
constructed by ClustalW. The dataset includes 5 groups:
H1N1 (red), H5N1 (green), H7N9 (pink), H2N2 (orange),
H7N3 (blue).
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As shown in Figure 5, all 3 HEV-C outgroup viruses, 26 HRV-B viruses,

6 HRV-C viruses and 83 HRV-A viruses are clustered correctly. Besides,

the phylogenetic tree obtained by our method using protein sequences is

in accordance with that obtained by Palmenberg [27] using whole genome

sequences. Palmenberg suggested the clade of three viruses HRV-A 08,

HRV-A 95 and HRV-A 45 to be a fourth class named HRV-D because

clade D has RNA elements—such as the cis-acting replication element, the

3
′
UTR terminal loop feature, and local insertions/deletions and sequence

motifs—that are somewhat atypical of other HRV-A strains. Our results

support Palmenberg’s opinion.

In addition, the phylogenetic tree constructed by ClustalW method is

shown in Figure 6. As we can see from Figure 6, three outgroup HEV-C

viruses are clustered into a large branch with HRV-B virus instead of to

be the outermost one.

3.3 Phylogenetic analysis of coronavirus

spike proteins

The third data set is thirty-five coronavirus spike proteins which has

been studied by different methods [28, 29]. Coronaviruses are species of

virus which are associated with respiratory, intestinal, liver and neurologi-

cal diseases. By comparing the homology of spike protein sequence among

different years, different regions and different hosts, people can analyze

the genetic variation and epidemic characteristics of spike protein. Our

proposed method is utilized to analyze the homology of coronavirus spike

proteins. A phylogenetic tree is constructed for this data set and the result

is shown in Figure 7.

From Figure 7, we can see that the four groups of coronavirus spike

proteins are clustered accurately. The phylogenetic tree obtained by our

method is consistent with the results obtained by other authors [28, 29].

Furthermore, a phylogenetic tree is also produced by the multiple align-

ment algorithm ClustalW and the topology of the tree is totally same as

that by our new method.

In this section, we applied our method to infer the phylogenetic rela-
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Figure 5. Phylogenetic tree of 115 human rhinoviruses and 3 control
viruses constructed by our method. The HEV-C sequences
(poliovirus 1M, coxsackievirus a13, and coxsackievirus a21)
are used as outgroup. The dataset includes 5 groups: HEV-C
(red), HRV-B (green), HRV-C (blue), HRV-D (pink), HRV-
A (orange).

tionships of three data sets. The new approach does not require sequence

alignment, it is fully automatic. In addition to the traditional sequence

alignment method, we also used two alignment-free methods [20,21] to test

three sets of data. Based on Li’s method [20], 6 of 35 influenza A viruses,

12 of 118 human rhinovirus and 2 of 35 coronavirus spike proteins are not

clustered correctly; Based on He’s method [21], 35 influenza A viruses are

clustered correctly, while 13 of 118 human rhinovirus and 1 of 35 coron-

avirus spike proteins are not clustered correctly. Moreover, our method

has the advantage of less time, the running time of our method on three
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Figure 6. Phylogenetic tree of 115 human rhinoviruses and 3 control
viruses constructed by ClustalW. The HEV-C sequences (po-
liovirus 1M, coxsackievirus a13, and coxsackievirus a21) are
used as outgroup. The dataset includes 5 groups: HRV-B
(green), HEV-C (red), HRV-C (blue), HRV-D (pink), HRV-
A (orange).

data sets are 0.12 seconds, 0.48 seconds and 0.11 seconds separately, which

are almost the least time-consuming method among these methods. The

running time of different methods are detailed in Table 3.



394

Figure 7. Phylogenetic tree of 35 coronavirus spike proteins con-
structed by our method. The dataset includes 4 groups:
Group2 (red), Group1 (green), Group4 (blue), Group3
(pink).
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Table 3. Running time of different methods

Method Influenza A virus (35) Human rhinoviruses (118) Coronavirus spike proteins (35)
Our method 0.12sec 0.48sec 0.11sec
Li’s method 0.09sec 1.60sec 0.26sec
He’s method 0.36sec 5.56sec 0.96sec
ClustalW 7sec 30min 49sec

4 Conclusion

In this paper, we propose a novel alignment-free method for protein

sequence comparison. The reduced amino acid alphabet of 6 types of

amino acids based on four physicochemical properties is introduced, then

a 12-dimensional vector is constructed based on the frequency and the

average position of occurrence of amino acids in each reduced amino acid

sequences for the comparison of protein primary sequences. The similarity

between two protein sequences is expressed by Euclidean distance, which

reflects the degree that one sequence distinguishes from another sequence.

Three applications have demonstrated that the proposed approach in this

work is a powerful and useful tool for protein comparison. Meanwhile, our

approach does not require complicated calculation. The method is more

simple, convenient and fast. It can be used for protein-protein interaction

network (PPI) analysis or protein function prediction.
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