Further Variants of Gutman's Formulas

Luzhen Ye
School of Science, Jimei University, Xiamen 361021, China
lzye555@sina.com

(Received January 7, 2023)

Abstract

Let $G=(U, V)$ be a connected bipartite graph and let $C(G)$ be the algebraic structure count of G. Gutman's formulas in [12] states that for any edge $a b$ of G, then there exists an $\varepsilon \in\{1,-1\}$ such that $$
C(G)=|c(G-a b)+\varepsilon C(G-a-b)|
$$

The current author extended the above result and obtained some variants of Gutman's formulas in $[21,22]$ as follows. 1. For any $a, c \in U, b, d \in V$, then there exists an $\varepsilon_{1} \in\{1,-1\}$ such that $$
\begin{gathered} C(G) C(G-a-b-c-d)= \\ \left|C(G-a-b) C(G-c-d)+\varepsilon_{1} C(G-a-d) C(G-b-c)\right| . \end{gathered}
$$

2. For any 2 -matching $\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$ of G, then there exists an $\varepsilon_{2} \in\{1,-1\}$ such that

$$
\begin{gathered}
C(G) C\left(G-u_{1} v_{1}-u_{2} v_{2}\right)= \\
\left|C\left(G-u_{1} v_{1}\right) C\left(G-u_{2} v_{2}\right)+\varepsilon_{2} C\left(G-u_{1}-v_{2}\right) C\left(G-u_{2}-v_{1}\right)\right|
\end{gathered}
$$

where $u_{1}, u_{2} \in U, v_{1}, v_{2} \in V$.
3. For any edge $y z$ and two vertices r and s of G satisfying $y, r \in U$ and $z, s \in V$ and $\{y, z\} \cap\{r, s\}=\emptyset$, then there exists an $\varepsilon_{3} \in\{1,-1\}$ such that

$$
\begin{gathered}
C(G) C(G-y z-r-s)= \\
\left|C(G-y z) C(G-r-s)+\varepsilon_{3} C(G-y-s) C(G-r-z)\right| .
\end{gathered}
$$

In this note, we prove that, if $|U|=|V|=n$, then there exists a $\beta=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right)$ satisfying $\nu_{1}, \nu_{2}, \ldots, \nu_{m} \in\{1,-1\}$ such that

$$
(m-n) C(G)=\left|\sum_{i=1}^{m} \nu_{i} C\left(G-e_{i}\right)\right|
$$

where the sum ranges over all edges $e_{1}, e_{2}, \ldots, e_{m}$ of G.

1 Introduction

Assume that G is a connected bipartite graph and (U, V) is its bipartition. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. The bipartite adjacency matrix of G is an $n_{1} \times n_{2}$ matrix $B(G)=\left(b_{i j}\right)$ satisfying

$$
b_{i j}= \begin{cases}1 & \text { if } u_{i} v_{j} \text { is an edge of } G \\ 0 & \text { otherwise }\end{cases}
$$

Hence the adjacency matrix of G can be expressed by

$$
A(G)=\left(\begin{array}{cc}
0 & B(G) \\
B(G)^{T} & 0
\end{array}\right)
$$

Obviously, if $n_{1} \neq n_{2}$, then $\operatorname{det}(A(G))=0$, and if $n_{1}=n_{2}=n$, then

$$
\begin{equation*}
\operatorname{det}(A(G))=(-1)^{n} \operatorname{det}(B(G))^{2} \tag{1}
\end{equation*}
$$

Note that if $n_{1}=n_{2}=n$, i.e., $|U|=|V|=n$, then each nonzero term $\operatorname{sgn}(\alpha) b_{1 \alpha(1)} b_{2 \alpha(2)} \ldots b_{n \alpha(n)}$ in the expansion of the determinant $\operatorname{det}(B(G))$ of $B(G)$ equals 1 or -1 , where $\alpha(1) \alpha(2) \ldots \alpha(n)$ is a permutation of $1,2, \ldots, n$. Furthermore, $\operatorname{sgn}(\alpha) b_{1 \alpha(1)} b_{2 \alpha(2)} \ldots b_{n \alpha(n)}=1$ or -1 if and only if $\left\{u_{i} v_{\alpha(i)} \mid 1 \leq i \leq n\right\}$ is a perfect matching of G. If $\operatorname{sgn}(\alpha) b_{1 \alpha(1)} b_{2 \alpha(2)} \ldots b_{n \alpha(n)}=1$, then we call $M_{\alpha}=\left\{u_{i} v_{\alpha(i)} \mid 1 \leq i \leq n\right\}$ to be an "even" perfect matching of G, and if $\operatorname{sgn}(\alpha) b_{1 \alpha(1)} b_{2 \alpha(2)} \ldots b_{n \alpha(n)}=$ -1 , we call $M_{\alpha}=\left\{u_{i} v_{\alpha(i)} \mid 1 \leq i \leq n\right\}$ to be an "odd" perfect matching of G. Let $\mathcal{E}(G)$ and $\mathcal{O}(G)$ be the set of "even" and "odd" perfect matchings of G, respectively. Hence

$$
\begin{equation*}
\operatorname{det}(B(G))=|\mathcal{E}(G)|-|\mathcal{O}(G)| \tag{2}
\end{equation*}
$$

Moreover, if we use $M(G)$ to denote the number of perfect matchings of G, then

$$
\begin{equation*}
M(G)=|\mathcal{E}(G)|+|\mathcal{O}(G)| \tag{3}
\end{equation*}
$$

Wilcox, a theoretical organic chemist, defined the algebraic structure count of a bipartite graph $G=(U, V)$ in $[18,19]$, denoted by $C(G)$, as the
difference between the number of "even" and "odd" perfect matchings of G if $|U|=|V|$, and $C(G)=0$ if $|U| \neq V$. Hence, if $|U|=|V|$,

$$
\begin{equation*}
C(G)=||\mathcal{E}(G)|-|\mathcal{O}(G)||=|\operatorname{det}(B(G))| \tag{4}
\end{equation*}
$$

By Eq. (1),

$$
\begin{equation*}
\operatorname{det}(A(G))=(-1)^{n} C(G)^{2} \tag{5}
\end{equation*}
$$

A cycle C_{k} of G with k vertices is a nice cycle if $G-C_{k}$ has perfect matchings. It is well known $[8,9]$ that if each nice cycle C_{k} in G satisfies $k=2(\bmod 4)$, then

$$
\begin{equation*}
C(G)=M(G) \tag{6}
\end{equation*}
$$

i.e., the algebraic structure count of G equals the number of perfect matchings of G, which implies that all perfect matchings of G are "ever" (or "odd").

The relation between $C(G)$ and $M(G)$ has been studied extensively [7, 11, 14]. For example, if the number k of edges in each interior face in a plane bipartite graph G satisfies $k=2(\bmod 4)$, then Eq. (6) holds [6]. In particular, all hexagonal systems G, the molecular graphs of benzenoid hydrocarbons, satisfy Eq. (6).

On the other hand, $C(G)$ has a closed relation with the thermodynamic stability of the corresponding molecular graphs and has important applications in theoretical organic chemistry $[10,13,14,17,20]$. On the further research on $C(G)$, see references $[1,2,4,5,12,15,21]$.

For any edge $e=x y$ and any perfect matching M of G, either $e \in M$ or $e \notin M$. Hence

$$
\begin{equation*}
M(G)=M(G-x-y)+M(G-e) \tag{7}
\end{equation*}
$$

where $G-x-y$ (or $G-e$) is the graph obtained from G by deleting vertices x and y (or e).

Gutman [12] obtained a similar result to Eq. (7) on the algebraic structure count of a bipartite graph G, and proved that for any any edge
$e=x y$ of G, one of the following relations holds.

$$
\begin{align*}
& C(G)=C(G-e)+C(G-x-y) \tag{8}\\
& C(G)=C(G-e)-C(G-x-y) \tag{9}\\
& C(G)=C(G-x-y)-C(G-e) \tag{10}
\end{align*}
$$

Gutman's formulas above show that there exists an $\varepsilon \in\{1,-1\}$ such that

$$
\begin{equation*}
C(G)=|C(G-e)+\varepsilon C(G-x-y)| \tag{11}
\end{equation*}
$$

Motivated by Eqs. (8)-(10), the current author obtained some variants of Gutman's formulas above in $[21,22]$ as follows.

Let $G=(U, V)$ be a bipartite graph. Then

1. For any $a, c \in U, b, d \in V$, then there exists an $\varepsilon_{1} \in\{1,-1\}$ such that

$$
\begin{equation*}
C(G) C(G-a-b-c-d)=\left|C(G-a-b) C(G-c-d)+\varepsilon_{1} C(G-a-d) C(G-b-c)\right| . \tag{12}
\end{equation*}
$$

2. For any 2-matching $\left\{f=u_{1} v_{1}, g=u_{2} v_{2}\right\}$ of G, then there exists an $\varepsilon_{2} \in\{1,-1\}$ such that
$C(G) C(G-f-g)=\left|C(G-f) C(G-g)+\varepsilon_{2} C\left(G-u_{1}-v_{2}\right) C\left(G-u_{2}-v_{1}\right)\right|$,
where $u_{1}, u_{2} \in U, v_{1}, v_{2} \in V$.
3. For any edge $h=y z$ and two vertices r and s of G satisfying $y, r \in U$ and $z, s \in V$ and $\{y, z\} \cap\{r, s\}=\emptyset$, then there exists an $\varepsilon_{3} \in\{1,-1\}$ such that

$$
\begin{equation*}
C(G) C(G-h-r-s)=\left|C(G-h) C(G-r-s)+\varepsilon_{3} C(G-y-s) C(G-r-z)\right| \tag{14}
\end{equation*}
$$

Further to the above results, i.e., Eqs.(11)-(14), in this note, we continue to find the new variants of Gutman's formulas. We obtain a formula on $C(G)$ and all $C\left(G-e_{1}\right), C\left(G-e_{2}\right), \ldots, C\left(G-e_{m}\right)$ for any bipartite graph G with edge set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.

2 The main result

In this section, we prove mainly the following result.

Theorem 1. Let G be a connected bipartite graph with bipartition (U, V). If $|U|=|V|=n$, then there exists a $\beta=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right)$ satisfying $\nu_{1}, \nu_{2}, \ldots, \nu_{m} \in\{1,-1\}$ such that

$$
\begin{equation*}
(m-n) C(G)=\left|\sum_{i=1}^{m} \nu_{i} C\left(G-e_{i}\right)\right| \tag{15}
\end{equation*}
$$

where the sum ranges over all edges $e_{1}, e_{2}, \ldots, e_{m}$ of G. Particularly, if $C(G)=M(G)$, then

$$
\begin{equation*}
(m-n) C(G)=\sum_{i=1}^{m} C\left(G-e_{i}\right) . \tag{16}
\end{equation*}
$$

Proof. Let $B(G), B\left(G-e_{1}\right), B\left(G-e_{2}\right), \ldots, B\left(G-e_{m}\right)$ be the bipartite adjacency matrices of $G, G-e_{1}, G-e_{2}, \ldots, G-e_{m}$, respectively. For convenience, for $i=1,2, \ldots, m$, set

$$
B=B(G)=\left(b_{s t}\right)_{n \times n}, B_{i}=B\left(G-e_{i}\right)=\left(b_{s t}^{(i)}\right),
$$

and let \mathcal{S}_{n} be the symmetric group of oder n.
If G has no perfect matching, then $G-e_{i}$ has no perfect matching for $i=1,2, \ldots, m$. Hence $C(G)=C\left(G-e_{1}\right)=C\left(G_{2}\right)=\ldots=C\left(G-e_{m}\right)=0$. Obviously, the theorem holds. Hence we may assume that G (resp. $G-e_{i}$) has $p+q$ (resp. $p_{i}+q_{i}$) perfect matchings, where p (resp. p_{i}) perfect matchings are "even", and q (resp. q_{i}) perfect matchings are "odd". Hence, by Eqs. (2) and (4), we have

$$
\begin{equation*}
\operatorname{det}(B)=p-q, \operatorname{det}\left(B_{i}\right)=p_{i}-q_{i}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
C(G)=|p-q|, C\left(G-e_{i}\right)=\left|p_{i}-q_{i}\right|, \tag{18}
\end{equation*}
$$

for $i=1,2, \ldots, m$.

Denote the set of perfect matchings of G by $\left\{M_{k} \mid 1 \leq i \leq p+q\right\}$, where $M_{k}=\left\{u_{i} v_{\alpha_{k}(i)} \mid 1 \leq i \leq n\right\}$ and $\alpha_{k} \in \mathcal{S}_{n}$. Without loss of generality, we assume that the set of "even" perfect matchings of G is $\left\{M_{1}, M_{2}, \ldots, M_{p}\right\}$ and the set of "odd" perfect matchings of G is $\left\{M_{p+1}, M_{p+2}, \ldots, M_{p+q}\right\}$. Hence in the expansion of the determinant of B, all non-zero terms satisfy:

$$
\operatorname{sgn}(\alpha) b_{1 \alpha_{k}(1)} b_{2 \alpha_{k}(2)} \ldots b_{n \alpha_{k}(n)}=\left\{\begin{aligned}
1, & \text { if } 1 \leq k \leq p \\
-1, & \text { if } p+1 \leq k \leq p+q
\end{aligned}\right.
$$

Let $\mathcal{L}=\left(l_{s t}\right)$ be a $(p+q) \times m$ matrix defined as

$$
l_{s t}=\left\{\begin{aligned}
1, & \text { if } 1 \leq s \leq p \text { and } e_{t} \notin M_{s} \\
-1, & \text { if } p+1 \leq s \leq p+q \text { and } e_{t} \notin M_{s} \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Since each perfect matching M_{s} of G contains exactly n edges, there $m-n$ edges in G each of which is not in M_{s}. Hence

$$
r_{s}=\sum_{t=1}^{m} l_{s t}=\left\{\begin{aligned}
m-n, & \text { if } 1 \leq s \leq p \\
-(m-n), & \text { if } p+1 \leq s \leq p+q
\end{aligned}\right.
$$

So

$$
\begin{equation*}
\sum_{s=1}^{p+q} \sum_{t=1}^{m} l_{s t}=r_{1}+r_{2}+\ldots+r_{p+q}=(m-n)(p-q) \tag{19}
\end{equation*}
$$

On the other hand, note that, for any $1 \leq i \leq m$, each non-zero term in the expansion of $\operatorname{det}\left(B_{i}\right)$ must be some non-zero term in the expansion of $\operatorname{det}(B)$, which is equal to 1 or -1 . Particularly, they have the same sign. It is not difficult to see that we have

$$
\begin{equation*}
c_{t}=\sum_{s=1}^{p+q} l_{s t}=p_{t}-q_{t}, \text { for } 1 \leq t \leq m \tag{20}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{s=1}^{p+q} \sum_{t=1}^{m} l_{s t}=\sum_{t=1}^{m} \sum_{s=1}^{p+q} l_{s t}=\sum_{t=1}^{m} c_{t}=\sum_{t=1}^{m}\left(p_{t}-q_{t}\right) \tag{21}
\end{equation*}
$$

By Eqs. (19) and (21),

$$
\begin{equation*}
(m-n)(p-q)=\sum_{i=1}^{m}\left(p_{i}-q_{i}\right) . \tag{22}
\end{equation*}
$$

Then the following formula is immediate from Eq. (18).

$$
\begin{equation*}
|m-n| C(G)=\left|\sum_{i=1}^{m}\left(p_{i}-q_{i}\right)\right| . \tag{23}
\end{equation*}
$$

Note that G is a connected bipartite graph with $2 n$ vertices. So $m>$ $n(m \geq 2 n-1)$. Then there exists a $\beta=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right)$ satisfying $\nu_{1}, \nu_{2}, \ldots, \nu_{m} \in\{1,-1\}$ such that

$$
\begin{equation*}
(m-n) C(G)=\left|\sum_{i=1}^{m} \nu_{i}\right| p_{i}-q_{i}| |=\left|\sum_{i=1}^{m} \nu_{i} C\left(G-e_{i}\right)\right| . \tag{24}
\end{equation*}
$$

Hence we have proved that Eq. (15) holds.
Particularly, if $M(G)=C(G)$, then $p=0$ or $q=0$, which results in $p_{i}=0$ or $q_{i}=0$ for $1 \leq i \leq m$. Then Eq. (16) follows from Eq. (22).

The theorem has been proved.
From the proof of the theorem above, the following results are immediate.

Corollary. Let G be a connected bipartite graph with $2 n$ vertices and m edges $e_{1}, e_{2}, \ldots, e_{m}$. Then

$$
\begin{equation*}
(m-n) C(G) \leq \sum_{i=1}^{m} C\left(G-e_{i}\right) \tag{25}
\end{equation*}
$$

Corollary. Let G be a bipartite graph with $2 n$ vertices and m edges e_{1}, e_{2}, \ldots, e_{m}. If each nice cycle C_{k} in G satisfies $k=2(\bmod 4)$, then

$$
\begin{equation*}
(m-n) C(G)=\sum_{i=1}^{m} C\left(G-e_{i}\right) \tag{26}
\end{equation*}
$$

A direct corollary of the theorem above is the following, which was ever
found by Farrell and Wahid [3] and Wahid [16].
Corollary. Let G be a connected bipartite graph with $2 n$ vertices and m edges $e_{1}, e_{2}, \ldots, e_{m}$. Then the number of perfect matchings of G satisfies:

$$
\begin{equation*}
(m-n) M(G)=\sum_{i=1}^{m} M\left(G-e_{i}\right) \tag{27}
\end{equation*}
$$

Proof. In the proof of Theorem 1, if we set $\mathcal{L}^{\prime}=\left(l_{s t}^{\prime}\right)$ be a $(p+q) \times m$ matrix defined as

$$
l_{s t}^{\prime}= \begin{cases}1, & \text { if } e_{t} \notin M_{s}, 1 \leq s \leq p+q \\ 0, & \text { otherwise }\end{cases}
$$

Similarly, we can prove that

$$
\begin{equation*}
(m-n)(p+q)=\sum_{i=1}^{m}\left(p_{i}+q_{i}\right) \tag{28}
\end{equation*}
$$

which implies that Eq. (26) holds.

Figure 1. (a). A bipartite graph G_{1}. (b). A bipartite graph G_{2}.

3 Discussion

In this note, we use a combinatorial technique to obtain a formula on the algebraic structure counts $C(G), C\left(G-e_{1}\right), C\left(G-e_{2}\right), \ldots, C\left(G-e_{m}\right)$ for any bipartite graph G with $2 n$ vertices and edge set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. That is, Eq. (15). But it is difficult to determine $\beta=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right)$ in Eq. (15). It is also possible to exist a few β 's satisfying this formula. For the bipartite
graph G_{1} illustrated in Figure 1(a), $C\left(G_{1}\right)=1, C\left(G_{1}-e_{1}\right)=C\left(G_{1}-e_{2}\right)=$ $C\left(G_{1}-e_{3}\right)=C\left(G_{1}-e_{4}\right)=0, C\left(G_{1}-e_{5}\right)=2, C\left(G_{1}-e_{6}\right)=C\left(G_{1}-e_{7}\right)=$ 1. Hence for $\beta=(1,1,1,1,1,1,1),(-1,-1,-1,-1,1,1,1), \ldots$, Eq.(15) holds. For the bipartite graph G_{2} illustrated in Figure 1(b), $C\left(G_{2}\right)=$ $1, C\left(G_{2}-e_{1}\right)=C\left(G_{2}-e_{5}\right)=C\left(G_{2}-e_{8}\right)=1, C\left(G_{2}-e_{7}\right)=C\left(G_{2}-e_{9}\right)=$ $2, C\left(G_{2}-e_{2}\right)=C\left(G_{2}-e_{3}\right)=C\left(G_{2}-e_{4}\right)=C\left(G_{2}-e_{6}\right)=0$. Hence for $\beta=(-1,1,1,1,-1,1,1,-1,1),(1,1,1,1,-1,1,-1,1,1), \ldots$, Eq.(15) holds.

Acknowledgment: The author was supported in part by NSFC Grant (12071180). We are thankful to the anonymous referee for his (or her) revised suggestions.

References

[1] O. Bodroža-Pantić, Algebraic structure count of some cyclic hexag-onal-square chains on the Möbius strip, J. Math. Chem. 41 (2007) 283-294.
[2] O. Bodroža-Pantić, S. J. Cyvin, I. Gutman, A formula for the algebraic structure count of multiple phenylenes, MATCH Commun. Math. Comput. Chem. 32 (1995) 47-58.
[3] E. J. Farrell, S. A. Wahid, On the reconstruction of the matching polynomial and the reconstruction conjecture, Int. J. Math. Math. Sci. 10 (1987) 155-162.
[4] O. Bodroža-Pantić, I. Gutman, S. J. Cyvin, Algebraic structure count of some non-benzenoid conjugated polymers, ACH Models Chem. 133 (1996) 27-41.
[5] O. Bodroža-Pantić, A. Ilić-Kovačević, Algebraic structure count of angular hexagonal-square chains, Fibonacci Quart. 45 (2007) 3-9.
[6] E. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[7] D. Cvetković, I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. VII. The role of resonance structures, J. Chem. Phys. 61 (1974) 2700-2706.
[8] M. J. S. Dewar, H. C. Longuet-Higgins, The correspondence between the resonance and molecular orbital theories, Proc. Roy. Soc. London A 214 (1952) 482-493.
[9] A. Graovac, I. Gutman, The determinant of the adjacency matrix of a molecular graph, MATCH Commun. Math. Comput. Chem. 6 (1979) 49-73.
[10] A. Graovac, I. Gutman, N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Springer-Verlag, Berlin, 1977.
[11] A. Graovac, I. Gutman, N. Trinajstić, T. Živković, Graph theory and molecular orbitals. Application of Sachs theorem, Theor. Chim. Acta 26 (1972) 67-78.
[12] I. Gutman, Note on algebraic structure count, Z. Naturforsch. 39a (1984) 794-796.
[13] I. Gutman, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbits, X. The number of Kekule structures and the thermodynamic stability of conjugated systems, Tetrahedron 31 (1975) 143-146.
[14] W. C. Herndon, Resonance theory and the enumeration of Kekulé structures, J. Chem. Ed. 51 (1974) 10-15.
[15] D. J. Klein, T. G. Schmalz, S. EI-Basil, M. Randić, N. Trinajstić, Kekulé count and algebraic structure count for unbranched alternant cata-fusenes, J. Mol. Struct. (Theochem) 179 (1988) 99-107.
[16] S. A. Wahid, On the matching polynomials of graphs, M.Sc. Thesis, Univ. West Indies, St. Augustine (Trinidad), 1983.
[17] C. F. Wilcox, A topological definition of resonance energy, Croat. Chem. Acta 47 (1975) 87-94.
[18] C. F. Wilcox, Stability of molecules containing (4n)-rings, Tetrahedron Lett. 9 (1968) 795-800.
[19] C. F. Wilcox, Stability of molecules containing nonalternant rings, J. Am. Chem. Soc. 91 (1969) 2732-2736.
[20] C. F. Wilcox, I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, XI. Aromatic substitution, Tetradedron 31 (1975) 147-152.
[21] L. Z. Ye, The vertex graphical condensation for algebraic structure count of molecular graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 579-584.
[22] L. Z. Ye, New variants of Gutman's formulas on the algebraic structure count, MATCH Commun. Math. Comput. Chem. 89 (2023) 643652.

