Trees with Extremal Values of the Sombor-Index-Like Graph Invariants

Zikai Tang ${ }^{a}$, Qiyue Li a, Hanyuan Deng ${ }^{a *}$
${ }^{a}$ MOE-LCSM, College of Mathematics and Statistics, Hunan Normal
University, Changsha, Hunan, China. hydeng@hunnu.edu.cn

(Received December 17, 2022)

Abstract

A new geometric background of graph invariants was introduced by Gutman, using the triangle formed by the degree-point, dual-degree-point, and the origin of the coordinate system, a number of new Sombor-index-like VDB invariants, denoted by $S O_{1}, S O_{2}, \ldots$, $S O_{6}$, were constructed by means of geometric arguments. In this paper, the chemical applicability of these Sombor-index-like graph invariants is investigated, and it is shown that almost all of these six indices are useful in predicting physicochemical properties with high accuracy compared to some well-established and often used indices. Also, we obtain a bound for some of the Sombor-index-like graph invariants among all (molecular) trees with fixed numbers of vertices, and characterize those (molecular) trees achieving the extremal value.

1 Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$, and denote by $n=|V(G)|$ and $m=|E(G)|$ the number of vertices and edges, respectively. The degree of a vertex v in G, denoted by $d_{G}(v)$ or $d(v)$, is the number of its neighbors. If the vertices u and v are adjacent,

[^0]then the edge connecting them is labeled by $e=u v$. In the mathematical and chemical literature, several dozens of vertex-degree-based (VDB) graph invariants (usually referred to as "topological indices") have been introduced and extensively studied $[6-8,10,16]$. Their general formula is
$$
T I(G)=\sum_{u v \in E} F\left(d_{G}(u), d_{G}(v)\right)
$$
where $F(x, y)$ is a function with the property $F(x, y)=F(y, x)$.
The Sombor index [7] is also a VDB topological index actually conceived by using the geometric considerations, and soon attracted much attention. Numerous mathematical properties and chemical applications of the Sombor index have been established $[1,4,9,11-13]$, but the geometrybased features of the Sombor index were ignored. Recently in [8] Gutman showed that geometry-based reasoning reveal the geometric background of several classical topological indices (Zagreb index, Albertson index and Sombor index) and introduced a series of new Sombor-index-like VDB invariants, denoted below by $S O_{k}(k=1,2, \cdots, 6)$. These Sombor-index-like graph invariants are defined as
\[

$$
\begin{align*}
& S O_{1}=S O_{1}(G)=\frac{1}{2} \sum_{u v \in E}\left|d_{G}^{2}(u)-d_{G}^{2}(v)\right| \\
& S O_{2}=S O_{2}(G)=\sum_{u v \in E} \frac{\left|d_{G}^{2}(u)-d_{G}^{2}(v)\right|}{d_{G}^{2}(u)+d_{G}^{2}(v)} \\
& S O_{3}=S O_{3}(G)=\sum_{u v \in E} \sqrt{2} \frac{d_{G}^{2}(u)+d_{G}^{2}(v)}{d_{G}(u)+d_{G}(v)} \pi \\
& S O_{4}=S O_{4}(G)=\frac{1}{2} \sum_{u v \in E}\left(\frac{d_{G}^{2}(u)+d_{G}^{2}(v)}{d_{G}(u)+d_{G}(v)}\right)^{2} \pi \tag{1}\\
& S O_{5}=S O_{5}(G)=\sum_{u v \in E} \frac{2\left|d_{G}^{2}(u)-d_{G}^{2}(v)\right|}{\sqrt{2}+2 \sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}} \pi \\
& S O_{6}=S O_{6}(G)=\sum_{u v \in E}\left(\frac{d_{G}^{2}(u)-d_{G}^{2}(v)}{\sqrt{2}+2 \sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}}\right)^{2} \pi
\end{align*}
$$
\]

Also, Gutman pointed out at the end of the paper [8] that it would be
interesting to examine the properties of these geometry-based topological indices, and see if these are usable in applications.

A molecular tree is a tree of maximum degree at most four. In this paper, a bound for these Sombor-index-like graph invariants among all (molecular) trees with fixed numbers of vertices are obtained, and those molecular trees achieving the extremal values are characterized. Also, the chemical applicability of these Sombor-index-like graph invariants is investigated and it is shown that almost all of these six Sombor-indexlike indices are useful in predicting physicochemical properties with high accuracy compared to some well-established and often used indices.

2 Extremal values of Sombor index like graph invariants

Let $G=(V, E)$ be a graph with order n and size m, δ and Δ the minimum and maximum degree, respectively. Denote by $m_{i j}$ the number of edges with end vertices of degree i and j, and $\omega_{i j}^{k}$ the contribution of an edge with end vertices of degree i and j in G. By the definition (1) of the Sombor-index-like indices of a graph, we have

$$
\begin{equation*}
S O_{k}(G)=\sum_{\delta \leq i \leq j \leq \Delta} m_{i j} \omega_{i j}^{k} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \omega_{i j}^{1}=\frac{1}{2}\left|i^{2}-j^{2}\right|=\frac{1}{2}\left(\max \left\{i^{2}, j^{2}\right\}-\min \left\{i^{2}, j^{2}\right\}\right) \\
& \omega_{i j}^{2}=\frac{\left|i^{2}-j^{2}\right|}{i^{2}+j^{2}}, \quad \omega_{i j}^{3}=\sqrt{2} \pi \frac{i^{2}+j^{2}}{i+j} \\
& \omega_{i j}^{4}=\frac{\pi}{2}\left(\frac{i^{2}+j^{2}}{i+j}\right)^{2}, \quad \omega_{i j}^{5}=\frac{2 \pi\left|i^{2}-j^{2}\right|}{\sqrt{2}+2 \sqrt{i^{2}+j^{2}}} \tag{3}\\
& \omega_{i j}^{6}=\pi\left(\frac{i^{2}-j^{2}}{\sqrt{2}+2 \sqrt{i^{2}+j^{2}}}\right)^{2} .
\end{align*}
$$

Theorem 1. Let G be a connected graph with order $n>3$ and size m and
the maximal degree Δ and the minimal degree δ, then
(I) $0 \leq S O_{1}(G) \leq m\left(\Delta^{2}-\delta^{2}\right)$, the left equality holds if and only if G is regular and the right equality holds if and only if $\max \left\{d_{G}(u), d_{G}(v)\right\}=\Delta$ and $\min \left\{d_{G}(u), d_{G}(v)\right\}=\delta$ for any edge $u v \in E$, i.e., all $m_{i j}=0$ except $m_{\delta \Delta}$;
(II) $[15] 0 \leq S O_{2}(G) \leq m \frac{\Delta^{2}-\delta^{2}}{\Delta^{2}+\delta^{2}}$, the left equality holds if and only if G is regular and the right equality holds if and only if $\frac{\max \left\{d_{G}(u), d_{G}(v)\right\}}{\min \left\{d_{G}(u), d_{G}(v)\right\}}=\frac{\Delta}{\delta}$ for any edge uv $\in E$;
(III) $S O_{3}(G) \geq \frac{6 n-8}{3} \sqrt{2} \pi$ with equality if and only if G is the path P_{n}. (IV) $S O_{4}(G) \geq \frac{18 n-29}{9} \pi$ with equality if and only if G is the path P_{n}.

Proof. By $S O_{1}(G)=\sum_{u v \in E}\left(\max \left\{d_{G}^{2}(u), d_{G}^{2}(v)\right\}-\min \left\{d_{G}^{2}(u), d_{G}^{2}(v)\right\}\right)$, we can straightforwardly obtain (I).

Let $f(x)=\frac{a^{2}+x^{2}}{a+x}(0<a \leq x)$, then $f(x)$ is increasing for $x>0$, and $\frac{i^{2}+j^{2}}{i+j}>\frac{5}{2}$ for $i+j>4$. Note that

$$
\omega_{11}^{3}<\omega_{12}^{3}=\frac{5 \sqrt{2} \pi}{3}<\omega_{22}^{3}=2 \sqrt{2} \pi<\omega_{13}^{3}=\frac{5 \sqrt{2} \pi}{2}<\omega_{i j}^{3}(i+j>4)
$$

we have

$$
\begin{aligned}
S O_{3}(G) & \geq m_{12} \omega_{12}^{3}+m_{22} \omega_{22}^{3}+\left(m-m_{12}-m_{22}\right) \omega_{22}^{3} \\
& =m_{12} \omega_{12}^{3}+\left(m-m_{12}\right) \omega_{22}^{3} \\
& \left.\geq m_{12} \omega_{12}^{3}+m_{22}\right) \omega_{22}^{3}
\end{aligned}
$$

with equality if and only if $m=m_{12}+m_{22}$, i.e., $G=P_{n}$. So, $S O_{3}(G) \geq$ $S O_{3}\left(P_{n}\right)=\frac{6 n-8}{3} \sqrt{2} \pi$.

Similarly, we can prove (IV).
In the following, we will determine the extremal values of $S O_{1}, S O_{2}$, S_{3} and the corresponding extremal trees among all trees with n vertices.

From (1), we have

$$
\begin{align*}
S O_{3}(G) & =\sum_{u v \in E} \sqrt{2} \pi \frac{d_{G}^{2}(u)+d_{G}^{2}(v)}{d_{G}(u)+d_{G}(v)} \\
& =\sum_{u v \in E} \sqrt{2} \pi\left(d_{G}(u)+d_{G}(v)\right)-\sum_{u v \in E} \sqrt{2} \pi \frac{2 d_{G}(u) d_{G}(v)}{d_{G}(u)+d_{G}(v)} \tag{4}\\
& =\sqrt{2} \pi\left(M_{1}(G)-2 I S I(G)\right)
\end{align*}
$$

where $M_{1}(G)=\sum_{u v \in E}\left(d_{G}(u)+d_{G}(v)\right)$ is the first Zagreb index, $\operatorname{ISI}(G)=$ $\sum_{u v \in E} \frac{d_{G}(u) d_{G}(v)}{d_{G}(u)+d_{G}(v)}$ is the inverse sum indeg of G.

Lemma 2.1. [14] If T is a tree with n vertices, then

$$
\operatorname{ISI}(T) \geq n+\frac{1}{n}-2
$$

with equality if and only if T is isomorphic to S_{n}.
Lemma 2.2. [2] If T is a tree with n vertices, then

$$
M_{1}(T) \leq n(n-1)
$$

with equality if and only if T is isomorphic to S_{n}.
Theorem 2. Let T be a tree with $n>2$ vertices, then

$$
\begin{aligned}
& 3 \leq S O_{1}(T) \\
& \leq \frac{\left(n^{2}-2 n\right)(n-1)}{2} \\
& \frac{6}{5} \leq S O_{2}(T) \\
& \leq \frac{\left(n^{2}-2 n\right)(n-1)}{n^{2}-2 n+2} \\
& \sqrt{2} \pi \frac{6 n-8}{3} \leq S O_{3}(T) \leq \sqrt{2} \pi \frac{(n-1)\left(n^{2}-2 n+2\right)}{n}
\end{aligned}
$$

the left equality holds if and only if T is the path P_{n} and the right equality holds if and only if T is the star S_{n}.

Proof. From (1), we have

$$
\begin{aligned}
S O_{1}(T) & =\frac{1}{2} \sum_{u v \in E}\left(\max \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}-\min \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}\right) \\
& \leq \frac{1}{2} \sum_{u v \in E}\left((n-1)^{2}-1^{2}\right)=\frac{(n-1)\left(n^{2}-2 n\right)}{2}
\end{aligned}
$$

with equality if and only if $T \cong S_{n}$.
Let E_{1} be the set of pendant edges in T and $E_{2}=E-E_{1}$, then $\left|E_{1}\right| \geq 2$ and $\left|d_{T}^{2}(u)-d_{T}^{2}(v)\right| \geq 2^{2}-1=3$ for $u v \in E_{2}$. By (1), we have

$$
\begin{aligned}
& S O_{1}(T)=\frac{1}{2}\left(\sum_{u v \in E_{1}}+\sum_{u v \in E-E_{1}}\right)\left(\max \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}-\min \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}\right) \\
& \geq \frac{1}{2} \sum_{u v \in E_{1}}\left(\max \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}-\min \left\{d_{T}^{2}(u), d_{T}^{2}(v)\right\}\right) \geq \frac{3\left|E_{1}\right|}{2} \geq 3
\end{aligned}
$$

with equality holds if and only if $T \cong P_{n}$.
From [15], we can see

$$
\frac{6}{5} \leq S O_{2}(T) \leq \frac{\left(n^{2}-2 n\right)(n-1)}{n^{2}-2 n+2}
$$

the left equality holds if and only if T is the path P_{n} and the right equality holds if and only if T is the star S_{n}.

From (4), Theorem 1 and Lemmas 2.1-2.2, we can obtain

$$
\sqrt{2} \pi \frac{6 n-8}{3} \leq S O_{3}(T) \leq \sqrt{2} \pi \frac{(n-1)\left(n^{2}-2 n+2\right)}{n}
$$

the left equality holds if and only if T is the path P_{n} and the right equality holds if and only if T is the star S_{n}.

3 The Sombor index like indices of molecular trees

In this section, we consider the extremal values of $S O_{1}, S O_{2}, S O_{3}, S O_{4}$ for molecular trees.

Let $\mathcal{C} T_{n}$ be the set of molecular trees with n vertices, $n_{i}=n_{i}(T)$ the number of vertices of degree i in $T \in \mathcal{C} T_{n}, i \in\{1,2,3,4\}$. We can get the following system of six linear equations which are satisfied by all molecular trees

$$
\left\{\begin{align*}
n_{1}+n_{2}+n_{3}+n_{4} & =n \tag{5}\\
n_{1}+2 n_{2}+3 n_{3}+4 n_{4} & =2 n-2 \\
m_{12}+m_{13}+m_{14} & =n_{1} \\
m_{12}+2 m_{22}+m_{23}+m_{24} & =2 n_{2} \\
m_{13}+m_{23}+2 m_{33}+m_{34} & =3 n_{3} \\
m_{14}+m_{24}+m_{34}+2 m_{44} & =4 n_{4}
\end{align*}\right.
$$

Solving the system (5) with unknowns $m_{14}, m_{24}, n_{1}, n_{2}, n_{3}$ and n_{4}, we can obtain

$$
\left\{\begin{align*}
m_{14} & =\frac{n+3}{2}-\frac{3 m_{12}}{2}-\frac{7 m_{13}}{6}-\frac{m_{22}}{2}-\frac{m_{23}}{6}+\frac{m_{33}}{6}+\frac{m_{34}}{3}+\frac{m_{44}}{2} \tag{6}\\
m_{24} & =\frac{n-5}{2}+\frac{m_{12}}{2}+\frac{m_{13}}{6}-\frac{m_{22}}{2}-\frac{5 m_{23}}{6}-\frac{7 m_{33}}{6}-\frac{4 m_{34}}{3}-\frac{3 m_{44}}{2} \\
n_{1} & =\frac{n+3}{2}-\frac{m_{12}}{2}-\frac{m_{13}}{6}-\frac{m_{22}}{2}-\frac{m_{23}}{6}+\frac{m_{33}}{6}+\frac{m_{34}}{3}+\frac{m_{44}}{2} \\
n_{2} & =\frac{n-5}{4}+\frac{3 m_{12}}{4}+\frac{7 m_{13}}{12}+\frac{3 m_{22}}{4}+\frac{m_{23}}{12}-\frac{7 m_{33}}{12}-\frac{2 m_{34}}{3}-\frac{3 m_{44}}{4} \\
n_{3} & =\frac{m_{13}}{3}+\frac{m_{23}}{3}+\frac{2 m_{33}}{3}+\frac{m_{34}}{3} \\
n_{4} & =\frac{n-1}{4}-\frac{m_{12}}{4}-\frac{m_{13}}{4}-\frac{m_{22}}{4}-\frac{m_{23}}{4}-\frac{m_{33}}{4}+\frac{m_{44}}{4}
\end{align*}\right.
$$

Also, solving the system (5) with unknowns $m_{14}, m_{44}, n_{1}, n_{2}, n_{3}$ and n_{4},
we can obtain

$$
\left\{\begin{align*}
m_{14}= & \frac{2 n+2}{3}-\frac{4 m_{12}}{3}-\frac{10 m_{13}}{9}-\frac{2 m_{22}}{3}-\frac{4 m_{23}}{9}-\frac{m_{24}}{3} \\
& -\frac{2 m_{33}}{9}-\frac{m_{34}}{9} \\
m_{44}= & \frac{n-5}{3}+\frac{m_{12}}{3}+\frac{m_{13}}{9}-\frac{m_{22}}{3}-\frac{5 m_{23}}{9}-\frac{2 m_{24}}{3}-\frac{7 m_{33}}{9}-\frac{8 m_{34}}{9} \\
n_{1}= & \frac{2 n+2}{3}-\frac{m_{12}}{3}-\frac{2 m_{22}}{3}-\frac{4 m_{23}}{9}-\frac{m_{24}}{3}-\frac{m_{13}}{9}-\frac{2 m_{33}}{9}-\frac{m_{34}}{9} \\
n_{2}= & \frac{m_{12}}{2}+m_{22}+\frac{m_{23}}{2}+\frac{m_{24}}{2} \tag{7}\\
n_{3}= & \frac{m_{13}}{3}+\frac{m_{23}}{3}+\frac{2 m_{33}}{3}+\frac{m_{34}}{3} \\
n_{4}= & \frac{n-2}{3}-\frac{m_{12}}{6}-\frac{m_{22}}{3}-\frac{7 m_{23}}{18}-\frac{m_{24}}{6}-\frac{2 m_{13}}{9}-\frac{4 m_{33}}{9}-\frac{2 m_{34}}{9}
\end{align*}\right.
$$

(3) $\mathrm{n} \equiv 2(\bmod 4)$

($\left.3^{\prime}\right) \mathrm{n} \equiv 2(\bmod 4)$

(4) $n \equiv 3(\bmod 4)$

(5) $n \equiv 0(\bmod 3)$

(6) $n \equiv 1(\bmod 3)$

(7) $n \equiv 2(\bmod 3)$

Figure 1. Eight types molecular trees with $n(n \geq 8)$ vertices

Next, we define seven types molecular trees.
Let \mathcal{T}_{1} is the set of molecular trees T with $n \equiv 0(\bmod 4)$ vertices, where T has no vertex with degree 3, every vertex of degree 2 is adjacent to two vertices of degree 4 in T and there is exactly a pair of vertices with degree 4 adjacent to each other, i.e., T is a tree on n vertices with $m_{14}=\frac{n+4}{2}$, $m_{24}=\frac{n-8}{2}, m_{44}=1, m_{12}=m_{13}=m_{22}=m_{23}=m_{33}=m_{34}=0(\mathrm{An}$ example is shown in Figure 1 (1)).

Let \mathcal{T}_{2} is the set of molecular trees T with $n \equiv 1(\bmod 4)$ vertices, where
T has no vertex with degree 3 , every vertex of degree 2 is adjacent to two vertices of degree 4 in T and no two vertices of degree 4 are mutually adjacent, i.e., T is a tree with $m_{14}=\frac{n+3}{2}, m_{24}=\frac{n-5}{2}, m_{12}=m_{13}=$ $m_{22}=m_{23}=m_{33}=m_{34}=m_{44}=0$ (An example is shown in Figure 1 (2)).

Let \mathcal{T}_{3} is the set of molecular trees T with $n \equiv 2(\bmod 4)$ vertices, where T has no vertex with degree 3 , exactly two of vertices of degree 2 are adjacent to a vertex of degree 4 and a vertex of degree 2, and other vertices of degree 2 are adjacent to two vertices of degree 4 , i.e., T is a tree with $m_{14}=\frac{n+2}{2}, m_{24}=\frac{n-6}{2}, m_{22}=1, m_{12}=m_{13}=m_{23}=m_{33}=$ $m_{34}=m_{44}=0$ (An example is shown in Figure $\left.1(3)\right)$.

Let $\mathcal{T}_{3^{\prime}}$ is the set of molecular trees T with $n \equiv 2(\bmod 4)$ vertices, where T has no vertex with degree 3 , exactly one of vertices of degree 2 is adjacent to a vertex of degree 4 and a vertex of degree 1 , and other vertices of degree 2 are adjacent to two vertices of degree 4 , i.e., T is a tree with $m_{14}=\frac{n}{2}$, $m_{24}=\frac{n-4}{2}, m_{12}=1, m_{13}=m_{22}=m_{23}=m_{33}=m_{34}=m_{44}=0(\mathrm{An}$ example is shown in Figure $1\left(3^{\prime}\right)$).

Let \mathcal{T}_{4} is the set of molecular trees T with $n \equiv 3(\bmod 4)$ vertices, where T has exactly one vertex of degree 3 , which is adjacent to two vertices of degree 1 and one vertex of degree 4 and every vertex of degree 2 is adjacent to two vertices of degree 4 , i.e., T is a tree with $m_{14}=\frac{n-1}{2}, m_{24}=\frac{n-7}{2}$, $m_{13}=2, m_{34}=1, m_{12}=m_{22}=m_{23}=m_{33}=m_{44}=0$ (An example is shown in Figure 1 (4)).

Let \mathcal{T}_{5} is the set of molecular trees T with $n \equiv 0(\bmod 3)$ vertices, where T has exactly one 2 -degree vertex, which is adjacent to one 4 -degree vertex and one 1-degree vertex in T, and no 3-degree vertex, i.e., T is a tree on n vertices with $m_{14}=\frac{2 n-3}{3}, m_{44}=\frac{n-6}{3}, m_{24}=1, m_{12}=1, m_{13}=m_{22}=$ $m_{23}=m_{33}=m_{34}=0$ (An example is shown in Figure 1 (5)).

Let \mathcal{T}_{6} is the set of molecular trees T with $n \equiv 1(\bmod 3)$ vertices, where T has exactly one 3-degree vertex, which is adjacent to two vertices of degree 4 and one 1-degree vertex in T, and no 2-degree vertex, i.e., T is a tree with $m_{14}=\frac{2 n-2}{3}, m_{44}=\frac{n-10}{3}, m_{13}=1, m_{34}=2, m_{12}=m_{22}=$ $m_{23}=m_{24}=m_{33}=0$ (An example is shown in Figure 1 (6)).

Let \mathcal{T}_{7} is the set of molecular trees T with $n \equiv 2(\bmod 3)$ vertices, where
T has no vertex with degree 3 or degree 2 , i.e., T is a tree with $m_{14}=\frac{2 n+2}{3}$, $m_{44}=\frac{n-5}{3}, m_{12}=m_{13}=m_{22}=m_{23}=m_{24}=m_{33}=m_{34}=0$ (An example is shown in Figure 1 (7)).

Theorem 3. Let $T \in \mathcal{C} T_{n}$ with $n \geq 8$, then

$$
3 \leq S O_{1}(T) \leq\left\{\begin{array}{cl}
\frac{27 n-36}{4} & n \equiv 0(\bmod 4) \\
\frac{27 n-15}{4} & n \equiv 1(\bmod 4) \\
\frac{27 n-42}{4} & n \equiv 2(\bmod 4) \\
\frac{27 n-53}{4} & n \equiv 3(\bmod 4)
\end{array}\right.
$$

the left equality holds if and only if $T \cong P_{n}$ and the right equality holds if and only if $T \in \mathcal{T}_{i}$ for $n \equiv(i-1)(\bmod 4) \quad(i=1,2,4)$ and $T \in \mathcal{T}_{3}$ or $T \in \mathcal{T}_{3^{\prime}}$ for $n \equiv 2(\bmod 4)$.

Proof. By Theorem 2, we have $S O_{1}(T) \geq 3$ with equality if and only if $T \cong P_{n}$.

From the definition (1) of $S O_{1}$, we have

$$
\begin{equation*}
S O_{1}(T)=\frac{3}{2} m_{12}+4 m_{13}+\frac{15}{2} m_{14}+\frac{5}{2} m_{23}+6 m_{24}+\frac{7}{2} m_{34} . \tag{8}
\end{equation*}
$$

Replacing m_{14} and m_{24} in (8) by (6), we have

$$
\begin{array}{r}
S O_{1}(T)=\frac{27 n-15}{4}-\frac{27 m_{12}}{4}-\frac{15 m_{13}}{4}-\frac{27 m_{22}}{4} \tag{9}\\
-\frac{10 m_{23}}{3}-\frac{23 m_{33}}{4}-2 m_{34}-\frac{21 m_{44}}{4}
\end{array}
$$

which is maximal for a fixed number of vertices when the values m_{12}, m_{13}, $m_{22}, m_{23}, m_{33}, m_{34}$, and m_{44} are equal to zero. However, in the case of molecular trees with n vertices, the condition

$$
\begin{equation*}
m_{12}=m_{13}=m_{22}=m_{23}=m_{33}=m_{34}=m_{44}=0 \tag{10}
\end{equation*}
$$

can be satisfied only if $n \equiv 1(\bmod 4)$.

Any molecular tree satisfying (10) has no vertices of degree 3, all its vertices of degree 2 are adjacent to two vertices of degree 4, and no two vertices of degree 4 are mutually adjacent (See (2) in Figure 1).

Hence, if $n \equiv 1(\bmod 4)$, then for any molecular tree T with n vertices,

$$
S O_{1}(T) \leq \frac{27 n-15}{4}
$$

with equality if and only if $T \in \mathcal{T}_{2}$.
If $n \not \equiv 1(\bmod 4)$, then (10) cannot be satisfied by any molecular tree on n vertices. In order to find the molecular trees with the maximal $S O_{1}$-value, we have to find the values of the parameters $m_{12}, m_{13}, m_{22}, m_{23}, m_{33}, m_{34}$, and m_{44} as close to zero as possible compatible to the existence of a molecular tree, i.e., for which the right-hand sides of (6) are integers, and for which a graph exists and we have that $m_{13}+m_{23}+2 m_{33}+m_{34}$ has to be a multiple of 3 from $n_{3}=\frac{m_{13}}{3}+\frac{m_{23}}{3}+\frac{2 m_{33}}{3}+\frac{m_{34}}{3}$.

By (9), we know that there is must be $n_{3}=0$ or $n_{3}=1$ for $n \not \equiv 1(\bmod 4)$ if T is a molecular tree with the maximal $S O_{1}(T)$-value.

Case 1. If $n_{3}=0$, then $m_{13}=m_{23}=m_{33}=m_{34}=0$, and

$$
\begin{equation*}
S O_{1}(T)=\frac{27 n-15}{4}-\frac{27 m_{12}}{4}-\frac{27 m_{22}}{4}-\frac{21 m_{44}}{4} . \tag{11}
\end{equation*}
$$

To find the molecular tree(s) with the maximal $S O_{1}(T)$-value, we only need to consider $m_{12}+m_{22}+m_{44}=1$.

If $n \equiv 2(\bmod 4)$, there are two types of molecular trees such that $m_{12}+$ $m_{22}+m_{44}=1$, i.e., $m_{12}=1, m_{22}=m_{44}=0$ or $m_{12}=0, m_{22}=1, m_{44}=$ 0 . By simply computing and comparing, for any molecular tree T with $n \equiv 2(\bmod 4)$ vertices, we have

$$
S O_{1}(T) \leq \frac{27 n-42}{4}
$$

with equality if and only if $T \in \mathcal{T}_{3}$ or $T \in \mathcal{T}_{3^{\prime}}$.
If $n \equiv 0(\bmod 4)$, there is only one type of molecular trees such that $m_{12}+m_{22}+m_{44}=1$, i.e., $m_{12}=m_{22}=0, m_{44}=1$. Then, for any
molecular tree with $n \equiv 0(\bmod 4)$ vertices,

$$
S O_{1}(T) \leq \frac{27 n-36}{4}
$$

with equality if and only if $T \in \mathcal{T}_{1}$.
If $n \equiv 3(\bmod 4)$, then there is no molecular trees such that $m_{12}+m_{22}+$ $m_{44}=1$.

Case 2. If $n_{3}=1$, then $m_{13}+m_{23}+2 m_{33}+m_{34}=3$. To find the molecular trees with the maximal $S O_{1}(T)$-value, we only need to consider all possible choices of $\left(m_{13}, m_{23}, m_{33}, m_{34}\right)$ such that $m_{13}+m_{23}+2 m_{33}+$ $m_{34}=3$.

We hvae that a molecular tree on n vertices and $n_{3}=1$ with the maximal SO_{2}-value must satisfy

$$
\begin{equation*}
m_{12}=m_{22}=m_{44}=m_{23}=m_{33}=0, m_{13}=2, m_{34}=1 \tag{12}
\end{equation*}
$$

and it can be satisfied only if $n \equiv 3(\bmod 4)$. Then, for any molecular tree with $n \equiv 3(\bmod 4)$ vertices,

$$
S O_{1}(T) \leq \frac{27 n-53}{4}
$$

with equality if and only if $T \in \mathcal{T}_{4}$.
For SO_{2}, we have
Theorem 4. [15] Let $T \in \mathcal{C} T_{n}$ with $n \geq 8$, then

$$
\frac{6}{5} \leq S O_{2}(T) \leq\left\{\begin{array}{cl}
\frac{126 n-108}{170} & n \equiv 0(\bmod 4) \\
\frac{126 n-30}{170} & n \equiv 1(\bmod 4) \\
\frac{126 n-102}{170} & n \equiv 2(\bmod 4) \\
\frac{315 n-281}{425} & n \equiv 3(\bmod 4)
\end{array}\right.
$$

the left equality holds if and only if $T \cong P_{n}$ and the right equality holds
if and only if $T \in \mathcal{T}_{i}$ for $n \equiv(i-1)(\bmod 4) \quad(i=1,2,4)$ and $T \in \mathcal{T}_{3^{\prime}}$ for $n \equiv 2(\bmod 4)$.

Theorem 5. Let $T \in \mathcal{C} T_{n}$ with $n \geq 8$, then

$$
\begin{gathered}
\sqrt{2} \pi \frac{6 n-8}{3} \leq S O_{3}(T) \leq \begin{cases}\sqrt{2} \pi \frac{18 n-32}{5} & n \equiv 0(\bmod 3) \\
\sqrt{2} \pi \frac{252 n-417}{70} & n \equiv 1(\bmod 3) \\
\sqrt{2} \pi \frac{18 n-22}{5} & n \equiv 2(\bmod 3)\end{cases} \\
\frac{18 n-29}{9} \pi \leq S O_{4}(T) \leq \begin{cases}\frac{815 n-3338}{225} \pi & n \equiv 0(\bmod 3) \\
\frac{189080 n-401491}{29000} \pi & n \equiv 1(\bmod 3) \\
\frac{326 n-474}{50} \pi & n \equiv 2(\bmod 3)\end{cases}
\end{gathered}
$$

the left equality holds if and only if $T \cong P_{n}$ and the right equality holds if and only if $T \in \mathcal{T}_{i}$ for $n \equiv(i-5)(\bmod 3)(i=5,6,7)$.

Proof. By Theorem 1, we have

$$
S O_{3}(T) \geq \sqrt{2} \pi \frac{6 n-8}{3}
$$

and

$$
S O_{4}(T) \geq \frac{18 n-29}{9} \pi
$$

with equality if and only if $T \cong P_{n}$.
From (2), we have

$$
\begin{align*}
S O_{3}(T) & =\sqrt{2} \pi\left(\frac{5}{3} m_{12}+\frac{5}{2} m_{13}+\frac{17}{5} m_{14}+2 m_{22}+\frac{13}{5} m_{23}+\frac{10}{3} m_{24}\right. \\
& \left.+3 m_{33}+\frac{25}{7} m_{34}+4 m_{44}\right) . \\
S O_{4}(T) & =\frac{\pi}{2}\left(\frac{25}{9} m_{12}+\frac{25}{4} m_{13}+\frac{289}{25} m_{14}+4 m_{22}+\frac{169}{25} m_{23}+\frac{100}{9} m_{24}\right. \\
& \left.+9 m_{33}+\frac{625}{49} m_{34}+16 m_{44}\right) . \tag{13}
\end{align*}
$$

Replacing m_{14} and m_{44} in (13) by (7), we have

$$
\begin{align*}
S O_{3}(T)= & \sqrt{2} \pi\left[\frac{18 n-22}{5}-\frac{23 m_{12}}{15}-\frac{5 m_{13}}{6}-\frac{8 m_{22}}{5}-\frac{17 m_{23}}{15}-\frac{7 m_{24}}{15}\right. \\
& \left.-\frac{13 m_{33}}{15}-\frac{38 m_{34}}{105}\right] \\
S O_{4}(T)= & \frac{\pi}{2}\left[\frac{326 n-474}{25}-\frac{1643 m_{12}}{225}-\frac{289 m_{13}}{60}-\frac{226 m_{22}}{25}-\frac{109 m_{23}}{15}\right. \\
& \left.-\frac{767 m_{24}}{225}-\frac{578 m_{33}}{225}-\frac{10112 m_{34}}{3675}\right] \tag{14}
\end{align*}
$$

which is maximal for a fixed number of vertices when the values m_{12}, m_{13}, $m_{22}, m_{23}, m_{24}, m_{33}$, and m_{34} are equal to zero. However, in the case of molecular trees with n vertices, the condition

$$
\begin{equation*}
m_{12}=m_{13}=m_{22}=m_{23}=m_{24}=m_{33}=m_{34}=0 \tag{15}
\end{equation*}
$$

can be satisfied only if $n \equiv 2(\bmod 3)$.
Any molecular tree satisfying (15) has no vertices of degree 3 and degree 2, all its vertices of degree 1 are adjacent to vertices of degree 4 (See (7) in Figure 1).

Hence, if $n \equiv 2(\bmod 3)$, then for any molecular tree with n vertices,

$$
S O_{3}(T) \leq \sqrt{2} \pi \frac{18 n-22}{5} \quad S O_{4}(T) \leq \frac{326 n-474}{50} \pi
$$

with equality if and only if $T \in \mathcal{T}_{7}$.
If $n \not \equiv 2(\bmod 3)$, then (15) cannot be satisfied by any molecular tree on n vertices. In order to find the molecular trees with the maximal $S O_{k}$-value $(k=3,4)$, we have to find the values of the parameters $m_{12}, m_{13}, m_{22}, m_{23}$, m_{24}, m_{33} and m_{34} as close to zero as possible compatible to the existence of a molecular tree, i.e., for which the right-hand sides of (7) are integers, and for which a graph exists and we have that $m_{13}+m_{23}+2 m_{33}+m_{34}$ has to be a multiple of 3 and $m_{12}+2 m_{22}+m_{23}+m_{24}$ has to be a multiple of 2 .

By (14), we know that there is must be either $n_{3}=0, n_{2}=1$ or
$n_{3}=1, n_{2}=0$ for $n \not \equiv 2(\bmod 3)$ if T is a molecular tree with the maximal $\mathrm{SO}_{3}(T)$-value $(k=3,4)$.

Case 1. If $n_{3}=0$ and $n_{2}=1$, i.e. $m_{22}=m_{13}=m_{23}=m_{33}=m_{34}=0$ and $m_{12}+m_{24}=2$, then

$$
\begin{array}{r}
S O_{3}(T)=\sqrt{2} \pi\left(\frac{18 n-22}{5}-\frac{23 m_{12}}{15}-\frac{7 m_{24}}{15}\right) . \tag{16}\\
S O_{4}(T)=\frac{\pi}{2}\left(\frac{326 n-474}{25}-\frac{1643 m_{12}}{225}-\frac{767 m_{24}}{225}\right)
\end{array}
$$

and n must satisfy $n \equiv 1(\bmod 3)$. There is one type of molecular trees such that $m_{12}=1, m_{24}=1$. By simply computing, for any molecular tree T with $n \equiv 1(\bmod 3)$ vertices,

$$
\begin{aligned}
& S O_{3}(T) \leq \sqrt{2} \pi \frac{18 n-32}{5} \\
& S O_{4}(T) \leq \frac{815 n-3338}{225} \pi
\end{aligned}
$$

with equality if and only if $T \in \mathcal{T}_{5}$.
Case 2. If $n_{3}=1$ and $n_{2}=0$, i.e. $m_{13}+m_{34}=3$ and $m_{12}=m_{22}=$ $m_{23}=m_{24}=m_{33}=0$, then

$$
\begin{array}{r}
S O_{3}(T)=\sqrt{2} \pi\left(\frac{18 n-22}{5}-\frac{5 m_{13}}{6}-\frac{38 m_{34}}{105}\right) \tag{17}\\
S O_{4}(T)=\frac{\pi}{2}\left(\frac{326 n-474}{25}-\frac{289 m_{13}}{60}-\frac{10112 m_{34}}{3675}\right) .
\end{array}
$$

and n must satisfy $n \equiv 0(\bmod 3)$. There are two types of molecular trees such that $m_{13}=2, m_{34}=1$ or $m_{13}=1, m_{34}=2$. By simply computing and comparing, for any molecular tree T with $n \equiv 0(\bmod 3)$ vertices,

$$
\begin{gathered}
S O_{3}(T) \leq \sqrt{2} \pi \frac{252 n-417}{70} \\
S O_{4}(T) \leq \frac{189080 n-401491}{29000} \pi
\end{gathered}
$$

with equality if and only if $T \in \mathcal{T}_{6}$.

4 Conclusions and open problems

In this paper we have analyzed the Sombor-index-like graph invariants and their extremal properties. We show that almost all of these six indices are useful in predicting physicochemical properties with high accuracy compared to some well-established and often used indices. We have found the extremal values of some Sombor-index-like graph invariants and the extremal graphs in the classes of trees and molecular trees with given number of vertices. Here, we propose the following open problems which solution would make the study of the Sombor-index-like graph invariants more complete:
(1) Find the extremal values of $\mathrm{SO}_{5}, S O_{6}$ in the set of trees and molecular trees with given number of vertices, respectively;
(2) Find the maximal value of SO_{4} in the set of trees with given number of vertices;
(3) Find the extremal values of $S O_{5}, S O_{6}$ in the set of connected graphs with given number of vertices;
(4) Find the maximal values of $\mathrm{SO}_{3}, \mathrm{SO}_{4}$ in the set of connected graphs with given number of vertices.

The solution of these problems would be an important contribution to the mathematical theory of chemically relevant Sombor-index-like graph invariants.

Appendix: The chemical applicability of Sombor index like graph invariants

In this section, the chemical applicability of the SO-like indices are investigated. We consider the data set of octane isomers for such testing and corresponding experimental values of physico-chemical properties are collected from http://www.moleculardescriptors.eu/dataset/dataset. htm. First, we give experimental values of the SO-like indices of for octane isomers, which are listed in Table 1, where there are two pairs of octane isomers with identical values of the SO-like indices since they have the same degree coordinates.

Table 1. Values of SO-like indices of octane isomers

Molecule	SO_{1}	SO_{2}	SO_{3}	SO_{4}	SO_{5}	SO
octane	3	1.2	59.238	40.143	6.404	56.5282
2-methyl-heptane	12	2.5846	67.828	53.466	19.835	34.345
3-methyl-heptane	12	2.7692	66.79	152.348	20.184	28.4028
4-methyl-heptane	12	2.7692	66.791	52.348	20.184	28.4028
3-ethyl-hexane	12	2.9538	65.755	51.229	20.534	22.4606
2,2-dimethyl-hexane	30	3.8471	85.303	88.858	39.749	111.02
2,3-dimethyl-hexane	16	3.3846	74.492	64.855	26.33	47.7741
2,4-dimethyl-hexane	21	4.1538	75.381	65.672	33.615	56.2197
2,5-dimethyl-hexane	21	3.9692	76.418	66.79	33.266	62.1619
3,3-dimethyl-hexane	30	4.1647	83.526	86.233	40.474	100.85
3,4-dimethyl-hexane	16	3.5692	73.456	63.736	26.68	41.8319
2-methyl-3-ethyl-pentane	16	3.5692	73.456	63.736	26.68	41.8319
3-methyl-3-ethyl-pentane	30	4.4824	81.749	83.608	41.2	90.6835
2,2,3-trimethyl-pentane	34	4.7117	91.248	99.31	46.461	116.533
2,2,4-trimethyl-pentane	39	5.2317	93.893	102.18	53.18	138.837
2,3,3-trimethyl-pentane	34	4.8447	90.508	97.804	46.837	112.307
2,3,4-trimethyl-pentane	20	4	82.193	77.362	32.476	67.1454
2,2,3,3-tetramethylbutane	45	5.2941	108.41	134.08	58.536	181.782

By the experimental values of Acentric-factor (AcenFac), Entropy(S), SNar and HNar of octane isomers (from http://www.moleculardescriptors. eu/dataset/dataset.htm.) and Table 1, we find the correlation of AcenFac, S, SNar and HNar with the second Sombor index SO_{2} for octane isomers. The data related to octanes are listed in Table 3. The following equations give the regression models for the SO-like indices $S O_{i}(i=1,2 \ldots, 6)$.

$$
\begin{gather*}
\text { AcenFac }=a_{1 i}-b_{1 i} \times S O_{i} \tag{18}\\
S=a_{2 i}-b_{2 i} \times S O_{i} \tag{11}\\
\text { SNar }=a_{3 i}-b_{3 i} \times S O_{i} \tag{20}\\
H N a r=a_{4 i}-b_{4 i} \times S O_{i} \tag{21}
\end{gather*}
$$

By corresponding experimental values [3], we have that correlation of SO_{2} with some existing indices like the Sombor index (SO), the first (M_{1}) and second $\left(M_{2}\right)$ Zagreb indices, forgotten topological index (F), connectivity index (R), sum connectivity index (SCI), symmetric division degree index (SDD) and neighborhood Zagreb index $\left(M_{N}\right)$ are shown in Table 4.

From Table 3, it is obvious that $\mathrm{SO}_{3}, \mathrm{SO}_{4}, \mathrm{SO}_{6}$ strongly correlate properties of Acentric-factor, Entropy, SNar and HNar of octane isomers, $\mathrm{SO}_{2}, \mathrm{SO}_{5}$ has slightly better predictive properties for Acentric-factor, SNar

Table 2. The coefficient of $a_{i j}$ and $b_{i j}$ for SO-like indices $S O_{i}$

$a_{i, j}$	1	2	3	4	5	6
1	0.3926	0.4536	0.5523	0.4417	0.4163	0.3845
2	112.6025	119.1755	132.77	118.844	115.2222	111.6405
3	4.0841	4.6576	5.6333	4.5441	4.3044	4.0032
4	1.5521	1.7137	1.9554	1.6695	1.6122	1.5293
$b_{i, j}$	1	2	3	4	5	6
1	-0.0027	-0.0314	-0.0028	-0.0014	-0.0024	-0.0007
2	-0.3378	-3.6697	-0.3476	-0.1799	-0.2979	-0.0869
3	-0.026	-0.3003	-0.0267	-0.0136	-0.0235	-0.0066
4	-0.0068	-0.0815	-0.007	-0.0035	-0.0062	-0.0017

Table 3. The square of correlation coefficient of the SO-like indices with AcenFac, S, SNar and HNar

Physico-chemical property	SO_{1}	SO_{2}	SO_{3}	SO_{4}	SO_{5}	SO_{6}
Acentric-factor (AcenFac)	0.75	0.8468	0.8991	0.8962	0.8655	0.8153
Entropy (S)	0.7384	0.7111	0.8838	0.8881	0.7908	0.8187
SNar	0.8023	0.8753	0.9588	0.9282	0.9028	0.864
HNar	0.7664	0.9048	0.9124	0.8683	0.8841	0.8027

Table 4. The square of correlation coefficient of SO-like indices with some existing indices

	M_{1}	M_{2}	F	R	SCI	SDD	M_{N}	SO
SO_{1}	0.8253	0.6711	0.8219	0.8174	0.8295	0.8273	0.7678	0.8364
$S O_{2}$	0.8467	0.7532	0.814	0.8044	0.8373	0.7779	0.8324	0.8428
$S O_{3}$	0.9904	0.8318	0.9885	0.9667	0.9826	0.9805	0.9338	0.9984
$S O_{4}$	0.9835	0.8363	0.9955	0.9321	0.9528	0.9621	0.9385	0.9906
$S O_{5}$	0.9325	0.7671	0.9307	0.8934	0.9185	0.9057	0.8879	0.9433
$S O_{6}$	0.937	0.7296	0.9603	0.9106	0.9239	0.9545	0.8677	0.9581

Abbreviations: SO, Sombor index; SCI, sum connectivity index; SDD, symmetric division degree index.
and HNar of octane isomers, and therefore, they may be a step forward in QSPR studies.

From Table 4, we learn the following results: (i) all the six Sombor-index-like indices are strongly correlated with the well-established and often used indices the first Zagreb index $\left(M_{1}\right)$, forgotten topological index (F), connectivity index (R), sum connectivity index (SCI) and the Sombor index (SO); (ii) $S O_{3}, S O_{4}, S O_{5}, S O_{6}$ are strongly correlated with symmetric division degree index (SDD) and neighborhood Zagreb index (MN).

Acknowledgment: This work is supported by the National Natural Science Foundation of China (No. 11971164) and the Hunan Provincial Natural Science Foundation of China (2020JJJ4423).

References

[1] K. C. Das, A. S. Cevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021) \#140.
[2] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597-616.
[3] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum Chem. 121 (2021) \#e26622.
[4] X. Fang, L. You, H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, Int. J. Quantum Chem. 121 (2021) \#e26740.
[5] I. Gutman, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta $\mathbf{8 6}$ (2013) 351-361.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[8] I. Gutman, Sombor indices-back to geometry, Open J. Discr. Appl. Math. 5 (2022) 1-5.
[9] B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 86 (2021) 793-713.
[10] V. R. Kulli, Graph indices. in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Hershey, Global, 2020, pp. 66-91.
[11] H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem. 121 (2021) \#e26689.
[12] J. Rada, J. M. Rodríguez, J. M. Sigarreta, General properties on Sombor indices, Discr. Appl. Math. 299 (2021) 87-97.
[13] Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput. 419 (2022) \#126881.
[14] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discr. Appl. Math. 184 (2015) 202-212.
[15] Z. Tang, H. Deng, Molecular trees with extremal values of the second Sombor index, https://doi.org/10.48550/arXiv.2208.09154.
[16] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Weinheim, Wiley-VCH, 2009.
[17] D. Vukičević, M. Gašperov, Bond aditive mdelling 1. Ariatic indices, Croat. Chem. Acta 83 (2010) 243-260.

[^0]: *Corresponding author.

