Laplacian Energy of a Graph with Self-Loops

Deekshitha Vivek Anchan ${ }^{a}$, Sabitha D'Souza ${ }^{a}$, Gowtham H. J. ${ }^{a *}$, Pradeep G. Bhat ${ }^{a}$
${ }^{a}$ Department of Mathematics, Manipal Institute of Technology Manipal Academy of Higher Education, Manipal-576104, India deekshithakidiyoor@gmail.com, sabitha.dsouza@manipal.edu, gowtham.hj@manipal.edu, pg.bhat@manipal.edu

(Received December 5, 2022)

Abstract

The purpose of this paper is to extend the concept of Laplacian energy from simple graph to a graph with self-loops. Let G be a simple graph of order n, size m and G_{S} is the graph obtained from G by adding σ self-loops. We define Laplacian energy of G_{S} as $L E\left(G_{S}\right)=\sum_{i=1}^{n}\left|\mu_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right|$ where $\mu_{1}\left(G_{S}\right), \mu_{2}\left(G_{S}\right), \ldots, \mu_{n}\left(G_{S}\right)$ are eigenvalues of the Laplacian matrix of G_{S}. In this paper some basic proprties of Laplacian eigenvalues and bounds for Laplacian energy of G_{S} are investigated. This paper is limited to bounds in analogy with bounds of $E(G)$ and $L E(G)$ but with some significant differences, more sharper bounds can be found.

1 Introduction

Let $G=(V, K)$ be a simple, undirected graph of order n and size m. In 1978, I. Gutman defined the energy [7] of adjacency matrix $A(G)$ as,

$$
\begin{equation*}
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| \tag{1}
\end{equation*}
$$

[^0]where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, are the eigenvalues of adjacency matrix $A(G)$.
The matrix $L(G)=D(G)-A(G)$ is the Laplacian matrix and the Laplacian energy $\mathrm{LE}(\mathrm{G})$ of G is defined [10] as,
\[

$$
\begin{equation*}
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right| \tag{2}
\end{equation*}
$$

\]

where $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of $L(G)$ and $D(G)=\operatorname{diag}\left(d_{1}, d_{2} \ldots, d_{n}\right)$ is the diagonal matrix of vertex degrees of a graph G. For more on terminologies we refer $[3,4]$

Let $S \subseteq V$ with $|S|=\sigma$. A graph with self-loops G_{S} with vertex set V and edge set $K\left(G_{S}\right)$ is obtained from simple graph G, by attaching a self-loop to each of its vertices belonging to S.

Since graph with self-loops find its application in Chemistry, $[8,9,13,14]$ Gutman et al. defined adjacency matrix $A\left(G_{S}\right)$ [6] of graph G_{S} in 2021. The matrix $A\left(G_{S}\right)$ is a symmetric matrix of order n whose $(i, j)^{t h}$ element is defined as,

$$
A\left(G_{S}\right)_{i j}= \begin{cases}1 & \text { if the vertices } v_{i} \sim v_{j} \\ 0 & \text { if the vertices } v_{i} \nsim v_{j} \\ 1 & \text { if } i=j \text { and } v_{i} \in S \\ 0 & \text { if } i=j \text { and } v_{i} \notin S\end{cases}
$$

Then the energy $E\left(G_{S}\right)$ of graph G_{S} defined as [6],

$$
\begin{equation*}
E\left(G_{S}\right)=\sum_{i=1}^{n}\left|\lambda_{i}\left(G_{S}\right)-\frac{\sigma}{n}\right| \tag{3}
\end{equation*}
$$

where $\lambda_{1}\left(G_{S}\right), \lambda_{2}\left(G_{S}\right), \ldots, \lambda_{n}\left(G_{S}\right)$ are the eigenvalues of $A\left(G_{S}\right)$. For more information on energy, Laplacian energy and energy of graph with selfloops, refer $[2,5,11,12,15]$.

The Laplacian matrix $L\left(G_{S}\right)$ of a graph G_{S} was defined by B. Acikmese [1] in 2015 as,

$$
\begin{equation*}
L\left(G_{S}\right)=L(G)+\sum_{(i, i) \in K\left(G_{S}\right)} e_{i} e_{i}^{T} \tag{4}
\end{equation*}
$$

Where $L(G)=\sum_{(i, j) \in K\left(G_{S}\right), i \neq j}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T}$ and e_{i} is a vector with its $i^{\text {th }}$ entry +1 and the others zeros.

We now rephrase the Laplacian matrix $L\left(G_{S}\right)$ of the graph G_{S} as a symmetric matrix $L\left(G_{S}\right)$ of order n, whose $(i, j)^{t h}$ element is defined as

$$
L\left(G_{S}\right)_{i j}= \begin{cases}-1 & \text { if the vertices } v_{i} \sim v_{j}, \\ 0 & \text { if the vertices } v_{i} \nsim v_{j}, \\ d_{i}+1 & \text { if } i=j \text { and } v_{i} \in S, \\ d_{i} & \text { if } i=j \text { and } v_{i} \notin S .\end{cases}
$$

i.e.,

$$
\begin{equation*}
L\left(G_{S}\right)=D\left(G_{S}\right)-A\left(G_{S}\right) \tag{5}
\end{equation*}
$$

where $D\left(G_{S}\right)=\operatorname{diag}\left(d_{1}\left(G_{S}\right), d_{2}\left(G_{S}\right), \ldots, d_{n}\left(G_{S}\right)\right)$ is the diagonal matrix of vertex degrees of G_{S}.

Since $L\left(G_{S}\right)$ is a matrix with non-zero diagonal, similarly as in Eq. (2) and Eq. (3) we now define the Laplacian energy of a graph G_{S} as

$$
\begin{equation*}
L E\left(G_{S}\right)=\sum_{i=1}^{n}\left|\mu_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right| \tag{6}
\end{equation*}
$$

where $\mu_{1}\left(G_{S}\right), \mu_{2}\left(G_{S}\right), \ldots, \mu_{n}\left(G_{S}\right)$ are the eigenvalues of $L\left(G_{S}\right)$.
Let $\gamma_{i}\left(G_{S}\right)=\mu_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}, i=1,2, \ldots, n$ denote the auxiliary eigenvalues of $L\left(G_{S}\right)$. Then,

$$
\begin{equation*}
L E\left(G_{S}\right)=\sum_{i=1}^{n}\left|\gamma_{i}\left(G_{S}\right)\right| . \tag{7}
\end{equation*}
$$

In the present paper, we discuss the properties of Laplacian eigenvalues, Laplacian energy and its bounds of graph G_{S}.

2 Laplacian eigenvalues of G_{S}

The eigenvalues of $L(G)$ and $A\left(G_{S}\right)$ satisfy the following relation $[6,10]$:

$$
\begin{array}{cl}
\sum_{i=1}^{n} \mu_{i}=2 m ; & \sum_{i=1}^{n} \mu_{i}^{2}=2 m+\sum_{i=1}^{n} d_{i}^{2} \\
\sum_{i=1}^{n} \lambda_{i}\left(G_{S}\right)=\sigma ; & \sum_{i=1}^{n} \lambda_{i}^{2}\left(G_{S}\right)=2 m+\sigma \tag{9}
\end{array}
$$

Lemma 1. Let $G(V, K)$ be a graph with n vertices and m edges. If $S \subseteq V$ with $|S|=\sigma$, then the eigenvalues $\mu_{1}\left(G_{S}\right), \mu_{2}\left(G_{S}\right), \ldots, \mu_{n}\left(G_{S}\right)$ of $L\left(G_{S}\right)$ satisfy,

1. $\sum_{i=1}^{n} \mu_{i}\left(G_{S}\right)=2 m+\sigma$
2. $\sum_{i=1}^{n} \mu_{i}^{2}\left(G_{S}\right)=2 m+\sigma+\sum_{i=1}^{n} d_{i}^{2}\left(G_{S}\right)-2 \sum_{v_{i} \in S} d_{i}\left(G_{S}\right)$
where $d_{i}\left(G_{S}\right), i=1,2, \ldots, n$ denote vertex degree of G_{S}.
Proof. 1. We have,

$$
\begin{aligned}
\sum_{i=1}^{n} \mu_{i}\left(G_{S}\right) & =\sum_{i=1}^{n}\left[L\left(G_{S}\right)\right]_{i i} \\
& =\sum_{i=1}^{n}\left[D\left(G_{S}\right)\right]_{i i}-\sum_{i=1}^{n}\left[A\left(G_{S}\right)\right]_{i i} \\
& =2 m+\sigma
\end{aligned}
$$

2. Also,

$$
\begin{aligned}
\sum_{i=1}^{n} \mu_{i}^{2}\left(G_{S}\right) & =\sum_{i=1}^{n}\left[L\left(G_{S}\right)^{2}\right]_{i i} \\
& =\sum_{i=1}^{n}\left[D\left(G_{S}\right)-A\left(G_{S}\right)\right]_{i i}^{2} \\
& =\sum_{i=1}^{n}\left[D\left(G_{S}\right)^{2}\right]_{i i}+\sum_{i=1}^{n}\left[A\left(G_{S}\right)^{2}\right]_{i i}-2 \sum_{i=1}^{n}\left[D\left(G_{S}\right) A\left(G_{S}\right)\right]_{i i}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} d_{i}^{2}\left(G_{S}\right)+2 m+\sigma-2 \sum_{v_{i} \in S} d_{i}\left(G_{S}\right)
$$

Lemma 2. Let $G(V, K)$ be a graph with n vertices and m edges. If $S \subseteq V$ with $|S|=\sigma$, then the auxiliary eigenvalues $\gamma_{1}\left(G_{S}\right), \gamma_{2}\left(G_{S}\right), \ldots, \gamma_{n}\left(G_{S}\right)$ of $L\left(G_{S}\right)$ satisfy,

1. $\sum_{i=1}^{n} \gamma_{i}\left(G_{S}\right)=0$
2. $\sum_{i=1}^{n} \gamma_{i}^{2}\left(G_{S}\right)=2 M$
where $M=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right)^{2}+\sigma\left(\frac{1}{2}+\frac{2 m+\sigma}{n}\right)-\sum_{v_{i} \in S} d_{i}\left(G_{S}\right)$.
Proof. 1. We have,

$$
\begin{aligned}
\sum_{i=1}^{n} \gamma_{i}\left(G_{S}\right) & =\sum_{i=1}^{n}\left(\mu_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right) \\
& =\sum_{i=1}^{n} \mu_{i}\left(G_{S}\right)-\sum_{i=1}^{n} \frac{2 m+\sigma}{n} \\
& =2 m+\sigma-(2 m+\sigma) \\
& =0
\end{aligned}
$$

2. Also, $\sum_{i=1}^{n} \gamma_{i}^{2}\left(G_{S}\right)=\sum_{i=1}^{n}\left(\mu_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right)^{2}$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \mu_{i}^{2}\left(G_{S}\right)+\sum_{i=1}^{n}\left(\frac{2 m+\sigma}{n}\right)^{2}-2\left(\frac{2 m+\sigma}{n}\right) \sum_{i=1}^{n} \mu_{i}\left(G_{S}\right) \\
& =\sum_{i=1}^{n}\left(d_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right)^{2}+2 m+\sigma+2 \sigma\left(\frac{2 m+\sigma}{n}\right)- \\
& \quad 2 \sum_{v_{i} \in S} d_{i}\left(G_{S}\right) \\
& =2 M
\end{aligned}
$$

Lemma 3. [4]

1. A symmetric diagonally dominant real matrix with non-negative diagonal entries is positive semidefinite.
2. Let B be a symmetric real matrix with non-negative row sums and non-positive off-diagonal entries. Define a graph Γ on the index set of the rows of B, where two distinct indices i, j are adjacent when $b_{i j} \neq 0$. The multiplicity of the eigenvalue 0 of B equals the number of connected components C of Γ such that all rows $i \in C$ have zero row sum.

Theorem 1. 1. $L\left(G_{S}\right)$ is positive semidefinite.
2. If graph G_{S} has $p \geq 1$ components such that each of $q \leq p$ number of components with at least one self-loop and n Lapalcian eigenvalues are arranged in non-increasing order $\mu_{1}\left(G_{S}\right) \geq \mu_{2}\left(G_{S}\right) \geq$ $\cdots \geq \mu_{n}\left(G_{S}\right)$ then $\mu_{n-i}\left(G_{S}\right)=0$ for $i=0,1, \ldots, p-q-1$ and $\mu_{n-p+q}\left(G_{S}\right)>0$.

Proof. 1. By Lemma 3, it follows that $L\left(G_{S}\right)$ being a symmetric diagonally dominant real matrix with non-negative diagonal entries is positive semidefinite.
2. Suppose graph G_{S} has $p \geq 1$ components. By Lemma 3, obtain the graph Γ which is defined on the index set of the rows of $L\left(G_{S}\right)$. By the definition of Γ it is clear that each connected component of G_{S} will contribute exactly one connected component C of Γ. Hence Γ has p connected components as G_{S} has p components. Suppose no self-loop is attached to any of the p components, then $L\left(G_{S}\right)=$ $L(G)$. We know that each row of $L(G)$ will have zero row sum so is each connected components C of Γ. If at least one self-loop is attached to at least one of the component, row corresponding to the added self-loop will have nonzero row sum in $L\left(G_{S}\right)$ which in turn results in corresponding row to have non-zero row sum in connected components C of Γ. Hence that component will not contribute in the multiplicity of eigenvalue 0 . Similaryly if G_{S} has at least one
self-loop in each of q components, then these q components will not contribute in the algebraic multiplicity of eigenvalue 0 . Therefore q components will have positive eigenvalues. So multiplicity of 0 is $p-q$. Also it follows that if the Lapalcian eigenvalues are labeled so that $\mu_{1}\left(G_{S}\right) \geq \mu_{2}\left(G_{S}\right) \geq \cdots \geq \mu_{n}\left(G_{S}\right)$, then $\mu_{n-i}\left(G_{S}\right)=0$ for $i=0,1, \ldots, p-q-1$ and $\mu_{n-p+q}\left(G_{S}\right)>0$.

3 Laplacian energy of G_{S}

From literature [10], it is observed that Laplacian energy $L E(G)$ of graph G satisfies $L E(G) \leq \sqrt{2 n M}$ and if $2 m \geq n, 2 \sqrt{M} \leq L E(G) \leq 2 M$, where $M=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\frac{2 m}{n}\right)^{2}$. For Laplacian matrix $L\left(G_{S}\right)$ by Lemma 2 , we have $\sum_{i=1}^{n} \gamma_{i}^{2}\left(G_{S}\right)=2 M$
where $M=m+\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}\left(G_{S}\right)-\frac{2 m+\sigma}{n}\right)^{2}+\sigma\left(\frac{1}{2}+\frac{2 m+\sigma}{n}\right)-\sum_{v_{i} \in S} d_{i}\left(G_{S}\right)$.
Using Cauchy-Schwarz inequality we get,

$$
\begin{equation*}
L E\left(G_{S}\right) \leq \sqrt{2 n M} \tag{10}
\end{equation*}
$$

For $2 m \geq n$, Squaring $L E\left(G_{S}\right)$ and using Eq. 10 we get,

$$
\begin{equation*}
2 \sqrt{M} \leq L E\left(G_{S}\right) \leq 2 M \tag{11}
\end{equation*}
$$

Theorem 2. If graph G_{S} has p components $(p \geq 1)$ out of which q components $(q \leq p)$ have at least one self-loop in each of its component. Then,

$$
\left.L E\left(G_{S}\right) \leq(p-q) \frac{2 m+\sigma}{n}+\sqrt{(n-p+q)\left(2 M-(p-q)\left(\frac{2 m+\sigma}{n}\right)^{2}\right.}\right)
$$

Proof. Consider a graph G_{S} with p components $(p \geq 1)$. Let each of $q \leq p$ components has at least one self-loop. Then by Theorem $1, \gamma_{n-i}\left(G_{S}\right)=$ $-\frac{2 m+\sigma}{n}$ for $i=0,1, \ldots, p-q-1$.

Consider,

$$
\begin{aligned}
& \sum_{i=1}^{n-p+q} \sum_{j=1}^{n-p+q}\left(\left|\gamma_{i}\left(G_{S}\right)\right|-\left|\gamma_{j}\left(G_{S}\right)\right|\right)^{2} \geq 0 \\
& \sum_{i=1}^{n-p+q}\left(\sum_{j=1}^{n-p+q}\left|\gamma_{i}\left(G_{S}\right)\right|^{2}+\sum_{j=1}^{n-p+q}\left|\gamma_{j}\left(G_{S}\right)\right|^{2}-2 \sum_{j=1}^{n-p+q}\left|\gamma_{i}\left(G_{S}\right)\right|\left|\gamma_{j}\left(G_{S}\right)\right|\right) \geq 0 \\
& 2(n-p+q)\left(2 M-(p-q)\left(\frac{2 m+\sigma}{n}\right)^{2}\right) \geq 2\left(L E\left(G_{S}\right)-(p-q)\left(\frac{2 m+\sigma}{n}\right)\right)^{2}
\end{aligned}
$$

Thus,

$$
(p-q)\left(\frac{2 m+\sigma}{n}\right)+\sqrt{(n-p+q)\left(2 M-(p-q)\left(\frac{2 m+\sigma}{n}\right)^{2}\right)} \geq L E\left(G_{S}\right)
$$

Theorem 3. For complete graph K_{n} with σ self-loops,

$$
L E\left(G_{S}\right)=\frac{\left(n^{2}-3 n+2 \sigma\right)}{n}+\sqrt{(n+1)^{2}-4 \sigma}
$$

Proof. Let $\left(K_{n}\right)_{S}$ be a complete graph with self-loops so that $|S|=\sigma$. Since all vertices are adjacent, position of self-loop will not change the Laplacian enegry. Then,

$$
L\left(K_{n}\right)_{S}=\left[\begin{array}{cc}
((n+1) I-J)_{\sigma \times \sigma} & -J_{\sigma \times(n-\sigma)} \\
-J_{(n-\sigma) \times \sigma} & (n I-J)_{(n-\sigma) \times(n-\sigma)}
\end{array}\right]
$$

Let $W=\left[\begin{array}{l}X \\ Y\end{array}\right]$ be an eigenvector such that X consists of σ components and Y is of $(n-\sigma)$ tupled vector. Let $\mu\left(G_{S}\right)$ be a eigenvalue of $L\left(G_{S}\right)$. Then,

$$
\left[\mu\left(G_{S}\right) I-L\left(G_{S}\right)\right]\left[\begin{array}{l}
X \tag{12}\\
Y
\end{array}\right]=\left[\begin{array}{c}
{\left[\left(\mu\left(G_{S}\right)-n-1\right) I+J\right] X_{\sigma \times 1}+J Y_{\sigma \times 1}} \\
J X_{(n-\sigma) \times 1}+\left[\left(\mu\left(G_{S}\right)-n\right) I+J\right] Y_{(n-\sigma) \times 1}
\end{array}\right]
$$

Case 1: Let $X=X_{j}=e_{1}-e_{j}, j=2,3, \ldots, \sigma$. and $Y=O_{n-\sigma \times 1}$

From expression 12,

$$
\left(\mu\left(G_{S}\right)-n-1\right) X_{j}+J X_{j}+J O_{n-\sigma}=\left(\mu\left(G_{S}\right)-(n+1)\right) X_{j}
$$

It implies that, $\mu\left(G_{S}\right)=(n+1)$ is an eigenvalue with multiplicity of at least $(\sigma-1)$ since there are $(\sigma-1)$ linearly independent eigenvectors of the form X_{j}.

Case 2: Suppose X is a zero vector of order σ and $Y=Y_{j}=e_{1}-e_{j}$, $j=2,3, \ldots, n-\sigma$
Then from expression 12 ,

$$
J O_{\sigma}+\left(\mu\left(G_{S}\right)-n\right) Y_{j}+J Y_{j}=\left(\mu\left(G_{S}\right)-n\right) Y_{j}
$$

So, $\mu\left(G_{S}\right)=n$ is an eigenvalue with multiplicity at least $(n-\sigma-1)$ since there are $n-\sigma-1$ linearly independent eigenvectors of the form Y_{j}.

Case 3: Let $X=1_{\sigma}$ and $Y=\frac{-\sigma}{\left(\mu\left(G_{S}\right)-\sigma\right)} 1_{n-\sigma}$ where, $\mu\left(G_{S}\right)$ is root of the equation $\mu\left(G_{S}\right)^{2}-(n+1) \mu\left(G_{S}\right)+\sigma=0$
From Eq. $12,\left(\left(\mu\left(G_{S}\right)-n-1\right) I+J\right) 1_{\sigma}+J\left(\frac{-\sigma}{n-\sigma}\right) 1_{n-\sigma}$

$$
\begin{aligned}
& =\left(\left(\mu\left(G_{S}\right)-n-1\right)+\sigma+(n-\sigma)\left(\frac{-\sigma}{\mu\left(G_{S}\right)-\sigma}\right)\right) 1_{\sigma} \\
& =\left(\frac{\left(\mu\left(G_{S}\right)-n-1\right)\left(\mu\left(G_{S}\right)-\sigma\right)+\sigma\left(\mu\left(G_{S}\right)-\sigma\right)-\sigma\left(\mu\left(G_{S}\right)-\sigma\right)}{\mu\left(G_{S}\right)-\sigma}\right) 1_{\sigma} \\
& =\left(\frac{\mu\left(G_{S}\right)^{2}-(n+1) \mu\left(G_{S}\right)+\sigma}{\mu\left(G_{S}\right)-\sigma}\right) 1_{\sigma}
\end{aligned}
$$

Thus, $\mu\left(G_{S}\right)=\frac{(n+1)+\sqrt{(n+1)^{2}-4 \sigma}}{2}$ and $\mu\left(G_{S}\right)=\frac{(n+1)-\sqrt{(n+1)^{2}-4 \sigma}}{2}$ are the eigenvalues with multiplicity of at least one. Therefore Laplacian spectrum of complete graph with self-loops is given by,

$$
\left\{\begin{array}{cccc}
n & n+1 & \frac{n+1+\sqrt{(n+1)^{2}-4 \sigma}}{2} & \frac{(n+1)-\sqrt{(n+1)^{2}-4 \sigma}}{2} \\
n-1-\sigma & \sigma-1 & 1 & 1
\end{array}\right\}
$$

The Lapalcian energy of complete graph with self-loops is given by,

$$
\begin{aligned}
L E\left(\left(K_{n}\right)_{S}\right)= & (n-1-\sigma)\left|n-\frac{n^{2}-n+\sigma}{n}\right|+(\sigma-1)\left|(n+1)-\frac{n^{2}-n+\sigma}{n}\right| \\
& +\left|\frac{(n+1)+\sqrt{(n+1)^{2}-4 \sigma}}{2}-\frac{n^{2}-n+\sigma}{n}\right| \\
& +\left|\frac{(n+1)-\sqrt{(n+1)^{2}-4 \sigma}}{2}-\frac{n^{2}-n+\sigma}{n}\right| \\
& =(n-1-\sigma)\left(\frac{n-\sigma}{n}\right)+(\sigma-1)\left(\frac{2 n-\sigma}{n}\right)+\sqrt{(n+1)^{2}-4 \sigma}
\end{aligned}
$$

Further simplification will result in,

$$
L E\left(\left(K_{n}\right)_{S}\right)=\frac{\left(n^{2}-3 n+2 \sigma\right)}{n}+\sqrt{(n+1)^{2}-4 \sigma}
$$

Theorem 4. For complete bipartite graph $K_{m, n}$ with number of self-loops s and k in the partite m and n respectively. Then the characteristic polyno$\operatorname{mial} P(x)$ is $P\left(\mu\left(K_{(m, n)_{S}}\right)\right)=\left(\mu\left(K_{(m, n)_{S}}\right)-(n+1)\right)^{s-1}\left(\mu\left(K_{(m, n)_{S}}\right)\right.$ $-(m+1))^{k-1}\left(\mu\left(K_{(m, n)_{S}}\right)-n\right)^{m-s-1}\left(\mu\left(K_{(m, n)_{S}}\right)-m\right)^{n-k-1}$ $Q\left(\mu\left(K_{(m, n)_{S}}\right)\right)$, where $Q\left(\mu\left(K_{(m, n)_{S}}\right)\right)=\mu^{4}\left(K_{(m, n)_{S}}\right)-2(m+n+$ 1) $\mu^{3}\left(K_{(m, n)_{S}}\right)+(m(m+3)+n(n+3)+3 m n+1) \mu^{2}\left(K_{(m, n)_{S}}\right)-\left(m\left(n^{2}+\right.\right.$ $\left.k+1)+n\left(m^{2}+s+1\right)+(m+n)^{2}\right) \mu\left(K_{(m, n)_{S}}\right)+k m(1+n)+n s(m+1)-k s$.

Proof. Let $\left(K_{m, n}\right)_{S}$ be complete bipartite graph with s, k number of selfloops in the two partites of order m and n respectively. Then the Laplacian $\operatorname{matrix} L\left(K_{(m, n)_{S}}\right)=$

$$
\left[\begin{array}{cccc}
(n+1) I_{s \times s} & 0_{s \times(m-s)} & -1_{s \times k} & -1_{s \times(n-k)} \\
0_{(m-s) \times s} & n I_{(m-s) \times(m-s)} & -1_{(m-s) \times k} & -1_{(m-s) \times(n-k)} \\
-1_{k \times k} & -1_{k \times(m-s)} & (m+1) I_{k \times k} & 0_{k \times(n-k)} \\
-1_{(n-k) \times k} & -1_{(n-k) \times(m-s)} & 0_{(n-k) \times k} & m I_{(n-k) \times(n-k)}
\end{array}\right]
$$

Consider $\operatorname{det}\left(\mu\left(K_{(m, n)_{S}}\right) I-L\left(K_{(m, n)_{S}}\right)\right)$, where $\mu\left(K_{(m, n)_{S}}\right)$ is an eigenvalue of $L\left(K_{(m, n)}\right)$.

Step 1: Replace R_{i} by $R_{i}^{\prime}=R_{i}-R_{i-1}$, where $i=n, n-1, \ldots, k+$ $3, k+2, k, k-1, \ldots, m+3, m+2, m, m-1, \ldots, s+3, s+2, s, s-1, \ldots, 3,2$.

Then $\operatorname{det}\left(\mu\left(K_{(m, n)_{S}}\right) I-L\left(K_{(m, n)_{S}}\right)\right)$ will get reduced to new determinant say $\operatorname{det}(A)$.

Step 2: Replace C_{i} of $\operatorname{det}(A)$ by $C_{i}^{\prime}=C_{i}+C_{i+1}$, where $i=n-1, n-$ $2, \ldots, k+1, k-1, k-2, \ldots, m+1, m-1, \ldots, s+1, s-1, \ldots, 2,1$. Let the new determinant be $\operatorname{det}(B)$.

Step 3: Expanding $\operatorname{det}(B)$ successively along the rows $i, i=2,3, \ldots, s$, $s+2, \ldots, m, m+2, \ldots, k, k+2, \ldots, n-1, n$. Then, $\operatorname{det}(B)=\left(\mu\left(K_{(m, n)_{S}}\right)-\right.$ $(n+1))^{s-1}\left(\mu\left(K_{(m, n)_{S}}\right)-(m+1)\right)^{k-1}\left(\mu\left(K_{(m, n)_{S}}\right)-n\right)^{m-s-1}\left(\mu\left(K_{(m, n)_{S}}\right)-\right.$ $m)^{n-k-1} \operatorname{det}(C)$, where $\operatorname{det}(C)=$ $\left|\begin{array}{cccc}\mu\left(K_{(m, n)_{S}}\right)-n-1 & 0 & k & n-k \\ 0 & \mu\left(K_{\left.(m, n)_{S}\right)}\right)-n & k & n-k \\ s & m-s & \mu\left(K_{\left.(m, n)_{S}\right)}\right)-m-1 & 0 \\ s & m-s & 0 & \mu\left(K_{(m, n) S}\right)-m\end{array}\right|$

Further simplifying the determinant we get, $\operatorname{det}(C)=\mu^{4}\left(K_{(m, n)_{S}}\right)-$ $2(m+n+1) \mu^{3}\left(K_{(m, n)_{S}}\right)+(m(m+3)+n(n+3)+3 m n+1) \mu^{2}\left(K_{(m, n)_{S}}\right)-$ $\left(m\left(n^{2}+k+1\right)+n\left(m^{2}+s+1\right)+(m+n)^{2}\right) \mu\left(K_{(m, n)_{S}}\right)+k m(1+n)+n s(m+$ 1) - $k s$. Then the Laplacian characteristic polynomial of $\left(K_{m, n}\right)_{S}$ is given by $P\left(\mu\left(K_{(m, n)_{S}}\right)\right)=\left(\mu\left(K_{(m, n)_{S}}\right)-(n+1)\right)^{s-1}\left(\mu\left(K_{(m, n)_{S}}\right)-\right.$ $(m+1))^{k-1}\left(\mu\left(K_{(m, n)_{S}}\right)-n\right)^{m-s-1}\left(\mu\left(K_{(m, n)_{S}}\right)-m\right)^{n-k-1}$ $Q\left(\mu\left(K_{(m, n)_{S}}\right)\right)$, where $Q\left(\mu\left(K_{(m, n)_{S}}\right)\right)=\mu^{4}\left(K_{(m, n)_{S}}\right)-2(m+n+$ 1) $\mu^{3}\left(K_{(m, n)_{S}}\right)+(m(m+3)+n(n+3)+3 m n+1) \mu^{2}\left(K_{(m, n)_{S}}\right)-\left(m\left(n^{2}+\right.\right.$ $\left.k+1)+n\left(m^{2}+s+1\right)+(m+n)^{2}\right) \mu\left(K_{(m, n) S}\right)+k m(1+n)+n s(m+1)-k s$.

References

[1] B. Acikmese, Spectrum of Laplacians for graphs with self-loops, arXiv, 2015.
[2] T. Aleksić, Upper bounds for Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 435-439.
[3] R. Bapat, Graphs and Matrices, Springer, London, 2011.
[4] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.
[5] H. J. Gowtham, S. D'souza, P. G. Bhat. Laplacian energy of generalized complements of a graph, Kragujevac J. Math. 42 (2018) 299-315.
[6] I. Gutman, I. Redžepović, B. Furtula, A. Sahal, Energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 87 (2021) 645-652.
[7] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz. 103 (1978) 1-22.
[8] I. Gutman, Topological studies on heteroconjugated molecules. Alternant systems with one heteroatom, Theor. Chim. Acta. 50 (1979) 287-297.
[9] I. Gutman, Topological studies on heteroconjugated molecules. VI. Alternant systems with two heteroatoms, Z. Naturforsch. 45a (1990) 1085-1089.
[10] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006) 29-37.
[11] I. M. Jovanović, E. Zogić, E. Glogić, On the conjecture related to the energy of graphs with self-loops, MATCH Commun. Math. Comput. Chem. 89 (2023) 479-488.
[12] J. H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
[13] R. B. Mallion, A. J. Schwenk, N. Trinajstić, A graphical study of heteroconjugated molecules, Croat. Chem. Acta. 46 (1974) 171-182.
[14] R. B. Mallion, N. Trinajstić, A. J. Schwenk, Graph theory in chemistry - generalization of Sachs' formula, Z. Naturforsch. 29a (1974) 1481-1484.
[15] I. Ž. Milovanović, E. I. Milovanović, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179-182.

[^0]: * Corresponding author.

