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Abstract

Machine learning is increasingly popular in predicting chemi-
cal reaction performance. This study aims to apply the CatBoost
algorithm to build an intelligent prediction system for organic chem-
ical reaction yields. The parameter analysis, convergence analysis,
prediction accuracy analysis and generalization analysis are carried
out. Then, the internal relationship between reaction conditions
and yield is excavated through feature importance and SHAP. The
results show that the proposed method has the potential as a high-
precision tool to assist the optimization of chemical reaction system.
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1 Introduction

At present, a new round of scientific and technological revolution and in-

dustrial transformation are advancing by leaps and bounds. The interdis-

ciplinary integration is developing continuously and emerging technologies

represented by information technology and artificial intelligence are devel-

oping rapidly. The cross-integration of artificial intelligence algorithms and

chemical disciplines, and through theoretical modeling and technological

innovation, the research on complex chemical reactions can be carried out

with the help of high-speed computer processing capabilities. It is of great

significance to carry out intelligent experiments such as synthesis, and

prediction to promote the development of academic research. Recently,

Artificial intelligence has shown great application potential in the fields of

chemical reaction performance [1–5], compound property prediction[6-9],

high-performance materials design [10–12], organic synthesis [13,14].

With the help of computer technology, researchers calculate, screen or

encode the information in the chemical system in a certain form to form a

certain expression of chemical information, i.e., descriptor. The research

in the field of chemistry is transformed into the processing of data, which

reduces the dependence on personnel to a certain extent. Artificial intelli-

gence algorithms can also mine the potential information inside the large

amount of experimental data generated in chemical reaction experiments,

helping chemists make reasonable predictions and analysis and greatly

improving the efficiency of chemical research and development. A lot of

research shows that the artificial intelligence model has high accuracy in

solving classification and regression problems. However, among these AI

algorithms, deep learning algorithms are like ”black box”, they cannot

explain the decision- making process, which is one of the criticisms of us-

ing machine learning and artificial intelligence for data research. While

they automatically provide useful answers, they do not provide explain-

able output [15–17]. As a result, we often fail to understand what they are

doing and how. Therefore, the researchers considered using an ensemble

tree model that is easy to analyze and explain to predict the performance

of chemical reactions. In 2018, Ahneman et al. [18] reported the predic-
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tion of Buchwald-Hartwig amination yield by Random Forest , which is an

advanced study of machine learning methods in the field of multidimen-

sional chemical space prediction. The success of this study has promoted

the development of chemical synthesis methods and the study of chemical

reaction properties. In ref. [18], the molecular structure is transformed

into data descriptors that can be recognized and calculated by computer;

The reaction yield data under different reaction conditions were obtained

through the high-throughput experimental platform, including different

reaction combinations composed of 23 isoxazole additives, 15 aryls and

heteroaryl halides, 4 Pd catalyst ligands, and 3 bases. The yields of these

reactions are used as the model output. A total of 3960 effective reac-

tion data are generated here. Then, 120 kinds of atomic, molecular and

vibration descriptors were obtained through Spartan software calculation

and Python script extraction. The Buchwald-Hartwig amination reaction

equation and all its reaction components are shown in Figure 1. Finally,

using the Random Forest [19] model: 120 descriptors as input, yield as

output (70% of reaction data as training set and 30% as test set), the

yield was predicted with an accuracy of RMSE = 7.80, R²= 0.92. How-

ever, the work of Ahneman et al. still has the following shortcomings:

First, the computational cost of high-dimensional data is high; Second,

the Random Forest algorithm has some limitations in the regression pre-

diction: (i) when the number of trees is large, the model training will be

slower and time consuming. (ii) If there is noise in the training data of

some regression problems, the random forest will overfit.

Therefore, the focus of this paper is to use the feature descriptors corre-

sponding to the reaction conditions after feature screening [20,21], and use

the ensemble tree model to build an intelligent prediction system for chem-

ical reaction yield, and explore the internal relationship between reaction

conditions and yield deeply. The main contributions are as follows.

(1) A machine learning model called CatBoost [22], an ensemble tree

model with superior performance to build a high-accuracy intelligent pre-

diction system for organic chemical reactions.

(2) The internal relationship between reaction conditions and yield can

be visualized to provide intelligent assistance for the optimization design
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of coupling reaction system.

(a)

(b)

Figure 1. Buchwald-Hartwig amination reaction equation and all its
reaction components. (a) A Buchwald-Hartwig amina-
tion was used as a model reaction for data generation.
Among them: Me, methyl; X, any halide; equiv, equiva-
lent; DMSO, dimethyl sulfoxide; L, ligand; OTf, triflate;
i-Pr, isopropyl; R, H or alkyl group; t-Bu, tert-butyl;
BTMG, t-butyltetramethylguanidine; MTBD, methyltriaz-
abicyclodecene; Et, ethyl. (b) All reaction components of
Buchwald-Hartwig amination reaction.

2 Methods

2.1 CatBoost model

Assume a data set of examples D = {(xk, yx)}k=1,...,n, xk = (xk1, ..., xkm)

is a random vector of m features, and yk ∈ R is a target, which can be

either categorical or numerical. Examples (xk, yk) are independent and

identically distributed according to some unknown distribution P (, ). The

goal of a learning task is to train a function F : Rm → R which minimizes

the expected loss L(F ) := EL(y, F (x)). L is a smooth loss function and
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(x, y) is a test example sampled from P independently of training set D.

The core of GBDT(Gradient Boosting Decision Tree) [23] is that each tree

learns the conclusions and residuals (negative gradients) of all previous

trees, and iteratively builds a sequence F t : Rm → R, t = 0, 1, ... in a

greedy manner, F t is obtained additively from the previous approximation

of F t−1:

F t=F t−1+αht (1)

where α is a step size, ht : Rm → R is a base predictor to minimize the

expected loss:

ht = argmin
h∈H

L
(
Ft−1 + h

)
= argmin

h∈H
EL

(
Ft−1(x) + h(x)

) (2)

Gradient step ht is chosen in such a way that ht(x) approximates

−gt(x, y), where −gt(x, y) := ∂L(y,s)
∂s

∣∣
s=F t−1(x) ,

ht=argmin
h∈H

EL(−gt(x, y)− h(x))
2

(3)

In reality, the expectation in (3) is unknown. Generally, usually approxi-

mated using the same data set D:

ht=argmin
h∈H

1

n
EL(−gt(xk, yk)− h(xk))

2
(4)

The chain of shifts is shown below:

(1) the conditional distribution of the gradient gt(xk, yk) |xk is shifted

from that distribution on a test example gt(x, y) |x
(2) as a result, the base predictor ht defined by (4) is biased with

respect to the solution of Equation (3)

(3) finally, affects the generalization ability of the trained model Ft

The above is the process of model Ft prediction shift. Standard gra-

dient boosting algorithms suffer from some subtle data leakage, which is

caused by the iterative fitting method of the model. For a prediction model

F that has undergone several enhancement steps, it depends on the target

value y of all training examples. In each iteration, the loss function uses
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the same data set to obtain the gradient of the current model, and then

train to get basic learner.

In order to avoid the problem of prediction bias caused by this leakage,

CatBoost introduces an ”artificial timeline” which can only be calculated

using reviously seen example. CatBoost uses the following tricks to handle

it: for each example Xk, train a separate model Mk that is never updated

using a gradient estimate for this example. WithMk, estimate the gradient

on Xk and use this estimate to score the resulting tree. That is, using

only the current model trained on previous samples to update the model’s

gradients on new samples, it provides unbiased residuals and gradients.

Usually in the GBDT framework, the process of building a decision

tree can be divided into two stages: selecting the structure of the tree and

calculating leaf nodes. In order to choose the best tree structure, in this

process, the different splits are enumerated, the tree is then constructed

from these splits, the values of the leaf nodes are obtained, the tree is

scored, and the best split is selected. In order to enhance the robustness

of the model, CatBoost first generates s+1 sequences σ0, σ1, ..., σs for the

training samples, which σ1, ..., σs are used to construct the decision tree, σ0

is used to select the value of the leaf nodes, and then use the unbiased esti-

mation of the gradient step size, and then carry out the standard GBDT.

In addition, CatBoost uses the symmetric tree [22, 24] as the base predic-

tor. Such trees are balanced and less prone to overfitting. The enhanced

forgetting tree has been successfully used in various learning tasks [25].

This particular weak learner significantly speeding up predictions at test

time.

2.2 SHAP value

In 2017, Lundberg and Lee proposed the SHAP value as a highly applicable

method to explain various models [26]. SHAP explains the predicted value

of the model as the sum of the attribution values of each input feature.

It [27–29] can reflect the positive and negative influence of the features

in each sample, which can combine with the CatBoost model to further

explain the relationship between features and predicted results. Assuming

that the i-th sample is xi, the j-th feature of the i-th sample is xi,j , the
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predicted value of the model for the i-th sample is yi, and the baseline

of the whole model (usually the mean value of the target variables of all

samples) is ybase, then the shake value obeys the following equation:

yi = ybase + f(xi,1) + f(xi,2) + ...+ f(xi,k) (5)

where f(xi,1) is the SHAP value of xi,j . Intuitively, f(xi,1) is the contri-

bution value of the first feature in the i-th sample to the final predicted

value yi. When it shows that f(xi,1) > 0, the feature improves the pre-

dicted value, it also has a positive effect. On the contrary, it shows that

the feature reduces the predicted value, which has a negative effect.

3 Results

The employed machine learning workflow was implemented by the Scikit-

learn package (version 0.24.2) in Python (version 3.6.13) or MATLAB

2018a.

3.1 Feature screening analysis

The feature descriptors data [20,21] is the input data of all algorithms later

in this study. As shown in Figure 2a,2b, after feature selection, the cor-

relation between descriptors is obviously removed. Then, the prediction

accuracy before and after feature screening is verified by Random For-

est. As shown in Figure 2c, using the 21 feature descriptors after feature

screening for prediction can achieve better prediction accuracy than the

original 120 feature descriptors data. It indicates that the 21 descriptors

can effectively represent the original descriptor information, which reduce

the model complexity and computational cost.
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(a)

(b)

(c)

Figure 2. Descriptors filter. (a) The chord diagram of 120 and 21
descriptors (from left to right). (b) The correlation heatmap
of 120 and 21 descriptors (from left to right). (c) Random
Forest prediction results before and after feature screening

3.2 Model performance analysis

In this subsection, the convergence, predictive performance, and general-

ization performance of the CatBoost model are analyzed.
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3.2.1 Parameter and convergence analysis

Since using the default parameter may not lead to the best performance,

its hyper-parameters need to be tuned. The grid search method is an ex-

haustive search method for specifying parameter values. Combined with

the cross-validation method, the parameters of the estimated function are

optimized to obtain the optimal parameters. That is, the possible values of

each parameter are arranged and combined, and all possible combination

results are listed to generate a ”grid”. Each combination is then used for

CatBoost training and combined with ten-fold cross-validation to evaluate

performance. After the fitting function has tried all parameter combina-

tions, it returns an appropriate learner that automatically adjusts to the

best parameter combination.

Although there are many parameters in CatBoost, only a few parame-

ters play a key role in model performance. And a significant advantage of

CatBoost is that it does not need to adjust a lot of parameters, just using

the default parameters can get good performance. Therefore, we only use

the combination of grid search and ten-fold cross-validation to optimize

some important parameters, and the other parameters use the default val-

ues. Some important parameters are: learning rate, depth, number of

trees (iterations), l2-leaf-reg. However, when the parameter search space

is large, the grid search method will consume a lot of time and memory,

considering this and combining prior experience and historical data, set

iterations=400, and select the most likely parameters for the rest of the

parameters as the range of grid search.

The learning rate is a very important parameter, so we expand its

search interval by the control variable method and combine with ten-fold

cross-validation to explore better parameters. As shown in Figure 3a, 0.15

is the best learning rate. To sum up, the CatBoost model parameters are

as follows: learning rate is 0.15, depth is 8, iterations is 400, and l2-leaf-

reg is 5. The default parameters are used for the rest. After parameter

adjustment, the prediction accuracy has been significantly improved.

On this basis, the convergence of the model is analyzed. As shown

in Figure 3b, the overall error between adjacent iteration steps decreases

with the number of iterations, which indicates that the CatBoost model is
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convergent.

(a) (b)

Figure 3. Parameter and convergence result analysis. (a) Learning
curve for the learning rate. (b) Error iteration curve ob-
tained by ten-fold cross-validation.

3.2.2 Yield prediction accuracy analysis

With these data in hand, we evaluate the predictive accuracies of linear

regression and an array of ML methods using 70% of the data as a training

set to predict the remaining 30% (test set). The ML methods used in this

section include XGBoost, LightGBM(LGBM), Gradient Boost, Random

Forest, Decision Tree, AdaBoost, K-nearest neighbor (KNN), Ridge, Ex-

tra tree and the neural network method is convolutional neural networks

(CNN).

As shown in Figure 4a, the linear regression method is obviously not

suitable for the filtering data. Although decision tree and other machine

learning methods have improved, the results are still unsatisfactory. XG-

Boost and LightGBM have improved significantly, but CatBoost model

has better fitting effect on data. CNN has also achieved considerable re-

sults, but it is relatively complex and time-consuming. In summary, the

CatBoost model is found to be top performer among them, with R²=0.96,

RMSE=5.71.

For the CatBoost model, it is observed that using a significantly smaller

subset of the training data of 21 descriptors even achieved good predictive

power. As shown in Figure 4b, for the 21 descriptors obtained after fil-

tering, compared with the results of ref. [18], and the prediction results of
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CatBoost are all higher than Random Forest. And when training on 50%

of the reaction data, the prediction results of CatBoost are already better

than the prediction results of the Random Forest in ref. [18]. Using only

10% of the reaction data as a training set to predict the remaining 90%

of the reaction data is also better than linear regression using 120 feature

descriptors. The above results indicate that (i) CatBoost has no strict

requirements on the amount of data, and the prediction performance is

still good in small samples, and (ii) the prediction ability of CatBoost will

increase with the increase of the number of training subsets.

(a)

(b)

Figure 4. Yield prediction result analysis. (a) Observed versus pre-
dicted plots for various ML algorithms and linear regression
analysis. (b) The test set performance of CatBoost and Ran-
dom Forest with sparse data.
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3.3 Generalization analysis

In order to verify the generalization performance of the CatBoost model,

two experiments are carried out: one is an out-of-sample prediction on the

same dataset, and the other is a prediction test on another dataset.

The Out-of-sample prediction tests the generalization of the model by

dividing the data set into two disjoint parts, one to estimate the model

and the other to predict. Similar to ref. [18], five additives are selected

as unknown reaction conditions and the remaining known reaction con-

ditions were used as training data to predict the yield of the unknown

reaction conditions. The structure diagram of the out of-sample predicted

additive is shown in Figure 5a, and the out of sample prediction results

are shown in Figure 5b. The results indicate that (i) compared with the

out-of-sample prediction results based on Random Forest and XGBoost,

CatBoost has a larger R²and a smaller RMSE, which indicates that our

method achieves better out-of-sample prediction effect. (ii) on average,

no additive has significant systematic deviation from the prediction of the

model, and (iii) our model can predict the effect of a new isoxazole or

aryl halide structure on the outcome of the Buchwald-Hartwig amination

reaction and determine the combination of bases and ligands to provide

the highest yield.

Further, another publicly available Ni-catalyzed cross-coupling reaction

data ref. [30] are selected to predict the reaction yield. The coupling

reaction data contained 641 reaction samples and 23 descriptors. In ref.

[30], Random Forest algorithm was used to predict the yield, and the

result was R²=0.93 and RMSE=7.40, respectively. After using the feature

screening method mentioned in the text, we obtain 15 features, and use

them as data input. Compared with the original data used in original

paper, we can obtain better results with less feature data. Both of the

two out-of-sample prediction experiments demonstrate that our model has

good generalization ability.
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(a)

(b)

(c)

Figure 5. Model generalization analysis. (a) Isoxazoles in the additive
training set (1 to 14 and 16, 17, 20, 23) were used to predict
the performance of isoxazoles 15, 18, 19, 21, and 22 in the
test set. Ph, phenyl; Bn, benzyl. (b) Comparison of out of
sample prediction results of Random Forest, XGBoost and
CatBoost. (c) Application of our method to other coupling
reaction reactions
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3.4 Explainability analysis

The explainability of the model is as important as the prediction accuracy.

In this section, we analyze the importance of features in the modeling

process through the importance ranking of Catboost model output, and

verify the effectiveness of features with the importance ranking. Further,

the correlation between feature descriptors and reaction yields is analyzed

by SHAP value analysis.

3.4.1 Feature importance analysis

In order to understand the key features in the model prediction process, we

carry out a feature importance analysis. As shown in Figure 6a, we find

that three of the five most important descriptors in predicting reaction

outcomes are the additive *C4 electrostatic charge(* indicates a shared

atom), additive *C3 electrostatic charge, and aryl halide *C3 NMR shift.

Among the top 10 descriptors in importance ranking, there are three aryl

halide descriptors and three additive descriptors. These descriptors sug-

gest that the propensity of additives [31, 32] and halides [33] to act as

electrophiles may influence reaction outcomes.

To validate the effectiveness of the features, we sampling 70% as train-

ing set, and the top 20-12 descriptors are selected, which are based on the

feature ranking (Figure 6a) from high to low, as features to retrain Cat-

Boost. The sampling is repeated for ten times generate ten results used

to plot with corresponding feature numbers. Meanwhile, the same proce-

dure is applied on the same number of descriptors randomly sampled from

the original 120 descriptors to plot precision as the contrast. As shown

in Figure 6b, with the decreased numbers of features from 20 to 12, for

the selected features keep stable. In contrast, the results are more volatile

with the decrease in the number of randomly selected features. Hence, the

feature importance analysis by CatBoost is meaningful.
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(a)

(b)

Figure 6. Feature importance. (a) Descriptor importance of trained
CatBoost model. And * indicate a shared atom. E, energy;
HOMO, highest occupied molecular orbital; V, vibration.
(The degree of influence of the change of the feature value
on the predicted average value, the more important the fea-
ture, the greater the impact). (b) Verification of the feature
importance ranking.

3.4.2 Correlation analysis between reaction condition and yield

Knowing the rank of feature importance in model predictions is not enough.

It is necessary to understand the correlation effect of feature descriptors

on yield during model calculation. So we use the SHAP value to achieve

this aim.

As shown in Figure 7, each row represents a feature with a SHAP value,

a point represents a sample and a wide area indicates a large number of

samples are gathered. The color indicates the feature value. The darker
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the color is, the larger the feature value is, and the lighter the color is, the

smaller the feature value is. It is observed that there is basically a positive

correlation between aryl halide *C3 NMR shift and the reaction yield, the

higher the value of the descriptor is, the higher yield is. And there is a

negative correlation between aryl halide V3 frequency and reaction yield,

and the higher the value of the descriptor is, the lower yield is.

Figure 7. SHAP value analysis.

4 Conclusions

In this paper, an intelligent prediction system with good prediction perfor-
mance is constructed based on CatBoost algorithm. Our work optimizes
the reaction system through machine learning method, realizes automatic
and intelligent prediction of reaction yield, improves the credibility of the
model, and will help design the required chemical materials more effi-
ciently. In the future, we hope to be able to combine CatBoost with deep
neural networks to predict the synthesis of molecules or materials.

Acknowledgment : The original data used in this study is the Buch-
wald Hartwig amination reaction database provided by Ahneman et al.
(https://github.com/Ahnemanlab/rxnpredict).
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