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Abstract

In this article we build a linear representation starting from a
multigraph; this allows us to give an algebraic view of the multi-
graph we are studying. We show that two isomorphic multigraphs
give equivalent representations ; conversely two equivalent represen-
tations give isomorphic multigraphs. For the clarity of the article
we give at the beginning, classical results on representations, never-
theless these are specific to our graph representation.
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who died tragically. In memory of his great kindness as well as his exceptional scientific
qualities.
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1 Basic definitions and results

This article introduces a particular representation of a group which is asso-
ciated with a multigraph. The main results are that two isomorphic multi-
graphs generate isomorphic R-modules and conversely two R-modules as-
sociated with given multigraphs give isomorphic multigraphs. Throughout
this paper we are interested in multigraphs.

Let Fy be the Galois field with 2 elements. For » > 1 we fix a set & of
cardinality 7, and denote E = F5[£] the Fso-algebra constructed on &.
This is a Fa-vector space of dimension r, and an abelian group isomorphic
to (Z/2Z)" with exponent u = 2. It is convenient to denote the addition
by &, and the zero element by “¢” ; an element of E can be written as
a = @eegaee, where a. € Fo. The support of a is defined by o(a) = {e |
ae # 0},

It is well known that any abelian group of exponent u is isomorphic to
its dual X (G) = Hom(G,C,), where C,, is a cyclic group with u elements
(cf [9][p- 50]). In our case, G = E and u = 2. Choose Cy = {£1} the
mutiplicativ group with 2 elements.

There is an explicit isomorphism between the group X (E)(characters) and
E. In an exact phrase, the mapping ¢ : X(E) — E given by ¢(x) =

Lis given by

Dy(e)=—1€ is an isomorphism. The converse isomorphism ¢~
o Ha) = xa, where xq(€) = (—=1)% and a = @ecpace. Forall b= D bee €

Ea we have Xa(b) = He Xa(e)be = HeEa(b) Xa(e) = HeEa(b)(il)ae :

Xa(b) = (1)l (@N7OL, (1)

Suppose G is a finite group and V' is a finite-dimensional vector space
over a field k. A linear representation of G on V is a group homomor-
phism

p: G— GL(V)

GL(V) is the general linear group on V. The vector space V' is also called
a k-representation of G ; the dimension of V' is the degree of the repren-
sation.

Let us recall what the group algebra k[G] is : it is the group-algebra
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with a basis (ag)geq such that agay = ag¢, if g,¢' € G. In practice, ag4 is

identified to g, and the elements of k[G] are written as

Z agg

geG

where a4 € k. If p is a representation of G, the action G x V' — V given
by g.v = p(g)(v) can be extended by linearity to an action of k[G], so that
V becomes a k[G]-left module. Conversely, every k[G]-module which is of
finite dimension over k defines a linear representation of G. This will allow
to use at will, either the G -representation language, or the k[G]-module
one.

Return now to G = E, and choose k = F,, where p is an odd prime ; choose
also for C'y the subgroup {+1} of F)\. By MASCHKE’s theorem [14, p. 51],
since p 1 |E| = 2", then every finite dimensional representation of E is a
sum of irreducible representations, and by [14, p. 42] F, is good for E,
that is p { |[E| and X* —1 = 0 has u distinct roots in F,,. Here, u = 2 being
the exponent of E. So by [14, p. 53], every irreducible [F,-representation
is 1-dimensional.

If W is an irreducible F,-module, then W = F,w, and its character
xw is a homomorphism from E to F. Since a ® a = ¢, xw(a) = £1.
Moreover, it is easy to see that two Fp-modules W and W’ are isomorphic
if and only if xw = xw~.

The set of all irreducible characters (characters of irrecducible repre-
sentations) of E is denoted by Irr(E).

Lemma 1. Irr(E) = X(E).

Proof. 1f x € Irr(E) is arbitrary, then x : E — Cy C F, is a mor-
phism. This shows that Irr(E) C X(E). Conversely, if x € X(E), then we
define p : E — AutFpz by p(a)(z) = x(a)z. This gives a 1-dimensional
representation whose character is x, and so Irr(E) C X(E). Therefore,
Irr(E) = X(E). |

Consequently, I'rr(E) is completely described as {x4,a € E} of cardinal
|[E| = 2™. In particular, the constant function x, = 1 is the character of

the trivial representation.



Let W be a finite dimensional representation. According to MASCHKE’s
theorem [14, p. 51], W is a sum of irreducible representations, which are
1-dimensional [14, p. 53]. They are the 2™ preceding representations
Wo = Fpaa, (where < z, >= W,) of characters x,; regrouping in this
decomposition the isomorphic components we obtain the first canonical

decomposition
W ~ @aeE meWs, mg >0, mg €N (2)

Here, m,W, is called an isotypical representation. We have yw =

ZaeE maXa-

1.1 The ring R = F,[E]

The F,-algebra R = F,[E] is firstly a Fj,-vector space of dimension 2™,
with basis E. An element ¢ € R is written as § = )y Aaa, A\, € Fp and
the zero of R is denoted by 0 = >, 0a. The (additive) law & of E can

be extend to a “multiplication” on R by

O @)@ O 1aa) =YD dama@b=> (Y Aam)e.
ack ack a€E beE c€EE adb=c
In this way R is a commutative ring with unity ¢, (3_ Aqa) B0 => Apa®
=Y Aga and R is of a ring of characteristic p with p?" elements.
Each representation p : E — GL(W) gives the structure of R-module
on W by the external law a.w = p,(w) extended to R by linearity.

In particular, to the irreducible representation of character x,,a € E,

corresponds the principal ideal (¢,) = &, ® R, where

fo =Y valwu

u€clk

indeed for each b € E, & @b =), Xa(uw)u ® b ; by setting v = u & b, we



have
a®b =3 Xa(Wu®b=3_ Xa(bBv)v

=2 Xa(0)xa(v)v = Xa(b) D2, Xa(v)V
= Xa(b)€a~

More generaly if one extends x, to R defining, for r = 3, . mb, xa(r) :=
> pTeXa(b) € Fy, it is easy to see that &, & r = xa(r)éa.
Hence, (&) = & ® R =Fa.

Remark. The (&,) are distinct since the x, are.

This ideal is clearly minimal since dimy, Fy, = 1. Note that a = ¢
gives x, = 1 (constant function) so , = >, . u and the trivial represen-
tation corresponds to the minimal ideal &5 & R.

Recall also the regular representation : it is the mapping pg : E —
AutR given by pg(a) = 0, such that

pe : E — AutR
a +— BO,:r—a®r

therefore the corresponding R-module is the ring R.

If rg denotes the character of pg, then, as is well-known, rg(u) = 0 if
u # ¢; and rg(u) = 2™ if u = ¢. Moreover, each irreducible representation
of E appears exactly one time in pg. Then the canonical decomposition
of pg gives R = @, 5({a ® R). The & @ R are natural examples of each
irreducible representation.

We obtain the second form of the canonical decomposition as

W ~ @ma(fa @ R), my >0
ack
Remark. We have two basis of the F,-vector space R : {a,a € E} and
{€4,a € E}. This proves that the Fy-endomorphisms 6, : r — a @ r of R

are simultaneously diagonalizable, i.e. 6,(&,) = xp(a)&p.
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2 Labelled multigraphs

2.1 Definitions

Let T a fixed set of labels. A T-labelled multigraph is a five-uple
I'= (VBT e,w)

where ¢ : E — Py(V) (subsets with 1 or 2 elements), and w : V — T

the “label”-function.
An isomorphism
&:T=(V;E;Tye,w) — TV =(VE;T, W)

is a couple ® = (f, f#) of bijections : f:V — V', f# : E — E’ such
that :
ec'off =foe

o Wof=w.
We denote Is(I', ) this set of isomorphisms.

2.2 Labelled m-multigraphs

We fix a set £ of cardinality m, and consider the labelled multigraphs with
thesame E =& : I'=T,, = (V;&;T,a,w) ; an isomorphism & = (f, f#)
of labelled m-multigraphs is called m-isomorphism when f# = Id:

ec/ =foe

e Wof=uw.

We denote Is,,(T,,,I',) the corresponding set of isomorphisms.

Proposition 1.

a) Every T' = (V; E;T,e,w) with |E| =m has m! copies T,

b) Let T = (V; E;T,e,w), TV = (V'; E';T,e',w') two labelled multigraphs
with m edges. The following properties are equivalent :

i) ~T7,

ii) there exists two m-isomorphic copies I'yp, ~,, T of T,T7.
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Proof.

a) Let ¢ : E — & be a bijection. Define T'), = (V;&;T,a,d) by
a=coo7 ! and § =w. We have (Id,o) € Is(I',T,;,) since c oo = Id ok,
and wo Id = w.

b) i) = ii). Let & = (f, f#) € Is(T,T).

Firstly choose o : E — £ and define T, like in a).

After that, define o/ = fo o, W' =wo f,and I, = (V';&;T,a/,’). So
(f,Id) € Ispy (T, T0,): &' = foa, wof=w.

Finally choose 7 = oo f#~1: (Id,7) € Is(T",T),): /o7 = aocoof#~! =

cof#fl=¢ =Idoe',and w oId =uw'.

The following diagramms summarize the proof

E —_—— > —— f#* —— — > E
E BN £ = £ YA E
€l la ol le
Id f / Id /
Pa(V) Pa(V) —= Po(V) Pa(V")
and for the labels :
v 4 ov Loy Loy
w N ow N W N W
T T T

i) = i) : obvious.

3 Molecular multigraphs

A molecular graph M consists of the data of a set V' of vertices represent-
ing atoms C, H,O, N, Li, Fe, ... linked together with by single or multiple
edges (bonds) representing the valences 1,2,3,... plus single or multiple
l-loops at some vertices.

First note:

- AT ={C,H,O,N,...,U}, the set of possible atoms (U = 238);
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- VA ={0,1,2,..., N}, the set of valences and sizes of the possible
multi-loops (N = 8 is generally suitable).

The number of vertices does not exceed 100 in practice. Lewis’ repre-
sentation shows bonds (= edges) between atoms and single dashes around
certain vertices; chemists represent these dashes with loops; hence, a
molecular graph M is a sixtuplet M = (V; E,w,¢, A4, B) such that A C
AT BC VA w:V — AT is a mapping and ¢ : E — P»(V) is another
mapping given by e(a) = [z,y] with P2(V) being the set of parts of V
having 1 or 2 elements and z,y being the extremities of the edge a, (we
could have x = y), where the set {e € F | e(e) = [z,y]} is a p-edge, p e VA

standing for the bound between the atoms at vertices x,y.

An atom is described by several quantum numbers:

- the principal quantum number n = 1, 2, 3. . . which counts the
energy levels (these levels are the K, L, M, ... layers of the old Bohr

model);

- the azimuthal or secondary quantum number 1 =0, 1,. . . n-1
which counts the number of orbitals:
. for I = 0, (sharp) spherical orbital s;
. 1 =1, hourglass-shaped (main) orbital p;
. for [ = 2, (diffuse) orbital d;
. for I = 3, (fundamental) orbital f;
g h ik L
- the magnetic quantum number m; = -1, -1l +1,...,0,1, ... + [, which

counts the orientations of the orbital: these are the bozxes of the

orbital:

* for | = 0; mg = 0 = 1 box for the orbital s;
* for | = 1;m; = —1;0;+1 = 3 boxes for the orbital p;
* for 1 = 2;mg = —2;—1;0;+1; 42 = 5 boxes for the orbital d;
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* for Il = 3;m3 = —3;-2;—1;0;+1;+2; +3 = 7 cells for the
orbital f .

Each cell can contain 2 electrons of +1/2 and —1/2 spins; thus the
orbital s having 1 box can contain 2 x 1 = 2 electrons, p having 3 boxes
can contain 2x 3 = 6 electrons, and d having 5 boxes can contain 2x5 = 10
electrons.

A full box therefore has 2 electrons, it is a doublet; if a box has 1 elec-
tron, we say it is single. Knowing the atomic number (number of protons)
we therefore have the same number of electrons, which are distributed
according to the increasing levels 1s, 2s,2p, 3s, 3p, 3d, 4s,4p,4d, 4f, ... re-
specting Hund’s rule: we fill each orbital leaving the fewer empty boxes
possible. Thus the orbital p has 3 boxes, which we fill in successively
putting 1 electron in each box, then the 4th in the first box, the 5th in the
second box, the 6th in the last box.

We now have the electronic configuration; the electrons of the external
level are the valence electrons; the valence is the number of free places
on the external level. A valence of 4 means that there are 4 edges. Each
doublet of the external level is represented by a loop.

As exemples, we will give the electronic configuration of Carbon, Oxy-

gen, and Chlorine atoms.

e Carbon. The Carbon atom has atomic number 6 with the following

electronic configuration:
¢C : 1522522p?;

4 valence electrons, valence 4, and 1 doublet at level 2. So, it has 1

loop.

e Oxygen. It has 8 electrons so its electronic configuration is
30 : 1522522p*;

there are 2 + 4 = 6 valence electrons, its valence is 2, there is 1
doublet in the 2s orbital, and 1 doublet in the 2p orbital (plus 2
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independent electrons). Therefore, we have 2 loops in O.

e Chlorine. The atomic number of Chlorine with symbol Cl is 17. Tt

has the following electronic configuration:
17C1 2 15%2522p%3523p°;

7 valence electrons, valence 1, and 3 doublets at level 3. So, it has 3

loops.

We modelize now these chemical informations with the multigraph the-
ory.
Firsly we suppose that the molecule M is connected, with at least 3 ver-
tices (in fact only the case of 2 vertices is special).
Secondly we choose T' = AT for the set of labels.
For the bonds we not use of the set V A.

So we adopt the following definition : a molecular multigraph is a
T-labelled multigraph M = (V; E;T,e,w), where w: V — T = AT.
If we fix a set £ having m elements, we can consider the molecular m-

multigraphs M,, = (V;&; T, a,w) associated. By the Proposition 1:

Proposition 2.

a) Every M = (V; E; T, e,w) with |E| = m possess m! copies My,

b) Let M = (V; E;T,e,w), M' = (V'; E';T,¢',w'") be two molecular multi-
graphs with m edges. The following properties are equivalent :

i) M~ M,

ii) there exists two m-isomorphic copies My, ~p, ML of M, M.

We fix here a set £ having m elements, and consider the molecular
m-multigraphs M,,, = (V;&; T, a, w) associated, particulary the F,-vector

space

We apply the theory of §1.1, in which we replace here the set £ by EUT.
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An element X € E = Fy[€ UT] can be (uniquely) written

X=a+S65, a:Zaee, SzZSAA, Qe, 54 € Fy
ecf AeT

|E| =27, where r = m + |T).
The linked ring is R = F,[E].

We construct a representation of the group E as follow. Let

E

y: V. —
r — w(x)d @xea(e) e
To the function vy we associate a IF,-representation of [E:

E 25 Autv
X — p(X)

where the function p(X) is defined on the basis V' of V by
p(X) = X’y(x)(X)x

and extended by linearity to V ; this is correct since p(X) o p(Y) =
P(X +Y) =p(Y)op(X), and p(X)? = Id.

More precisely (1) says that () (X) = (—1)le0@IN7 (X g0 if X =
a+S:0(X)=o0c(a)Uo(S), and o(y(x)) = {w(zx)} U{e: x € e(e)}, hence
lo(y(z)) No(x)] = degr,, @) + {w(z)} No(S)| and

Xy(oy(a+8) = (=1)Teorm@zth
where p =1 if w(z) € 0(S5),= 0 else.

Via p, V(M,,) becomes a R-module.
We observe that V(M,,) = P v
module, and X.z = p(X)(z) = Xy(2)(X)x, so that the character of F,z is

F,z ; each F,x is an irreducible k-
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Xr(x)> and Fpz ~ &) & R (cf §1.5).

Theorem 3. The canonical decomposition of V(M,,) is

V(M) ~ P (&) @ R)

zeV

Proof. 1t is sufficient to prove that «y is injective : let x =y in V ; if z,y
are not adjacent, it is clear that y(z) # ~(y) ; if they are, M,, being
connected with at least 3 vertices, there exists an adjacent vertex to x or
y, say z adjacent to x : e(e) = {z,z}. Therefore e is not incident to y,
and hence v(z) # v(y). |

Resume the hypotheses : M = (V; E; T, e,w) is a connected T-labelled
molecular multigraph with m edges and at least 3 vertices, £ is a fixed
set of cardinality m, E = F3[€ U T, R is the ring F,[E], and V(M,,) the

R-module defined above. In this context :

Theorem 4. The following conditions are equivalent :

i) M =~ M’ as labelled multigraphs,

ii) there exist copies My,, M. which are m-isomorphs,

iii) there exist copies My, M, such that V(M,,) ~ V(M,.) as R-modu-

les.

Proof.

i) < ii) : Proposition 2.

it) = iit) Let & = (f,Id) : My, = (V36 T, 0,w) — M), = (V6 T,
o/, w') a m-isomorphism : o = foa, w o f =w ; f being bijective, by
the theorem 1 it is enough to prove that 4" o f = :

1(2) = (@) © B, ca(ey € and

V@) =) & By € = 9(0) & Bjarcaio

(the set of edges is the same!)

we have f(x) € d/(e) <= f(z) € f(a(e)) <= = € a(e), so 7' (f(x)) =
v(x).

1) = 1) If V(M,,) =~ V(M],), their canonical decompositions are the

same

DEweRr) = P Ew) @R

zeV z'eV’
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For € V there exists an unique 7'(2') such that £, = &), ie.
~v(z) =4/ (a’) (recall (Remark 1) that the &, are distinct); so (7' injective)
exists unique x’ € V' such that 4'(z’) = y(z). Define f(z) =2' : y(z) =
V' (f(2).

- f is bijective, since injective : if z # y we have vy(x) # ~(y), hence
Y (f(x) # ' (f(y) and f(x) # f(y).

- from v(x) = v/(f(x)) we deduce

w@)® P e=d(f@)e P e

zE€a(e) f(z)€a'(e)

so w(z) = w'(f(z)), and = € a(e) < f(z) € & (e) :
-d'=foa

This achieves the proof. |

Remark. Matricial interpretation of iii) : let n = |V, and ¢ : V. — V' the
R-isomorphism ; denote M, € GL,(F,) be the matrix of ¢ in the bases
V,V', Myxy € GL,(Fp) the matrix of multiplication by X in V(I'y,) in
the basis V of V(I',,), and M, (x) € GLy(F,) the matrix of multiplication
by X in V(I',) in the basis V' of V(I'],). Then for all X : M,M,x) =

m
M

p/(X)MLP7 i.e.

Mpr(X)Mgo_l = Mp/(X)

Corollary. Testing if M,, M}, are m-isomorphic can be done in polyno-

maal time.

Proof. The proof follows from the fact that isomorphism problem of R-
modules is done in polynomial time, [3-5,12]. ]
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