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Abstract

In this article we build a linear representation starting from a
multigraph; this allows us to give an algebraic view of the multi-
graph we are studying. We show that two isomorphic multigraphs
give equivalent representations ; conversely two equivalent represen-
tations give isomorphic multigraphs. For the clarity of the article
we give at the beginning, classical results on representations, never-
theless these are specific to our graph representation.
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1 Basic definitions and results

This article introduces a particular representation of a group which is asso-

ciated with a multigraph. The main results are that two isomorphic multi-

graphs generate isomorphic R-modules and conversely two R-modules as-

sociated with given multigraphs give isomorphic multigraphs. Throughout

this paper we are interested in multigraphs.

Let F2 be the Galois field with 2 elements. For r ≥ 1 we fix a set E of

cardinality r, and denote E = F2[E ] the F2-algebra constructed on E .
This is a F2-vector space of dimension r, and an abelian group isomorphic

to (Z/2Z)r with exponent u = 2. It is convenient to denote the addition

by ⊕, and the zero element by “ø” ; an element of E can be written as

a = ⊕e∈Eaee, where ae ∈ F2. The support of a is defined by σ(a) = {e |
ae ̸= 0},

It is well known that any abelian group of exponent u is isomorphic to

its dual X(G) = Hom(G,Cu), where Cu is a cyclic group with u elements

(cf [9][p. 50]). In our case, G = E and u = 2. Choose C2 = {±1} the

mutiplicativ group with 2 elements.

There is an explicit isomorphism between the group X(E)(characters) and
E. In an exact phrase, the mapping φ : X(E) −→ E given by φ(χ) =

⊕χ(e)=−1e is an isomorphism. The converse isomorphism φ−1 is given by

φ−1(a) = χa, where χa(e) = (−1)αe and a = ⊕e∈Eaee. For all b = ⊕ebee ∈
E, we have χa(b) =

∏
e χa(e)

be =
∏

e∈σ(b) χa(e) =
∏

e∈σ(b)(−1)ae :

χa(b) = (−1)|σ(a)∩σ(b)|. (1)

Suppose G is a finite group and V is a finite-dimensional vector space

over a field k. A linear representation of G on V is a group homomor-

phism

ρ : G −→ GL(V )

GL(V ) is the general linear group on V . The vector space V is also called

a k-representation of G ; the dimension of V is the degree of the repren-

sation.

Let us recall what the group algebra k[G] is : it is the group-algebra
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with a basis (ag)g∈G such that agag′ = agg′ , if g, g′ ∈ G. In practice, ag is

identified to g, and the elements of k[G] are written as∑
g∈G

agg

where ag ∈ k. If ρ is a representation of G, the action G× V −→ V given

by g.v = ρ(g)(v) can be extended by linearity to an action of k[G], so that

V becomes a k[G]-left module. Conversely, every k[G]-module which is of

finite dimension over k defines a linear representation of G. This will allow

to use at will, either the G -representation language, or the k[G]-module

one.

Return now to G = E, and choose k = Fp, where p is an odd prime ; choose

also for C2 the subgroup {±1} of F×
p . By Maschke’s theorem [14, p. 51],

since p ∤ |E| = 2r, then every finite dimensional representation of E is a

sum of irreducible representations, and by [14, p. 42] Fp is good for E,
that is p ∤ |E| and Xu−1 = 0 has u distinct roots in Fp. Here, u = 2 being

the exponent of E. So by [14, p. 53], every irreducible Fp-representation

is 1-dimensional.

If W is an irreducible Fp-module, then W = Fpw, and its character

χW is a homomorphism from E to F×
p . Since a ⊕ a = ø, χW (a) = ±1.

Moreover, it is easy to see that two Fp-modules W and W ′ are isomorphic

if and only if χW = χW ′ .

The set of all irreducible characters (characters of irrecducible repre-

sentations) of E is denoted by Irr(E).

Lemma 1. Irr(E) = X(E).

Proof. If χ ∈ Irr(E) is arbitrary, then χ : E −→ C2 ⊂ F×
p is a mor-

phism. This shows that Irr(E) ⊂ X(E). Conversely, if χ ∈ X(E), then we

define ρ : E −→ AutFpx by ρ(a)(x) = χ(a)x. This gives a 1-dimensional

representation whose character is χ, and so Irr(E) ⊂ X(E). Therefore,

Irr(E) = X(E).

Consequently, Irr(E) is completely described as {χa, a ∈ E} of cardinal
|E| = 2m. In particular, the constant function χø = 1 is the character of

the trivial representation.
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LetW be a finite dimensional representation. According toMaschke’s

theorem [14, p. 51], W is a sum of irreducible representations, which are

1-dimensional [14, p. 53]. They are the 2m preceding representations

Wa = Fpxa, (where < xa >= Wa) of characters χa; regrouping in this

decomposition the isomorphic components we obtain the first canonical

decomposition

W ≃⊕a∈E maWa, ma ≥ 0, ma ∈ N (2)

Here, maWa is called an isotypical representation. We have χW =∑
a∈E maχa.

1.1 The ring R = Fp[E]

The Fp-algebra R = Fp[E] is firstly a Fp-vector space of dimension 2m,

with basis E. An element ξ ∈ R is written as ξ =
∑

a∈E λaa, λa ∈ Fp and

the zero of R is denoted by 0 =
∑

a∈E 0a. The (additive) law ⊕ of E can

be extend to a “multiplication” on R by

(
∑
a∈E

λaa)⊕ (
∑
a∈E

µaa) =
∑
a∈E

∑
b∈E

λaµba⊕ b =
∑
c∈E

(
∑

a⊕b=c

λaµb)c.

In this way R is a commutative ring with unity ø, (
∑

λaa)⊕ ø =
∑

λaa⊕
ø =

∑
λaa and R is of a ring of characteristic p with p2

m

elements.

Each representation ρ : E −→ GL(W ) gives the structure of R-module

on W by the external law a.w = ρa(w) extended to R by linearity.

In particular, to the irreducible representation of character χa, a ∈ E,
corresponds the principal ideal (ξa) = ξa ⊕R, where

ξa =
∑
u∈E

χa(u)u

indeed for each b ∈ E, ξa ⊕ b =
∑

u χa(u)u⊕ b ; by setting v = u⊕ b, we
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have
ξa ⊕ b =

∑
u χa(u)u⊕ b =

∑
v χa(b⊕ v)v

=
∑

v χa(b)χa(v)v = χa(b)
∑

v χa(v)v

= χa(b)ξa.

More generaly if one extends χa to R defining, for r =
∑

b∈E rbb, χa(r) :=∑
b rbχa(b) ∈ Fp, it is easy to see that ξa ⊕ r = χa(r)ξa.

Hence, (ξa) = ξa ⊕R = Fpξa.

Remark. The (ξa) are distinct since the χa are.

This ideal is clearly minimal since dimFp
Fpξa = 1. Note that a = ø

gives χa = 1 (constant function) so ξø =
∑

u∈E u and the trivial represen-

tation corresponds to the minimal ideal ξø ⊕R.

Recall also the regular representation : it is the mapping ρE : E −→
AutR given by ρE(a) = θa such that

ρE : E −→ AutR

a 7−→ θa : r 7→ a⊕ r

therefore the corresponding R-module is the ring R.

If rE denotes the character of ρE, then, as is well-known, rE(u) = 0 if

u ̸= ø; and rE(u) = 2m if u = ø. Moreover, each irreducible representation

of E appears exactly one time in ρE. Then the canonical decomposition

of ρE gives R =
⊕

a∈E(ξa ⊕ R). The ξa ⊕ R are natural examples of each

irreducible representation.

We obtain the second form of the canonical decomposition as

W ≃
⊕
a∈E

ma(ξa ⊕R), ma ≥ 0

Remark. We have two basis of the Fp-vector space R : {a, a ∈ E} and

{ξa, a ∈ E}. This proves that the Fp-endomorphisms θa : r −→ a⊕ r of R

are simultaneously diagonalizable, i.e. θa(ξb) = χb(a)ξb.
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2 Labelled multigraphs

2.1 Definitions

Let T a fixed set of labels. A T-labelled multigraph is a five-uple

Γ = (V ;E;T, ε, ω)

where ε : E −→ P2(V ) (subsets with 1 or 2 elements), and ω : V −→ T

the “label”-function.

An isomorphism

Φ : Γ = (V ;E;T, ε, ω) −→ Γ′ = (V ′;E′;T, ε′, ω′)

is a couple Φ = (f, f#) of bijections : f : V −→ V ′, f# : E −→ E′ such

that :

• ε′ ◦ f# = f ◦ ε
• ω′ ◦ f = ω.

We denote Is(Γ,Γ′) this set of isomorphisms.

2.2 Labelled m-multigraphs

We fix a set E of cardinality m, and consider the labelled multigraphs with

the same E = E : Γ = Γm = (V ; E ;T, α, ω) ; an isomorphism Φ = (f, f#)

of labelled m-multigraphs is called m-isomorphism when f# = Id:

• ε′ = f ◦ ε
• ω′ ◦ f = ω.

We denote Ism(Γm,Γ′
m) the corresponding set of isomorphisms.

Proposition 1.

a) Every Γ = (V ;E;T, ε, ω) with |E| = m has m! copies Γm

b) Let Γ = (V ;E;T, ε, ω), Γ′ = (V ′;E′;T, ε′, ω′) two labelled multigraphs

with m edges. The following properties are equivalent :

i) Γ ≃ Γ′,

ii) there exists two m-isomorphic copies Γm ≃m Γ′
m of Γ,Γ′.
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Proof.

a) Let σ : E −→ E be a bijection. Define Γm = (V ; E ;T, α, δ) by

α = ε ◦ σ−1, and δ = ω. We have (Id, σ) ∈ Is(Γ,Γm) since α ◦ σ = Id ◦ ε,
and ω ◦ Id = ω.

b) i) =⇒ ii). Let Φ = (f, f#) ∈ Is(Γ,Γ′).

Firstly choose σ : E −→ E and define Γm like in a).

After that, define α′ = f ◦ α, ω′ = ω ◦ f , and Γ′
m = (V ′; E ;T, α′, ω′). So

(f, Id) ∈ Ism(Γm,Γ′
m) : α′ = f ◦ α, ω′ ◦ f = ω.

Finally choose τ = σ ◦f#−1 : (Id, τ) ∈ Is(Γ′,Γ′
m) : α′ ◦τ = α◦σ ◦f#−1 =

ε ◦ f#−1 = ε′ = Id ◦ ε′, and ω′ ◦ Id = ω′.

The following diagramms summarize the proof

E −− > −− f# −− −− > E

E
σ−→ E = E τ←− E′

ε ↓ ↓ α α′ ↓ ↓ ε′

P2(V )
Id−→ P2(V )

f−→ P2(V
′)

Id←− P2(V
′)

and for the labels :

V
Id−→ V

f−→ V ′ Id←− V ′

ω ↘↙ ω ↘↙ ω′ ↘↙ ω′

T T T

i) =⇒ ii) : obvious.

3 Molecular multigraphs

A molecular graphM consists of the data of a set V of vertices represent-

ing atoms C,H,O,N,Li, Fe, . . . linked together with by single or multiple

edges (bonds) representing the valences 1, 2, 3, . . . plus single or multiple

l-loops at some vertices.

First note:

- AT = {C,H,O,N, ..., U}, the set of possible atoms (U = 238);
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- V A = {0, 1, 2, ..., N}, the set of valences and sizes of the possible

multi-loops (N = 8 is generally suitable).

The number of vertices does not exceed 100 in practice. Lewis’ repre-

sentation shows bonds (= edges) between atoms and single dashes around

certain vertices; chemists represent these dashes with loops; hence, a

molecular graph M is a sixtuplet M = (V ;E,ω, ε,A,B) such that A ⊆
AT , B ⊆ V A, ω : V −→ AT is a mapping and ε : E −→ P2(V ) is another

mapping given by ε(a) = [x, y] with P2(V ) being the set of parts of V

having 1 or 2 elements and x, y being the extremities of the edge a, (we

could have x = y), where the set {e ∈ E | ε(e) = [x, y]} is a p-edge, p ∈ V A

standing for the bound between the atoms at vertices x, y.

An atom is described by several quantum numbers:

- the principal quantum number n = 1, 2, 3. . . which counts the

energy levels (these levels are the K, L, M, ... layers of the old Bohr

model);

- the azimuthal or secondary quantum number l = 0, 1,. . . n - 1

which counts the number of orbitals:

. for l = 0, (sharp) spherical orbital s;

. l = 1, hourglass-shaped (main) orbital p;

. for l = 2, (diffuse) orbital d;

. for l = 3, (fundamental) orbital f ;

. g, h, i, k, l, ...;

- the magnetic quantum number ml = −l,−l+1, ..., 0, 1, ...+ l, which

counts the orientations of the orbital: these are the boxes of the

orbital:

* for l = 0; m0 = 0 =⇒ 1 box for the orbital s;

* for l = 1;m1 = −1; 0;+1 =⇒ 3 boxes for the orbital p;

* for l = 2;m2 = −2;−1; 0;+1;+2 =⇒ 5 boxes for the orbital d;
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* for l = 3;m3 = −3;−2;−1; 0;+1;+2;+3 =⇒ 7 cells for the

orbital f .

Each cell can contain 2 electrons of +1/2 and −1/2 spins; thus the

orbital s having 1 box can contain 2 × 1 = 2 electrons, p having 3 boxes

can contain 2×3 = 6 electrons, and d having 5 boxes can contain 2×5 = 10

electrons.

A full box therefore has 2 electrons, it is a doublet; if a box has 1 elec-

tron, we say it is single. Knowing the atomic number (number of protons)

we therefore have the same number of electrons, which are distributed

according to the increasing levels 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, . . . re-

specting Hund’s rule: we fill each orbital leaving the fewer empty boxes

possible. Thus the orbital p has 3 boxes, which we fill in successively

putting 1 electron in each box, then the 4th in the first box, the 5th in the

second box, the 6th in the last box.

We now have the electronic configuration; the electrons of the external

level are the valence electrons; the valence is the number of free places

on the external level. A valence of 4 means that there are 4 edges. Each

doublet of the external level is represented by a loop.

As exemples, we will give the electronic configuration of Carbon, Oxy-

gen, and Chlorine atoms.

• Carbon. The Carbon atom has atomic number 6 with the following

electronic configuration:

6C : 1s22s22p2;

4 valence electrons, valence 4, and 1 doublet at level 2. So, it has 1

loop.

• Oxygen. It has 8 electrons so its electronic configuration is

80 : 1s22s22p4;

there are 2 + 4 = 6 valence electrons, its valence is 2, there is 1

doublet in the 2s orbital, and 1 doublet in the 2p orbital (plus 2
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independent electrons). Therefore, we have 2 loops in O.

• Chlorine. The atomic number of Chlorine with symbol Cl is 17. It

has the following electronic configuration:

17Cl : 1s22s22p63s23p5;

7 valence electrons, valence 1, and 3 doublets at level 3. So, it has 3

loops.

We modelize now these chemical informations with the multigraph the-

ory.

Firsly we suppose that the moleculeM is connected, with at least 3 ver-

tices (in fact only the case of 2 vertices is special).

Secondly we choose T = AT for the set of labels.

For the bonds we not use of the set V A.

So we adopt the following definition : a molecular multigraph is a

T-labelled multigraphM = (V ;E;T, ε, ω), where ω : V −→ T = AT .

If we fix a set E having m elements, we can consider the molecular m-

multigraphsMm = (V ; E ;T, α, ω) associated. By the Proposition 1:

Proposition 2.

a) EveryM = (V ;E;T, ε, ω) with |E| = m possess m! copiesMm

b) LetM = (V ;E;T, ε, ω), M′ = (V ′;E′;T, ε′, ω′) be two molecular multi-

graphs with m edges. The following properties are equivalent :

i)M≃M′,

ii) there exists two m-isomorphic copiesMm ≃mM′
m of M,M′.

We fix here a set E having m elements, and consider the molecular

m-multigraphsMm = (V ; E ;T, α, ω) associated, particulary the Fp-vector

space

V(Mm) = Fp[V ]

We apply the theory of §1.1, in which we replace here the set E by E ⊔ T .
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An element X ∈ E = F2[E ⊔ T ] can be (uniquely) written

X = a+ S, a =
∑
e∈E

aee, S =
∑
A∈T

SAA, ae, SA ∈ F2

|E| = 2r, where r = m+ |T |.

The linked ring is R = Fp[E].

We construct a representation of the group E as follow. Let

γ : V −→ E
x 7−→ ω(x)⊕

⊕
x∈α(e) e

To the function γ we associate a Fp-representation of E:

E ρ−→ AutV
X 7−→ ρ(X)

where the function ρ(X) is defined on the basis V of V by

ρ(X) = χγ(x)(X)x

and extended by linearity to V ; this is correct since ρ(X) ◦ ρ(Y ) =

ρ(X + Y ) = ρ(Y ) ◦ ρ(X), and ρ(X)2 = Id.

More precisely (1) says that χγ(x)(X) = (−1)|σ(γ(x))∩σ(X)|, so if X =

a+ S : σ(X) = σ(a) ⊔ σ(S), and σ(γ(x)) = {ω(x)} ⊔ {e : x ∈ ε(e)}, hence
|σ(γ(x)) ∩ σ(x)| = degΓm(a) + |{ω(x)} ∩ σ(S)| and

χγ(x)(a+ S) = (−1)degΓm(a)x+µ

where µ = 1 if ω(x) ∈ σ(S),= 0 else.

Via ρ, V(Mm) becomes a R-module.

We observe that V(Mm) =
⊕

x∈V Fpx ; each Fpx is an irreducible R-

module, and X.x = ρ(X)(x) = χγ(x)(X)x, so that the character of Fpx is
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χγ(x), and Fpx ≃ ξγ(x) ⊕R (cf §1.5).

Theorem 3. The canonical decomposition of V(Mm) is

V(Mm) ≃
⊕
x∈V

(ξγ(x) ⊕R)

Proof. It is sufficient to prove that γ is injective : let x ̸= y in V ; if x, y

are not adjacent, it is clear that γ(x) ̸= γ(y) ; if they are, Mm being

connected with at least 3 vertices, there exists an adjacent vertex to x or

y, say z adjacent to x : ε(e) = {x, z}. Therefore e is not incident to y,

and hence γ(x) ̸= γ(y).

Resume the hypotheses : M = (V ;E;T, ε, ω) is a connected T-labelled

molecular multigraph with m edges and at least 3 vertices, E is a fixed

set of cardinality m, E = F2[E ⊔ T ], R is the ring Fp[E], and V(Mm) the

R-module defined above. In this context :

Theorem 4. The following conditions are equivalent :

i)M≃M′ as labelled multigraphs,

ii) there exist copiesMm,M′
m which are m-isomorphs,

iii) there exist copiesMm,M′
m such that V(Mm) ≃ V(M′

m) as R-modu-

les.

Proof.

i)⇐⇒ ii) : Proposition 2.

ii) =⇒ iii) Let Φ = (f, Id) : Mm = (V ; E ;T, α, ω) −→ M′
m = (V ′; E ;T,

α′, ω′) a m-isomorphism : α′ = f ◦ α, ω′ ◦ f = ω ; f being bijective, by

the theorem 1 it is enough to prove that γ′ ◦ f = γ :

γ(x) = ω(x)⊕
⊕

x∈α(e) e and

γ′(f(x)) = ω′(f(x))⊕
⊕

f(x)∈α′(e′) e
′ = ω(x)⊕

⊕
f(x)∈α′(e) e

(the set of edges is the same!)

we have f(x) ∈ α′(e) ⇐⇒ f(x) ∈ f(α(e)) ⇐⇒ x ∈ α(e), so γ′(f(x)) =

γ(x).

iii) =⇒ ii) If V(Mm) ≃ V(M′
m), their canonical decompositions are the

same ⊕
x∈V

(ξγ(x) ⊕R) =
⊕
x′∈V ′

(ξγ′(x′) ⊕R)



17

For x ∈ V there exists an unique γ′(x′) such that ξγ(x) = ξγ′(x′), i.e.

γ(x) = γ′(x′) (recall (Remark 1) that the ξa are distinct); so (γ′ injective)

exists unique x′ ∈ V ′ such that γ′(x′) = γ(x). Define f(x) = x′ : γ(x) =

γ′(f(x)).

- f is bijective, since injective : if x ̸= y we have γ(x) ̸= γ(y), hence

γ′(f(x)) ̸= γ′(f(y)) and f(x) ̸= f(y).

- from γ(x) = γ′(f(x)) we deduce

ω(x)⊕
⊕

x∈α(e)

e = ω′(f(x))⊕
⊕

f(x)∈α′(e)

e

so ω(x) = ω′(f(x)), and x ∈ α(e)⇐⇒ f(x) ∈ α′(e) :

- α′ = f ◦ α
This achieves the proof.

Remark. Matricial interpretation of iii) : let n = |V |, and φ : V −→ V ′ the

R-isomorphism ; denote Mφ ∈ GLn(Fp) be the matrix of φ in the bases

V, V ′, Mρ(X) ∈ GLn(Fp) the matrix of multiplication by X in V(Γm) in

the basis V of V(Γm), and Mρ′(X) ∈ GLn(Fp) the matrix of multiplication

by X in V(Γ′
m) in the basis V ′ of V(Γ′

m). Then for all X : MφMρ(X) =

Mρ′(X)Mφ, i.e.

MφMρ(X)M
−1
φ = Mρ′(X)

Corollary. Testing ifMm,M′
m are m-isomorphic can be done in polyno-

mial time.

Proof. The proof follows from the fact that isomorphism problem of R-

modules is done in polynomial time, [3–5,12].
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