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Abstract

In most of the real life problems, we encounter with nonlinear
differential equations. Problems are made more understandable by
modeling them with these equations. In this way, it becomes easier
to interpret the problems and reach the results. In 1913, the ba-
sic enzymatic reaction model introduced by Michaelis and Menten
to describe enzyme processes is an example of nonlinear differential
equation. This model is the one of the simplest and best-known
approaches of the mechanisms used to model enzyme-catalyzed re-
actions and is the most studied. For most nonlinear differential
equations, it is very difficult to get an analytical solution. For this
reason, various studies have been carried out to find approximate
solutions to such equations. Among these studies, those in which
two different methods are used by blending attract attention. In this
study, a blended form of the Kashuri Fundo transform method and
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the Adomian decomposition method, so-called the Kashuri Fundo
decomposition method, is used to find a solution to the Michaelis-
Menten nonlinear biochemical reaction model in this way. This
method has been applied to the biochemical reaction model and
an approximate solution has been obtained for this model without
complex calculations. This shows that the hybrid method is an ef-
fective, reliable, simpler and time-saving method in reaching the
solutions of nonlinear differential equations.

1 Introduction

In most of the real life problems, we encounter with nonlinear differen-

tial equations. In 1913, the basic enzymatic reaction model introduced

by Michaelis and Menten to describe enzyme processes is an example of

nonlinear differential equations. This study made a great impression at

the time of its publication and the proposed model has become a remark-

able model in the biochemical field [13,37]. This article was first published

in German and later translated into English [18, 38]. Biochemists often

use the basic enyzmatic reaction model when analyzing enzyme kinetic

parameters [5, 6, 20,30,47,48].

The Michaelis Menten’s nonlinear biochemical reaction model (BRM)

scheme is modeled by in the form [46]

E + S ⇌ Y → E + P (1)

where E, S, Y and P represents the biomolecule that catalyzes (enzyme),

the substance processed in the reaction (substrate), the intermediate com-

plex and the product from the law of mass action, respectively. The basic

enzymatic reaction model is the one of the simplest and best-known ap-

proaches of the mechanisms used to model enzyme-catalyzed reactions

and is the most studied. In this model, a biomolecule that catalyzes and

a substrate react to form an intermediate complex. This combination is

reversible. This intermediate complex then decomposes into a product and

regenerates the biomolecule that catalyzes. The transient phase of a re-

action has an important place in determining various system parameters,

and distinguishing between different mechanisms of enzyme catalysis, from
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a biochemical point of view [49].

By using the law of mass effect, the variation of equation (1) with time

can be obtained by solving the following nonlinear coupled differential

equations system [49].

dS

dt
= −k1ES + k−1Y (2)

dE

dt
= −k1ES + (k−1 + k2)Y (3)

dY

dt
= k1ES − (k−1 + k2)Y (4)

dP

dt
= k2Y (5)

with the initial conditions

S(0) = S0, E(0) = E0, Y (0) = 0, P (0) = 0 (6)

where the parameters k1 and k−1 are the positive rate constants of the

forward and reverse reactions, respectively, expressed in model (1). k2 is

the positive rate constants of the forward reaction expressed in second step

of model (1). Equations (2)-(5) can be rearranged and made more simple,

for S and Y . These equations in the dimensionless form are given by [49]

ds

dt
= −s+ (β − α)y + sy (7)

dy

dt
=

1

ϵ
(s− βy − sy) (8)

with the initial conditions

s(0) = 1, y(0) = 0 (9)

where s is the concentrations substrate and y is the intermediate complex

between enzyme and substrate. α, β and ϵ are dimensionless parameters.

For more detailed information on deriving equations (7) and (8), see ref-

erence [49].

Extracting analytic or approximate solutions for differential equations
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by using new analytic, semi-analytic or hybrid mathematical methods al-

ways attract the attention of the researchers due to the academic curios-

ity and practical applications. Adomian decomposition method (ADM)

[1, 3, 25, 39, 56–59], homotopy perturbation method (HPM) [10, 21, 23, 24,

26–29, 36, 54, 55], variational iteration method (VIM) [4, 9, 22], Parker-

Sochacki method (PSM) [2, 40, 45], modified Picard-Pade method (PPM)

[35] and many different methods by which these methods are modified have

been used in the solution of nonlinear differential equations such as BRM

[7,8,19]. There exist several studies to compute the substrate concentration

by numerically integrating the differential form of the Michaelis-Menten

equation [16,17,60], by using root-solving techniques such as the bisection

and Newton-Raphson methods in the integrated Michaelis-Menten equa-

tion [15]. Since a closed-form solution to the Michaelis-Menten equation

is not available, motivation for having an accurate closed-form solution

to this equation induces the possibility of analyzing the utility of other

non-conventional solution techniques or methods to solve the Michaelis-

Menten equation. In this study, we used a hybrid form of the Kashuri

Fundo transform method [33] and the ADM, so-called the Kashuri Fundo

decomposition method [52, 53], to find an approximate solution to the

Michaelis-Menten nonlinear BRM.

Our main aim in this study is to demonstrate that Kashuri Fundo

decomposition method is an effective, reliable, simpler and time-saving

method that can be used in the solution of nonlinear differential equation

systems. In order to demonstrate this, we use the basic enzymatic reaction

model of Michaelis-Menten, which is modeled with nonlinear differential

equation systems. First and foremost, we briefly mention the Kashuri

Fundo transform and give its basic properties that are important for this

study. Afterwards, we explain the procedure of application of the Kashuri

Fundo decomposition method to a general form of a nonlinear differential

equation. Consequently, this method is dealt with the basic enzymatic

reaction model. Finally, we demonstrate the effectiveness of this method

based on the process steps we have done. In the literature, it is possible

to come across many studies in which Kashuri Fundo transform and its

versions combined with different methods are used [11,12,14,31,32,34,41–



319

44,50,51].

2 Preliminaries

2.1 Kashuri Fundo Transform

2.1.1 Definition of Kashuri Fundo Transform

Definition 1. We consider functions in the set F defined [33],

F =
{
f(x)|∃M,k1, k2 > 0 s.t. |f(x)| ⩽ Me

|x|
k2
i , if x ∈ (−1)i× [0,∞)

}
For a function belonging to the set F , M must be finite. k1, k2 may be

finite or infinite.

Definition 2. Kashuri Fundo transform defined on the set F and denoted

by K (.) is defined as [33],

K [f(x)](v) = A(v) =
1

v

∞∫
0

e
−x

v2 f(x) dx, x ⩾ 0, −k1 < v < k2. (10)

The Kashuri Fundo transform expressed by equation (10) can also be

expressed as [33],

K [f(x)](v) = A(v) = v

∞∫
0

e−xf(v2x) dx.

Definition 3. A function f(x) is said to be of exponential order 1
k2 , if

there exist positive constants T and M such that |f(x)| ≤ Me
−x

k2 , for all

x ≥ T [33].

Theorem 1 (Sufficient Conditions for Existence of Kashuri Fundo Trans-

form). If f(x) is piecewise continuous on [0,∞) and of exponential order
1
k2 , then K [f(x)](v) exists for |v| < k [33].
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2.1.2 Some Properties of Kashuri Fundo Transform

Theorem 2 (Linearity of Kashuri Fundo Transform). Let f(x) and g(x)

be functions whose Kashuri Fundo integral transforms exist and c be a

constant. Then [33],

1. K [(f + g)(x)](v) = K [f(x)](v) + K [g(x)](v)

2. K [(cf)(x)](v) = cK [f(x)](v)

Theorem 3 (Kashuri Fundo Transform of The Derivatives). Let’s assume

that the Kashuri Fundo transform of f(x), denoted by A(v), exists. Then

[33],

K

[
df(x)

dx

]
(v) =

A(v)

v2
− f(0)

v
(11)

K

[
d2f(x)

dx2

]
(v) =

A(v)

v4
− f(0)

v3
− f ′(0)

v
(12)

K

[
d(n)f(x)

dx(n)

]
(v) =

A(v)

v2n
−

n−1∑
k=0

f (k)(0)

v2(n−k)−1
(13)

2.2 Kashuri Fundo Decomposition Method

Consider a nonlinear differential equation written in a general operator

form

Lz(t) +Rz(t) +Nz(t) = g(t) (14)

with initial condition

z(0) = c, (c ∈ R)

where L is the highest-order derivative which is assumed to be invertible,

R is a linear differential operator of less order than L, N is the nonlinear

operator and g is the source term. z is a function dependent on the variable

t.

Kashuri Fundo decomposition method is as follows [52,53]:

By applying the Kashuri Fundo transform to the expression in equation
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Table 1. Kashuri Fundo transform of some special functions [33,52]

f(x) A(v)

1 v

x v3

xn, n ∈ Z n!v2n+1

ecx v
1−cv2

sin(cx) cv3

1+c2v4

cos(cx) v
1+c2v4

sinh(cx) cv3

1−c2v4

cosh(cx) v
1−c2v4

xα, α ∈ R+ Γ(α+ 1)v2α+1

n∑
k=0

ckx
k

n∑
k=0

k!ckv
2k+1

(14) and using equation (11), we get

z(v) = cv + v2K [g(t)]− v2K [Rz(t)]− v2K [Nz(t)] (15)

Having applied bilaterally the inverse of Kashuri Fundo transform to

this new equation, we acquire

z(t) = c+ K −1[v2K [g(t)]
]
− K −1[v2K [Rz(t)]

]
− K −1[v2K [Nz(t)]

]
(16)

When equation (16) is carefully examined, it can be seen that it is very

difficult to obtain the inverse Kashuri Fundo transforms of some expres-

sions in the equation. This difficulty can be overcome by using the ADM

from this stage of the solution. The ADM is based on the assumption that

the z(t) function can be expressed as an infinite series.

z(t) =

∞∑
n=0

zn(t) = z0 + z1 + z2 + z3 + . . . (17)

where zn can be determined iteratively. In the ADM, nonlinear Nz can
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also be expressed as an infinite polynomial series.

Nz =

∞∑
n=0

An (18)

The expression An in equation (18) consists of An(z0, z1, z2, z3, . . . , zn)

and is called the Adomian polynomials.

An(z0, z1, z2, z3, . . . , zn) =
1

n!

dn

dλn

[
N

( n∑
k=0

λkzk

)]
λ=0

, n = 0, 1, 2, . . .

where λ is a parameter. The Adomian polynomials An is defined as

A0 =
1

0!

d0

dλ0

[
N

( 0∑
k=0

λkzk

)]
λ=0

= N(z0)

A1 =
1

1!

d1

dλ1

[
N

( 1∑
k=0

λkzk

)]
λ=0

= z1N
′(z0)

A2 =
1

2!

d2

dλ2

[
N

( 2∑
k=0

λkzk

)]
λ=0

= z2N
′(z0) +

z21
2!
N ′′(z0)

...

Substituting the equations (17) and (18) into the equation (16), we find

∞∑
n=0

zn(t) = c+ K −1
[
v2K [g(t)]

]
− K −1

[
v2K

[
R

∞∑
n=0

zn(t)

]]

− K −1

[
v2K

[ ∞∑
n=0

An

]]
(19)
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Describing both sides of (19) will successively produce

z0 = c+ K −1
[
v2K [g(t)]

]
z1 = −K −1

[
v2K [Rz0]

]
− K −1

[
v2K [A0]

]
z2 = −K −1

[
v2K [Rz1]

]
− K −1

[
v2K [A1]

]
z3 = −K −1

[
v2K [Rz2]

]
− K −1

[
v2K [A2]

]
...

Thus, the solution of equation (14) is obtained recursively by the

Kashuri Fundo decomposition method as follows

z0 = c+ K −1
[
v2K [g(t)]

]
zn+1 = −K −1

[
v2K [Rzn]

]
− K −1

[
v2K [An]

]
.

As a result, the general expression of the approximate solution is ex-

pressed as

z ≈
k∑

n=0

zn, where lim
k→∞

k∑
n=0

zn = z.

3 Main Result

3.1 Application to The Biochemical Reaction Model

Applying the Kashuri Fundo transform to equations (7) and (8), we find

K
[ds
dt

]
= K [−s+ (β − α)y + sy] (20)

K
[dy
dt

]
=

1

ϵ
K [s− βy − sy] (21)

where

K
[ds
dt

]
=

K [s(t)]

v2
− s(0)

v

=
K [s(t)]

v2
− 1

v

(22)
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K
[dy
dt

]
=

K [y(t)]

v2
− y(0)

v

=
K [y(t)]

v2

(23)

Substituting these equations into the equations (20) and (21), we get

K [s(t)]

v2
− 1

v
= K [−s+ (β − α)y + sy] (24)

K [y(t)]

v2
=

1

ϵ
K [s− βy − sy] (25)

K [s(t)] = v + v2K [−s+ (β − α)y + sy] (26)

K [y(t)] = v2
1

ϵ
K [s− βy − sy] (27)

Applying the inverse Kashuri Fundo transform in equations (26) and

(27), we get

s(t) = 1 + K −1
[
v2K [−s+ (β − α)y + sy]

]
(28)

y(t) = K −1

[
v2

1

ϵ
K [s− βy − sy]

]
(29)

Assuming the solution is an infinite series of unknown functions, we

can write

s(t) =

∞∑
m=0

sm(t) ve y(t) =

∞∑
m=0

ym(t) ,

∞∑
m=0

Am = sy

Arranging equations (28) and (29) according to this assumption, we

get

∞∑
m=0

sm(t) = 1+K −1

[
v2K

[
−

∞∑
m=0

sm(t)+(β−α)

∞∑
m=0

ym(t)+

∞∑
m=0

Am

]]
(30)

∞∑
m=0

ym(t) = K −1

[
v2

1

ϵ
K

[ ∞∑
m=0

sm(t)− β
∞∑

m=0

ym(t)−
∞∑

m=0

Am

]]
(31)
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where Am is Adomian polynomials and is given as follows

A0 = s0y0 , A1 = s0y1 + s1y0 , A2 = s0y2 + s1y1 + s2y0 , . . .

We can write the equations (30) and (31) for the values of m as

s0(t) = 1 (32)

s1(t) = K −1
[
v2K [−s0(t) + (β − α)y0(t) +A0]

]
(33)

...

sk+1(t) = K −1
[
v2K [−sk(t) + (β − α)yk(t) +Ak]

]
(34)

y0(t) = 0 (35)

y1(t) = K −1

[
v2

1

ϵ
K [s0(t)− βy0(t)−A0]

]
(36)

...

yk+1(t) = K −1

[
v2

1

ϵ
K [sk(t)− βyk(t)−Ak]

]
(37)

Thus, the solution of equations (7) and (8) is obtained recursively using the

Kashuri Fundo decomposition method. We can express this approximate

solution in general as follows

Sm(t) =

∞∑
m=0

sm(t) = s0(t) + s1(t) + s2(t) + . . . (38)

Ym(t) =

∞∑
m=0

ym(t) = y0(t) + y1(t) + y2(t) + . . . (39)

If we assume that α = 0.375, β = 1 and ϵ = 0.1, we get

s(t) = 1− t+ 8.625t2 − 63.0833t3 + . . . (40)

y(t) = 10t− 105t2 + 762.083t3 − . . . (41)
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This result coincides with the results found in references [2, 4, 8, 35]. The

graphs of the equations (40) and (41) up to the third order are shown

in figures 1 and 2, respectively. Figure 3 shows the behavior of these

equations together.

Figure 1. The graph of
s(t).

Figure 2. The graph of
y(t).

Figure 3. The behavior of s(t) and y(t).

4 Conclusion

Differential equations allow us to understand the phenomena in the back-

ground by modeling the events we experience in our life. This feature

makes it important to reach the solutions of this type of equations. Es-

pecially, reaching the solutions of nonlinear differential equations can be

quite complex and time consuming in some cases. In order to prevent

this confusion and waste of time, many different methods have been put

forward. In this study, we examined the effectiveness of Kashuri Fundo
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decomposition method, based on Michaelis-Menten’s basic enzymatic re-

action model. In the application of the Kashuri Fundo decomposition

method to this model, we first transform the system of equations into al-

gebraic form by using the Kashuri Fundo transform. Then, by implement-

ing the Adomian decomposition method for nonlinear term, we obtained

the solution starting from the assumption that the solution is an infinite

series of unknown functions. When we examined the process steps that

we made using the Kashuri Fundo decomposition method, we revealed to

the conclusion that we obtained a solution in a short time and with fewer

process steps compared to studies in the literature, without going through

complex calculations, without the need for any computer program. As a

result, we present an approach that provides a series solution of any de-

sired accuracy through an appropriate selection of solution order for the

Michaelis-Menten equation. The solution found by the proposed hybrid

method is algebraic in nature and is valid for all values of substrate con-

centration and kinetic parameters. It does not rely on a (large or small)

parameter. Therefore, one of the significant features of this solution is the

fact that it takes the place of numerical solutions with the evaluation of

simple algebraic expressions. Hence, the algebraic nature of the obtained

series solution and its high accuracy make this proposed hybrid method

an attractive candidate for computing substrate concentration and inter-

mediate complex in the Michaelis-Menten equation. In the light of these

facts, it is possible to say that the Kashuri Fundo decomposition method

is an effective, reliable, useful and time-saving method that can be used in

the solution of nonlinear differential equation systems.
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