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Abstract

The purpose of this paper is to extend the concept of Laplacian
energy from simple graph to a graph with self-loops. Let G be a
simple graph of order n, size m and GS is the graph obtained from
G by adding σ self-loops. We define Laplacian energy of GS as

LE(GS) =
n∑

i=1

∣∣µi(GS)− 2m+σ
n

∣∣ where µ1(GS), µ2(GS), . . . , µn(GS)

are eigenvalues of the Laplacian matrix of GS . In this paper some
basic proprties of Laplacian eigenvalues and bounds for Laplacian
energy of GS are investigated. This paper is limited to bounds in
analogy with bounds of E(G) and LE(G) but with some significant
differences, more sharper bounds can be found.

1 Introduction

Let G = (V,K) be a simple, undirected graph of order n and size m. In

1978, I. Gutman defined the energy [7] of adjacency matrix A(G) as,

E(G) =
n∑

i=1

|λi| (1)
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where λ1, λ2, . . . , λn, are the eigenvalues of adjacency matrix A(G).

The matrix L(G) = D(G) − A(G) is the Laplacian matrix and the

Laplacian energy LE(G) of G is defined [10] as,

LE(G) =

n∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ (2)

where µ1, µ2, . . . , µn are the eigenvalues of L(G) and

D(G) = diag(d1, d2 . . . , dn) is the diagonal matrix of vertex degrees of a

graph G. For more on terminologies we refer [3, 4]

Let S ⊆ V with |S| = σ. A graph with self-loops GS with vertex set

V and edge set K(GS) is obtained from simple graph G, by attaching a

self-loop to each of its vertices belonging to S.

Since graph with self-loops find its application in Chemistry, [8,9,13,14]

Gutman et al. defined adjacency matrix A(GS) [6] of graph GS in 2021.

The matrix A(GS) is a symmetric matrix of order n whose (i, j)th element

is defined as,

A(GS)ij =


1 if the vertices vi ∼ vj ,

0 if the vertices vi ≁ vj ,

1 if i = j and vi ∈ S,

0 if i = j and vi /∈ S.

Then the energy E(GS) of graph GS defined as [6],

E(GS) =

n∑
i=1

∣∣∣λi(GS)−
σ

n

∣∣∣ . (3)

where λ1(GS), λ2(GS), . . . , λn(GS) are the eigenvalues of A(GS). For more

information on energy, Laplacian energy and energy of graph with self-

loops, refer [2, 5, 11,12,15].

The Laplacian matrix L(GS) of a graph GS was defined by B. Acikmese

[1] in 2015 as,

L(GS) = L(G) +
∑

(i,i)∈K(GS)

eiei
T (4)
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Where L(G) =
∑

(i,j)∈K(GS),i̸=j

(ei − ej)(ei − ej)
T
and ei is a vector with its

ith entry +1 and the others zeros.

We now rephrase the Laplacian matrix L(GS) of the graph GS as a

symmetric matrix L(GS) of order n, whose (i, j)th element is defined as

L(GS)ij =


−1 if the vertices vi ∼ vj ,

0 if the vertices vi ≁ vj ,

di + 1 if i = j and vi ∈ S,

di if i = j and vi /∈ S.

i.e.,

L(GS) = D(GS)−A(GS) (5)

where D(GS) = diag(d1(GS), d2(GS), . . . , dn(GS)) is the diagonal matrix

of vertex degrees of GS .

Since L(GS) is a matrix with non-zero diagonal, similarly as in Eq. (2)

and Eq. (3) we now define the Laplacian energy of a graph GS as

LE(GS) =

n∑
i=1

∣∣∣∣µi(GS)−
2m+ σ

n

∣∣∣∣ . (6)

where µ1(GS), µ2(GS), . . . , µn(GS) are the eigenvalues of L(GS).

Let γi(GS) = µi(GS) − 2m+σ
n , i = 1, 2, . . . , n denote the auxiliary

eigenvalues of L(GS). Then,

LE(GS) =

n∑
i=1

|γi(GS)|. (7)

In the present paper, we discuss the properties of Laplacian eigenvalues,

Laplacian energy and its bounds of graph GS .
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2 Laplacian eigenvalues of GS

The eigenvalues of L(G) and A(GS) satisfy the following relation [6, 10] :

n∑
i=1

µi = 2m;

n∑
i=1

µ2
i = 2m+

n∑
i=1

d2i . (8)

n∑
i=1

λi(GS) = σ;

n∑
i=1

λ2
i (GS) = 2m+ σ. (9)

Lemma 1. Let G(V,K) be a graph with n vertices and m edges. If S ⊆ V

with |S| = σ, then the eigenvalues µ1(GS), µ2(GS), . . . , µn(GS) of L(GS)

satisfy,

1.
n∑

i=1

µi(GS) = 2m+ σ

2.
n∑

i=1

µ2
i (GS) = 2m+ σ +

n∑
i=1

d2i (GS)− 2
∑

vi∈S

di(GS)

where di(GS), i = 1, 2, . . . , n denote vertex degree of GS.

Proof. 1. We have,

n∑
i=1

µi(GS) =

n∑
i=1

[L(GS)]ii

=

n∑
i=1

[D(GS)]ii −
n∑

i=1

[A(GS)]ii

= 2m+ σ.

2. Also,

n∑
i=1

µ2
i (GS) =

n∑
i=1

[L(GS)
2]ii

=

n∑
i=1

[D(GS)−A(GS)]
2
ii

=

n∑
i=1

[D(GS)
2]ii +

n∑
i=1

[A(GS)
2]ii − 2

n∑
i=1

[D(GS)A(GS)]ii
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=

n∑
i=1

d2i (GS) + 2m+ σ − 2
∑
vi∈S

di(GS).

Lemma 2. Let G(V,K) be a graph with n vertices and m edges. If S ⊆ V

with |S| = σ, then the auxiliary eigenvalues γ1(GS), γ2(GS), . . . , γn(GS)

of L(GS) satisfy,

1.
n∑

i=1

γi(GS) = 0

2.
n∑

i=1

γ2
i (GS) = 2M

where M = m+ 1
2

n∑
i=1

(
di(GS)− 2m+σ

n

)2
+ σ

(
1
2 + 2m+σ

n

)
−

∑
vi∈S

di(GS).

Proof. 1. We have,

n∑
i=1

γi(GS) =

n∑
i=1

(
µi(GS)−

2m+ σ

n

)

=

n∑
i=1

µi(GS)−
n∑

i=1

2m+ σ

n

= 2m+ σ − (2m+ σ)

= 0.

2. Also,
n∑

i=1

γ2
i (GS) =

n∑
i=1

(
µi(GS)− 2m+σ

n

)2
=

n∑
i=1

µ2
i (GS) +

n∑
i=1

(
2m+ σ

n

)2

− 2

(
2m+ σ

n

) n∑
i=1

µi(GS)

=

n∑
i=1

(
di(GS)−

2m+ σ

n

)2

+ 2m+ σ + 2σ

(
2m+ σ

n

)
−

2
∑
vi∈S

di(GS)

= 2M.
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Lemma 3. [4]

1. A symmetric diagonally dominant real matrix with non-negative di-

agonal entries is positive semidefinite.

2. Let B be a symmetric real matrix with non-negative row sums and

non-positive off-diagonal entries. Define a graph Γ on the index set

of the rows of B, where two distinct indices i, j are adjacent when

bij ̸= 0. The multiplicity of the eigenvalue 0 of B equals the number

of connected components C of Γ such that all rows i ∈ C have zero

row sum.

Theorem 1. 1. L(GS) is positive semidefinite.

2. If graph GS has p ≥ 1 components such that each of q ≤ p num-

ber of components with at least one self-loop and n Lapalcian eigen-

values are arranged in non-increasing order µ1(GS) ≥ µ2(GS) ≥
· · · ≥ µn(GS) then µn−i(GS) = 0 for i = 0, 1, . . . , p − q − 1 and

µn−p+q(GS) > 0.

Proof. 1. By Lemma 3, it follows that L(GS) being a symmetric di-

agonally dominant real matrix with non-negative diagonal entries is

positive semidefinite.

2. Suppose graph GS has p ≥ 1 components. By Lemma 3, obtain

the graph Γ which is defined on the index set of the rows of L(GS).

By the definition of Γ it is clear that each connected component of

GS will contribute exactly one connected component C of Γ. Hence

Γ has p connected components as GS has p components. Suppose

no self-loop is attached to any of the p components, then L(GS) =

L(G). We know that each row of L(G) will have zero row sum so

is each connected components C of Γ. If at least one self-loop is

attached to at least one of the component, row corresponding to the

added self-loop will have nonzero row sum in L(GS) which in turn

results in corresponding row to have non-zero row sum in connected

components C of Γ. Hence that component will not contribute in

the multiplicity of eigenvalue 0. Similaryly if GS has at least one
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self-loop in each of q components, then these q components will not

contribute in the algebraic multiplicity of eigenvalue 0. Therefore

q components will have positive eigenvalues. So multiplicity of 0 is

p − q. Also it follows that if the Lapalcian eigenvalues are labeled

so that µ1(GS) ≥ µ2(GS) ≥ · · · ≥ µn(GS), then µn−i(GS) = 0 for

i = 0, 1, . . . , p− q − 1 and µn−p+q(GS) > 0.

3 Laplacian energy of GS

From literature [10], it is observed that Laplacian energy LE(G) of graph

G satisfies LE(G) ≤
√
2nM and if 2m ≥ n, 2

√
M ≤ LE(G) ≤ 2M , where

M = m+ 1
2

n∑
i=1

(
di − 2m

n

)2
. For Laplacian matrix L(GS) by Lemma 2, we

have
n∑

i=1

γ2
i (GS) = 2M

where M = m+ 1
2

n∑
i=1

(
di(GS)− 2m+σ

n

)2
+ σ

(
1
2 + 2m+σ

n

)
−

∑
vi∈S

di(GS).

Using Cauchy-Schwarz inequality we get,

LE(GS) ≤
√
2nM (10)

For 2m ≥ n, Squaring LE(GS) and using Eq. 10 we get,

2
√
M ≤ LE(GS) ≤ 2M (11)

Theorem 2. If graph GS has p components (p ≥ 1) out of which q com-

ponents (q ≤ p) have at least one self-loop in each of its component. Then,

LE(GS) ≤ (p− q) 2m+σ
n +

√
(n− p+ q)(2M − (p− q)( 2m+σ

n )
2
).

Proof. Consider a graph GS with p components (p ≥ 1). Let each of q ≤ p

components has at least one self-loop. Then by Theorem 1, γn−i(GS) =

− 2m+σ
n for i = 0, 1, . . . , p− q − 1.
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Consider,

n−p+q∑
i=1

n−p+q∑
j=1

(|γi(GS)| − |γj(GS)|)2 ≥ 0

n−p+q∑
i=1

(
n−p+q∑
j=1

|γi(GS)|2 +
n−p+q∑
j=1

|γj(GS)|2 − 2

n−p+q∑
j=1

|γi(GS)||γj(GS)|

)
≥ 0

2(n− p+ q)

(
2M − (p− q)

(
2m+ σ

n

)2
)

≥ 2

(
LE(GS)− (p− q)

(
2m+ σ

n

))2

Thus,

(p− q)

(
2m+ σ

n

)
+

√√√√(n− p+ q)

(
2M − (p− q)

(
2m+ σ

n

)2
)

≥ LE(GS).

Theorem 3. For complete graph Kn with σ self-loops,

LE(GS) =
(n2 − 3n+ 2σ)

n
+
√
(n+ 1)2 − 4σ.

Proof. Let (Kn)S be a complete graph with self-loops so that |S| = σ.

Since all vertices are adjacent, position of self-loop will not change the

Laplacian enegry. Then,

L(Kn)S =

[
((n+ 1)I − J)σ×σ −Jσ×(n−σ)

−J(n−σ)×σ (nI − J)(n−σ)×(n−σ)

]

Let W =

[
X

Y

]
be an eigenvector such that X consists of σ components

and Y is of (n− σ) tupled vector. Let µ(GS) be a eigenvalue of L(GS).

Then,

[µ(GS)I − L(GS)]

[
X

Y

]
=

[
[(µ(GS)− n− 1)I + J ]Xσ×1 + JYσ×1

JX(n−σ)×1 + [(µ(GS)− n)I + J ]Y(n−σ)×1

]
(12)

Case 1: Let X = Xj = e1 − ej , j = 2, 3, . . . , σ. and Y = On−σ×1
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From expression 12,

(µ(GS)− n− 1)Xj + JXj + JOn−σ = (µ(GS)− (n+ 1))Xj

It implies that, µ(GS) = (n + 1) is an eigenvalue with multiplicity of at

least (σ − 1) since there are (σ − 1) linearly independent eigenvectors of

the form Xj .

Case 2: Suppose X is a zero vector of order σ and Y = Yj = e1 − ej ,

j = 2, 3, . . . , n− σ

Then from expression 12,

JOσ + (µ(GS)− n)Yj + JYj = (µ(GS)− n)Yj

So, µ(GS) = n is an eigenvalue with multiplicity at least (n− σ− 1) since

there are n− σ − 1 linearly independent eigenvectors of the form Yj .

Case 3: Let X = 1σ and Y = −σ
(µ(GS)−σ)1n−σ where, µ(GS) is root of

the equation µ(GS)
2 − (n+ 1)µ(GS) + σ = 0

From Eq. 12, ((µ(GS)− n− 1)I + J)1σ + J
(

−σ
n−σ

)
1n−σ

=

(
(µ(GS)− n− 1) + σ + (n− σ)

(
−σ

µ(GS)− σ

))
1σ

=

(
(µ(GS)− n− 1)(µ(GS)− σ) + σ(µ(GS)− σ)− σ(µ(GS)− σ)

µ(GS)− σ

)
1σ

=

(
µ(GS)

2 − (n+ 1)µ(GS) + σ

µ(GS)− σ

)
1σ

Thus, µ(GS) =
(n+1)+

√
(n+1)2−4σ

2 and µ(GS) =
(n+1)−

√
(n+1)2−4σ

2 are the

eigenvalues with multiplicity of at least one. Therefore Laplacian spectrum

of complete graph with self-loops is given by,{
n n+ 1

n+1+
√

(n+1)2−4σ

2

(n+1)−
√

(n+1)2−4σ

2

n− 1− σ σ − 1 1 1

}
.
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The Lapalcian energy of complete graph with self-loops is given by,

LE((Kn)S) =(n− 1− σ)

∣∣∣∣n− n2 − n+ σ

n

∣∣∣∣+ (σ − 1)

∣∣∣∣(n+ 1)− n2 − n+ σ

n

∣∣∣∣
+

∣∣∣∣∣ (n+ 1) +
√

(n+ 1)2 − 4σ

2
− n2 − n+ σ

n

∣∣∣∣∣
+

∣∣∣∣∣ (n+ 1)−
√

(n+ 1)2 − 4σ

2
− n2 − n+ σ

n

∣∣∣∣∣
= (n− 1− σ)

(n− σ

n

)
+ (σ − 1)

(
2n− σ

n

)
+
√

(n+ 1)2 − 4σ

Further simplification will result in,

LE((Kn)S) =
(n2 − 3n+ 2σ)

n
+
√
(n+ 1)2 − 4σ.

Theorem 4. For complete bipartite graph Km,n with number of self-loops

s and k in the partite m and n respectively. Then the characteristic polyno-

mial P (x) is P
(
µ
(
K(m,n)S

))
=

(
µ
(
K(m,n)S

)
− (n+ 1)

)s−1 (
µ
(
K(m,n)S

)
−(m+ 1))

k−1 (
µ
(
K(m,n)S

)
− n

)m−s−1 (
µ
(
K(m,n)S

)
−m

)n−k−1

Q
(
µ
(
K(m,n)S

))
, where Q

(
µ
(
K(m,n)S

))
= µ4

(
K(m,n)S

)
− 2(m + n +

1)µ3
(
K(m,n)S

)
+(m(m+3)+n(n+3)+3mn+1)µ2

(
K(m,n)S

)
− (m(n2+

k+1)+n(m2+s+1)+(m+n)2)µ
(
K(m,n)S

)
+km(1+n)+ns(m+1)−ks.

Proof. Let (Km,n)S be complete bipartite graph with s, k number of self-

loops in the two partites of orderm and n respectively. Then the Laplacian

matrix L(K(m,n)S
) =

(n+ 1)Is×s 0s×(m−s) −1s×k −1s×(n−k)

0(m−s)×s nI(m−s)×(m−s) −1(m−s)×k −1(m−s)×(n−k)

−1k×k −1k×(m−s) (m+ 1)Ik×k 0k×(n−k)

−1(n−k)×k −1(n−k)×(m−s) 0(n−k)×k mI(n−k)×(n−k)


Consider det

(
µ
(
K(m,n)S

)
I − L

(
K(m,n)S

))
, where µ(K(m,n)S

) is an eigen-

value of L
(
K(m,n)S

)
.

Step 1: Replace Ri by R′
i = Ri − Ri−1, where i = n, n − 1, . . . , k +

3, k+2, k, k−1, . . . ,m+3,m+2,m,m−1, . . . , s+3, s+2, s, s−1, . . . , 3, 2.
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Then det
(
µ
(
K(m,n)S

)
I − L

(
K(m,n)S

))
will get reduced to new determi-

nant say det(A).

Step 2: Replace Ci of det(A) by C ′
i = Ci + Ci+1, where i = n− 1, n−

2, . . . , k+1, k− 1, k− 2, . . . ,m+1,m− 1, . . . , s+1, s− 1, . . . , 2, 1. Let the

new determinant be det(B).

Step 3: Expanding det(B) successively along the rows i, i = 2, 3, . . . , s,

s+2, . . . ,m,m+2, . . . , k, k+2, . . . , n−1, n. Then, det(B) = (µ
(
K(m,n)S

)
−

(n + 1))s−1(µ
(
K(m,n)S

)
− (m + 1))k−1(µ

(
K(m,n)S

)
− n)m−s−1(µ

(
K(m,n)S

)
−

m)n−k−1 det(C), where det(C) =∣∣∣∣∣∣∣∣∣∣∣

µ
(
K(m,n)S

)
− n − 1 0 k n − k

0 µ
(
K(m,n)S

)
− n k n − k

s m − s µ
(
K(m,n)S

)
− m − 1 0

s m − s 0 µ
(
K(m,n)S

)
− m

∣∣∣∣∣∣∣∣∣∣∣
.

Further simplifying the determinant we get, det(C) = µ4
(
K(m,n)S

)
−

2(m+n+1)µ3
(
K(m,n)S

)
+(m(m+3)+n(n+3)+3mn+1)µ2

(
K(m,n)S

)
−

(m(n2+k+1)+n(m2+s+1)+(m+n)2)µ
(
K(m,n)S

)
+km(1+n)+ns(m+

1)− ks. Then the Laplacian characteristic polynomial of (Km,n)S is given

by P
(
µ
(
K(m,n)S

))
=

(
µ
(
K(m,n)S

)
− (n+ 1)

)s−1 (
µ
(
K(m,n)S

)
−

(m+ 1))
k−1 (

µ
(
K(m,n)S

)
− n

)m−s−1 (
µ
(
K(m,n)S

)
−m

)n−k−1

Q
(
µ
(
K(m,n)S

))
, where Q

(
µ
(
K(m,n)S

))
= µ4

(
K(m,n)S

)
− 2(m + n +

1)µ3
(
K(m,n)S

)
+(m(m+3)+n(n+3)+3mn+1)µ2

(
K(m,n)S

)
− (m(n2+

k+1)+n(m2+s+1)+(m+n)2)µ
(
K(m,n)S

)
+km(1+n)+ns(m+1)−ks.
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[14] R. B. Mallion, N. Trinajstić, A. J. Schwenk, Graph theory in chem-
istry – generalization of Sachs’ formula, Z. Naturforsch. 29a (1974)
1481–1484.
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