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Abstract

This paper indicates alternative ways of deriving the main re-
sults of the recent paper [M. Zhang, B. Zhao, Extremal values of
the Sombor index in tricyclic graphs, MATCH Commun. Math.
Comput. Chem. 89 (2023) 741-758]. The graphs possessing min-
imum and maximum values of the reduced Sombor index are also
characterized from the class of all tricyclic connected graphs of a
given order.

1 Introduction

This paper considers only finite and connected graphs. The (chemical)

graph-theoretical notions and terminology that are utilized in the present

paper can be found in relevant standard books like [3, 4, 16,17].

The sets of edges and vertices of a graph G are represented by E(G)

and V (G), respectively. Denote by dv the degree of a vertex v ∈ V (G).

The edge between two vertices x, y ∈ V (G) is represented by xy.
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A topological index is a numerical quantity TI that is calculated/deri-

ved from a (chemical) graph such that TI remains the same under graph

isomorphism. Many topological indices being studied in chemical graph

theory have several chemical applications, for example see the recent arti-

cles [13,15].

The Sombor and reduced Sombor indices [8] are among the recently in-

troduced topological indices. These indices are denoted as SO and SOred,

respectively. They are defined for a graph G as:

SO(G) =
∑

xy∈E(G)

√
d2x + d2y ,

SOred(G) =
∑

xy∈E(G)

√
(dx − 1)2 + (dy − 1)2 .

The Sombor and reduced Sombor indices were initially studied via a geo-

metric approach. Soon after their discovery, various publications concern-

ing these indices were appeared; such type of articles are still published at

a considerable pace. Most of the existing mathematical results regarding

Sombor indices can be found in the review articles [7, 10] and in the arti-

cles listed therein. Applications of these indices in chemistry are also well

researched [6, 9, 11,12].

A connected graph of order n and size n + 2 is known as a connected

tricyclic graph. Quite recently, Zhang and Zhao [18] solved the problem of

characterizing the graphs possessing minimum and maximum values of the

Sombor index among all tricyclic connected graphs of a given order. This

paper not only indicates an alternative way of solving the aforementioned

problem, by utilizing the results reported in [1, 11, 14], but also gives a

solution to an analogous problem regarding the reduced Sombor index.

2 Results

First, we derive the result regarding the minimum Sombor index reported

in [18] by utilizing the results reported in [1, 11]. A graph in which all

the vertices have the same degree is referred to as a regular graph. By a
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bidegreed graph G, we mean a non-regular graph in which the degree of

every vertex belongs to the set {δ,∆}, where δ and ∆ are the minimum

and maximum degrees of G. The following known result confirms that a

graph with the minimum Sombor index among all connected graphs of a

given order and size must be either regular or bidegreed.

Lemma 1. [1] If G⋆ is a graph with the minimum Sombor index among

all connected graphs of order n and size m, then G⋆ has 2m − n⌊2m/n⌋
vertices of degree ⌊2m/n⌋ + 1 and n + n⌊2m/n⌋ − 2m vertices of degree

⌊2m/n⌋.

Since every connected tricyclic graph of order n has n + 2 edges and

⌊2(n+2)/n⌋ = 2 whenever n ≥ 5, the following result directly follows from

Lemma 1.

Corollary. For n ≥ 5, if G⋆ is a graph with the minimum Sombor index

among all connected tricyclic graphs of order n, then the minimum and

maximum degrees of G⋆ are 2 and 3, respectively.

In chemical graph theory, a graph of maximum degree at most 4 is

referred to as a chemical graph. Denote by Kn the complete graph of

order n.

Lemma 2. [11] The graph obtained from K4 by replacing exactly one of

its edges with the path of length n−3 is the unique graph with the minimum

Sombor index among all connected chemical tricyclic graphs of order n for

every n ≥ 6.

Now, the next result regarding the minimum Sombor index reported

in [18] follows from Corollary 2 and Lemma 2.

Corollary. [18] The graph defined in Lemma 2 is the unique graph with

the minimum Sombor index among all connected tricyclic graphs of order

n for every n ≥ 6.

Although the second main result of [18, Theorem 3.9] regarding the

maximum Sombor index can also be found in [14, Theorem 2.1], but we

remark here that the proofs of this independently obtained result are en-

tirely different, from each other, in the mentioned papers.
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Next, we proceed towards characterizing the graphs possessing min-

imum value of the reduced Sombor index from the class of all tricyclic

connected graphs of a given order. We start with the following elementary

lemma.

Lemma 3. For the real numbers a, b, c, d satisfying a ≥ b ≥ c ≥ d ≥ 0, it

holds that
√
a+ c+

√
b+ d ≥

√
a+ b+

√
c+ d.

Proof. Because of the given constraints on the numbers a, b, c, d, the in-

equality a(b− c) ≥ d(b− c) holds, which is equivalent to(√
a+ c+

√
b+ d

)2

≥
(√

a+ b+
√
c+ d

)2

.

For a vertex x of a graph G, denote by NG(x) the set of those vertices

of G that are adjacent with x. The member of the set NG(x) are referred

to as neighbors of x. The following result (analogous to Theorem 1 of [1])

is very crucial for characterizing the graphs possessing minimum value of

the reduced Sombor index from the class of all tricyclic connected graphs

of a given order.

Theorem 1. If G⋆ is a graph with the minimum reduced Sombor index

among all connected graphs of order n and size m, then the absolute dif-

ference between the minimum and maximum degrees of G⋆ is at most 1.

Proof. Let δ and ∆ be the minimum and maximum degrees of G⋆, respec-

tively. Contrarily, we assume that ∆ − δ > 1. Take u, v ∈ V (G) such

that du = δ and dv = ∆. The inequality ∆ − δ > 1 implies that the

vertex v has at least one neighbor w such that w is not adjacent with u.

Form a new graph H⋆ from G⋆ by dropping the edge wv and inserting

the edge wu. Certainly, both the graphs H⋆ and G⋆ are connected and

have the same number of vertices and edges. However, in the following,

we have SOred(G
⋆) − SOred(H

⋆) > 0, a contradiction to the minimality

of SOred(G
⋆).
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In the rest of the proof, we show that SOred(G
⋆) − SOred(H

⋆) > 0.

The proof of this inequality is completed by considering two cases. Also,

in what follows, when we write da we mean that it is the degree of the

vertex a ∈ V (G⋆) = V (H⋆) in G⋆ not in H⋆.

Case 1. uv ̸∈ E(G).

In this case, we have

SOred(G
⋆)− SOred(H

⋆)

=
∑

x∈NG⋆ (u)

(√
(dx − 1)2 + (δ − 1)2 −

√
(dx − 1)2 + δ2

)

+
∑

y∈NG⋆ (v)\{w}

(√
(dy − 1)2 + (∆− 1)2 −

√
(dy − 1)2 + (∆− 2)2

)

+
√

(dw − 1)2 + (∆− 1)2 −
√
(dw − 1)2 + δ2 . (1)

Since ∆− δ > 1, that is ∆− 2 ≥ δ, it holds that√
(dw − 1)2 + (∆− 1)2 −

√
(dw − 1)2 + δ2

≥
√
(dw − 1)2 + (∆− 1)2 −

√
(dw − 1)2 + (∆− 2)2.

Thus, Eq. (1) yields

SOred(G
⋆)− SOred(H

⋆)

≥
∑

x∈NG⋆ (u)

(√
(dx − 1)2 + (δ − 1)2 −

√
(dx − 1)2 + δ2

)

+
∑

y∈NG⋆ (v)

(√
(dy − 1)2 + (∆− 1)2 −

√
(dy − 1)2 + (∆− 2)2

)
. (2)

Note that for x ∈ NG⋆(u) and y ∈ NG⋆(v) the following inequalities hold√
(dx − 1)2 + (δ − 1)2 −

√
(dx − 1)2 + δ2 ≥

√
2(δ − 1)−

√
(δ − 1)2 + δ2

(3)
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and √
(dy − 1)2 + (∆− 1)2 −

√
(dy − 1)2 + (∆− 2)2

≥
√
2(∆− 1)−

√
(∆− 1)2 + (∆− 2)2 . (4)

By utilizing (3) and (4) in (2), we get

SOred(G
⋆)− SOred(H

⋆) ≥ δ
(√

2(δ − 1)−
√
(δ − 1)2 + δ2

)
+∆

(√
2(∆− 1)−

√
(∆− 1)2 + (∆− 2)2

)
.

(5)

We arrive at the desired conclusion, in the present case, if we prove the

following inequality:

δ
(√

2(δ − 1)−
√

(δ − 1)2 + δ2
)

+∆
(√

2(∆− 1)−
√
(∆− 1)2 + (∆− 2)2

)
> 0. (6)

Note that (3δ − 2)δ > −1, which is equivalent to

2δ2
(
(δ − 1)2 + δ2

)
<

(
2δ(δ − 1) + (δ + 1)

)2

,

which yields
√
2(δ − 1)−

√
(δ − 1)2 + δ2 > −δ + 1√

2δ
. (7)

Also, we observe that 3∆(∆− 2) + 1 > 0, which is equivalent to

2∆2
(
(∆− 1)2 + (∆− 2)2

)
< (∆− 1)2(2∆− 1)2,

which provides

√
2(∆− 1)−

√
(∆− 1)2 + (∆− 2)2 >

∆− 1√
2∆

. (8)
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From (7) and (8), it follows that

δ
(√

2(δ − 1)−
√
(δ − 1)2 + δ2

)
+∆

(√
2(∆− 1)−

√
(∆− 1)2 + (∆− 2)2

)
> δ

(
−δ + 1√

2δ

)
+∆

(
∆− 1√

2∆

)
≥ 0,

which proves (6). Thus, (5) gives SOred(G
⋆)−SOred(H

⋆) > 0, as desired.

Case 2. uv ∈ E(G).

In this case, it holds that

SOred(G
⋆)− SOred(H

⋆)

=
∑

x∈NG⋆ (u)\{v}

(√
(dx − 1)2 + (δ − 1)2 −

√
(dx − 1)2 + δ2

)

+
∑

y∈NG⋆ (v)\{w,u}

(√
(dy − 1)2 + (∆− 1)2 −

√
(dy − 1)2 + (∆− 2)2

)

+
√
(dw − 1)2 + (∆− 1)2 −

√
(dw − 1)2 + δ2

+
√
(δ − 1)2 + (∆− 1)2 −

√
(∆− 2)2 + δ2 . (9)

Since ∆− 2 ≥ δ, Eq. (9) gives

SOred(G
⋆)− SOred(H

⋆)

≥
∑

x∈NG⋆ (u)\{v}

(√
(dx − 1)2 + (δ − 1)2 −

√
(dx − 1)2 + δ2

)

+
∑

y∈NG⋆ (v)\{u}

(√
(dy − 1)2 + (∆− 1)2 −

√
(dy − 1)2 + (∆− 2)2

)

+
√

(δ − 1)2 + (∆− 1)2 −
√
(∆− 2)2 + δ2 . (10)
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By utilizing (3) and (4) in (10), we get

SOred(G
⋆)− SOred(H

⋆) ≥ (δ − 1)
(√

2(δ − 1)−
√

(δ − 1)2 + δ2
)

+ (∆− 1)
(√

2(∆− 1)−
√

(∆− 1)2 + (∆− 2)2
)

+
√

(δ − 1)2 + (∆− 1)2 −
√

(∆− 2)2 + δ2 . (11)

By using (6) in (11), we have

SOred(G
⋆)− SOred(H

⋆) >
√
(δ − 1)2 + (∆− 1)2 −

√
(∆− 2)2 + δ2

+
√
(∆− 1)2 + (∆− 2)2 −

√
2(∆− 1)

+
√
(δ − 1)2 + δ2 −

√
2(δ − 1) . (12)

By taking a = b = (∆− 1)2, c = (∆− 2)2, and d = (δ − 1)2 in Lemma 3,

we get √
(∆− 1)2 + (∆− 2)2 +

√
(∆− 1)2 + (δ − 1)2

≥
√
2(∆− 1) +

√
(∆− 2)2 + (δ − 1)2. (13)

Also, by taking a = (∆ − 2)2, b = δ2, and c = d = (δ − 1)2 in Lemma 3,

we get √
(∆− 2)2 + (δ − 1)2 +

√
δ2 + (δ − 1)2

≥
√

(∆− 2)2 + δ2 +
√
2(δ − 1) (14)

By utilizing (13) first in (12) and then making use of (14) there, we arrive

at the inequality SOred(G
⋆)− SOred(H

⋆) > 0, as desired.

Next, we provide a simple but notable corollary of Theorem 1. This

corollary is similar to Lemma 1. For the sake of completeness, we provide

its proof.

Corollary. If G⋆ is a graph with the minimum value of the reduced Sombor

index among all connected graphs of order n and size m, then G⋆ has
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2m − n⌊2m/n⌋ vertices of degree ⌊2m/n⌋ + 1 and n + n⌊2m/n⌋ − 2m

vertices of degree ⌊2m/n⌋.

Proof. If G⋆ is regular then the desired conclusion holds trivially. Next,

assume that the minimum degree δ and maximum degree ∆ of G⋆ are not

the same. Then, Theorem 1 confirms that ∆− δ = 1. If ni represents the

number of vertices of degree i in G⋆, then the following equations holds

nδ + n∆ = n and δ nδ + (δ + 1)n∆ = 2m, (15)

which give δ n = 2m − n∆, which further provides δ = ⌊2m/n⌋ because

0 < n∆

n < 1. The value of ∆ is now obtained from ∆ − δ = 1. Since

δn = 2m − n∆, we have n∆ = 2m − n⌊2m/n⌋. Now, the value of nδ is

deduced from the first equation of the system (15).

The following known result is also needed for characterizing the graphs

possessing minimum value of the reduced Sombor index from the class of

all tricyclic connected graphs of a given order.

Lemma 4. [11] The graph defined in Lemma 2 is the unique graph with

the minimum reduced Sombor index among all connected chemical tricyclic

graphs of order n for every n ≥ 6.

Finally, the next result regarding the minimum reduced Sombor index

of tricyclic graphs follows from Corollary 2 and Lemma 4.

Corollary. The graph defined in Lemma 2 is the unique graph with the

minimum reduced Sombor index among all connected tricyclic graphs of

order n for every n ≥ 6.

Next, we characterize the unique graph possessing maximum value of

the reduced Sombor index from the class of all tricyclic connected graphs

of a given order.

For every n ≥ 5, Das et al. [5] proved that if G∗ has the maximum

reduced Sombor index among all connected tricyclic graphs with order n

then the maximum degree of G∗ is n − 1; if in addition the number of

pendent vertices of G∗ is at most n− 5 then G∗ = Hn,3, where a vertex of

degree one is known as a pendent vertex and Hn,3 is the graph formed from
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the star graph Sn of order n by adding 3 edges between a fixed pendent

vertex and three other pendent vertices of Sn (see [2]). However, for n ≥ 5,

there is only one connected tricyclic graph of order n and maximum degree

n − 1 having more than n − 5 pendent vertices; this graph is depicted in

Figure 1.

︸ ︷︷ ︸
n−4

Figure 1. The unique connected tricyclic graphs of order n and maxi-
mum degree n− 1 having more than n− 5 pendent vertices,
where n ≥ 5.

Denote byK the graph shown in Figure 1. The reduced Sombor indices

of the graphs Hn,3 and K are given below

3
√
(n− 2)2 + 1 +

√
(n− 2)2 + 9 + (n− 5)(n− 2) + 3

√
10, and

3
√
(n− 2)2 + 4 + (n− 4)(n− 2) + 6

√
2,

respectively. Simple comparison shows that SOred(K) < SOred(Hn,3).

Consequently, we have the next result.

Theorem 2. The graph Hn,3 is the unique graph with the maximum re-

duced Sombor index among all connected tricyclic graphs of order n for

every n ≥ 5.
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[14] T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib.
Math. 3 (2021) 11–18.

[15] N. Tratnik, S. Radenković, I. Redžepovic, M. Finšgar, P. Ž. Pleteršek,
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