
MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 90 (2023) 75–102

ISSN: 0340–6253

doi: 10.46793/match.90-1.075G

Comparison of Atom Maps

Marcos E. González Laffitte1,2, Nora Beier1, Nico
Domschke1, Peter F. Stadler1−7,∗

1Bioinformatics Group, Department of Computer Science &

Interdisciplinary Center for Bioinformatics & Leipzig University, D-04107

Leipzig, Germany
2Center for Scalable Data Analytics and Artificial Intelligence

(ScaDS.AI), Leipzig University, D-04103 Leipzig, Germany
3German Centre for Integrative Biodiversity Research (iDiv)

Halle-Jena-Leipzig & Leipzig Research Center for Civilization Diseases,

Leipzig University, D-04103 Leipzig, Germany
4Max Planck Institute for Mathematics in the Sciences, D-04109 Leipzig,

Germany
5Department of Theoretical Chemistry of the University of Vienna,

A-1090 Vienna, Austria
6Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá,

Colombia 7Santa Fe Institute, Santa Fe NM 87501, USA

{marcos,nora,dnico,studla}@bioinf.uni-leipzig.de

(Received 27 January, 2023)

Abstract

The computation of reliable, chemically correct atom maps from
educt/product pairs has turned out to be a difficult problem in
cheminformatics because the chemically correct solution is not nec-
essarily an optimal solution for combinatorial formulations such as
maximum common subgraph problems. As a consequence, compet-
ing models have been devised and compared in extensive bench-
marking studies. Due to isomorphisms among products and educts
it is not immediately obvious, however, when two atom maps for

∗Corresponding author.

https://doi.org/10.46793/match.90-1.075G

76

a given educt/product pairs are the same. We formalize here the
equivalence of atom maps and show that equivalence of atom maps is
in turn equivalent to the isomorphism of labeled auxiliary graphs. In
particular, we demonstrate that Fujita’s Imaginary Transition State
can be used for this purpose. Numerical experiments show that
practical feasibility. Generalizations to the equivalence of subgraph
matches, double pushout graph transformation rules, and mecha-
nisms of multi-step reactions are discussed briefly.

1 Introduction

Chemical reactions, by definition, constitute the rearrangement of chemi-

cal bonds while preserving the atoms involved. In practice, chemical reac-

tions are typically represented as transformations of a multiset of reactant

molecules into a corresponding multiset of product molecules [7, 48]. The

mechanism of a reactions, i.e., the bonds broken and newly formed, and,

equivalently, the correspondence of the atoms in reactants and products, is

not apparent from such data. In many practical applications, for instance

the analysis of isotope labeling experiments [24], the inference of reaction

rules [2], and in metabolic engineering [27, 47], however, it is key to track

atoms across a reaction. To this end, structural formulas of reactants and

products, respectively, are viewed as graphs G and H with vertices labeled

by atom types and edges labeled by bond types. The atom map of the

reaction transforming G to H then is a bijection α : V (G) → V (H) that

preserves atom types. By specifying the corresponding atoms in reactants

and product, α implies the bonds that are broken and formed, see Fig. 1.

Determining the atom map of a chemical reaction given only the struc-

tural formulas of the reactants G and products H is a very challenging

problem. Purely combinatorial methods phrase the task as Maximum

Common Subgraph (MCS) or Maximum Common Edge Subgraph

subgraph (MCES) problems [11,13]. However, there is no guarantee that

the optimal solutions correctly represent the mechanism of the reaction in

question. Chemical realism is added for instance in MetaCyc by assign-

ing weights to bonds that encode their propensity to break, resulting in a

weighted MCES problem [27]. A constraint programming approach [32]

was proposed to enforce constraints such as cyclic transition states. Most

77

7 8

1

3

2
4

9

5

6

1 3

7

8

6
5

9

4

2

5 6

8

9

7
2

1

3

4

7

8

1

3
24

9
56

7

8

1

3
24

56

9

8

5

6
43

271

9
R
X
N

G
ra
p
h
o
rm

e
r

R
D
T

7

8
1

3

2
4 9

5

6

7

8

1

3

2
4 9

5

6
10

11
10

11

6

4
5

7

8
9

2

10

11

6

8

5

7

4
2 9

3

1
3

1
10

11

3

2
1

8
9 4

10

11

8
7

2
4 9

5

6

5

10

11

R
X
N

G
ra
p
h
o
rm

e
r

R
D
T

1 36

A

B

7

O

O

Figure 1. (A) Equivalent but different atom maps for the reaction of
the L-aspartate to fumarate + NH4

+. (B) Non-equivalent
atom maps for the reaction of L-alanine + glyoxylate to
pyruvate + glycine. Atom maps were computed with RDT,
RXNMapper [46], and GraphormerMapper.

recently, several machine-learning tools have become available as an alter-

native approach to predicting atom maps [25,29,46].

The benchmarking of different atom mapping approaches requires a

fair comparison of the predicted atom maps with each other and with

78

a (usually manually curated) ground truth set [28, 39, 41]. The various

atom mapping tools convert their input into some internal representation,

establish the bijection and return the map α in a mapper-specific format,

for instance as annotated reactions SMILES. As a consequence, given a

reactant graph G and a product graph H, an atom mapping tool does

not usually return an atom map α : V (G) → V (H) but rather an atom

map β : V (G′) → V (H ′) where G′ ≃ G and H ′ ≃ H, i.e., G′ and H ′ are

isomorphic but not necessarily identical to the input graphs G and H [39].

It is not trivial, therefore, to determine whether or not β : V (G′)→ V (H ′)

describes the same atom map as α : V (G)→ V (H), see Figure 1.

In a recent benchmarking study [28], for instance, an atom map is “con-

sidered to be correct” if the Condensed Graphs of the Reactions (CGRs)

[22] of the test and reference mapping “coincide totally”, where CGRs

were compared using the CGRtools library [37]. The description suggests

that the authors of [28] evaluated isomorphism of CGRs as a means of

testing the equivalence of atom maps. To the best of our knowledge, no

further justification for this method has been published. Here, we provide

a rigorous proof for the correctness of the procedure.

Essentially the same question arises also in graph transformation mod-

els of chemical reactions [4, 7, 45], since the application of a rule requires

that a pattern G is found as in target graph H, see Figure 2. Formally,

one is interested in a map µ : V (G) → V (H) such that for each edge xy

of G, the image µ(x)µ(y) is an edge in H and both vertex and edge labels

are preserved.

This contribution is organized as follows. We formalize the equivalence

of maps in Section 2, describe a general construction of an auxiliary graph,

and prove our main result. Thm. 1 shows that equivalence of maps can

be decided by checking isomorphism of the auxiliary graphs. In the fol-

lowing section we focus on the comparison of atom maps and show that

for bijective maps a smaller auxiliary graph, which in essence is the Imag-

inary Transition State [14] or the Condensed Graph of a Reaction [22] is

sufficient. We then briefly consider generalizations and open problems.

79

C

C

C

C

C

C

C

C

C

C

C

C
Diels-Alder

 reaction

H
G

Figure 2. Equivalent and non-equivalent matches of a subgraph, shown
on the example of a Diels-Alder reaction. In the reaction a
dienophile reacts with a diene to form new carbon-carbon
bonds. Due to the symmetries of the reactants (i.e., the
connected components of H) some of the matches µ of the
precondition, i.e., the graph, G are equivalent and thus gen-
erate the same reaction product. We indicate the location
of the subgraph isomorphic to G in H by thick, black lines.
Note that any such match corresponds to four matching mor-
phisms µ, depending on the orientations in which the two
connected components of G are matched. Since any diene
contains two dienophile moieties, alternative mappings can
arise. The entries in the first two columns each represent
equivalent matches.

2 Equivalence of maps

2.1 Notation and basic definitions

We consider here simple, loop-free graphs, with both vertex and edge la-

bels. We write V (G), E(G), aG : V (G)→ LV and bG : E(G)→ LE for the

vertex set, edge set, vertex labeling function, and edge labeling functions,

respectively. The edge between the (distinct) vertices x, y ∈ V (G) will be

denoted by xy ∈ E(G). Since the graphs encode the educts and products

of chemical reactions, which usually consist of more than one molecule,

they will not be connected in general.

We will use the notation f ◦g for the composite map f ◦g : x 7→ f(g(x)).

Two labeled graphs G and G′ are isomorphic, in symbols G ≃ G′, if there

80

is a bijective map (called isomorphism) φ : V (G)→ V (G′) that preserves

edges, non-edges, vertex labels, and edge labels. That is (i) xy ∈ E(G) if

and only if φ(x)φ(y) ∈ V (H), (ii) aH ◦ φ = aG, and (iii) bH(φ(x)φ(y)) =

bG(xy) for all xy ∈ E(G). We write ISO(G,G′) for the set of all such

graph isomorphisms. We note that the isomorphisms are obtained as

composition of automorphisms of G or G′ and an arbitrary isomorphism

φ̃ : V (G) → V (G′). Writing Aut(G) for the set of automorphisms of G,

we have ISO(G,G′) = {φ̃ ◦ ϑ|ϑ ∈ Aut(G)} = {ϑ′ ◦ φ̃|ϑ′ ∈ Aut(G′)}.
We may also consider a more general set of bijective maps GI(G,G′)

that relate two graphs that are considered equivalent in a sense that is

more general than isomorphism. For example, we may define GI(G,G′)

to consider graph isomorphisms that ignore edge labels (e.g. bond types)

or that identify certain aspects of vertex labels (e.g. by ignoring charges).

In [41], for example, bond-types were ignored to accommodate resonance

structure with delocalized electrons. Since ϕ ∈ GI(G,G′) is bijective, there

is a uniquely defined map ϕ−1 : V (G′) → V (G) such that φ−1 ◦ φ = ιG,

where ιG : V (G) → V (G), x 7→ ι(x) = x is the identity on G. We will

assume that these sets of structure-preserving maps have the following

properties:

(i) If ϕ ∈ GI(G,G′) and ψ ∈ GI(G′, G′′) then ψ ◦ ϕ ∈ GI(G,G′′)

(ii) If ϕ ∈ GI(G,G′) then ϕ−1 ∈ GI(G′, G)

Clearly, (graph) isomorphisms ISO(G,G′) satisfy these requirements. We

therefore call the maps in GI(G,G′) the generalized isomorphisms from G

to G′.

One easily checks that ϕ−1 ◦ϕ = ιG ∈ GI(G,G), and GI(G,G) is closed

under composition of maps and forming inverse maps. Thus (GI(G,G), ◦)
is a group acting on V (G). Its orbits determine an associated equiva-

lence relation on V (G). In applications to molecular graphs, this relation

identifies chemically equivalent atoms.

Conceptually, two maps α : V (G) → V (H) and β : V (G′) → V (H ′)

are equivalent if there is a “renumbering” of G and H that makes α and β

the “same”. More formally, the renumbering on G and H corresponds to

81

two generalized isomorphisms φ : V (G)→ V (G′) and ψ : V (H)→ V (H ′)

such that, for all x ∈ V (G), we have ψ(α(x)) = β(φ(x)).

Definition 1. Two maps α : V (G)→ V (H) and β : V (G′)→ V (H ′) are

equivalent, in symbols α ≡ β if there is φ ∈ GI(G,G′) and ψ ∈ GI(H,H ′)

such that ψ ◦ α = β ◦ φ.

Note as well that α ≡ β implies GI(G,G′) ̸= ∅ and GI(H,H ′) ̸= ∅.

Lemma 1. Equivalence of maps, ≡, is an equivalence relation.

Proof. The relation ≡ is reflexive since by assumption ιG ∈ GI(G,G) and

ιH ∈ GI(H,H) and and α = ιH ◦ α = α ◦ ιG = α. From α ≡ β, i.e.,

ψ ◦ α = β ◦ φ we obtain α ◦ φ−1 = ψ−1 ◦ β. Clearly φ−1 : V (G′)→ V (G)

and ψ−1 : V (H ′) → V (H) are graph isomorphisms, and thus β ≡ α.

Finally, consider α ≡ β and β ≡ γ with γ : V (G′′) → V (H ′′), G′ ≃ G′′,

and H ′ ≃ H ′′. By definition, there are isomorphisms ζ : V (G′) → V (G′′)

and ξ : V (H ′) → V (H ′′) such that ξ ◦ β = γ ◦ ζ. Using ψ ◦ α ◦ φ−1 = β

we obtain (ξ ◦ ψ) ◦ α = γ ◦ (ζ ◦ φ), where ξ ◦ ψ : V (H) → V (H ′′) and

ζ ◦ φ : V (G)→ V (G′′) are generalized isomorphisms. Thus α ≡ γ.

If α and β are bijective, we can rewrite ψ ◦α = β ◦φ as ψ = β ◦φ◦α−1.

Def. 1 then can be rephrased in the following form:

Lemma 2. Let α : V (G) → V (H) and β : V (G) → V (H) be bijective

maps. Then α ≡ β if and only if there is φ ∈ GI(G,G′) such that β ◦ φ ◦
α−1 ∈ GI(H,H ′).

Thus α ≡ β can be checked by enumerating all generalized isomor-

phisms φ ∈ GI(G,G′) and then checking whether β ◦φ ◦α−1 ∈ GI(H,H ′)

for at least one φ ∈ GI(G,G′). This, however, appears unpleasantly com-

plicated. Furthermore, the idea is applicable only to bijective maps.

2.2 Reduction to graph isomorphism

In order to address the computational problem of determining the equiva-

lence of two maps, we translate the question into a graph-theoretical prob-

lem. More precisely, we encode α : V (G) → V (H) in a simple, suitable

labeled graph Γ(G,H,α), see Fig. 3, as follows:

82

Definition 2. Let (G,H,α) be a triple comprising two vertex and edge

labeled graphs G and H linked by an arbitrary map α : V (G) → V (H).

Then the auxiliary graph Γ(G,H,α) has vertex set V (G) ∪· V (H), edge

set E(G) ∪· E(H) ∪· E(α) where E(α) := {xα(x)|x ∈ V (G)}, vertex labels

(aG(x), 1) for x ∈ V (G) and (aH(x), 2) for x ∈ V (H) and edge labels

b(e) = bG(e) if e ∈ E(G), b(e) = bH(e) if e ∈ E(H), and b(e) = ∗ with ∗
distinct from the vertex labels in G and H, if e ∈ E(α).

To see that this graph indeed unambiguously encode the map α :

V (G) → V (H), consider the class G of labeled graphs with following

properties:

(i) V = V1∪· V2, where V1 and V2 are distinguished by labels of the form

a(x) = (a′(x), 1) if x ∈ V1 and a(x) = (a′(x), 2) if x ∈ V1.

(ii) Every x ∈ V1 is adjacent to exactly one neighbor yx ∈ V2.

(iii) b(xy) = ∗ for all edges xy ∈ E with x ∈ V1 and y ∈ V2.

Lemma 3. Let Γ ∈ G. Then there are unique labeled graphs G and H

and a unique map α : V (G)→ V (H) such that Γ = Γ(G,H,α).

Proof. Starting from Γ ∈ G, we construct G, H, and α explicitly. Condi-

tion (i) implies that the vertex labels completely determine the bipar-

tition V (Γ) = V1 ∪· V2 such that aΓ(x) = (a′(x), 1) for x ∈ V1 and

aΓ(x) = (a′(x), 2) for x ∈ V2. We obtain the induced subgraphs G = Γ[V1]

and H = Γ[V2] with vertex labels aG = a′(x) for all x ∈ V1 and aH = a′(x)

for all x ∈ V2 and edge labels bG(e) = bΓ(e) for e ∈ E(G) and bH(e) = bΓ(e)

for e ∈ E(H). Property (ii) stipulates that for every x ∈ V1 = V (G) there

is yx ∈ V2 = V (H). Thus α(x) := yx for all x ∈ V1 defines a map

α : V (G) → V (H). This defines the desired triple (G,H,α). One easily

checks that Γ(G,H,α) is the graph with V1 = V (G), V2 = V (G), ver-

tex labels a(x) = (a′(x), 1) for x ∈ V1 and a(x) = (a′(x), 2) for x ∈ V2,

edge set E = E(G) ∪· E(H) ∪· {xy|x ∈ V (G), y ∈ V (H)}, and edge labels

b(e) = bΓ(e) for e ∈ E(G) ∪ E(H) and b(xy) = bΓ(xy) = ∗ for x ∈ V1 and

y ∈ V1. Thus Γ(G,H,α) = Γ.

83

Figure 3. Atom maps and their equivalent graphs. Top: reaction of
the L-aspartate to fumarate and NH4

+, as in Fig. 1. Below,
the chemically correct atom map α is shown, using dotted
lines to connect corresponding atom. For simplicity of the
presentation, the ammonium hydrogens are also suppresses
in the auxiliary graphs below. Γ(G,H,α) is shown with ver-
tices and edges of G in gray, vertices and edges of H in black,
and the matching E(α) as dotted lines. In Υ(G,H,α), ver-
tices and edges with the same label in both G and H are
drawn as full lines, while “reaction edges” are shown as dot-
ted lines annotated by the corresponding label pairs: (=,−)
denotes a change from a double bond to a single bond and
(−, ∗) denotes the breaking of the single bond.

84

The relationship between (G,H,α) and Γ(G,H,α) preserves the iden-

tity of the vertices is i.e., we are not considering isomorphisms in this step.

Thus Γ(G,H,α) is a faithful representation of the graphs G and H and

the map connecting their vertex sets. Moreover, Γ contains G and H as

induced subgraphs determined by the vertex sets with second coordinate

of the vertex label being ’1’ and ’2’, respectively (shown in gray and black

in Fig. 3). Furthermore, E(α) is a matching in Γ(G,H,α) whenever α is

injective. Clearly, the matching E(α) is perfect if and only if α is bijective.

Theorem 1. Suppose G ≃ G′ and H ≃ H ′. Then two maps α : V (G)→
V (H) and β : V (G′) → V (H ′) are equivalent if and only if their la-

beled auxiliary graphs are isomorphic, i.e., if and only if Γ(G,H,α) ≃
Γ(G′, H ′, β).

Proof. First suppose α : V (G)→ V (H) and β : V (G′)→ V (H ′) are equiv-

alent, i.e., there are isomorphisms φ ∈ ISO(G,G′) and ψ ∈ ISO(H,H ′)

such that ψ ◦ α = β ◦ φ. We claim that the union ζ := φ ∪· ψ defined

by ζ(x) = φ(x) if x ∈ V (G) and ζ(x) = ψ(x) if x ∈ V (H) is an isomor-

phism ζ ∈ ISO(Γ). Consider two vertices p, q ∈ V (Γ) and their images

p′ := ζ(p) and q′ := ζ(q). If p, q ∈ V (G), then p′ = φ(p) and q′ = φ(q).

Since φ ∈ ISO(G,G′), we have pq ∈ E(Γ) if and only if p′q′ ∈ E(Γ′)

and edge and vertex labels are preserved. An analogous result holds for

p, q ∈ V (H). Now let p ∈ V (G) and q ∈ V (H). Then pq ∈ E(Γ) if and

only if q = α(p). Consider the images of ζ(p) and ζ(q) in Γ′. We have by

construction p′ := ζ(p) = φ(p) and q′ := ζ(q) = ψ(q). Suppose q = α(p).

Then q′ = ψ(α(p)) = β(φ(p)) = β(p′), and thus p′q′ ∈ E(Γ′). Note that

there is no other edge p′q′′ with p′ ∈ V (G′) and q′′ ∈ V (H ′). Thus for given

p, we have ζ(p)ζ(q) ∈ E(Γ′) if and only if pq ∈ E(Γ). We have already see

that ζ preserved all vertex labels and the edge lables on E(G) and E(H);

hence it remains to demonstrate that ζ also preserves the remaining edge

labels: Since p′ ∈ V (G′) and q′ ∈ V (H ′), we have bΓ′(p′q′) = ∗ = bΓ(pq).

In summary, ζ : V (Γ)→ V (Γ′) is a labeled graph isomorphism.

For the converse, suppose ζ : V (Γ)→ V (Γ′) is an isomorphism, i.e., ζ ∈
ISO(Γ,Γ′). First note that, by construction of the vertex labels, V (G) and

V (G′) are identifiable by labels of the form (·, 1), while V (H) and V (H ′)

85

have vertex labels of the form (·, 2). Since ζ by assumption preserves vertex

labels, it maps V (G) to V (G′) and V (H) to V (H ′). Thus the restrictions

ζG and ζH defined by ζG(x) = ζ(x) for x ∈ V (G) and ζH(x) = ζ(x)

for x ∈ V (H) are isomorphisms of labeled graphs: ζG ∈ ISO(G,G′) and

ζH ∈ ISO(H,H ′). Now consider an edge e ∈ E(Γ) that connects V (G) and

V (H). By definition of the auxiliary graphs, bΓ(e) = ∗, i.e., e ∈ E(α). By

assumption we have e = xy where x is a vertex with a(x) = (·, 1) and thus

x ∈ V (G) and y is a vertex with a(y) = (·, 2) and thus y ∈ V (G). Therefore

we have α(x) = y. Since ζ is an isomorphism, x′y′ := ζ(x)ζ(y) ∈ E(Γ′),

again with label ∗ and thus x′y′ ∈ E(β). Since ζ(x) = ζG(x) ∈ V (G′)

and ζ(y) = ζH(y) ∈ V (H ′), we conclude that y′ = β(x′). This can be

rewritten as β(ζ(x)) = ζ(y) and β(ζG(x)) = ζH(y). Inserting y = α(x)

finally yields β(ζG(x)) = ζH(α(x)). By construction of Γ, there is an edge

xy with y ∈ V (H) for every x ∈ V (G). Thus ζH ◦ α = β ◦ ζG. Finally,

ζG ∈ ISO(G,G′) and ζH ∈ ISO(H,H ′) implies α ≡ β.

Thm. 1 has useful computational implications. First we note that given

G, H, and α, the auxiliary graph Γ(G,H,α) can be constructed in linear

time, since it only requires the insertion of mapping edges E(α) and a

relabeling of the vertices of V (G) and V (H) to ensure the distinction of

pre-image and image. The graph isomorphism problem, which is the name

sake for the class of GI-complete computational problems [33], is compu-

tationally equivalent to the problem of computing generators of the auto-

morphism group of a graph [30]. This can be solved in quasi-polynomial

time for general graphs [6]. The graphs appearing in chemistry as mod-

els of molecules, moreover, have bounded degrees. This remains true for

the auxiliary graph Γ(G,H,α), whose degree is bounded by the maximal

degrees of G and H plus 1. In this restricted case, graph isomorphism is

solvable in polynomial time [31]. Furthermore, highly efficient practical

implementations of graph isomorphism tests have become available [5,34],

see [18] for a recent review. Thm. 1 therefore reduces the map equiva-

lence problem to a labeled graph isomorphism problem that can be solved

efficiently for most practical applications in chemistry.

86

3 Equivalent atom maps and ITSs

3.1 Equivalence of bijective maps

The fact that α and β are bijective makes it possible to simplify Γ(G,H,α)

further. To this end we first associate the information that e ∈ E(Γ) is

contained in E(G) or E(H) explicitly with the edge by replacing the edge

label b(xy) by (b(xy), i) if both a(x) = (a′(x), i) and a(y) = (a′(y), i)

for i = 1, 2, i.e., xy ∈ E(G) and xy ∈ E(H), respectively. Denote the

auxiliary graph with these augmented edge labels by Γ̂(G,H,α). Clearly

ζ ∈ ISO(Γ,Γ′) if and only if ζ ∈ ISO(Γ̂, Γ̂′). To see this, it suffices

to note that ζ ∈ ISO(Γ,Γ′) satisfies ζ(x) ∈ V (G′) for x ∈ V (G) and

ζ(x) ∈ V (H ′) for x ∈ V (H) and thus bΓ(xy) = bΓ(ζ(x)ζ(y)) implies

bΓ̂(xy) = bΓ̂(ζ(x)ζ(y)), i.e., the augmented labeling does not break any

isomorphisms.

As a second step we construct another graph Υ̂(G,H,α) from Γ̂(G,H,

α) by contracting the matching E(α), see Fig. 3. That is, we set V (Υ̂) =

V (G) and identify the vertices x and α(x) and the edges xy and α(x)α(y).

To keep track of the information associated with the contracted vertices,

we associate with x the vertex label aΥ̂(x) := (aΓ̂(x), aΓ̂(α(x))) and with

each edge in xy ∈ E(Υ̂) the following labels:

(i) bΥ̂(xy) := (bΓ̂(xy), bΓ̂(α(x)α(y))) if xy ∈ E(Γ) and α(x)α(y) ∈ E(Γ).

(ii) bΥ̂(xy) := (bΓ̂(xy), ∗) if xy ∈ E(Γ) and α(x)α(y) /∈ E(Γ).

(iii) bΥ̂(xy) := (∗, bΓ̂(α(x)α(y))) if xy /∈ E(Γ) and α(x)α(y) ∈ E(Γ).

Note these three cases are mutually exclusive and cover all edges in Υ̂.

Given such a graph, we can recover Γ̂ unambiguously by splitting each

vertex and assigning the vertex label (a(x), 1) to one copy and (a(α(x)), 2)

to the other. Then edges with labels bΓ̂(xy) are inserted between vertices x

and y with vertex labels (aG(x), 1) and (aG(y), 1) and edges bΓ̂(α(x)α(y))

are inserted between vertices α(x) and α(y) with vertex labels (aH(α(x)),

2) and (aH(α(y)), 2). No edges are inserted for labels of the form (∗, ·)
between the first type of vertices. Correspondingly edges with labels of the

87

form (·, ∗) are ignored with regard to the second type of vertices. Clearly,

this construction recovers Γ̂ from Υ̂.

Lemma 4. Suppose α : V (G) → V (H) and β : V (G′) → V (H ′) are

bijective. Then Γ̂(G,H,α) ≃ Γ̂(G′, H ′, β) if and only if Υ̂(G,H,α) ≃
Υ̂(G′, H ′, β).

Proof. We verify that every isomorphism in ISO(Γ̂(G,H,α), Γ̂(G′, H ′, β))

can be translated into an isomorphism in ISO(Υ̂(G,H,α), Υ̂(G′, H ′, β))

and vice versa.

Claim 1. If ζ ∈ ISO(Γ̂(G,H,α), Γ̂(G′, H ′, β)), then the restriction ζG of

ζ to V (G) satisfies ζG ∈ ISO(Υ̂(G,H,α), Υ̂(G′, H ′, β)).

Proof of the Claim. The vertex labels in Γ̂ := Γ̂(G,H,α) and Γ̂′ :=

Γ̂(G′, H ′, α) unambiguously identify V (G), V (H), V (G′) and V (H ′), re-

spectively and ensure that the restriction ζG of ζ to V (G) is a map

ζG : V (G) → V (G′). By Thm. 1 furthermore, α and β are equivalent

since ζ is an isomorphism, thus we have ζ(α(x)) = β(ζ(x)) and hence

ζG(α(x)) = β(ζG(x)) for all x ∈ V (G) since we identified x and α(x).

First we show that ζG preserves vertex labels. Using ζG(x) = ζ(x),

aG′(ζ(x)) = aG(x), and aH′(ζ(α(x))) = aH′(β(ζ(x))) = aH(α(x)) to-

gether with the definition of the vertex labels in Υ̂′ := Υ̂(G′, H ′, β) yield

aΥ̂′(ζG(x)) = ((aG′(ζG(x)), 1), (aH′(β(ζG(x))), 2)) =

((aG(x), 1), (aH(α(x)), 2)) = aΥ̂(x) for all x ∈ V (G).

Suppose x, y ∈ V (G), x ̸= y and xy /∈ E(Υ̂). Then by construc-

tion xy /∈ E(Γ̂) and α(x)α(y) /∈ E(Γ̂) and thus ζ(x)ζ(y) /∈ E(Γ̂′) and

α(ζ(x))α(ζ(y)) = ζ(β(x))ζ(β(y) /∈ E(Γ̂′), which, by definition of Υ̂′ im-

plies ζG(x)ζG(y) /∈ E(Υ̂′). On the other hand, if xy ∈ E(Υ̂) then xy ∈
E(Γ̂) or α(x)α(y) ∈ E(Γ̂) and hence ζ(x)ζ(y) ∈ E(Γ̂′) or α(ζ(x))α(ζ(y)) =

ζ(β(x))ζ(β(y)) ∈ E(Γ̂′), which in turn implies ζG(x)ζG(y) ∈ E(Υ̂′). For

the edge labels we observe bΓ̂′(ζG(x)ζG(y)) = bΓ̂(xy) whenever xy ∈ E(Γ̂′)

and bΓ̂′(β(ζG(x))β(ζG(y))) = bΓ̂′(ζG(α(x))ζG(α(y))) = bΓ̂(α(x)α(y)) whe-

never α(x)α(y) ∈ E(Γ̂). Since xy ∈ E(Γ̂) iff ζG(x)ζG(y) ∈ E(Γ̂′) and

α(x)α(y) ∈ E(Γ̂) iff β(ζG(x))β(ζG(y)) ∈ E(Γ̂′), we see that ζG also pre-

serves the edge labels of the form (bΓ̂(xy), ∗) and (∗, bΓ̂(α(x)α(y))). We

conclude that ζG ∈ ISO(Υ̂, Υ̂′). ◁

88

Claim 2. Let ξ ∈ ISO(Υ̂(G,H,α), Υ̂(G′, H ′, β)) and let θ : V (Γ̂)→ V (Γ̂′)

be the map defined by θ(x) = ξ(x) for x ∈ V (G) and θ(y) := β(ξ(α−1(y)))

for y ∈ V (H). Then θ ∈ ISO(Γ̂(G,H,α), Γ̂(G′, H ′, β)).

Proof of the Claim. First we note that aΥ̂(x) = ((aG(x), 1), (aH(α(x)), 2))

and thus aΓ̂(x) = aG(x) for x ∈ V (G) and aΓ̂(α(x)) = aH(α(x)) for

x ∈ V (G). For x ∈ V (G) we have aΓ̂′(θ(x)) = aΓ̂′(ξ(x)) = aΓ̂(x). Since

for every z ∈ V (H) there is x ∈ V (G) with z = α(x). Thus for z ∈ V (H)

there is a unique x = α−1(z) with vertex label ((aG(x), 1), (aH(z), 2)). It is

mapped to ξ(x) = ξ(α−1(z)) with label ((aG′(ξ(x)), 1), (aH′(β(ξ(x)), 2)).

Since ξ is an isomorphism, it preserves vertex labels and thus aΓ̂(z) =

aΓ̂′(β(ξ(x))) = aΓ̂′(β(ξ(α−1(z)))) = aΓ̂′(θ(z)).

Now consider two distinct vertices x, y ∈ V (Γ̂). If x ∈ V (G) and

y ∈ V (H) then xy ∈ E(Γ̂) if and only if y = α(x). In this case we have

θ(x)θ(y) = ξ(x)β(ξ(α−1(y))) = ξ(x)β(ξ(x)), and thus θ(x)θ(y) ∈ E(Γ̂′).

For given x ∈ V (G), this is the only edge xu ∈ E(Γ̂′) with u ∈ V (H). Next

suppose x, y ∈ V (G). Then xy ∈ E(Γ̂) if xy ∈ E(Υ̂) and the edge label has

first coordinate bG(xy), i.e., bΓ̂(xy) = bG(xy). Then θ(x)θ(y) = ξ(x)ξ(y) ∈
E(Υ̂′) with first coordinate of the label bΓ̂′(ξ(x)ξ(y)) = bG′(ξ(x)ξ(y)) =

bG(xy). Hence we have bΓ̂′(θ(x)θ(y)) = bΓ̂(xy). Now consider x̄ = α(x)

and ȳ = α(y). Then x̄ȳ ∈ E(Γ̂) if xy ∈ E(Υ̂) and the second coordinate of

the edge label is bH(α(x)α(y)). Then β(ξ(x))β(ξ(y)) ∈ E(Υ̂′) with second

coordinate of the edge label bΓ̂′(β(ξ(x))β(ξ(y))) = bH(α(x)α(y)) since ξ

is an isomorphism. Since α is a bijection, there are unique x̄, ȳ ∈ V (H)

such that x = α−1(x̄) and y = α−1(y). Thus we have bΓ̂′(θ(x̄)θ(ȳ)) =

bΓ̂′(β(ξ(α−1(x̄)))β(ξ(α−1(ȳ)))) = bH(x̄ȳ) for all x̄ȳ ∈ E(H). It follows

that θ ∈ ISO(Γ̂, Γ̂′). ◁

By Claim 1, Γ̂(G,H,α) ≃ Γ̂(G′, H ′, β) yields Υ(G,H,α) ≃ Υ(G′, H ′,

β). Conversely, Υ̂(G,H,α) ≃ Υ̂(G′, H ′, β) implies Γ̂(G,H,α) ≃ Γ̂(G′, H ′,

β) because of Claim 2, and thus the assertion of the Lemma.

We summarize the discussion of this section as follows:

Theorem 2. Suppose G ≃ G′ and H ≃ H ′ and α : V (G) → V (H) and

β : V (G′) → V (H ′) are bijective. Then α ≡ β if and only if the labeled

auxiliary graphs Υ̂(G,H,α) and Υ̂(G′, H ′, β) are isomorphic.

89

Proof. By Thm. 1 we have α ≡ β iff Γ(G,H,α) ≃ Γ(G′, H ′, β), which in

turn is equivalent with Γ̂(G,H,α) ≃ Γ̂(G′, H ′, β), and by Lemma 4, this

condition in turn holds if and only if Υ̂(G,H,α) ≃ Υ̂(G′, H ′, β).

3.2 Equivalence of atom maps

From a practical point of view, the most important application of map

equivalence is the comparison of atom maps.

Definition 3. An atom map α : V (G) → V (H) is a bijective map that

preserves vertex labels, i.e., aH(α(x)) = aG(x) for all x ∈ V (G).

Two atom maps α and β are “chemically the same”, if the graphs G

and H can be renumbered in such a way that α and β coincide, i.e., if

α ≡ β for a pair of isomorphic reactant and product graphs G ≃ G′ and

H ≃ H ′, respectively.

Now suppose α : V (G)→ V (H) is not only bijective but also preserves

vertex labels, α is an atom map. Then we have

aΥ̂(x) = ((aG(x), 1), (aH(α(x)), 2)) = ((aG(x), 1), (aG(x), 2)),

i.e., the vertex label is already completely determined by aG(x). We may

therefore simplify the vertex labels and obtain Υ from Υ̂ by setting aΥ(x) =

ã whenever aΥ̂(x) = ((ã, 1), (ã, 2)). It is obvious that the relabeling does

not affect isomorphisms.

Tracing back the stepwise construction of Υ(G,H,α) and noting that

bΓ̂(xy) = bG(xy) for xy ∈ E(G) and bΓ̂(xy) = bH(α(x)α(y)) for α(x)α(y) ∈
E(H) yields the following observation:

Lemma 5. Let α : V (G)→ V (H) be an an atom map. Then Υ(G,H,α)

is the graph with vertex set V (G), vertex labels aΥ(x) = aG(x) for all

x ∈ V (G), an edges xy ∈ E(Υ) if and only if xy ∈ G or α(x)α(y) ∈ E(H),

and edge labels

b(xy) =

(bG(xy), bH(α(x)α(y))) if xy ∈ E(G) and α(x)α(y) ∈ E(H)

(bG(xy), ∗) if xy ∈ E(G) and α(x)α(y) /∈ E(H)

(∗, bH(α(x)α(y))) if xy /∈ E(G) and α(x)α(y) ∈ E(H)

90

The graph specified in Lemma 5 is (a version of) the Imaginary Transi-

tion State (ITS) and the Condensed Graph of a Reaction (CGR) [22]. The

ITS was introduced by Shinsaku Fujita already in 1986 as “an extended

kind of chemical structure” That encodes reactants, products, and atom

mappings within a single, undirected, connected graph [14]. The CGR

was proposed a decade ago [22] as a condensed representation of chemical

reaction with machine learning applications in mind. Both graphs are es-

sentially the same, apart from details of the convention used to annotate

the changing bonds. An essentially equivalent formulation in terms of the

adjacency matrices of G and H was proposed already in 1973 [12]. We

refer to Υ(G,H,α) as ITS in the context of chemical reactions.

In chemical terms, the ITS Υ(G,H,α) provides a complete description

of a chemical reaction. From Thm. 2 and Lemma 5 we obtain

Corollary 1. Let G ≃ G′, H ≃ H ′ and suppose α : V (G) → V (H) and

β : V (G′) → V (H ′) are atom maps. Then α ≡ β if and only if the ITSs

Υ(G,H,α) and Υ(G′, H ′, β) are isomorphic.

This result provides a rigorous justification for the computational ap-

proach in [28] to compare atom maps by testing for isomorphisms of their

ITSs (or CGRs). Nevertheless we should add that the authors of [28]

and [36] introduced and made use of a manually curated set of reactions

for their benchmarking purposes, which they refer to as Golden data set

and which consists of both stoichiometrically balanced and unbalanced re-

actions. In our contribution we also made use of this data set for our own

computational analysis, but we only employed the former type of reac-

tions, since it should be noted that the use of the latter type is in conflict

with the formal requirement now established by Cor. 1, regarding α and

β as bijective maps in order to properly use the ITSs (or CGRs) for the

comparison of atom maps. This is of relevance for the next section.

Recall that all molecular graphs, i.e., graphs representing molecules,

have bounded degree. This is trivially also true for the educt and product

graph of every chemical reaction. As an immediate consequence, the ITS of

any chemical reaction also has bounded degree. Since graph isomorphism

can be tested in polynomial time for bounded degree [31] we have:

91

Corollary 2. The equivalence of two atom maps for any given chemical

reactions can be decided in polynomial time.

4 Computational analysis

The mathematical results developed in the last sections, specifically Le-

mma 2, Thm. 1 and Cor. 1, can be readily converted into algorithms.

With them we built the software EEquAAM (Evaluation of the Equivalence

of Atom-to-Atom Maps), a computational toolkit for the automatic com-

parison of atom maps implemented in Python. In order to assess the

practical utility of the auxiliary graphs Γ(G,H,α) and Υ(G,H,α), respec-

tively, we make both a direct comparison of atom maps (called ISO-≡ in

the following), and isomorphism tests on both types of auxiliary graphs

(referred to as AUX-Γ and ITS-Υ below). To benchmark the three meth-

ods, we use both known chemical reactions and a set of artificial reactions.

Since atom maps are bijective by definition, we consider only maps that

represent stoichiometrically balanced reactions as input, i.e., G andH have

the same number of vertices for each label. In the remainder of this sec-

tion we describe the implementation and benchmarking of EEquAAM. The

software and accompanying material is available at github [16].

4.1 Methodology and implementation

The three approaches are implemented in the following manner:

ISO-≡ Using Lemma 2, one can test for α ≡ β by first generating

all isomorphisms ISO(G,G′) and ISO(H,H ′), computing ψ = β ◦ φ ◦ α−1

and checking whether ψ ∈ ISO(H,H ′). We note that one can generate

ISO(G,G′) by means of a single fixed isomorphism θ ∈ ISO(G,G′) and

all the automorphisms η ∈ Aut(G) as φ = θ ◦ η. Most atom mapping

tools, however, operate by assigning unique integer labels to the vertices

of G and H such that the atom maps α and β are later expressed as the

identity map over these integers. Tools, and thus atom maps, differ only in

the numbering of the vertices. Thus ISO(G,G′) and ISO(H,H ′) are sets

of permutations living on the same numbering of vertices. Since α and β

92

are the identity we have β ◦ φ ◦ α−1 = φ and the condition in Lemma 2

simplifies: the two atom maps are equivalent if there is a renumbering φ

that is simultaneously an isomorphism for G ≃ G′ and H ≃ H ′, i.e.,

α ≡ β ⇐⇒ ISO(G,G′) ∩ ISO(H,H ′) ̸= ∅ ,

AUX-Γ The graphs Γ(G,H,α) and Γ(G′, H ′, β) are constructed as

specified in Def. 2. We then check directly for the existence of a label-

preserving isomorphism from Γ(G,H,α) to Γ(G′, H ′, β), which by Thm. 1

is equivalent to α ≡ β.

ITS-Υ The ITS graphs Υ(G,H,α) and Υ(G′, H ′, β) and constructed

stepwise starting from the edge-less graph with double-labeled vertices.

Then the edge lists of G and H (or G′ and H ′, respectively) are traversed

consecutively, with labels set as described in Lemma 5.

These three methods where implemented by making use of various

python packages. We used Pysmiles [26] to process the input reaction

SMILES. The NetworkX [19] library was used to construct and manipulate

graphs. Enumeration of the isomorphism ISO(G,G′) and ISO(H,H ′) as

well as isomorphism tests for Γ(G,H,α) ≃ Γ(G′, H ′, β) and Υ(G,H,α) ≃
Υ(G′, H ′, β) were performed with the implementation of the VF2 algo-

rithm [10] available in NetworkX. This implementation in particular allows

enforcing the conservation of both vertex and edge labels. Moreover, we

used Numpy [21] to process running time statistics and Matplotlib [23] for

the visualization of the results. The Python programs are available as part

of the EEquAAM suite.

We used three representative atom-mapping tools to produce test data:

(1) the Reaction Decoder Tool (RDT) [42–44] implementing four different

variations of the maximal common (vertex) subgraph methodology (MCS).

(2) RXNmapper (RXN) [46], described by its authors as a chemically ag-

nostic attention-guided reaction mapper, built over a Transformer Neu-

ral Network architecture and operating on reaction SMILES. Lastly (3)

GraphormerMapper [36] is also based on a Transformer Neural Network

architecture. The EEquAAM suite also provides a wrapper for these tools to

interact with the comparison methods mentioned above.

93

Figure 4. Distributions of the running times of the three methods for
the comparison of atom maps for the 318 suitable reactions
taken from the Golden data set.

To assess the performance of the different methods implemented in

EEquAAM we first used a subset of the Golden data set, which was origi-

nally collected with the aim of benchmarking atom mapping tools [28,36].

The full set consists of 1851 annotated reaction SMILES for which man-

ually curated atom maps are provided. Since the approaches taken here

require bijective maps, we restricted ourselves to the subset of 318 stoichio-

metrically balanced reactions. Moreover, the reaction mappers produced

complete atom maps for these 318 instances, providing us with 3 additional

maps to be compared against each other and against the supplied manually

curated one. Figure 4 summarizes the running times of the three methods

implemented in EEquAAM. On this data set, ISO-≡, AUX-Γ and ITS-Υ

have comparable running times, although the smaller ITS-Υ graphs as

expected provide a small performance advantage.

A closer inspection of the test set shows, however, that the vast ma-

jority of the 318 instances has very small automorphism groups. In more

than 60% of the instances |Aut(G)| ≤ 4 or |Aut(H)| ≤ 4, while auto-

morphism groups with a size larger than 100 appear in only 6 reactions.

In order to assess the effect of large automorphism groups we considered

artificial reactions with highly symmetric molecules. In such cases the

efforts necessary to enumerate ISO(G,G′) and ISO(H,H ′) dominate the

computational effort.

94

HO HO HO HO

O

C

Cl Cl

HO HO

+ + +

Step 1

O

C

O

C

Cl Cl

O

C 2 HCl

+ 2 HCl+ +

Step 2

HO O O HO

O

C

HO O O HO O HO

O

C

HO O O O

Figure 5. Polycondensation of bisphenol A (BPA) and phosgene. The
first two iterations of the condensation reaction are shown on
the top. Below, the distributions of the running times of the
three methods over the four steps of the polycondensation
reaction (left) and the average of running times as function
of the steps in the reaction and thus the number symmetries
in the molecules are shown.

The data clearly shows the practical advantage of using a single iso-

morphism test with the smaller ITS graphs over the alternatives. As a

real-world example we use the first four reaction steps of the polyconden-

sation reaction between bisphenol A (BPA) and phosgene [38], shown in

Fig. 5. The size of the respective automorphism groups can be verified

computationally. For Step 1 of this reaction we have |Aut(G)| = 1024

and |Aut(H)| = 256, while for Step 2 we have |Aut(G)| = 4096 and

|Aut(H)| = 2048. Moreover, the number of symmetries produced by Step

3 and Step 4 of this reaction far surpasses the most symmetric examples

in the Golden set, with |Aut(G)| = 32, 768 and |Aut(H)| = 16, 384 for

the former, and |Aut(G)| = 262, 144 and |Aut(H)| = 131, 072 for the lat-

ter. A fifth step of this reaction yields millions of symmetries and thus

the enumeration of automorphisms becomes prohibitive, as similar with

95

other larger polymers. It is worth noting that in this case the atom maps

produced by the three tools not only are pairwise inequivalent most of the

time, but rather they all are never equivalent. In this example we also find

a large benefit for the ITS graphs over the larger auxiliary graphs (0.5s

versus 40s). Although the graph isomorphism problem for bounded degree

graphs can be solved in polynomial time [31] in theory, the VF2 approach

does not provide such a guarantee.

5 Generalizations and open problems

In Section 2, we proved Thm. 1 for isomorphisms of labeled graphs. An

analogous result still holds for generalized isomorphisms provided the fol-

lowing conditions are satisfied:

(i) The restriction of generalized isomorphisms

ζ ∈ GI(Γ(G,H,α),Γ(G′, H ′, β)) to V (G) and V (H) induce general-

ized isomorphisms ζG : V (G)→ V (G′) and ζH : V (H)→ V (H ′).

(ii) The generalized isomorphisms ζ allow vertex labels that distinguish

two copies of a graph.

In this case, it suffices to ensure that the vertex labels on the auxil-

iary graph Γ are chosen such that, for all ξ ∈ GI(Γ,Γ), {aΓ(ξ(x))|x ∈
V (G)} ∩ {aΓ(y)|y ∈ V (H)} = ∅, i.e., that the augmented labels for reac-

tant and product side are disjoint. For convenience we also assume that

label for the “mapping edges” e ∈ E(α), i.e., b(e) = ∗, is chosen such that

bΓ(xy) = ∗ implies bΓ(ξ(x)ξ(y)) = ∗. Then it is easy to check that one can

replace ISO(G,G′), ISO(H,H ′), and ISO(Γ,Γ′) by GI(G,G′), GI(H,H ′),

and GI(Γ,Γ′). The practical use of this generalization is that, in particu-

lar, one can relax conditions on matching of labels. For instance, in [41]

bond labels were ignored during the determination of chemically equiva-

lent atoms. In the simplest case, equivalence classes of labels are defined.

One can then relabel the graphs with fixed representatives and work with

isomorphisms on the relabeled objects.

Another useful generalization considers partial maps, i.e., bijections

between induced subgraphs Gs and Hs of G and H, respectively. Partial

96

maps of this type appear e.g. in various types of “graph alignments” [8].

The construction of the ITS is naturally extended by vertex label (aG(x), ∗)
and (∗, aH(y)) for x ∈ V (G) \ V (Gs) and y ∈ V (H) \ V (Hs), respectively.

The approach is not limited to labeled graphs. It is also possible to

consider set systems that have faithful graph representations. For instance

undirected hypergraphs, as well as the directed hypergraphs with multi-

plicities that represent reactions networks [35] can be represented by their

König graphs [49], in which both vertices and hyperedges become nodes

(distinguished by distinct labels), while edges indicate the incidence of

vertices and hyperedges. We suspect that very general set systems admit

such faithful representations as labeled graphs. For instance, hierarchical

clustering systems are equivalent to rooted trees. Another example are

partially ordered sets and their Hasse diagrams.

Double Push-Out (DPO) graph grammars are particularly suitable as

models of chemistry because the rules are reversible by construction and

provide direct access to corresponding atom maps [2]. In this framework,

each rule is a span L ← K → R, where the “context” K is the subgraph

common to the pattern L that needs to be present in the educts and in

its replacement R that appears in the products. The application of the

rule L ← K → R to a reactant graph G corresponds to the commutative

diagram

L
λ←−−−− K

ρ−−−−→ Ryµ

y y
G ←−−−− Q −−−−→ H

(1)

where G ← Q → H denotes the rewriting of G into H, with Q denoting

the common subgraph of both G and H that is left unaffected by the

transformation.

The notion of map equivalence ≡ naturally generalizes to such dia-

grams containing multiple maps. Two diagrams are equivalent if there

are isomorphisms between corresponding objects that commute with the

maps between them. The construction of the auxiliary graph Γ thus gener-

alizes immediately to diagrams, provided care is taken that the individual

objects are assigned disjoint sets of vertex labels and thus remain iden-

97

tifiable. For example one can use the auxiliary graphs Γ(G ← Q → H)

and Γ(G′ ← Q′ → H ′) to check whether two DPO graphs transformations

are the equivalent. The same principle applies to the concatenations of

reactions or rules [2]. Thus a joint graph representation of a sequence of

atom maps can be used to check for the equivalence of entire pathways

of reactions. We note in passing that, as an immediate consequence, iso-

morphy of the “overlap graphs” introduced in [1] is a necessary but not a

sufficient condition for the equivalence of multi-step reactions.

The use of GI(G,G′) in parts of this contribution instead of ISO(G,G′)

was motivated by notions of “chemical equivalence” that are not nec-

essarily expressed by equivalence classes of edge and vertex labels. A

good example are resonance structures [15]. For instance o-xylol (1,2-

dimethylbenzene) may be represented with a single or a double bond be-

tween the two methyl groups. These two structures are chemical equivalent

but distinct as labeled graphs. The generation of resonance structures was

explored in [17], who give an algorithm that uses local graph transforma-

tions. We are not aware, however, of an algorithm that reliable recognizes

the equivalence of resonance structures, although at least part of the is-

sues are addressed by the PubChem chemical structure standardization

protocol [20]. Similar issues may arises when stereochemical information

is encoded as edge labels (wedge-and-dash notation [9]), or as a circular

order of the neighbors at each vertex [3, 40].

Acknowledgment : This work was supported in part by the Novo Nordisk
Foundation (grant NNF21OC0066551 “MATOMICS”) and the German
Research Foundation (DFG) in the Priority Program SPP2363 (grant no
STA 850/58-1 497135079). The authors acknowledge the financial support
by the Federal Ministry of Education and Research of Germany and by
the Sächsische Staatsministerium für Wissenschaft Kultur und Tourismus
in the program Center of Excellence for AI-research “Center for Scalable
Data Analytics and Artificial Intelligence Dresden/Leipzig”, project iden-
tification number: ScaDS.AI.

98

References

[1] J. L. Andersen, R. Fagerberg, C. Flamm, W. Fontana, J. Kolčak,
C. V. F. P. Laurent, D. Merkle, N. Nøjgaard, Representing catalytic
mechanisms with rule composition, J. Chem. Inf. Model. 62 (2022)
5513–5524.

[2] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Inferring chemi-
cal reaction patterns using graph grammar rule composition, J. Syst.
Chem. 4 (2013) #4.

[3] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Chemi-
cal graph transformation with stereo-information, in: J. de Lara,
D. Plump (Eds.), 10th International Conference on Graph Transfor-
mation (ICGT 2017), Springer, Heidelberg, 2017, pp. 54–69.

[4] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Rule composi-
tion in graph transformation models of chemical reactions, MATCH
Commun. Math. Comput. Chem. 80 (2018) 661–704.

[5] J. L. Andersen, D. Merkle, A generic framework for engineering graph
canonization algorithms, ACM J. Exp. Alg. 25 (2020) #1.2.

[6] L. Babai, Groups, graphs, algorithms: The graph isomorphism prob-
lem, in: B. Sirakov, P. Ney de Souza, M. V. Viana (Eds.), Proceedings
of the International Congress of Mathematicians (ICM 2018), World
Scientific, Singapore, 2019, pp. 3303–3320.

[7] G. Benkö, C. Flamm, P. F. Stadler, A graph-based toy model of
chemistry, J. Chem. Inf. Comput. Sci. 43 (2003) 1085–1093.

[8] J. Berg, M. Lässig, Local graph alignment and motif search in biolog-
ical networks, Proc. Nat. Acad. Sci. USA 101 (2004) 14689–14694.

[9] J. Brecher, Graphical representation of stereochemical configuration
(IUPAC Recommendations 2006), Pure Appl. Chem. 78 (2006) 1897–
1970.

[10] L. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub)graph isomor-
phism algorithm for matching large graphs, IEEE Trans. Patt. Anal.
Machine Intell. 26 (2004) 1367–1372.

[11] E. Duesbury, J. Holliday, P. Willett, Comparison of maximum com-
mon subgraph isomorphism algorithms for the alignment of 2D chem-
ical structures, ChemMedChem 13 (2018) 588–598.

99

[12] J. Dugundji, I. Ugi, An algebraic model of constitutional chemistry
as a basis for chemical computer programs, Topics Curr. Chem. 39
(1973) 19–64.

[13] H. C. Ehrlich, M. Rarey, Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review,
WIREs 1 (2011) 68–79.

[14] S. Fujita, Description of organic reactions based on imaginary transi-
tion structures. 1. introduction of new concepts, J. Chem. Inf. Com-
put. Sci. 26 (1986) 205–212.

[15] E. D. Glendening, C. R. Landis, F. Weinhold, Resonance theory re-
boot, J. Am. Chem. Soc. 141 (2019) 4156–4166.

[16] M. E. González Laffitte, N. Beier, N. Domschke, P. F. Stadler, EE-
quAAM: Github repository for the evaluation of the equivalence
of atom-to-atom maps, https://github.com/MarcosLaffitte/

EEquAAM, created on January 17th, 2023.

[17] A. Grinberg Dana, M. Liu, W. H. Green, Automated chemical reso-
nance generation and structure filtration for kinetic modeling, Int. J.
Chem. Kinetics 51 (2019) 760–776.

[18] M. Grohe, P. Schweitzer, Exploring the theoretical and practical as-
pects of the graph isomorphism problem, Comm. ACM 63 (2022)
128–134.

[19] A. A. Hagberg, D. A. Schult, P. J. Swart, Exploring network struc-
ture, dynamics, and function using NetworkX, in: G. Varoquaux,
T. Vaught, J. Millman (Eds.), Proceedings of the 7th Python in Sci-
ence Conference, Pasadena, 2008, pp. 11–15.

[20] V. D. Hähnke, S. Kim, E. E. Bolton, PubChem chemical structure
standardization, J Cheminform. 10 (2018) #36.

[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-
tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Hal-
dane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E.
Oliphant, Array programming with NumPy, Nature 585 (2020) 357–
362.

https://github.com/MarcosLaffitte/EEquAAM
https://github.com/MarcosLaffitte/EEquAAM

100

[22] F. Hoonakker, N. Lachiche, A. Varnek, A. Wagner, A representation
to apply usual data mining techniques to chemical reactions – illus-
tration on the rate constant of SN2 reactions in water, Int. J. Artif.
Intell. Tools 20 (2011) 253–270.

[23] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci.
Engin. 9 (2007) 90–95.

[24] C. Jang, L. Chen, J. D. Rabinowitz, Metabolomics and isotope trac-
ing, Cell 173 (2018) 822–837.

[25] W. Jaworski, S. Szymkuć, B. Mikulak-Klucznik, K. Piecuch,
T. Klucznik, M. Kaźmierowski, J. Rydzewski, G. Anna, B. A. Grzy-
bowski, Automatic mapping of atoms across both simple and complex
chemical reactions, Nat. Comm. 10 (2019) #1434.

[26] P. C. Kroon, Pysmiles, https://github.com/pckroon/pysmiles.

[27] M. Latendresse, M. Krummenacker, P. D. Karp, Optimal metabolic
route search based on atom mappings, Bioinformatics 30 (2014)
2043–2050.

[28] A. Lin, N. Dyubankova, T. I. Madzhidov, R. I. Nugmanov, J. Ver-
hoeven, T. R. Gimadiev, V. A. Afonina, Z. Ibragimova, A. Rakhim-
bekova, P. Sidorov, A. Gedich, S. Rail, R. Mukhametgaleev, J. Weg-
ner, H. Ceulemans, A. Varnek, Atom-to-atom mapping: A bench-
marking study of popular mapping algorithms and consensus strate-
gies, Mol. Inf. 41 (2021) #2100138.

[29] E. E. Litsa, M. I. Peña, M. Moll, G. Giannakopoulos, G. N. Bennett,
L. E. Kavraki, Machine learning guided atom mapping of metabolic
reactions, J. Chem. Inf. Model. 59 (2019) 1121–1135.

[30] E. Luks, Permutation groups and polynomial-time computation, in:
L. A. Finkelstein, W. M. Kantor (Eds.), Groups and Computation,
AMS, Providence, 1993, pp. 139–175.

[31] E. M. Luks, Isomorphism of graphs of bounded valence can be tested
in polynomial time, J. Comp. Syst. Sci. 25 (1982) 42–65.

[32] M. Mann, F. Nahar, N. Schnorr, R. Backofen, P. F. Stadler,
C. Flamm, Atom mapping with constraint programming, Alg. Mol.
Biol. 9 (2014) #23.

[33] R. Mathon, A note on the graph isomorphism counting problem, Inf.
Proc. Lett. 8 (1979) 131–136.

https://github.com/pckroon/pysmiles

101

[34] B. D. McKay, A. Piperno, Practical graph isomorphism II, J. Symb.
Comp. 60 (2014) 94–112.

[35] S. Müller, C. Flamm, P. F. Stadler, What makes a reaction network
“chemical”? J. Cheminform. 14 (2022) #63.

[36] R. Nugmanov, N. Dyubankova, A. Gedich, J. K. Wegner, Bidi-
rectional graphormer for reactivity understanding: Neural network
trained to reaction atom-to-atom mapping task, J. Chem. Inf. Model.
62 (2022) 3307–3315.

[37] R. I. Nugmanov, R. N. Mukhametgaleev, T. Akhmetshin, T. R.
Gimadiev, V. A. Afonina, T. I. Madzhidov, A. Varnek, CGRtools:
Python library for molecule, reaction, and condensed graph of reac-
tion processing, J. Chem. Inf. Model. 59 (2019) 2516–2521.

[38] M. Okamoto, A polycarbonate-made optical article and method of
preparation therefor, Google Patents, 1989, eP0305214A2.

[39] N. Osório, P. Vilaça, M. Rocha, A critical evaluation of automatic
atom mapping algorithms and tools, in: F. Fdez-Riverola, M. S.
Mohamad, M. Rocha, J. F. De Paz, T. Pinto (Eds.), 11th Interna-
tional Conference on Practical Applications of Computational Biology
& Bioinformatics, Springer, Basel, 2017, pp. 257–264.

[40] A. E. Petrarca, M. F. L. Lynch, J. E. Rush, A method for generating
unique computer structural representations of stereoisomers, J. Chem.
Doc. 7 (1967) 154–165.

[41] G. A. Preciat Gonzalez, L. R. P. El Assal, A. Noronha, I. Thiele, H. S.
Haraldsdóttir, R. M. T. Fleming, Comparative evaluation of atom
mapping algorithms for balanced metabolic reactions: application to
recon 3D, J Cheminform. 9 (2017) #3.

[42] S. A. Rahman, M. Bashton, G. L. Holliday, R. Schrader, J. M. Thorn-
ton, Small Molecule Subgraph Detector (SMSD) toolkit, J. Chemin-
form. 1 (2009) #12.

[43] S. A. Rahman, S. M. Cuesta, N. Furnham, G. L. Holliday, J. M.
Thornton, EC-BLAST: a tool to automatically search and compare
enzyme reactions, Nature Methods 11 (2014) 171–174.

[44] S. A. Rahman, G. Torrance, L. Baldacci, S. Mart́ınez Cuesta, F. Fen-
ninger, N. Gopal, S. Choudhary, J. W. May, G. L. Holliday, C. Stein-
beck, J. M. Thornton, Reaction Decoder Tool (RDT): extracting fea-
tures from chemical reactions, Bioinformatics 32 (2016) 2065–2066.

102

[45] F. Rossello, G. Valiente, Chemical graphs, chemical reaction graphs,
and chemical graph transformation, El. Notes Theor. Comp. Sci. 127
(2005) 157–166.

[46] P. Schwaller, B. Hoover, J. L. Reymond, H. Strobelt, T. Laino, Ex-
traction of organic chemistry grammar from unsupervised learning of
chemical reactions, Sci. Adv. 7 (2021) #eabe4166.

[47] C. Starke, A. Wegner, MetAMDB: Metabolic atom mapping database,
Metabolites 12 (2022) #122.

[48] A. V. Zeigarnik, On hypercycles and hypercircuits in hypergraphs,
in: P. Hansen, P. W. Fowler, M. Zheng (Eds.), Discrete Mathematical
Chemistry , AMS, Providence, 2000, pp. 377–383.

[49] A. A. Zykov, Hypergraphs, Usp. Mat. Nauk 29 (1974) 89–154.

	Introduction
	Equivalence of maps
	Notation and basic definitions
	Reduction to graph isomorphism

	Equivalent atom maps and ITSs
	Equivalence of bijective maps
	Equivalence of atom maps

	Computational analysis
	Methodology and implementation

	Generalizations and open problems

