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Abstract
Let G = (U, V) be a connected bipartite graph and let C(G) be
the algebraic structure count of G. Gutman’s formulas in [12] states
that for any edge ab of G, then there exists an € € {1, —1} such that

C(G) = |c(G — ab) +eC(G — a —b)|.
The current author extended the above result and obtained some
variants of Gutman’s formulas in [21,22] as follows.

1. For any a,c € U,b,d € V, then there exists an 1 € {1, -1}
such that

C(G)CG—-a—-b—c—d)=
|C(G—-a—-b)C(G—c—d)+e1C(G—a—d)C(G—-b—c)|.

2. For any 2-matching {uiv1,u2v2} of G, then there exists an
g2 € {1,—1} such that

C(G)C(G — urv1 — ugva) =
‘C(G — ulvl)C(G — U2’l)2) + EQC(G —Uur — UQ)C(G — Uy — 1}1)|,
where u1,us € U,v1,v2 € V.

3. For any edge yz and two vertices r and s of GG satisfying
y,r € U and z,s € V and {y,z} N {r,s} = 0, then there exists an
e3 € {1, —1} such that

C(G)IC(G—yz—1r—35)=
|C(G —y2)C(G —1 —3)+e3C(G—y—3s)C(G—r—2)|

In this note, we prove that, if [U| = |V| = n, then there exists a

B = (v1,v2,...,Um) satisfying vi,va,...,vm € {1,—1} such that

)

(m —n)C(G) =

i VZC(G — ei)
=1

where the sum ranges over all edges ej,eo,...,en of G.
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1 Introduction

Assume that G is a connected bipartite graph and (U, V) is its bipartition.
Let U = {ug,ug,...,un, },V = {v1,v2,...,0,,}. The bipartite adjacency

matrix of G is an nq X ny matrix B(G) = (b;;) satistying

b 1 if wv; is an edge of G,
Y] 0 otherwise.

Hence the adjacency matrix of G can be expressed by

0 B
A(G) = (B(G)T E))>

Obviously, if ny # ng, then det(A(G)) = 0, and if ny = ny = n, then
det(A(G)) = (—1)" det(B(G))%. (1)

Note that if ny = ne = n, ie, |[U| = |V| = n, then each non-
zero term sgn(a)biq(1)b2a(2) - - - na(n) in the expansion of the determi-
nant det(B(G)) of B(G) equals 1 or —1, where a(1)«(2)...«(n) is a per-
mutation of 1,2,...,n. Furthermore, sgn(a)biq(1)b2a(2) - - - bnam) = 1 or
—1 if and only if {u;va;y|1 < @ < n} is a perfect matching of G. If
sgn()b1a(1)b2a(2) - - - bna(n) = 1, then we call My, = {u;v4;)|1 <4 < n} to
be an “even” perfect matching of G, and if sgn(a)bia(1)b2a(2) - - - bram) =
—1, we call My = {uiva(;)|l <i < n} to be an “odd” perfect matching of
G. Let £(G) and O(G) be the set of “even” and “odd” perfect matchings

of G, respectively. Hence
det(B(G)) = [E(G)] — |0(G)]. (2)

Moreover, if we use M(G) to denote the number of perfect matchings of
G, then
M(G) = [E(G)] +|0(G)]. 3)

Wilcox, a theoretical organic chemist, defined the algebraic structure
count of a bipartite graph G = (U, V) in [18,19], denoted by C(G), as the



237

difference between the number of “even” and “odd” perfect matchings of
G it |U|=|V], and C(G) =0 if |U| # V. Hence, if |U| = |V,

C(G) = |[E(G)] = |0(G)]| = | det(B(G))]. (4)

By Eq. (1),
det(A(G)) = (-1)"C(G)>. (5)

A cycle Cy, of G with k vertices is a nice cycle if G — Cy has perfect
matchings. It is well known [8,9] that if each nice cycle Cy in G satisfies
k =2 (mod 4), then

C(G) = M(G). (6)

i.e., the algebraic structure count of G equals the number of perfect match-
ings of G, which implies that all perfect matchings of G are “ever” (or
“odd”).

The relation between C(G) and M(G) has been studied extensively
[7,11,14]. For example, if the number k of edges in each interior face in
a plane bipartite graph G satisfies k = 2 (mod 4), then Eq. (6) holds [6].
In particular, all hexagonal systems G, the molecular graphs of benzenoid
hydrocarbons, satisfy Eq. (6).

On the other hand, C(G) has a closed relation with the thermodynamic
stability of the corresponding molecular graphs and has important appli-
cations in theoretical organic chemistry [10,13,14,17,20]. On the further
research on C(QG), see references [1,2,4,5,12,15,21].

For any edge e = xzy and any perfect matching M of G, either e € M
or e ¢ M. Hence

M(G)=M(G—xz—y)+ M(G —e), (7)

where G—x—y (or G —e) is the graph obtained from G by deleting vertices
z and y (or e).

Gutman [12] obtained a similar result to Eq. (7) on the algebraic
structure count of a bipartite graph G , and proved that for any any edge
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e = xy of G, one of the following relations holds.

C(G)=C(G—e)+C(G—x—y), (8)
CG)=C(G—-¢)-C(G-z—y), (9)
C(G) = C(G -z —y) — C(G —e). (10)

Gutman’s formulas above show that there exists an € € {1, —1} such that
C(G) = |C(G — e) + eC(G — x — y)|. (11)

Motivated by Egs. (8)-(10), the current author obtained some variants
of Gutman’s formulas above in [21,22] as follows.

Let G = (U,V) be a bipartite graph. Then

1. For any a,c € U,b,d € V, then there exists an ¢; € {1,—1} such
that

C(G)O(G—a—b—c—d) = |C(G—a—b)C(G—c—d)+e10(CG—a—d)C(G—b—c)|.
(12)
2. For any 2-matching {f = ujv1, g = ugva} of G, then there exists an

g9 € {1, —1} such that

C(G)C(G-f—g)=|C(G-f)C(G—g)+e2C(G—u; —v2)C(G—uz—wv1)|,
(13)
where uy,us € U,vy,v2 € V.
3. For any edge h = yz and two vertices r and s of G satisfying y,r € U
and z,s € V and {y, z} N {r, s} = 0, then there exists an e € {1, —1} such
that

C(G)C(G—h—r—s) =|C(G—h)C(G—r—5)+e3C(G—y—3s)C(G—r—2)|.

(14)

Further to the above results, i.e., Eqs.(11)-(14), in this note, we con-

tinue to find the new variants of Gutman’s formulas. We obtain a formula

on C(G) and all C(G — e1),C(G — e3),...,C(G — e,,) for any bipartite
graph G with edge set {e1,ea,...,emn}.
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2 The main result

In this section, we prove mainly the following result.

Theorem 1. Let G be a connected bipartite graph with bipartition (U, V).
If Ul = |V| = n, then there exists a = (v1,V2,...,Vm) Satisfying
Vi,Va, ..., Um € {1,—1} such that

(m—n)C(G) = |>_uC(G —e;)|, (15)
i=1
where the sum ranges over all edges ey, ea, ..., e, of G. Particularly, if
C(G) = M(G), then
(m—n)C(G)=>_ C(G—e). (16)
i=1

Proof. Let B(G),B(G — e1),B(G — ¢e3),...,B(G — ¢e,,) be the bipartite
adjacency matrices of G,G — e1,G — ea,...,G — e, respectively. For

convenience, for ¢ = 1,2,...,m, set
B = B(G) = (bst)uxn: Bi = B(G — ;) = (),

and let S, be the symmetric group of oder n.

If G has no perfect matching, then G — e; has no perfect matching for
i=1,2,...,m. Hence C(G) = C(G—e1) =C(G2) = ... =C(G—e;,) =0.
Obviously, the theorem holds. Hence we may assume that G (resp. G —e¢;)
has p + ¢ (resp. p; + ¢;) perfect matchings, where p (resp. p;) perfect
matchings are “even”, and ¢ (resp. ¢;) perfect matchings are “odd”. Hence,
by Egs. (2) and (4), we have

det(B) = p —q, det(B;) = pi — ¢, (17)

and
C(G)=|p—ql|, C(G—e)=I|pi —ql (18)

fori=1,2,...,m.
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Denote the set of perfect matchings of G by {M|1 <1i < p+q}, where
My = {uva, )|l <i < n}and oy, € S,. Without loss of generality, we

assume that the set of “even” perfect matchings of G is {My, Ma, ..., My}

and the set of “odd” perfect matchings of G is {Mpy1, Mpyo,..., Mpiq}.

Hence in the expansion of the determinant of B, all non-zero terms satisfy:

sgn(a)bia, (1)b204 (2) - - - Onag(n) = {

Let £ =

1, if1<k<p,
-1, ifp+1<k<p+gq.

(Ist) be a (p+ q) x m matrix defined as

ifl1<s<pande ¢ M,
, ifp+1<s<p+qande; & M,

0, otherwise.

Since each perfect matching My of G contains exactly n edges, there

m —n edges in G each of which is not in M. Hence

So

i m—mn, ifl<s<p,
Ts:let: .
—(m—=n), fp+1<s<p+q

pt+qg m

Zzlst=T1+T2+---+7“p+q:(m—n)(p—Q)- (19)

s=1t=1

On the other hand, note that, for any 1 < ¢ < m, each non-zero term

in the expansion of det(B;) must be some non-zero term in the expansion

of det(B), which is equal to 1 or -1. Particularly, they have the same sign.
It is not difficult to see that we have

Thus

p+q
ct:let:ptfqt, for1 <t <m. (20)

s=1

m p+q m

lst = th Z Pt — Gt)- (21)

HM+

m
E st =

=1 s=
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By Egs. (19) and (21),
(m—n)p—q) =Y _(pi — a)- (22)

i=1

Then the following formula is immediate from Eq. (18).

Im —n|C(G) = (23)

Note that G is a connected bipartite graph with 2n vertices. So m >
n (m > 2n — 1). Then there exists a 8 = (v1,va,...,Vy,) satisfying
V1,V2, ..« Vm € {1,—1} such that

m

ZVHI%‘ - qil

i=1

(m —n)C(G) = (24)

i I/lO(G - 61‘) .
i=1

Hence we have proved that Eq. (15) holds.

Particularly, if M(G) = C(G), then p = 0 or ¢ = 0, which results in
pi =0o0r ¢ =0 for 1 <i<m. Then Eq. (16) follows from Eq. (22).

The theorem has been proved. |

From the proof of the theorem above, the following results are imme-
diate.

Corollary. Let G be a connected bipartite graph with 2n vertices and m

edges e1,€a,...,em. Then
(m—n)C(G) < Y. C(G = e). (25)

Corollary. Let G be a bipartite graph with 2n vertices and m edges e;, es,
oy em. If each nice cycle Cy in G satisfies k =2 (mod 4), then

(m —n)C(G) = Z C(G —¢). (26)

A direct corollary of the theorem above is the following, which was ever
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found by Farrell and Wahid [3] and Wahid [16].

Corollary. Let G be a connected bipartite graph with 2n vertices and m

edges e1, €2, ...,¢en,. Then the number of perfect matchings of G satisfies:
(m—n)M(G)=>_ M(G—¢,). (27)
i=1

Proof. In the proof of Theorem 1, if we set £’ = (I,) be a (p+¢) x m
matrix defined as

l/ _ 13 if6t¢Msa]~§3§p+qa
ot 0, otherwise.

Similarly, we can prove that

m
(m—n)(p+q) =Y _(pi+a) (28)
i=1
which implies that Eq. (26) holds. |
é ) 4 € e,
e el el @ € |&
& & e
(a) (b)

Figure 1. (a). A bipartite graph G1. (b). A bipartite graph Ga.

3 Discussion

In this note, we use a combinatorial technique to obtain a formula on the al-
gebraic structure counts C(G), C(G—ey),C(G—es),...,C(G—ey,) for any
bipartite graph G with 2n vertices and edge set {e1,ea,...,emn}. That is,
Eq. (15). But it is difficult to determine 8 = (v1,va, ...,V ) in Eq. (15).

It is also possible to exist a few ’s satisfying this formula. For the bipartite
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graph G illustrated in Figure 1(a), C(G1) = 1,C(G1—e1) = C(G1—e3) =
C(G1—e3)=C(G1—e4) =0,C(G1—e5) =2,C(G1—es) = C(G1—e7) =
1. Hence for g = (1,1,1,1,1,1,1),(-1,-1,-1,—-1,1,1,1),..., Eq.( 15)
holds. For the bipartite graph Go illustrated in Figure 1(b), C(G2) =
1,C(Ga—e1) =C(Ga—e5) =C(Ga—eg) = 1,C(Ga—e7) = C(Gy—eg) =
2,C(Gqy — e3) = C(Gy —e3) = C(G2 —eq) = C(Gy — eg) = 0. Hence
for = (~1,1,1,1,~1,1,1,-1,1),(1,1,1,1,~1,1,~1,1,1), ..., Eq.( 15)
holds.
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