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Abstract

The general adsorption kinetic model, also called pseudo-n or-
den (PNO) equation, is revisited using random differential equa-
tions. We provide a full probabilistic solution of the model, which
is a stochastic process, by computing its first probability density
function under very general hypotheses on its parameters, that are
treated as absolutely continuous random variables with an arbitrary
joint probability density function. The analysis is based on the so
called Random Variable Transformation technique. From the first
probability density function, we compute relevant information of the
PNO model, such that, the mean, the variance and confidence inter-
val. We also provide explicit expressions for the probability density
functions of other significant quantities as the time required to reach
a specific level of absorbed substance or the rate coefficient of the
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chemical reaction. All the theoretical findings are illustrated by
means of real data. The application includes a thorough discussion
about two important uncertainty quantification inverse methods,
namely, the Random Least Mean Square and the Bayesian tech-
nique, to assign appropriate probability density functions to all the
PNO model parameters so that the solution captures data uncer-
tainties.

1 Preliminaries

One of the most studied phenomena in the world of chemistry is adsorp-

tion. Adsorption is a surface accumulation process, in which a substance

(the adsorbate) interacts and binds to another substance (the adsorbent

or substrate) on a surface [6]. Within the adsorption processes, we can

find physisorption, in which molecules interact by intermolecular (Van del

Waals) forces and chemisorption, in which molecules bind by chemical re-

actions. Of these two processes, chemisorption is the more energy-intensive

process because of the types of bonds formed between molecules (covalent

or ionic) [27]. Since the beginning of the study of adsorption, several

mathematical models - both empirical and based on physical principles -

have been proposed [31, 37]. Initially, these models were focused on ex-

plaining both the adsorbate/adsorbent equilibrium of the process at con-

stant temperature, the so-called adsorption isotherm. In this way, Lang-

muir’s isotherm model [19] has had the greatest impact, and more complex

isotherm models (Sips, Redlich–Peterson, etc.) have followed it [22]. Nev-

ertheless, the emergence of new chemisorption applications, such as water

and wastewater treatment processes [2,7–9,38], and new technical advances

in spectroscopy or electron microscopy, which have made it possible to

analyse the adsorption phenomenon at molecular level [11, 20, 24, 30, 36],

leads to adsorption kinetics models, which focus especially on the reaction

pathways and mechanisms [22].

Traditionally, the most commonly used models in adsorption kinetics

have been the Lagergren or pseudo-first order (PFO) and the pseudo-
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second order (PSO) models [13,18], given by the equations

PFO:
dq(t)

dt
= k1(qe − q(t)),

PSO:
dq(t)

dt
= k2(qe − q(t))2,

where qe ∈ R>0 is the adsorption capacity at equilibrium (mg/g), q(t) the

adsorption capacity at time t (mg/g) and k1 (min−1) and k2 ((mg/g)−1

min−1) the adsorption rates †. Other usual model, that can be found in

the literature, is the (empirical) Elovich equation [23], defined as

Elovich:
dq(t)

dt
= ae−bq(t),

where a ((mg/g) min−1) and b ((mg/g)−1) are empirical parameters. As

can be seen from the equations, the factor that causes adsorption to de-

crease and brings the equations closer to equilibrium is the amount ad-

sorbed q(t). Physically, this is related to the free space remaining on the

surface at each instant of time, and which has been occupied by a quantity

q(t): the greater the amount adsorbed, the less space available, and the

less adsorption will occur. All these models have been extensively applied,

see for instance [1, 4, 5, 21,25,26,29,38].

In 1977, the Ritchie model was published as a generalised equation of

the previous models, and in response to the limitations that other models,

such as the Elovich equation, presented when applied to certain experi-

ments [32]. Ritchie’s model is given by the equation

Ritchie:
dθ(t)

dt
= λ(1− θ(t))n, (1)

where θ is the fraction of surface area occupied by the adsorbate and λ is

the adsorption rate (min−1). If the adsorbed quantity q(t) is introduced,

Ritchie’s equation is transformed into the pseudo-n order (PNO) equation

†The units of the quantities q in mg/g represent milligrams of adsorbate per gram
of adsorbent.
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[28] (see the complete proof in Appendix A), given by

dq(t)

dt
= kn(qe − q(t))n, (2)

kn =
λ

qn−1
e

, (3)

where kn is the rate coefficient ((mg/g)−n+1 min−1) and n is the order

of the reaction, which is physically equivalent to the number of binding

sites that an adsorbate molecule occupies when binding to the surface. By

integrating the equation, the exact solution of the PNO model is obtained

q(t) =

qe
(
1− e−k1t

)
if n = 1,

qe − qe

(
1

1+(n−1)qn−1
e knt

) 1
n−1

if n > 1,
(4)

and substituting kn for its expression, indicated in (3),

q(t) =

qe
(
1− e−λt

)
if n = 1,

qe − qe

(
1

1+(n−1)λt

) 1
n−1

if n > 1.
(5)

From the physical and mathematical analysis of the model, it can be stated

that λ ∈ R>0, qe ∈ R>0 and n ∈ R≥1 (see the justification in Appendix

B).

Classically, the kinetic parameters are deduced by fitting the exper-

imental data with the model equations of the model considered, by lin-

earising equations or by applying numerical methods, usually Runge-Kutta

method [37]. This approach entails calibrating the model by means of de-

terministic constants that may lead, in some cases, to inadequate model

calibration, particularly when the chemical process is affected by different

sources of uncertainty (e.g., errors in the experimental data). Also, the

adsorption process at the molecular level has an intrinsic randomness by

its own nature, and there are experimental physico-chemical conditions

such as pressure, concentrations, pH, etc. (some of which are difficult to

control) that can significantly alter the results if they are modified between

experiments. On the other hand, new advances in statistical techniques for
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the treatment of uncertainty in mathematical modelling, especially in the

field of differential equations, make it possible to treat so far deterministic

models as random differential equations. In this way, the solutions to the

differential equations are no longer classical or deterministic functions and

become stochastic processes with their corresponding associate probability

distributions. Recently, this stochastic approach has already started to be

applied to the PNO model in [33], by introducing a term that represents

the randomness of the adsorption process.

It is important to take this uncertainty into account from the very

beginning of the model. There are several ways to introduce uncertain-

ties into model formulation. On the one hand, by means of a stationary

and Gaussian stochastic process, called white noise, that is the deriva-

tive (in the sense of distributions or generalized functions) of the Wiener

stochastic process (also termed Brownian motion). This way of consider-

ing uncertainties in differential equations leads to the so called Stochastic

Differential Equations (SDEs) [3]. On the other hand, uncertainties can

be alternative introduced in differential equations by directly treating the

model parameters as random variables or stochastic processes. This ap-

proach leads to Random Differential Equations (RDEs). Unlike the SDEs

approach, RDEs allow us to consider wider range of random patterns to be

introduced in the model formulation, since many probability distributions

can be considered, apart from the Gaussian one [35]. This is a key fact

that confer RDEs more flexibility in real-world applications [34].

Our proposed randomised PNO model is given by

q(t, ω) =

qe(ω)
(
1− e−λ(ω)t

)
if n(ω) = 1, ω ∈ Ω,

qe(ω)− qe(ω)
(

1
1+(n(ω)−1)λ(ω)t

) 1
n(ω)−1

if n(ω) > 1, ω ∈ Ω,

(6)

where the adsorption rate, or rate coefficient, λ(ω), the adsorbed amount

at equilibrium, qe(ω), and the order of the kinetic model, n(ω), are as-

sumed to be absolutely continuous random variables defined on a common

complete probability space (Ω,FΩ,P). It also should be noted that, as

in the deterministic model, qe, λ ∈ R>0 and n ∈ R≥1, so in the random
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scenario we need consider random variables with the same domain. As a

punctual modification, since the probability that n(ω) = 1, being a con-

tinuous variable, is 0, we will study only the case in which n(ω) > 1, i.e.,

n ∈ R>1. Hereinafter, we will denote by Dλ,qe,n ⊂ R3
>0 the domain of

the random vector (λ(ω), qe(ω), n(ω)), since each model parameter must

be positive.

From a general perspective, the three random variables are charac-

terised by a joint probability density function (PDF) f0(λ, qe, n). In case

of independence, the joint PDF can be computed as the product of the

marginals, f0(λ, qe, n) = fλ(λ)fqe(qe)fn(n). In order to provide a complete

probabilistic description of the solution, q = q(t), at each time instant, the

main goal is to find its first probability density function (1-PDF), denoted

by f1(q, t). Then, by integrating the 1-PDF, all the one-dimensional sta-

tistical moments of q(t, ω), such as the mean and the variance, can be

computed. Formally,

E [q(t, ω)s] =

∫
R
qsf1(q, t) dq, s = 1, 2, . . .µq(t) = E [q(t, ω)] =

∫
R qf1(q, t) dq,

σ2
q (t) = V [q(t, ω)] =

∫
R q2f1(q, t) dq − (µq(t))

2.
(7)

In addition, the 1-PDF also allows us to calculate the probability that the

solution lies within a particular interval of interest, say [a, b], given a fixed

time instant t,

P [{ω ∈ Ω : a ≤ q(t, ω) ≤ b}] =
∫ b

a

f1(q, t) dq.

And, the probability that the adsorbed amount exceeds a given quantity

q̂,

P [{ω ∈ Ω : q(t, ω) > q̂}] =
∫ ∞

q̂

f1(q, t) dq.

The 1-PDF is also helpful to construct probabilistic intervals for any (1−
α)×100% confidence level. Namely, for α ∈ (0, 1) and for each t̂ ≥ 0 fixed,
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the points that determine the probability of the interval can be determined

by the following expression

∫ q1(t̂)

0

f1(q, t̂) dq =
α

2
=

∫ 1

q2(t̂)

f1(q, t̂) dq, (8)

where

1− α = P
[
{ω ∈ Ω : q(t̂, ω) ∈ [q1(t̂), q2(t̂)]}

]
=

∫ q2(t̂)

q1(t̂)

f1(q, t̂) dq. (9)

A common value is α = 0.05, which means 95% confidence intervals.

As previously indicated, in this work we propose to study the PNO

model of chemical adsorption considering its parameters as random vari-

ables. In Section 2 a complete analysis of the proposed model is carried

out by determining the 1-PDF of the solution and the 1-PDF of the time

needed to reach a particular level of adsorbed amount. In Section 3 the

randomized PNO model is used to model the adsorption of cadmium onto

ground-up tree fern [12], in order to test the theoretical model to real-world

data. The application is carried out from two approaches: Randomized

Least Mean Squares (RLMS) and Bayesian. The results and the compari-

son between both are also discussed in this Section. Finally, the conclusions

of this study are drawn in Section 4.

2 Probabilistic solution

In this section, the 1-PDF of the solution of the general PNO model de-

scribed in (6) is determined. Additionally, the PDF of the time needed to

reach an arbitrary, but fixed, amount of adsorbent is calculated. To com-

pute the density functions, we apply the Random Variable Transformation

(RVT) technique. This method allows us to calculate the distribution of

a random vector in terms of the known PDF of another random vector,

provided that there is a one-to-one transformation between both random

vectors. In Theorem 1, the multidimensional version of the RVT method

is stated.
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Theorem 1 (Random Variable Transformation technique [35]). Let u(ω)

= (u1(ω), . . . , un(ω)) and v(ω) = (v1(ω), . . . , vn(ω)) be n-dimensional

absolutely continuous random vectors. Let r : Rn → Rn be a one-to-

one transformation of u into v, i.e., v = r(u). Assume that r is con-

tinuous in u and has continuous partial derivatives with respect to u.

Then, if fU(u) denotes the joint PDF of the random vector u(ω), and

s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn)) represents the inverse map-

ping of r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un)), the joint PDF of vector

v(ω) is given by

fV(v) = fU (s(v)) |Jn| ,

where |Jn| is the absolute value of the Jacobian, which is defined by

Jn = det

(
∂s

∂v

)
= det


∂s1(v1, . . . , vn)

∂v1
· · · ∂sn(v1, . . . , vn)

∂v1
...

. . .
...

∂s1(v1, . . . , vn)

∂vn
· · · ∂sn(v1, . . . , vn)

∂vn

 .

2.1 1-PDF of the solution

Let u(ω) = (λ(ω), qe(ω), n(ω)) be the random model parameters. Let

t > 0 be a fixed value, and let us apply the RVT method to the following

deterministic one-to-one transformation, r : R3 → R3, of u(ω) into the

random vector v(ω) = (v1(ω), v2(ω), v3(ω)), defined by

v1 = r1(λ, qe, n) = q(t) = qe − qe

(
1

1 + (n− 1)λt

) 1
n−1

,

v2 = r2(λ, qe, n) = qe,

v3 = r3(λ, qe, n) = n.
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The inverse mapping s : R3 → R3 of r is obtained by isolating each u(ω)

component from each v(ω) = (v1(ω), v2(ω), v3(ω)) expression. This gives

λ = s1(v1, v2, v3) =

(
1− v1

v2

)1−v3
− 1

t(v3 − 1)
,

qe = s2(v1, v2, v3) = v2,

n = s3(v1, v2, v3) = v3.

In the application of the RVT method, we shall check that the inverse

mapping is well-defined, i.e., that the random parameters belong to its

domain. In our case, knowing that s2 = v2 = qe > 0, s3 = v3 = n > 1 and

0 ≤ v1
v2

= q(t)
qe

< 1,

(
1− v1

v2

)1−v3

> 1 =⇒ s1 = λ =

(
1− v1

v2

)1−v3
− 1

t(v3 − 1)
> 0, (10)

so it follows that the inverse mapping is well-defined in the conditional

probability space (Ω,FΩ,P[·|C]), where C = {ω ∈ Ω : qe(ω) > q(t, ω)}. In
this case, according to the given definition of q(t, ω), the event C is true

∀ ω ∈ Ω, so its probability is P [C] = 1. Furthermore, the absolute value

of its Jacobian of the inverse mapping s is given by

|J | = 1

tv2

(
1− v1

v2

)v3 > 0.

Then, applying Th. 1, we obtain the PDF of the random vector v(ω) =

(v1(ω), v2(ω), v3(ω)) in terms of the known joint PDF, f0, of the random

vector of the model parameters, (λ(ω), qe(ω), n(ω)),

fv1,v2,v3(v1, v2, v3) = f0


(
1− v1

v2

)1−v3
− 1

t(v3 − 1)
, v2, v3

 1

tv2

(
1− v1

v2

)v3
.

Finally, marginalising the last expression with respect to the random vector

(v2(ω), v3(ω)) = (qe(ω), n(ω)), and letting t > 0 arbitrary, the 1-PDF of
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the solution, q(t, ω), is

f1(q, t) =

∫ ∞

0

∫ ∞

1

f0


(
1− q

qe

)1−n

− 1

t(n− 1)
, qe, n

 1

tqe
(
1− q

qe

)n dndqe,

(11)

defined in the conditional probability space (Ω,FΩ,P[·|C]) = (Ω,FΩ,P[·]).
In the case that λ(ω), qe(ω) and n(ω) are independent random vari-

ables, the above expression can be expressed as

f1(q, t) =

∫ ∞

0

∫ ∞

1

fλ


(
1− q

qe

)1−n

− 1

t(n− 1)

 fqe (qe) fn (n)
1

tqe
(
1− q

qe

)n dndqe,

(12)

where fλ, fqe and fn denote the PDFs of λ(ω), qe(ω) and n(ω), respectively.

2.2 PDF of time needed to reach an absorbed quantity

Given the random variables λ(ω), qe(ω), n(ω) ∈ Dλ,qe,n, the time tρ needed

to adsorb a (deterministic) quantity ρ > 0 is deduced from (6):

tρ(ω) =

(
1− ρ

qe(ω)

)1−n(ω)

− 1

λ(ω)(n(ω)− 1)
, ω ∈ Ω. (13)

Observe that the random variable tρ(ω) is well-defined if and only if it is

positive for each ω ∈ Ω. Then, from expression (13), tρ(ω) is defined in the

conditional probability space (Ω,FΩ,P [·|C]), where C = {ω ∈ Ω : qe(ω) >

ρ} ∈ FΩ. Unlike in the other section, in this case as ρ is deterministic

and fixed, P [C] it is not necessarily one, therefore it shall be carefully

considered in the computation of the PDF.

To obtain the PDF of tρ(ω), let us fix ρ > 0, and define the fol-

lowing mapping r : R3 −→ R3 that transforms the random vector of

model parameters u(ω) = (λ(ω), qe(ω), n(ω)) into another random vector
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v(ω) = (v1(ω), v2(ω), v3(ω)) as follows

v1 = r1(λ, qe, n) = tρ =

(
1− ρ

qe

)1−n

− 1

λ(n− 1)
,

v2 = r2(λ, qe, n) = qe,

v3 = r3(λ, qe, n) = n.

are the deterministic one-to-one transformations r : R3 → R3 from u(ω)

to v(ω) = (v1(ω), v2(ω), v3(ω))
⊤ random vector.

The inverse mapping s : R3 → R3 of s is

λ = s1(v1, v2, v3) =

(
1− ρ

v2

)1−v3
− 1

v1(v3 − 1)
,

qe = s2(v1, v2, v3) = v2,

n = s3(v1, v2, v3) = v3,

and, by the above deductions (see Section 2.1), the inverse mapping is

well-defined in the conditional probability space (Ω,FΩ,P [·|C]). Notice

that, the absolute value of its Jacobian is

|J | =

∣∣∣∣∣∣∣−
(
1− ρ

v2

)1−v3
− 1

v21(v3 − 1)

∣∣∣∣∣∣∣ =
(
1− ρ

v2

)1−v3
− 1

v21(v3 − 1)
> 0.

Hence, by Th. 1 the joint PDF of v is given by

fv1,v2,v3(v1, v2, v3) = f0


(
1− ρ

v2

)1−v3
− 1

v1(v3 − 1)
, v2, v3


(
1− ρ

v2

)1−v3
− 1

v21(v3 − 1)
.
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Finally, the PDF of the time tρ(ω) (ρ fixed) is

ft(tρ) =
1

P[C]

∫ ∞

ρ

∫ ∞

1

f0


(
1− ρ

qe

)1−n

− 1

tρ(n− 1)
, qe, n


(
1− ρ

qe

)1−n

− 1

t2ρ(n− 1)
dndqe,

(14)

where

P[C] =

∫ ∞

ρ

fqe(qe) dqe, (15)

normalises the area under the curve to 1 so that the resulting function

becomes a PDF. This expression is equivalent to integrate qe(ω) over its

entire domain, but within the conditional probability space (Ω,FΩ,P [·|C]).

As before, if λ(ω), n(ω) and qe(ω) are independent, the PDF takes the

following form

ft(tρ) =
1

P[C]

∫ ∞

ρ

∫ ∞

1

fλ


(
1− ρ

qe

)1−n

− 1

tρ(n− 1)

 fqe(qe)fn(n)

(
1− ρ

qe

)1−n

−1

t2ρ(n− 1)
dndqe.

As a particular case of the PDF of tρ, one of the most common appli-

cations in the systems analysis is the calculation of the so-called settling

time, which we define as the time it takes for a system to reach a percent-

age p (for example, 50% or 95%) of the equilibrium value. However, in

this model, the equilibrium quantity qe(ω) is a random variable, so we can

take the expected value E[qe(ω)] to obtain the PDF of the time tρ. If we

establish that ρ = p E[qe(ω)], then we obtain that

ft(tρ) =
1

P[C]

∫ ∞

ρ

∫ ∞

1

f0


(
1− pE[qe(ω)]

qe

)1−n

− 1

tρ(n− 1)
, qe, n


×

(
1− pE[qe(ω)]

qe

)1−n

− 1

t2ρ(n− 1)
dndqe.
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2.3 PDF of the rate coefficient, kn, of the kinetic

chemical reaction

As the rate coefficient, kn(ω), of the PNO kinetic model (2)–(3) is a ran-

dom variable, it is interesting to obtain its PDF. This can be achieved by

applying Th. 1 with an appropriate mapping. With this aim, let us define

r : R3 → R3, such that the random vector u(ω) = (λ(ω), qe(ω), n(ω)) is

transformed into v(ω) = (v1(ω), v2(ω), v3(ω)) = (λ(ω)/qe(ω)
n(ω)−1, qe(ω),

n(ω)), whose inverse mapping, s : R3 → R3, is given by

λ = s1(v1, v2, v3) = v1v
v3−1
2 ,

qe = s2(v1, v2, v3) = v2,

n = s3(v1, v2, v3) = v3.

Observe that s is well-defined since all variables resulting from the trans-

formation belong to its domain. On the other hand, the absolute value of

its Jacobian is |J | = vv3−1
2 > 0.

Notice that v1(ω) := kn(ω), so, applying first Th. 1 and then marginalizing

with respect to v2(ω) := qe(ω) and v3(ω) := n(ω), one obtains the PDF of

kn(ω)

fkn(kn) =

∫ ∞

0

∫ ∞

1

f0
(
knq

n−1
e , qe, n

)
qn−1
e dndqe. (16)

3 An application

The stochastic PNO model has been applied on a data set available in a

study about cadmium adsorption on tree fern, in which PSO models were

applied [12]. The data are shown in Table 1. It should be noted that,

although only 9 source data are available, the dynamics of the complete

adsorption process up to equilibrium can be clearly appreciated. This

section is aimed at applying our previous theoretical findings in a real-

world chemistry setting.

To apply the theoretical results, it is first necessary to establish a joint
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Time ti (min) Adsorbed quantity qi (mg/g)

0 0
4 7.172414
5 8.022989
10 9.724138
15 9.793103
20 10.551724
30 10.574713
45 11.103448
60 11.195402

Table 1. Adsorption capacity of cadmium ions onto tree fern, qi, for
different time instants ti, i ∈ {1, 2, . . . , 9}. Source [12].

PDF of the model parameters. In this model, from a physical parameter

perspective, the normalized equilibrium quantity qe will depend mainly

on the available adsorbent surface area (its geometry, binding sites, etc.),

the normalized adsorption rate λ of the molecule, on the affinity between

adsorbent and adsorbate molecules (and other factors that alter it, such as

concentration, temperature, pH, etc.), and the order n, on the stoichiomet-

ric adsorbent-adsorbate ratio of the reaction. For these differing reasons for

each parameter, we assume that the parameters are independent random

variables, so that, f0(λ, qe, n) = fλ(λ)fqe(qe)fn(n). Therefore, a marginal

PDF must be assigned for each of the parameters. Finding appropriate

parameter distributions that best capture the data uncertainty is a crucial

step in practice. In this problem, we face this challenge by means of two

different approaches: the RLMS (Random Least Mean Square) method,

and the Bayesian method. Once adequate parameter distributions have

been set, we can calculate the expectation of the solution at every time

instant in Table 1 as well as confidence intervals using (7)–(8). Moreover,

the goodness-of-fit of the method can be assessed by computing the RMSE

and MAPE errors between the expected value and the data.

3.1 RLMS method

The RLMS method assumes that each of the model parameters follows a

parametric probability distribution governed by optimal parameters, which
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best fit the data to the expected value of the 1-PDF of the model solution,

or equivalently, which minimises the LMS error between them. RLMS

technique requires the assumption of specific parametric distributions for

the model parameters. The choice of probability distributions for each

parameter must be in accordance with its domain and the information

available about it.

Since the adsorption rate parameter λ is positive, we will propose a

Gamma distribution with shape parameter α > 0 and scale parameter β >

0, i.e., λ(ω) ∼ Ga(α, β). For the equilibrium quantity qe, we will consider

a Uniform distribution, i.e. qe(ω) ∼ Unif(a, b), with a, b > 0. Finally,

for the parameter n, we will assume a truncated Normal distribution on

the interval T = [1, 3], i.e. n(ω) ∼ NT (µ, σ
2). The choice of the Normal

distribution in this case is motivated by the fact that values close to 2

are the ones that work best for this type of problems according to the

literature and, about the truncation, the order is required to be n > 1 (in

our case study), and that n > 3 values have rarely been observed in other

processes.

The choice of reasonable distributions is the critical point of the RLMS

method for estimating model parameters, since diverse possibilities can be

handled. This choice has been based on the significance of the parame-

ters in the model, their positivity, their boundedness and the information

available on them. However, the generality of the results presented above

allows the choice of distinct probability distributions for the model param-

eters of those already chosen which can be seen as a major advantage from

a practical standpoint.

To ascertain the 1-PDF of the solution, it is first necessary to determine

the parameters of the proposed parametric distributions, α, β, a, b, µ, σ,

since it depends on these parameters. To that end, we will minimize the

MSE between the observed data, qi, and the expectation of the solution

q(ti, ω;α, β, a, b, µ, σ) evaluated at the time instants ti. This leads to the

following optimization program:

min
a,b,µ,σ,α,β>0

9∑
i=1

(qi − E [q(ti, ω;α, β, a, b, µ, σ)])
2
, (17)
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where the values of qi are collected in Table 1, and the expectation of the
solution, E [q(ti, ω;α, β, a, b, µ, σ)], is computed by the equation (7) with
f1(q, t) defined in (12), where the PDFs involved in this expression have
the following explicit expressions:

fλ


(
1− q

qe

)1−n
− 1

t(n− 1)
;α, β

 =
1

Γ(α)βα


(
1− q

qe

)1−n
− 1

t(n− 1)


α−1

e
−

(
1− q

qe

)1−n−1

βt(n−1) ,

fqe (qe; a, b) =

 1
b−a

, qe ∈ [a, b],

0, otherwise,
fn (n;µ, σ) =


1
σ

ϕ
(

n−µ
σ

)
ϕ
(

3−µ
σ

)
−ϕ

(
1−µ
σ

) , n ∈ [1, 3],

0, otherwise,

where, ϕ(x) = 1√
2π

e−
1
2x

2

.

We compute the optimal values, we have used the Nelder-Mead’s algo-

rithm implemented in Mathematica© software. Now, we explain the steps

followed to calculate them. To bound the search region of the parame-

ters, we have previously applied a deterministic non-linear fit of the PNO

equation to the data, obtaining the optimal point estimates of the param-

eters (λ∗ = 0.406614, q∗e = 11.4436 and n∗ = 1.85576), and their standard

errors (SEλ∗ = 0.061970, SEq∗e
= 0.383105 and SEn∗ = 0.32279). The

parameters of the probability distributions of the three model parameters

have then been found such that their expected values match the above

optimal estimates, and their variance match the above squared standard

errors, i.e,

λ ∼ Ga(α0, β0) : E[λ] = λ∗, V[λ] = SE2
λ∗ ,

qe ∼ Unif(a0, b0) : E[qe] = q∗e , V[qe] = SE2
q∗e
,

n ∼ N(µ0, σ0) : E[n] = n∗, V[n] = SE2
n∗ .

Finally, the local optimal search for parameters of the distributions using

the Nelder Mead algorithm has been bounded around the values obtained

(α0, β0, a0, b0, µ0, σ0). The result of the minimisation problem (17) has

been

α = 42.0172, β = 0.009594, a = 10.9934, b = 12.1161, µ = 1.8858, σ = 0.3710.
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3.2 Bayesian method

From a Bayesian perspective, we will consider that the data sequence

q = (q1, . . . , q9) (whose values are strictly positive) come from a prob-

ability (or likelihood) distribution fq|θ(q | θ), which depends on a set of

random parameters θ that follows a prior probability distribution fθ(θ),

constructed according to the prior information we have about these param-

eters (e.g., from experience published in the scientific literature). Formally,

q | θ ∼ fq|θ(q | θ), θ ∼ fθ(θ).

From this information, Bayes’ theorem allows us to calculate the posterior

distribution as

θ | q ∼ fθ|q(θ | q),

fθ|q(θ | q) =
fθ(θ)fq|θ(q | θ)∫

θ
fθ(θ)fq|θ(q | θ) dθ

∝ fθ(θ)fq|θ(q | θ).

The posterior distribution can be interpreted as the prior distribution of

the parameters updated with the information provided by the experimental

data.

In our application, we define θ = (λ, qe, n, β) considering that there is

independence between the parameters, and we assume, also by indepen-

dence, that each observation, qi, in the data sequence, q, follows a Gamma

time-dependent distribution such that its rate parameter β is fixed over

time, and its shape parameter αi depends on the expected value, which is

equal to the solution of the PNO model:

qi | (λ, qe, n, β) ∼ Ga(αi, β),

E[qi | (αi, β)] =
αi

β
= qe − qe

(
1

1 + (n− 1)λti

) 1
n−1

,

αi = αi(λ, qe, n, β) = β

(
qe − qe

(
1

1 + (n− 1)λti

) 1
n−1

)
.

Subsequently, we shall compute suitable priori distributions for each of

the model parameters. In the case of the parameters qe and β, they have
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been assigned non-informative prior distributions, with high variability.

For qe, a prior distribution Unif(0, 100) has been taken, while for β a

Ga(0.01, 0.01) distribution has been chosen. However, for more sensitive

model parameters, such as n and λ, it has been necessary to give them

more informative distributions.

For the λ parameter, a total of 56 values have been collected from 5 research

papers [10, 14–17] in which the adsorption of metal ions, such as Cd(II),

Pb(II) or Cu(II) ions, under different conditions (temperature, pH, etc.) on

plant substrate was modelled using PFO and PSO models. No generalised

PNO models have been found in the analyzed literature for this particular

application. The values of λ have been obtained from the kn published

values by using equation 3. For the n parameter, the search has been

extended to adsorption processes in general modelled with the PNO model.

A total of 23 values were taken from a review work [37].

Then, for each parameter, its cumulative empirical distribution has

been calculated, and a deterministic nonlinear LMS fit has been made

with three types of cumulative distribution functions: Log-Normal, Normal

and Gamma. Between the three, the distribution with the lowest MSE

has been chosen as the prior distribution. The Scipy Python library has

been used for the fit. Table 2 and Figure 1 show the results of the fit.

The results suggest that the Log-Normal distribution is the best fit to

the available prior information, and is therefore the best candidate as

the prior distribution for both λ and n. Additionally, the Log-Normal

distribution for n has been truncated in the interval T = [1, 3], since the

model presents the n > 1 restriction, and values greater than 3 for n have

not been observed in the prior information available.

Parameter Best LN(µ, σ) Best N(µ, σ) Best Ga(α, β)

λ
LN(−1.284, 0.826)
MSE = 0.000677

N(0.326, 0.286)
MSE = 0.00107

Ga(1.026, 2.626)
MSE = 0.000796

n
LN(0.562, 0.437)
MSE = 0.00218

N(1.820, 0.727)
MSE = 0.00560

Ga(1.960, 0.951)
MSE = 0.0110

Table 2. Best prior distributions for λ and n resulting from non-linear
fitting.
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Figure 1. Best fit of Log-Normal, Normal and Gamma distributions to
empirical cumulative prior distributions for λ and n param-
eters.

Therefore, the prior distributions of the parameters are given by

λ ∼ LN(−1.284, 1.465683),

qe ∼ Unif(0, 100),

n ∼ LNT (0.562, 5.236452),

β ∼ Ga(0.01, 0.01),

being fλ(λ), fqe(qe), fn(n) and fβ(β) their respective PDFs, whose defini-

tions can be found in Appendix D.

To calculate the posterior distribution, we have used the statistical

software RStudio and WinBUGS. We have applied the bugs function of

the R2Winbugs package of RStudio. This package interacts with Winbugs,

which in turn works with an iterative algorithm called Gibbs sampling and

Metropolis algorithm to solve the problems. The Markov chain resulting

from this algorithm is a sample of the desired posterior distribution, since

Markov Chain Monte Carlo (MCMC) simulation method consists of con-

structing a Markov chain that converges to a stationary distribution. The

kernel density estimation method is then used to obtain the densities.

To evaluate the convergence of the MCMC chains constructed by the
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above algorithm to its stationary process, we set 3 chains, where the start-

ing values for the WinBUGS model are generated by the software itself,

300000 iterations for each chain, with 10% of the iterations as burn-in

period, i.e. 30000, and with the argument n.thin=10, which means that

the algorithm saves 1 value after 10 iterations. This is to avoid autocorre-

lation between values. Therefore, the resulting sample size for each chain

is N = 27000. A visual representation of the convergence or lack thereof

can be the trace plots, shown in Figure 5 (left column). They show the 3

chains well mixed with a random scatter around the mean value. In the

same figure we can see the results of the deviance, a measure of fit calcu-

lated automatically by WinBUGS itself, and defined as −2 log(likelihood),

where likelihood is the conditional probability of all data given the param-

eters.

The results obtained are the marginal posterior distributions of each

parameter, which are also shown in Figure 5 (right column). The band-

width values used for the kernel are shown in the same column. These val-

ues are used to smooth the samples and produce these density estimates.

Finally, we have used the coda package to perform posterior analyses of

the simulated values. These include the Gelman and Rubin’s convergence

diagnostic, whose potential scale reduction factor gave 1 for all estimated

parameters, indicating that the MCMC sample converges to the estimate

of the posterior distribution for each parameter.

3.3 Results and discussion

In this section we exhibit our main results based on the computation car-

ried out using our theoretical findings in the setting of the model analyzed

in the foregoing section.

In Figure 2, we show the 1-PDF, f1(q, t), of the solution, q(t, ω), using

the RLMS and Bayesian methods explained in the previous subsection.

In both plots, we observe that, for each time instant, the PDF is approx-

imately concentrated around the recorded adsorbed amount, following a

morphology very similar to the Gaussian one. It can also be seen that the

mass of the density shifts with time towards amounts closer and closer to

equilibrium levels, with a certain leptokurtic tendency. As differences, in
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Figure 2a (RLMS), there is a certain negative skewness, while in Figure

2a (Bayesian), the distribution remains approximately symmetric.

On the other hand, in Figure 3 we show the expected value and 95%-

confidence intervals. They have been calculated thanks to the previus

computation of the 1-PDF according to (7)–(9). With respect to the ex-

pected value, we observe that, in both cases, they fit the data series well at

all time instantants. The metrics of this fit, reflected in Table 4, indicate

a very low and very similar error for the two methods, around 0.16 for the

RMSE, and around 1.6%−1.7% for the MAPE. With respect to the confi-

dence intervals, we find that both methods capture all the data, and that

the Bayesian method yields a slightly wider confidence region than the

RLMS. Note also that, in the RLMS intervals, the aforementioned asym-

metry of the upper confidence interval can be observed in full agreement

with the plots shown in Figure 2.

Complementary, in Table 3, which includes the expected value, variance

and 95%-confidence interval, it is shown how the evolution of the expected

value is increasing with time and stabilises around equilibrium, while the

variance is approximately stable with time. As a practical example of the

usability of the model, we can state, for this chemisorption process and

before running an equivalent experiment, that at the time instant t = 7 the

amount adsorbed is expected to be 8.751 mg/g, with a confidence interval

of [7.28, 10.46].

Features of 1-PDF t = 1 t = 2 t = 4 t = 5 t = 7 t = 10 t = 15 t = 20 t = 30 t = 45 t = 60

E[q(t, ω)] 3.360 5.261 7.317 7.927 8.751 9.470 10.094 10.430 10.763 10.928 11.029
V[q(t, ω)] 0.175 0.360 0.585 0.642 0.661 0.621 0.521 0.430 0.445 1.156 1.371
Lower limit of 95%-CI 2.59 4.17 5.95 6.51 7.28 8.01 8.70 9.12 9.6 9.97 10.19
Upper limit of 95%-CI 4.23 6.54 8.95 9.63 10.46 11.07 11.48 11.66 11.81 11.9 11.94

Table 3. Values of the 1-PDF characteristics of the solution, such as
the expectation, variance and the lower and upper limits of
the 95%-CI (confidence intervals).

On the other hand, Figure 4 shows the PDF of the time, tρ(ω), required

to reach a certain quantity ρ, using the RLMS and Bayesian methods.

In both casess it is observed that, as the quantity, ρ, increases, the PDF

becomes increasingly platicurtic. If we look at the numerical results shown

in Table 5, we observe that both the expected value and the variance of

the PDF of time grow with larger ρ quantities, indicating this platicurtic
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(a) RLMS approach (b) Bayesian approach

Figure 2. Visual representation of the 1-PDF of the solution of the
random PNO model, f1(q, t), given in Eq. (12), at time
instants ti for i = 2, ..., 9, collected in Table 1.
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(b) Bayesian approach

Figure 3. Plot of the expectation (solid line) together with the 95%
confidence intervals (dashed lineas) of the solution stochastic
process of the random PNO model, representing the proba-
bilistic fit of the data (dots) specified in Table 1.

tendency. The statistics in Table 5 have been calculated as follows:

E[tρ(ω) | C] =
E[tρ(ω)1C ]

P[C]
, V[tρ(ω) | C] =

V[tρ(ω)1C ]

P[C]
, ω ∈ Ω,

where 1C is the characteristic function for the event C. Note that these

values are computed on the conditional probability space C = {ω ∈ Ω :

qe > ρ} (see Section 2.2), whose probability P[C], defined in the equation

(15), is also shown in Table 5. In this case, for large values of ρ, it is

reduced, since the equilibrium quantity qe concentrates in its PDF (in

both methods) most of the density in the interval [10, 13].

After observing the results of the two methods, it could be inferred

that, although both fit the expected value very similarly, the results of the
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````````````Measures

Methods
RLMS Bayesian

RMSE 0.167344 0.169611
MAPE (%) 1.66 1.68

Table 4. Comparison of goodness-of-fit measures (RMSE and MAPE)
between the two approaches (RMLE and Bayesian) to deter-
mine model parameters PDFs of the random PNO model.

(a) RLMS approach (b) Bayesian approach

Figure 4. Time PDF for different fixed values of the adsorbed amount
of reagent ρ ∈ {7.17241, 8.02299, 9.72414, 10.5747, 11.1954}.
The results have been performed with the PDFs of the model
parameters, λ, qe and n, obtained from the two approaches,
in the context of the PNO random model.

RLMS are slightly better and that its confidence interval is tighter, i.e. it

has less uncertainty. However, it should be noted that the optimal param-

eters found for the RLMS using this specific data set do not necessarily

return a good fit for other similar sets of experiments (by the definition

of the minimisation problem (17)). Additionally, minimisation focuses on

the expected value, but does not take into account the variance of the pro-

cess, so there are potentially infinitely many optimal distributions (with

an expected value fitted to the data) with multiple possible variances. In

this case, we have chosen to restrict the variance to around the standard

error of a deterministic fit, but it should be noted that, with a single data

set, this approach may not be robust to setting confidence intervals. In

contrast, the Bayesian method, while yielding greater uncertainty than the

RLMS in its confidence interval, does incorporate information on the vari-

ance of the process within the prior distribution reported in the literature,

and could therefore be considered more reliable than the RLMS method
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ρ

7.17241 8.02299 9.72414 10.5747 11.1954

RLMS approach
P[C] 1 1 1 1 0.820077
E[tρ(ω)|C] 4.03714 5.60095 13.6152 31.2255 77.5207
V[tρ(ω)|C] 1.21461 3.27488 55.6106 743.916 10524.5

Bayesian approach
P[C] 1 1 0.99995 0.99170 0.752903
E[tρ(ω)|C] 4.04707 5.70199 14.7011 35.0026 74.2476
V[tρ(ω)|C] 1.82789 5.31072 108.697 1480.63 11805.4

Table 5. Expectation and variance of the time needed to reach a given
quantity of adsorbed amount.

in this respect.

On the other hand, regarding the results of the time needed to adsorb

a quantity ρ, care must be taken when making estimates for large amounts

of time. This is because, when the adsorbed amount is high, it is closer to

equilibrium, there are many more time instants in which this amount has

been (approximately) reached. Consequently, the probability distribution

of time becomes increasingly flatter and less informative as ρ grows.

4 Conclusions

In this paper we have presented a methodology to analyze the pseudo-

n order (PNO) model by treating all its model parameters, namely, rate

coefficient, adsorption rate and order of the chemical reaction, as random

variables with arbitrary distributions. Given real-world data, we have also

shown two uncertainty quantifications techniques to assign appropriate

distributions to all model parameters when applying the PNO equation to

real-world data. To the best of our knowledge, this is the first time that

this analysis is performed for the randomized PNO model, and we believe

that the methodology can be very useful to perform chemical studies that

want to account for the uncertainties that often are present in practice.



43

Appendices

A Proof of equivalence between Ritchie and

PNO models

The Ritchie model is theoretically constructed from a molecular statistics

perspective, considering that the surface is a lattice with Ne ∈ N binding

sites likely to be occupied, and that the adsorbed gas is a set of molecules,

each of which occupies n ∈ N sites as it binds to the surface. If at an

instant t, the number of occupied binding sites on the surface is N(t),

then

θ(t) =
N(t)

Ne
∈ Q[0,1],

where θ(t) represents the fraction of surface area occupied by the atoms

of the adsorbed gas at time t. Furthermore, the model assumes that

• Adsorption is equally likely at all sites.

• There are no interactions between molecules.

• Adsorption is monolayer.

• There are no impurities (i.e. all molecules occupy the same number

of n sites when adsorbing).

With all these considerations, if we assume that the variation of the occu-

pied fraction θ(t) depends on the free fraction 1− θ, then

dθ(t)

dt
= λ(1− θ(t))n,

where λ (min−1) is the adsorption rate. It should be noted that, although

θ(t) is rational by definition, it can approximate a real value when the

values of N(t) and Ne are very high (in this case it is appropriate, since

they represent the number of molecules).
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On the other hand, the relationship between the number of occupied

binding sites N(t) and the adsorbed mass q(t) (mg/g) is given by

q(t) =
Mm

NAv

N(t)

n
= CN(t),

where Mm (kg/mol) is the molecular mass of the adsorbed gas, NAv =

6.022×1023 (1/mol) is the Avogadro number (particles/mol) and the num-

ber of adsorbed molecules is given by N(t)
n . Note that, at the end, the mass

q(t) is proportional to the number of molecules N(t). From this relation

it follows that

θ(t) =
N(t)

Ne
=

CN(t)

CNe
=

q(t)

qe
, (18)

where qe is the equilibrium mass quantity (for t → ∞). Finally, taking the

differential equation of Ritchie’s model, and developing θ, we obtain that

dθ(t)

dt
= λ(1− θ(t))n,

d

dt

(
N(t)

Ne

)
= λ

(
Ne −N(t)

Ne

)n

,

d

dt

(
q(t)

qe

)
= λ

(
qe − q(t)

qe

)n

,

dq(t)

dt
=

λ

qn−1
e

(qe − q(t))
n
,

dq(t)

dt
= kn (qe − q(t))

n
,

where

kn =
λ

qn−1
e

,

is the PNO adsorption rate. It is thus demonstrated that both models are

the same, formulated in two different ways.
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B Justification of the PNO model parameter

domains

In the PNO model we find three parameters: λ, qe and n.

Regarding the λ parameter, it is a ratio that regulates an adsorption

process in which the fraction occupied by the adsorbate increases with

time (desorption is not considered in this model). For this reason, the

variation of the occupied fraction θ(t) with time (i.e. the derivative),

must be positive, regardless of whether this variation is larger or smaller.

From another point of view, λ can also be considered to represent the new

fraction of area occupied per unit of time. Therefore, it must be fulfilled

that λ ∈ R>0. And about qe parameter, it is immediate that, since it

is a mass quantity (specifically in equilibrium), it must be positive, i.e,

qe ∈ R>0.

About the n parameter, it represents in Ritchie’s model the number

of binding sites occupied by a molecule when it binds to the surface. It

should therefore be considered as a discrete natural number. However, in

reality, molecules do not all bind identically, using the same number of

binding sites, so n can be relaxed and considered as the average number

of binding sites of all molecules, allowing it to be a continuous parameter

in R≥1. It should be noted that, for values of n ∈ [0, 1), the model is no

longer consistent from two approaches:

1. Physically, at the molecular level, the minimum lattice surface unit

represents a binding site whereby a free molecule binds to another

molecule on the surface, forming a chemical bond. In terms of a

chemisorption reaction, it does not make sense for one molecule to

partially react with another, and for the chemical bond to remain

half-formed (bonding either occurs or does not occur). It could

be theorised that there are weak molecular interactions (such as

dipole-dipole or van der Waals forces) that partially or weakly bind

molecules to the surface, and that an order n < 1 would represent

these types of weak bonds. However, it should be remembered that

any intermolecular interaction has been considered as non-existent
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or negligible in this model. And even omitting such an assumption,

assuming that all or most of the molecular bonds in the adsorp-

tion process were weak interactions would definitely indicate that we

would not be dealing with a chemical adsorption process, but with

others, such as diffusion.

2. Mathematically, if n ∈ [0, 1), the general solution of the PNO equa-

tion reaches (from a certain instant of time) physically impossible

adsorbed quantities. Knowing that

q(t) = qe − qe

(
1

1 + (n− 1)λt

) 1
n−1

≥ 0,

one derives that

(1 + (n− 1)λt)
1

1−n ≤ 1. (19)

If n > 1, then condition (19) is satisfied ∀t > 0, while if n ∈ [0, 1),

then it will only be satisfied for time instants t such that they satisfy

the condition

1 + (n− 1)λt = 1− (1− n)λt > 0.

Therefore, for q(t) to be defined in the reals, then

t <
1

λ(1− n)
.

For values of t that do not satisfy this condition, the solution will

become complex. Consequently, the model makes no physical sense

when n < 1, since in an adsorption process, the quantity q(t) must

be a real quantity at any instant of time.

Then, it can be stated that λ ∈ R>0, qe ∈ R>0 and n ∈ R≥1.
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C Additional figures

Figure 5. MCMC trace plots (left column) and marginal posterior dis-
tributions (right column) of the model parameters.

D Distributions

Log-Normal distribution used by WinBUGS

X ∼ LN(µ, τ) fX(x;µ, τ) =

√
τ

2π

1

x
e−

τ
2 (log x−µ)2 , x > 0.

Log-Normal distribution

Y = eX ∼ LN(µx, σx), where X ∼ N(µx, σx),

fX(x;µ, σ) =
1

σ
√
2π

1

x
e−

(ln x−µ)2

2σ2 , x > 0.
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It follows from these two distributions that τ = 1
σ2 .

Uniform distribution

X ∼ Unif(a, b) fX(x; a, b) =
1

b− a
, a < x < b.

Gamma distribution used by WinBUGS

X ∼ Ga(r, µ) fX(x; r, µ) =
µrxr−1e−µx

Γ(r)
, x > 0.
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