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Abstract

A new geometric background of graph invariants was introduced
by Gutman, using the triangle formed by the degree-point, dual-
degree-point, and the origin of the coordinate system, a number of
new Sombor-index-like VDB invariants, denoted by SO1, SO2, . . . ,
SO6, were constructed by means of geometric arguments. In this
paper, the chemical applicability of these Sombor-index-like graph
invariants is investigated, and it is shown that almost all of these
six indices are useful in predicting physicochemical properties with
high accuracy compared to some well-established and often used
indices. Also, we obtain a bound for some of the Sombor-index-like
graph invariants among all (molecular) trees with fixed numbers
of vertices, and characterize those (molecular) trees achieving the
extremal value.

1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set

E(G), and denote by n = |V (G)| and m = |E(G)| the number of vertices

and edges, respectively. The degree of a vertex v in G, denoted by dG(v)

or d(v), is the number of its neighbors. If the vertices u and v are adjacent,
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then the edge connecting them is labeled by e = uv. In the mathemati-

cal and chemical literature, several dozens of vertex-degree-based (VDB)

graph invariants (usually referred to as ”topological indices”) have been

introduced and extensively studied [6–8,10,16]. Their general formula is

TI(G) =
∑
uv∈E

F (dG(u), dG(v)),

where F (x, y) is a function with the property F (x, y) = F (y, x).

The Sombor index [7] is also a VDB topological index actually con-

ceived by using the geometric considerations, and soon attracted much

attention. Numerous mathematical properties and chemical applications

of the Sombor index have been established [1,4,9,11–13], but the geometry-

based features of the Sombor index were ignored. Recently in [8] Gutman

showed that geometry-based reasoning reveal the geometric background

of several classical topological indices (Zagreb index, Albertson index and

Sombor index) and introduced a series of new Sombor-index-like VDB in-

variants, denoted below by SOk(k = 1, 2, · · · , 6). These Sombor-index-like

graph invariants are defined as

SO1 = SO1(G) =
1

2

∑
uv∈E

|d2G(u)− d2G(v)|

SO2 = SO2(G) =
∑
uv∈E

|d2G(u)− d2G(v)|
d2G(u) + d2G(v)

SO3 = SO3(G) =
∑
uv∈E

√
2
d2G(u) + d2G(v)

dG(u) + dG(v)
π

SO4 = SO4(G) =
1

2

∑
uv∈E

(
d2G(u) + d2G(v)

dG(u) + dG(v)

)2

π

SO5 = SO5(G) =
∑
uv∈E

2|d2G(u)− d2G(v)|√
2 + 2

√
d2G(u) + d2G(v)

π

SO6 = SO6(G) =
∑
uv∈E

(
d2G(u)− d2G(v)√

2 + 2
√
d2G(u) + d2G(v)

)2

π.

(1)

Also, Gutman pointed out at the end of the paper [8] that it would be
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interesting to examine the properties of these geometry-based topological

indices, and see if these are usable in applications.

A molecular tree is a tree of maximum degree at most four. In this

paper, a bound for these Sombor-index-like graph invariants among all

(molecular) trees with fixed numbers of vertices are obtained, and those

molecular trees achieving the extremal values are characterized. Also,

the chemical applicability of these Sombor-index-like graph invariants is

investigated and it is shown that almost all of these six Sombor-index-

like indices are useful in predicting physicochemical properties with high

accuracy compared to some well-established and often used indices.

2 Extremal values of Sombor index like

graph invariants

Let G = (V,E) be a graph with order n and size m, δ and ∆ the minimum

and maximum degree, respectively. Denote by mij the number of edges

with end vertices of degree i and j, and ωk
ij the contribution of an edge

with end vertices of degree i and j in G. By the definition (1) of the

Sombor-index-like indices of a graph, we have

SOk(G) =
∑

δ≤i≤j≤∆

mijω
k
ij , (2)

where

ω1
ij =

1

2
|i2 − j2| = 1

2
(max{i2, j2} −min{i2, j2})

ω2
ij =

|i2 − j2|
i2 + j2

, ω3
ij =

√
2π

i2 + j2

i+ j
,

ω4
ij =

π

2

(
i2 + j2

i+ j

)2

, ω5
ij =

2π|i2 − j2|
√
2 + 2

√
i2 + j2

ω6
ij = π

(
i2 − j2

√
2 + 2

√
i2 + j2

)2

.

(3)

Theorem 1. Let G be a connected graph with order n > 3 and size m and
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the maximal degree ∆ and the minimal degree δ, then

(I) 0 ≤ SO1(G) ≤ m(∆2 − δ2), the left equality holds if and only if G is

regular and the right equality holds if and only if max{dG(u), dG(v)} = ∆

and min{dG(u), dG(v)} = δ for any edge uv ∈ E, i.e., all mij = 0 except

mδ∆;

(II) [15] 0 ≤ SO2(G) ≤ m∆2−δ2

∆2+δ2 , the left equality holds if and only if G is

regular and the right equality holds if and only if max{dG(u),dG(v)}
min{dG(u),dG(v)} = ∆

δ for

any edge uv ∈ E;

(III) SO3(G) ≥ 6n−8
3

√
2π with equality if and only if G is the path Pn.

(IV) SO4(G) ≥ 18n−29
9 π with equality if and only if G is the path Pn.

Proof. By SO1(G) =
∑

uv∈E(max{d2G(u), d2G(v)} − min{d2G(u), d2G(v)}),
we can straightforwardly obtain (I).

Let f(x) = a2+x2

a+x (0 < a ≤ x), then f(x) is increasing for x > 0, and
i2+j2

i+j > 5
2 for i+ j > 4. Note that

ω3
11 < ω3

12 =
5
√
2π

3
< ω3

22 = 2
√
2π < ω3

13 =
5
√
2π

2
< ω3

ij (i+ j > 4)

we have

SO3(G) ≥ m12ω
3
12 +m22ω

3
22 + (m−m12 −m22)ω

3
22

= m12ω
3
12 + (m−m12)ω

3
22

≥ m12ω
3
12 +m22)ω

3
22

with equality if and only if m = m12 +m22, i.e., G = Pn. So, SO3(G) ≥
SO3(Pn) =

6n−8
3

√
2π.

Similarly, we can prove (IV).

In the following, we will determine the extremal values of SO1, SO2,

SO3 and the corresponding extremal trees among all trees with n vertices.
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From (1), we have

SO3(G) =
∑
uv∈E

√
2π

d2G(u) + d2G(v)

dG(u) + dG(v)

=
∑
uv∈E

√
2π(dG(u) + dG(v))−

∑
uv∈E

√
2π

2dG(u)dG(v)

dG(u) + dG(v)

=
√
2π(M1(G)− 2ISI(G))

(4)

whereM1(G) =
∑

uv∈E(dG(u)+dG(v)) is the first Zagreb index, ISI(G) =∑
uv∈E

dG(u)dG(v)
dG(u)+dG(v) is the inverse sum indeg of G.

Lemma 2.1. [14] If T is a tree with n vertices, then

ISI(T ) ≥ n+
1

n
− 2

with equality if and only if T is isomorphic to Sn.

Lemma 2.2. [2] If T is a tree with n vertices, then

M1(T ) ≤ n(n− 1)

with equality if and only if T is isomorphic to Sn.

Theorem 2. Let T be a tree with n > 2 vertices, then

3 ≤ SO1(T ) ≤
(n2 − 2n)(n− 1)

2

6

5
≤ SO2(T ) ≤

(n2 − 2n)(n− 1)

n2 − 2n+ 2

√
2π

6n− 8

3
≤ SO3(T ) ≤

√
2π

(n− 1)(n2 − 2n+ 2)

n

the left equality holds if and only if T is the path Pn and the right equality

holds if and only if T is the star Sn.
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Proof. From (1), we have

SO1(T ) =
1

2

∑
uv∈E

(max{d2T (u), d2T (v)} −min{d2T (u), d2T (v)})

≤ 1

2

∑
uv∈E

((n− 1)2 − 12) =
(n− 1)(n2 − 2n)

2
.

with equality if and only if T ∼= Sn.

Let E1 be the set of pendant edges in T and E2 = E−E1, then |E1| ≥ 2

and |d2T (u)− d2T (v)| ≥ 22 − 1 = 3 for uv ∈ E2. By (1), we have

SO1(T ) =
1

2
(
∑

uv∈E1

+
∑

uv∈E−E1

)(max{d2T (u), d2T (v)} −min{d2T (u), d2T (v)})

≥ 1

2

∑
uv∈E1

(max{d2T (u), d2T (v)} −min{d2T (u), d2T (v)}) ≥
3|E1|
2

≥ 3.

with equality holds if and only if T ∼= Pn.

From [15], we can see

6

5
≤ SO2(T ) ≤

(n2 − 2n)(n− 1)

n2 − 2n+ 2

the left equality holds if and only if T is the path Pn and the right equality

holds if and only if T is the star Sn.

From (4), Theorem 1 and Lemmas 2.1-2.2, we can obtain

√
2π

6n− 8

3
≤ SO3(T ) ≤

√
2π

(n− 1)(n2 − 2n+ 2)

n

the left equality holds if and only if T is the path Pn and the right equality

holds if and only if T is the star Sn.

3 The Sombor index like indices of molecular

trees

In this section, we consider the extremal values of SO1, SO2, SO3, SO4 for

molecular trees.
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Let CTn be the set of molecular trees with n vertices, ni = ni(T ) the

number of vertices of degree i in T ∈ CTn, i ∈ {1, 2, 3, 4}. We can get the

following system of six linear equations which are satisfied by all molecular

trees 

n1 + n2 + n3 + n4 = n

n1 + 2n2 + 3n3 + 4n4 = 2n− 2

m12 +m13 +m14 = n1

m12 + 2m22 +m23 +m24 = 2n2

m13 +m23 + 2m33 +m34 = 3n3

m14 +m24 +m34 + 2m44 = 4n4

(5)

Solving the system (5) with unknowns m14,m24, n1, n2, n3 and n4, we can

obtain

m14 =
n+ 3

2
− 3m12

2
− 7m13

6
− m22

2
− m23

6
+

m33

6
+

m34

3
+

m44

2

m24 =
n− 5

2
+

m12

2
+

m13

6
− m22

2
− 5m23

6
− 7m33

6
− 4m34

3
− 3m44

2

n1 =
n+ 3

2
− m12

2
− m13

6
− m22

2
− m23

6
+

m33

6
+

m34

3
+

m44

2

n2 =
n− 5

4
+

3m12

4
+

7m13

12
+

3m22

4
+

m23

12
− 7m33

12
− 2m34

3
− 3m44

4

n3 =
m13

3
+

m23

3
+

2m33

3
+

m34

3

n4 =
n− 1

4
− m12

4
− m13

4
− m22

4
− m23

4
− m33

4
+

m44

4
(6)

Also, solving the system (5) with unknowns m14,m44, n1, n2, n3 and n4,
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we can obtain

m14 =
2n+ 2

3
− 4m12

3
− 10m13

9
− 2m22

3
− 4m23

9
− m24

3

− 2m33

9
− m34

9

m44 =
n− 5

3
+

m12

3
+

m13

9
− m22

3
− 5m23

9
− 2m24

3
− 7m33

9
− 8m34

9

n1 =
2n+ 2

3
− m12

3
− 2m22

3
− 4m23

9
− m24

3
− m13

9
− 2m33

9
− m34

9

n2 =
m12

2
+m22 +

m23

2
+

m24

2

n3 =
m13

3
+

m23

3
+

2m33

3
+

m34

3

n4 =
n− 2

3
− m12

6
− m22

3
− 7m23

18
− m24

6
− 2m13

9
− 4m33

9
− 2m34

9
(7)

Figure 1. Eight types molecular trees with n(n ≥ 8) vertices

Next, we define seven types molecular trees.

Let T1 is the set of molecular trees T with n ≡ 0(mod4) vertices, where

T has no vertex with degree 3, every vertex of degree 2 is adjacent to two

vertices of degree 4 in T and there is exactly a pair of vertices with degree

4 adjacent to each other, i.e., T is a tree on n vertices with m14 = n+4
2 ,

m24 = n−8
2 , m44 = 1, m12 = m13 = m22 = m23 = m33 = m34 = 0 (An

example is shown in Figure 1 (1)).

Let T2 is the set of molecular trees T with n ≡ 1(mod4) vertices, where
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T has no vertex with degree 3, every vertex of degree 2 is adjacent to

two vertices of degree 4 in T and no two vertices of degree 4 are mutually

adjacent, i.e., T is a tree with m14 = n+3
2 , m24 = n−5

2 , m12 = m13 =

m22 = m23 = m33 = m34 = m44 = 0 (An example is shown in Figure 1

(2)).

Let T3 is the set of molecular trees T with n ≡ 2(mod4) vertices,

where T has no vertex with degree 3, exactly two of vertices of degree 2

are adjacent to a vertex of degree 4 and a vertex of degree 2, and other

vertices of degree 2 are adjacent to two vertices of degree 4, i.e., T is a

tree with m14 = n+2
2 , m24 = n−6

2 , m22 = 1, m12 = m13 = m23 = m33 =

m34 = m44 = 0 (An example is shown in Figure 1 (3)).

Let T3′ is the set of molecular trees T with n ≡ 2(mod4) vertices, where

T has no vertex with degree 3, exactly one of vertices of degree 2 is adjacent

to a vertex of degree 4 and a vertex of degree 1, and other vertices of degree

2 are adjacent to two vertices of degree 4, i.e., T is a tree with m14 = n
2 ,

m24 = n−4
2 , m12 = 1, m13 = m22 = m23 = m33 = m34 = m44 = 0 (An

example is shown in Figure 1 (3′)).

Let T4 is the set of molecular trees T with n ≡ 3(mod4) vertices, where

T has exactly one vertex of degree 3, which is adjacent to two vertices of

degree 1 and one vertex of degree 4 and every vertex of degree 2 is adjacent

to two vertices of degree 4, i.e., T is a tree with m14 = n−1
2 , m24 = n−7

2 ,

m13 = 2, m34 = 1, m12 = m22 = m23 = m33 = m44 = 0 (An example is

shown in Figure 1 (4)).

Let T5 is the set of molecular trees T with n ≡ 0(mod3) vertices, where

T has exactly one 2-degree vertex, which is adjacent to one 4-degree vertex

and one 1-degree vertex in T , and no 3-degree vertex, i.e., T is a tree on

n vertices with m14 = 2n−3
3 , m44 = n−6

3 , m24 = 1, m12 = 1,m13 = m22 =

m23 = m33 = m34 = 0 (An example is shown in Figure 1 (5)).

Let T6 is the set of molecular trees T with n ≡ 1(mod3) vertices, where

T has exactly one 3-degree vertex, which is adjacent to two vertices of

degree 4 and one 1-degree vertex in T , and no 2-degree vertex, i.e., T is

a tree with m14 = 2n−2
3 , m44 = n−10

3 , m13 = 1,m34 = 2,m12 = m22 =

m23 = m24 = m33 = 0 (An example is shown in Figure 1 (6)).

Let T7 is the set of molecular trees T with n ≡ 2(mod3) vertices, where
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T has no vertex with degree 3 or degree 2, i.e., T is a tree withm14 = 2n+2
3 ,

m44 = n−5
3 , m12 = m13 = m22 = m23 = m24 = m33 = m34 = 0 (An

example is shown in Figure 1 (7)).

Theorem 3. Let T ∈ CTn with n ≥ 8, then

3 ≤ SO1(T ) ≤



27n−36
4 n ≡ 0(mod4)

27n−15
4 n ≡ 1(mod4)

27n−42
4 n ≡ 2(mod4)

27n−53
4 n ≡ 3(mod4)

the left equality holds if and only if T ∼= Pn and the right equality holds

if and only if T ∈ Ti for n ≡ (i − 1)(mod4) (i = 1, 2, 4) and T ∈ T3 or

T ∈ T3′ for n ≡ 2(mod4).

Proof. By Theorem 2, we have SO1(T ) ≥ 3 with equality if and only if

T ∼= Pn.

From the definition (1) of SO1, we have

SO1(T ) =
3

2
m12 + 4m13 +

15

2
m14 +

5

2
m23 + 6m24 +

7

2
m34. (8)

Replacing m14 and m24 in (8) by (6), we have

SO1(T ) =
27n− 15

4
− 27m12

4
− 15m13

4
− 27m22

4

−10m23

3
− 23m33

4
− 2m34 −

21m44

4

(9)

which is maximal for a fixed number of vertices when the values m12, m13,

m22, m23, m33, m34, and m44 are equal to zero. However, in the case of

molecular trees with n vertices, the condition

m12 = m13 = m22 = m23 = m33 = m34 = m44 = 0 (10)

can be satisfied only if n ≡ 1(mod4).
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Any molecular tree satisfying (10) has no vertices of degree 3, all its

vertices of degree 2 are adjacent to two vertices of degree 4, and no two

vertices of degree 4 are mutually adjacent (See (2) in Figure 1).

Hence, if n ≡ 1(mod4), then for any molecular tree T with n vertices,

SO1(T ) ≤
27n− 15

4

with equality if and only if T ∈ T2.
If n ̸≡ 1(mod4), then (10) cannot be satisfied by any molecular tree on n

vertices. In order to find the molecular trees with the maximal SO1-value,

we have to find the values of the parameters m12,m13,m22,m23,m33,m34,

and m44 as close to zero as possible compatible to the existence of a molec-

ular tree, i.e., for which the right-hand sides of (6) are integers, and for

which a graph exists and we have that m13 +m23 +2m33 +m34 has to be

a multiple of 3 from n3 = m13

3 + m23

3 + 2m33

3 + m34

3 .

By (9), we know that there is must be n3 = 0 or n3 = 1 for n ̸≡ 1(mod4)

if T is a molecular tree with the maximal SO1(T )-value.

Case 1. If n3 = 0, then m13 = m23 = m33 = m34 = 0, and

SO1(T ) =
27n− 15

4
− 27m12

4
− 27m22

4
− 21m44

4
. (11)

To find the molecular tree(s) with the maximal SO1(T )-value, we only

need to consider m12 +m22 +m44 = 1.

If n ≡ 2(mod4), there are two types of molecular trees such that m12+

m22 +m44 = 1, i.e., m12 = 1,m22 = m44 = 0 or m12 = 0,m22 = 1,m44 =

0. By simply computing and comparing, for any molecular tree T with

n ≡ 2(mod4) vertices, we have

SO1(T ) ≤
27n− 42

4

with equality if and only if T ∈ T3 or T ∈ T3′ .
If n ≡ 0(mod4), there is only one type of molecular trees such that

m12 + m22 + m44 = 1, i.e., m12 = m22 = 0,m44 = 1. Then, for any
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molecular tree with n ≡ 0(mod4) vertices,

SO1(T ) ≤
27n− 36

4

with equality if and only if T ∈ T1.
If n ≡ 3(mod4), then there is no molecular trees such that m12+m22+

m44 = 1.

Case 2. If n3 = 1, then m13 + m23 + 2m33 + m34 = 3. To find the

molecular trees with the maximal SO1(T )-value, we only need to consider

all possible choices of (m13, m23, m33, m34) such that m13+m23+2m33+

m34 = 3.

We hvae that a molecular tree on n vertices and n3 = 1 with the

maximal SO2-value must satisfy

m12 = m22 = m44 = m23 = m33 = 0,m13 = 2,m34 = 1 (12)

and it can be satisfied only if n ≡ 3(mod4). Then, for any molecular tree

with n ≡ 3(mod4) vertices,

SO1(T ) ≤
27n− 53

4

with equality if and only if T ∈ T4.

For SO2, we have

Theorem 4. [15] Let T ∈ CTn with n ≥ 8, then

6

5
≤ SO2(T ) ≤



126n−108
170 n ≡ 0(mod4)

126n−30
170 n ≡ 1(mod4)

126n−102
170 n ≡ 2(mod4)

315n−281
425 n ≡ 3(mod4)

the left equality holds if and only if T ∼= Pn and the right equality holds
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if and only if T ∈ Ti for n ≡ (i − 1)(mod4) (i = 1, 2, 4) and T ∈ T3′ for

n ≡ 2(mod4).

Theorem 5. Let T ∈ CTn with n ≥ 8, then

√
2π

6n− 8

3
≤ SO3(T ) ≤



√
2π 18n−32

5 n ≡ 0(mod3)

√
2π 252n−417

70 n ≡ 1(mod3)

√
2π 18n−22

5 n ≡ 2(mod3)

18n− 29

9
π ≤ SO4(T ) ≤



815n−3338
225 π n ≡ 0(mod3)

189080n−401491
29000 π n ≡ 1(mod3)

326n−474
50 π n ≡ 2(mod3)

the left equality holds if and only if T ∼= Pn and the right equality holds if

and only if T ∈ Ti for n ≡ (i− 5)(mod3) (i = 5, 6, 7).

Proof. By Theorem 1, we have

SO3(T ) ≥
√
2π

6n− 8

3

and

SO4(T ) ≥
18n− 29

9
π

with equality if and only if T ∼= Pn.

From (2), we have

SO3(T ) =
√
2π(

5

3
m12 +

5

2
m13 +

17

5
m14 + 2m22 +

13

5
m23 +

10

3
m24

+ 3m33 +
25

7
m34 + 4m44).

SO4(T ) =
π

2
(
25

9
m12 +

25

4
m13 +

289

25
m14 + 4m22 +

169

25
m23 +

100

9
m24

+ 9m33 +
625

49
m34 + 16m44).

(13)
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Replacing m14 and m44 in (13) by (7), we have

SO3(T ) =
√
2π

[
18n− 22

5
− 23m12

15
− 5m13

6
− 8m22

5
− 17m23

15
− 7m24

15

−13m33

15
− 38m34

105

]
SO4(T ) =

π

2

[
326n− 474

25
− 1643m12

225
− 289m13

60
− 226m22

25
− 109m23

15

−767m24

225
− 578m33

225
− 10112m34

3675

]
(14)

which is maximal for a fixed number of vertices when the values m12,m13,

m22,m23,m24, m33, and m34 are equal to zero. However, in the case of

molecular trees with n vertices, the condition

m12 = m13 = m22 = m23 = m24 = m33 = m34 = 0 (15)

can be satisfied only if n ≡ 2(mod3).

Any molecular tree satisfying (15) has no vertices of degree 3 and degree

2, all its vertices of degree 1 are adjacent to vertices of degree 4 (See (7)

in Figure 1).

Hence, if n ≡ 2(mod3), then for any molecular tree with n vertices,

SO3(T ) ≤
√
2π

18n− 22

5
SO4(T ) ≤

326n− 474

50
π

with equality if and only if T ∈ T7.
If n ̸≡ 2(mod3), then (15) cannot be satisfied by any molecular tree on

n vertices. In order to find the molecular trees with the maximal SOk-value

(k = 3, 4), we have to find the values of the parameters m12,m13,m22,m23,

m24,m33 and m34 as close to zero as possible compatible to the existence

of a molecular tree, i.e., for which the right-hand sides of (7) are integers,

and for which a graph exists and we have that m13 +m23 + 2m33 +m34

has to be a multiple of 3 and m12+2m22+m23+m24 has to be a multiple

of 2.

By (14), we know that there is must be either n3 = 0, n2 = 1 or
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n3 = 1, n2 = 0 for n ̸≡ 2(mod3) if T is a molecular tree with the maximal

SO3(T )-value (k = 3, 4).

Case 1. If n3 = 0 and n2 = 1, i.e. m22 = m13 = m23 = m33 = m34 = 0

and m12 +m24 = 2, then

SO3(T ) =
√
2π

(
18n− 22

5
− 23m12

15
− 7m24

15

)
.

SO4(T ) =
π

2

(
326n− 474

25
− 1643m12

225
− 767m24

225

) (16)

and n must satisfy n ≡ 1(mod3). There is one type of molecular trees such

that m12 = 1,m24 = 1. By simply computing, for any molecular tree T

with n ≡ 1(mod3) vertices,

SO3(T ) ≤
√
2π

18n− 32

5

SO4(T ) ≤
815n− 3338

225
π

with equality if and only if T ∈ T5.
Case 2. If n3 = 1 and n2 = 0, i.e. m13 +m34 = 3 and m12 = m22 =

m23 = m24 = m33 = 0, then

SO3(T ) =
√
2π

(
18n− 22

5
− 5m13

6
− 38m34

105

)
SO4(T ) =

π

2

(
326n− 474

25
− 289m13

60
− 10112m34

3675

)
.

(17)

and n must satisfy n ≡ 0(mod3). There are two types of molecular trees

such that m13 = 2,m34 = 1 or m13 = 1,m34 = 2. By simply computing

and comparing, for any molecular tree T with n ≡ 0(mod3) vertices,

SO3(T ) ≤
√
2π

252n− 417

70

SO4(T ) ≤
189080n− 401491

29000
π

with equality if and only if T ∈ T6.



218

4 Conclusions and open problems

In this paper we have analyzed the Sombor-index-like graph invariants and

their extremal properties. We show that almost all of these six indices are

useful in predicting physicochemical properties with high accuracy com-

pared to some well-established and often used indices. We have found

the extremal values of some Sombor-index-like graph invariants and the

extremal graphs in the classes of trees and molecular trees with given

number of vertices. Here, we propose the following open problems which

solution would make the study of the Sombor-index-like graph invariants

more complete:

(1) Find the extremal values of SO5, SO6 in the set of trees and molec-

ular trees with given number of vertices, respectively;

(2) Find the maximal value of SO4 in the set of trees with given number

of vertices;

(3) Find the extremal values of SO5, SO6 in the set of connected graphs

with given number of vertices;

(4) Find the maximal values of SO3, SO4 in the set of connected graphs

with given number of vertices.

The solution of these problems would be an important contribution to

the mathematical theory of chemically relevant Sombor-index-like graph

invariants.

Appendix: The chemical applicability of Som-

bor index like graph invariants

In this section, the chemical applicability of the SO-like indices are inves-

tigated. We consider the data set of octane isomers for such testing and

corresponding experimental values of physico-chemical properties are col-

lected from http://www.moleculardescriptors.eu/dataset/dataset.

htm. First, we give experimental values of the SO-like indices of for octane

isomers, which are listed in Table 1, where there are two pairs of octane

isomers with identical values of the SO-like indices since they have the

same degree coordinates.

http://www.moleculardescriptors.eu/dataset/dataset.htm
http://www.moleculardescriptors.eu/dataset/dataset.htm
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Table 1. Values of SO-like indices of octane isomers

Molecule SO1 SO2 SO3 SO4 SO5 SO6
octane 3 1.2 59.238 40.143 6.404 5 6.5282

2-methyl-heptane 12 2.5846 67.828 53.466 19.835 34.345
3-methyl-heptane 12 2.7692 66.79 1 52.348 20.184 28.4028
4-methyl-heptane 12 2.7692 66.791 52.348 20.184 28.4028
3-ethyl-hexane 12 2.9538 65.755 51.229 20.534 22.4606

2,2-dimethyl-hexane 30 3.8471 85.303 88.858 39.749 111.02
2,3-dimethyl-hexane 16 3.3846 74.492 64.855 26.33 47.7741
2,4-dimethyl-hexane 21 4.1538 75.381 65.672 33.615 56.2197
2,5-dimethyl-hexane 21 3.9692 76.418 66.79 33.266 62.1619
3,3-dimethyl-hexane 30 4.1647 83.526 86.233 40.474 100.85
3,4-dimethyl-hexane 16 3.5692 73.456 63.736 26.68 41.8319

2-methyl-3-ethyl-pentane 16 3.5692 73.456 63.736 26.68 41.8319
3-methyl-3-ethyl-pentane 30 4.4824 81.749 83.608 41.2 90.6835
2,2,3-trimethyl-pentane 34 4.7117 91.248 99.31 46.461 116.533
2,2,4-trimethyl-pentane 39 5.2317 93.893 102.18 53.18 138.837
2,3,3-trimethyl-pentane 34 4.8447 90.508 97.804 46.837 112.307
2,3,4-trimethyl-pentane 20 4 82.193 77.362 32.476 67.1454

2,2,3,3-tetramethylbutane 45 5.2941 108.41 134.08 58.536 181.782

By the experimental values of Acentric-factor (AcenFac), Entropy(S),

SNar and HNar of octane isomers (from http://www.moleculardescriptors.

eu/dataset/dataset.htm.) and Table 1, we find the correlation of AcenFac,

S, SNar and HNar with the second Sombor index SO2 for octane isomers.

The data related to octanes are listed in Table 3. The following equations

give the regression models for the SO-like indices SOi(i = 1, 2 . . . , 6).

AcenFac = a1i − b1i × SOi (18)

S = a2i − b2i × SOi (19)

SNar = a3i − b3i × SOi (20)

HNar = a4i − b4i × SOi (21)

By corresponding experimental values [3], we have that correlation of

SO2 with some existing indices like the Sombor index (SO), the first (M1)

and second (M2) Zagreb indices, forgotten topological index (F), connec-

tivity index (R), sum connectivity index (SCI), symmetric division degree

index (SDD) and neighborhood Zagreb index (MN ) are shown in Table 4.

From Table 3, it is obvious that SO3, SO4, SO6 strongly correlate

properties of Acentric-factor, Entropy, SNar and HNar of octane isomers,

SO2, SO5 has slightly better predictive properties for Acentric-factor, SNar
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Table 2. The coefficient of aij and bij for SO-like indices SOi

ai,j 1 2 3 4 5 6
1 0.3926 0.4536 0.5523 0.4417 0.4163 0.3845
2 112.6025 119.1755 132.77 118.844 115.2222 111.6405
3 4.0841 4.6576 5.6333 4.5441 4.3044 4.0032
4 1.5521 1.7137 1.9554 1.6695 1.6122 1.5293
bi,j 1 2 3 4 5 6
1 -0.0027 -0.0314 -0.0028 -0.0014 -0.0024 -0.0007
2 -0.3378 -3.6697 -0.3476 -0.1799 -0.2979 -0.0869
3 -0.026 -0.3003 -0.0267 -0.0136 -0.0235 -0.0066
4 -0.0068 -0.0815 -0.007 -0.0035 -0.0062 -0.0017

Table 3. The square of correlation coefficient of the SO-like indices
with AcenFac, S, SNar and HNar

Physico-chemical property SO1 SO2 SO3 SO4 SO5 SO6
Acentric-factor (AcenFac) 0.75 0.8468 0.8991 0.8962 0.8655 0.8153

Entropy (S) 0.7384 0.7111 0.8838 0.8881 0.7908 0.8187
SNar 0.8023 0.8753 0.9588 0.9282 0.9028 0.864
HNar 0.7664 0.9048 0.9124 0.8683 0.8841 0.8027

Table 4. The square of correlation coefficient of SO-like indices with
some existing indices

M1 M2 F R SCI SDD MN SO
SO1 0.8253 0.6711 0.8219 0.8174 0.8295 0.8273 0.7678 0.8364
SO2 0.8467 0.7532 0.814 0.8044 0.8373 0.7779 0.8324 0.8428
SO3 0.9904 0.8318 0.9885 0.9667 0.9826 0.9805 0.9338 0.9984
SO4 0.9835 0.8363 0.9955 0.9321 0.9528 0.9621 0.9385 0.9906
SO5 0.9325 0.7671 0.9307 0.8934 0.9185 0.9057 0.8879 0.9433
SO6 0.937 0.7296 0.9603 0.9106 0.9239 0.9545 0.8677 0.9581

Abbreviations: SO, Sombor index; SCI, sum connectivity index; SDD, symmet-
ric division degree index.
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and HNar of octane isomers, and therefore, they may be a step forward in

QSPR studies.

From Table 4, we learn the following results: (i) all the six Sombor-

index-like indices are strongly correlated with the well-established and of-

ten used indices the first Zagreb index (M1), forgotten topological index

(F), connectivity index (R), sum connectivity index (SCI) and the Sombor

index (SO); (ii) SO3, SO4, SO5, SO6 are strongly correlated with symmet-

ric division degree index (SDD) and neighborhood Zagreb index (MN).
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