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Abstract

Let G = (U, V ) be a connected bipartite graph and let C(G) be
the algebraic structure count of G. Gutman’s formulas in [12] states
that for any edge ab of G, then there exists an ε ∈ {1,−1} such that

C(G) = |c(G− ab) + εC(G− a− b)|.
The current author extended the above result and obtained some
variants of Gutman’s formulas in [21,22] as follows.

1. For any a, c ∈ U, b, d ∈ V , then there exists an ε1 ∈ {1,−1}
such that

C(G)C(G− a− b− c− d) =
|C(G− a− b)C(G− c− d) + ε1C(G− a− d)C(G− b− c)|.
2. For any 2-matching {u1v1, u2v2} of G, then there exists an

ε2 ∈ {1,−1} such that

C(G)C(G− u1v1 − u2v2) =
|C(G− u1v1)C(G− u2v2) + ε2C(G− u1 − v2)C(G− u2 − v1)|,

where u1, u2 ∈ U, v1, v2 ∈ V .
3. For any edge yz and two vertices r and s of G satisfying

y, r ∈ U and z, s ∈ V and {y, z} ∩ {r, s} = ∅, then there exists an
ε3 ∈ {1,−1} such that

C(G)C(G− yz − r − s) =
|C(G− yz)C(G− r − s) + ε3C(G− y − s)C(G− r − z)|.

In this note, we prove that, if |U | = |V | = n, then there exists a
β = (ν1, ν2, . . . , νm) satisfying ν1, ν2, . . . , νm ∈ {1,−1} such that

(m− n)C(G) =

∣∣∣∣∣
m∑
i=1

νiC(G− ei)

∣∣∣∣∣ ,
where the sum ranges over all edges e1, e2, . . . , em of G.
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1 Introduction

Assume that G is a connected bipartite graph and (U, V ) is its bipartition.

Let U = {u1, u2, . . . , un1
}, V = {v1, v2, . . . , vn2

}. The bipartite adjacency

matrix of G is an n1 × n2 matrix B(G) = (bij) satisfying

bij =

{
1 if uivj is an edge of G,

0 otherwise.

Hence the adjacency matrix of G can be expressed by

A(G) =

(
0 B(G)

B(G)T 0

)
.

Obviously, if n1 ̸= n2, then det(A(G)) = 0, and if n1 = n2 = n, then

det(A(G)) = (−1)n det(B(G))2. (1)

Note that if n1 = n2 = n, i.e., |U | = |V | = n, then each non-

zero term sgn(α)b1α(1)b2α(2) . . . bnα(n) in the expansion of the determi-

nant det(B(G)) of B(G) equals 1 or −1, where α(1)α(2) . . . α(n) is a per-

mutation of 1, 2, . . . , n. Furthermore, sgn(α)b1α(1)b2α(2) . . . bnα(n) = 1 or

−1 if and only if {uivα(i)|1 ≤ i ≤ n} is a perfect matching of G. If

sgn(α)b1α(1)b2α(2) . . . bnα(n) = 1, then we call Mα = {uivα(i)|1 ≤ i ≤ n} to

be an “even” perfect matching of G, and if sgn(α)b1α(1)b2α(2) . . . bnα(n) =

−1, we call Mα = {uivα(i)|1 ≤ i ≤ n} to be an “odd” perfect matching of

G. Let E(G) and O(G) be the set of “even” and “odd” perfect matchings

of G, respectively. Hence

det(B(G)) = |E(G)| − |O(G)|. (2)

Moreover, if we use M(G) to denote the number of perfect matchings of

G, then

M(G) = |E(G)|+ |O(G)|. (3)

Wilcox, a theoretical organic chemist, defined the algebraic structure

count of a bipartite graph G = (U, V ) in [18,19], denoted by C(G), as the
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difference between the number of “even” and “odd” perfect matchings of

G if |U | = |V |, and C(G) = 0 if |U | ≠ V . Hence, if |U | = |V |,

C(G) = ||E(G)| − |O(G)|| = |det(B(G))|. (4)

By Eq. (1),

det(A(G)) = (−1)nC(G)2. (5)

A cycle Ck of G with k vertices is a nice cycle if G − Ck has perfect

matchings. It is well known [8, 9] that if each nice cycle Ck in G satisfies

k = 2 (mod 4), then

C(G) = M(G). (6)

i.e., the algebraic structure count of G equals the number of perfect match-

ings of G, which implies that all perfect matchings of G are “ever” (or

“odd”).

The relation between C(G) and M(G) has been studied extensively

[7, 11, 14]. For example, if the number k of edges in each interior face in

a plane bipartite graph G satisfies k = 2 (mod 4), then Eq. (6) holds [6].

In particular, all hexagonal systems G, the molecular graphs of benzenoid

hydrocarbons, satisfy Eq. (6).

On the other hand, C(G) has a closed relation with the thermodynamic

stability of the corresponding molecular graphs and has important appli-

cations in theoretical organic chemistry [10, 13, 14, 17, 20]. On the further

research on C(G), see references [1, 2, 4, 5, 12,15,21].

For any edge e = xy and any perfect matching M of G, either e ∈ M

or e /∈ M . Hence

M(G) = M(G− x− y) +M(G− e), (7)

where G−x−y (or G−e) is the graph obtained from G by deleting vertices

x and y (or e).

Gutman [12] obtained a similar result to Eq. (7) on the algebraic

structure count of a bipartite graph G , and proved that for any any edge
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e = xy of G, one of the following relations holds.

C(G) = C(G− e) + C(G− x− y), (8)

C(G) = C(G− e)− C(G− x− y), (9)

C(G) = C(G− x− y)− C(G− e). (10)

Gutman’s formulas above show that there exists an ε ∈ {1,−1} such that

C(G) = |C(G− e) + εC(G− x− y)|. (11)

Motivated by Eqs. (8)-(10), the current author obtained some variants

of Gutman’s formulas above in [21,22] as follows.

Let G = (U, V ) be a bipartite graph. Then

1. For any a, c ∈ U, b, d ∈ V , then there exists an ε1 ∈ {1,−1} such

that

C(G)C(G−a−b−c−d) = |C(G−a−b)C(G−c−d)+ε1C(G−a−d)C(G−b−c)|.
(12)

2. For any 2-matching {f = u1v1, g = u2v2} of G, then there exists an

ε2 ∈ {1,−1} such that

C(G)C(G−f−g) = |C(G−f)C(G−g)+ε2C(G−u1−v2)C(G−u2−v1)|,
(13)

where u1, u2 ∈ U, v1, v2 ∈ V .

3. For any edge h = yz and two vertices r and s of G satisfying y, r ∈ U

and z, s ∈ V and {y, z}∩{r, s} = ∅, then there exists an ε3 ∈ {1,−1} such

that

C(G)C(G−h−r−s) = |C(G−h)C(G−r−s)+ε3C(G−y−s)C(G−r−z)|.
(14)

Further to the above results, i.e., Eqs.(11)-(14), in this note, we con-

tinue to find the new variants of Gutman’s formulas. We obtain a formula

on C(G) and all C(G − e1), C(G − e2), . . . , C(G − em) for any bipartite

graph G with edge set {e1, e2, . . . , em}.
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2 The main result

In this section, we prove mainly the following result.

Theorem 1. Let G be a connected bipartite graph with bipartition (U, V ).

If |U | = |V | = n, then there exists a β = (ν1, ν2, . . . , νm) satisfying

ν1, ν2, . . . , νm ∈ {1,−1} such that

(m− n)C(G) =

∣∣∣∣∣
m∑
i=1

νiC(G− ei)

∣∣∣∣∣ , (15)

where the sum ranges over all edges e1, e2, . . . , em of G. Particularly, if

C(G) = M(G), then

(m− n)C(G) =

m∑
i=1

C(G− ei). (16)

Proof. Let B(G), B(G − e1), B(G − e2), . . . , B(G − em) be the bipartite

adjacency matrices of G,G − e1, G − e2, . . . , G − em, respectively. For

convenience, for i = 1, 2, . . . ,m, set

B = B(G) = (bst)n×n, Bi = B(G− ei) = (b
(i)
st ),

and let Sn be the symmetric group of oder n.

If G has no perfect matching, then G− ei has no perfect matching for

i = 1, 2, . . . ,m. Hence C(G) = C(G−e1) = C(G2) = . . . = C(G−em) = 0.

Obviously, the theorem holds. Hence we may assume that G (resp. G−ei)

has p + q (resp. pi + qi) perfect matchings, where p (resp. pi) perfect

matchings are “even”, and q (resp. qi) perfect matchings are “odd”. Hence,

by Eqs. (2) and (4), we have

det(B) = p− q, det(Bi) = pi − qi, (17)

and

C(G) = |p− q|, C(G− ei) = |pi − qi|, (18)

for i = 1, 2, . . . ,m.



240

Denote the set of perfect matchings of G by {Mk|1 ≤ i ≤ p+ q}, where
Mk = {uivαk(i)|1 ≤ i ≤ n} and αk ∈ Sn. Without loss of generality, we

assume that the set of “even” perfect matchings of G is {M1,M2, . . . ,Mp}
and the set of “odd” perfect matchings of G is {Mp+1,Mp+2, . . . ,Mp+q}.
Hence in the expansion of the determinant of B, all non-zero terms satisfy:

sgn(α)b1αk(1)b2αk(2) . . . bnαk(n) =

{
1, if 1 ≤ k ≤ p,

−1, if p+ 1 ≤ k ≤ p+ q.

Let L = (lst) be a (p+ q)×m matrix defined as

lst =


1, if 1 ≤ s ≤ p and et /∈ Ms,

−1, if p+ 1 ≤ s ≤ p+ q and et /∈ Ms,

0, otherwise.

Since each perfect matching Ms of G contains exactly n edges, there

m− n edges in G each of which is not in Ms. Hence

rs =

m∑
t=1

lst =

{
m− n, if 1 ≤ s ≤ p,

−(m− n), if p+ 1 ≤ s ≤ p+ q.

So
p+q∑
s=1

m∑
t=1

lst = r1 + r2 + . . .+ rp+q = (m− n)(p− q). (19)

On the other hand, note that, for any 1 ≤ i ≤ m, each non-zero term

in the expansion of det(Bi) must be some non-zero term in the expansion

of det(B), which is equal to 1 or -1. Particularly, they have the same sign.

It is not difficult to see that we have

ct =

p+q∑
s=1

lst = pt − qt, for 1 ≤ t ≤ m. (20)

Thus
p+q∑
s=1

m∑
t=1

lst =

m∑
t=1

p+q∑
s=1

lst =

m∑
t=1

ct =

m∑
t=1

(pt − qt). (21)
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By Eqs. (19) and (21),

(m− n)(p− q) =

m∑
i=1

(pi − qi). (22)

Then the following formula is immediate from Eq. (18).

|m− n|C(G) =

∣∣∣∣∣
m∑
i=1

(pi − qi)

∣∣∣∣∣ . (23)

Note that G is a connected bipartite graph with 2n vertices. So m >

n (m ≥ 2n − 1). Then there exists a β = (ν1, ν2, . . . , νm) satisfying

ν1, ν2, . . . , νm ∈ {1,−1} such that

(m− n)C(G) =

∣∣∣∣∣
m∑
i=1

νi|pi − qi|

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

νiC(G− ei)

∣∣∣∣∣ . (24)

Hence we have proved that Eq. (15) holds.

Particularly, if M(G) = C(G), then p = 0 or q = 0, which results in

pi = 0 or qi = 0 for 1 ≤ i ≤ m. Then Eq. (16) follows from Eq. (22).

The theorem has been proved.

From the proof of the theorem above, the following results are imme-

diate.

Corollary. Let G be a connected bipartite graph with 2n vertices and m

edges e1, e2, . . . , em. Then

(m− n)C(G) ≤
m∑
i=1

C(G− ei). (25)

Corollary. Let G be a bipartite graph with 2n vertices and m edges e1, e2,

. . . , em. If each nice cycle Ck in G satisfies k = 2 (mod 4), then

(m− n)C(G) =

m∑
i=1

C(G− ei). (26)

A direct corollary of the theorem above is the following, which was ever
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found by Farrell and Wahid [3] and Wahid [16].

Corollary. Let G be a connected bipartite graph with 2n vertices and m

edges e1, e2, . . . , em. Then the number of perfect matchings of G satisfies:

(m− n)M(G) =

m∑
i=1

M(G− ei). (27)

Proof. In the proof of Theorem 1, if we set L′ = (l′st) be a (p + q) × m

matrix defined as

l′st =

{
1, if et /∈ Ms, 1 ≤ s ≤ p+ q,

0, otherwise.

Similarly, we can prove that

(m− n)(p+ q) =

m∑
i=1

(pi + qi) (28)

which implies that Eq. (26) holds.

5
e

5
e 9

e

4
e 4

e

8
e

1
e

3
e

3
e

7
e

7
e1

e
2

e
2

e

6
e 6

e

（ ）b（ ）a

Figure 1. (a). A bipartite graph G1. (b). A bipartite graph G2.

3 Discussion

In this note, we use a combinatorial technique to obtain a formula on the al-

gebraic structure counts C(G), C(G−e1), C(G−e2), . . . , C(G−em) for any

bipartite graph G with 2n vertices and edge set {e1, e2, . . . , em}. That is,
Eq. (15). But it is difficult to determine β = (ν1, ν2, . . . , νm) in Eq. (15).

It is also possible to exist a few β’s satisfying this formula. For the bipartite
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graph G1 illustrated in Figure 1(a), C(G1) = 1, C(G1−e1) = C(G1−e2) =

C(G1− e3) = C(G1− e4) = 0, C(G1− e5) = 2, C(G1− e6) = C(G1− e7) =

1. Hence for β = (1, 1, 1, 1, 1, 1, 1), (−1,−1,−1,−1, 1, 1, 1), . . ., Eq.( 15)

holds. For the bipartite graph G2 illustrated in Figure 1(b), C(G2) =

1, C(G2− e1) = C(G2− e5) = C(G2− e8) = 1, C(G2− e7) = C(G2− e9) =

2, C(G2 − e2) = C(G2 − e3) = C(G2 − e4) = C(G2 − e6) = 0. Hence

for β = (−1, 1, 1, 1,−1, 1, 1,−1, 1), (1, 1, 1, 1,−1, 1,−1, 1, 1), . . ., Eq.( 15)

holds.
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angular hexagonal-square chains, Fibonacci Quart. 45 (2007) 3–9.
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