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Abstract

In a recent article, Nadeem and Siddique used Chebyshev’s sum
inequality to establish the Zagreb indices inequality M1/n ≤ M2/m
for undirected graphs in the case where the degree sequence (di)
and the degree-sum sequence (Si) are similarly ordered. We show
that this is actually not a completely new result and we discuss
several related results that also cover similar inequalities for directed
graphs, as well as sum-symmetric matrices and Eulerian directed
graphs.

1 Introduction

1.1 Notation

We consider n× n matrices, denoted by A, with entries aij . In particular,

we look at the total sum of entries denoted by sum(A), as well as the row

and column sums of A, which are denoted by ri(A) and cj(A), respectively.

If A is clear from the context, we abbreviate this by ri and cj . For the

matrix power Ap, p ∈ N, we define the following abbreviations: a
[p]
ij :=

(Ap)ij , r
[p]
i := ri(A

p), and c
[p]
j := cj(A

p). We assume that A0 = I is the

identity matrix.
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As a special case, we consider adjacency matrices of directed and undi-

rected (multi-)graphs G = (V,E) with n := |V | vertices and m := |E|
edges. The in-degree and the out-degree of a vertex v ∈ V are denoted

by din(v) and dout(v), respectively. In undirected graphs, the degree of a

vertex v ∈ V is denoted by d(v). A walk in a multigraph G = (V,E) is

an alternating sequence (v0, e1, v1, . . . , vk−1, ek, vk) of vertices vi ∈ V and

edges ei ∈ E where each edge ei of the walk must connect vertex vi−1

to vertex vi in G, that is, ei = (vi−1, vi) for all i ∈ {1, . . . , k}. Vertices

and edges can be used repeatedly in the same walk. If the multigraph

has no parallel edges, then the walks could also be specified by the se-

quence of vertices (v0, v1, . . . , vk−1, vk) without the edges. The length of a

walk is the number of edge traversals. That means, the walk (v0, . . . , vk)

consisting of k + 1 vertices and k edges is a walk of length k. We call

it a k-step walk. Let sk(v) denote the number of k-step walks starting

at vertex v ∈ V and let ek(v) denote the number of k-step walks ending

at v. If G is undirected, then we have wk(v) := sk(v) = ek(v). The total

number of k-step walks is denoted by wk. For walks of length 0, we have

s0(v) = e0(v) = 1 for each vertex v and w0 = n. For walks of length 1, we

have s1(v) = dout(v) and e1(v) = din(v), i.e., w1(v) = d(v) for undirected

graphs. This implies w1 =
∑

v∈V dout(v) =
∑

v∈V din(v) = m for directed

graphs. For undirected graphs, we have w1 =
∑

v∈V d(v) = 2m by the

handshake lemma.

1.2 Chebyshev’s sum inequality

Two n-tuples (a1, . . . , an) and (b1, . . . , bn) of real numbers are called sim-

ilarly ordered if (ai − ak)(bi − bk) ≥ 0 for all i, k ∈ [n]. They are called

conversely ordered (also oppositely ordered, see [9]) if (ai−ak)(bi− bk) ≤ 0

for all i, k = 1, . . . , n. The term similarly ordered is equivalent to the

requirement that there exists a permutation that transforms both tuples

into nonincreasing sequences. In the same line, two tuples are conversely

ordered if and only if there is a permutation that transforms one of the

tuples into a nonincreasing and the other tuple into a nondecreasing se-

quence. Below, we will use the same notation for n-dimensional real vectors

a, b ∈ Rn.
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The following inequality was published by Chebyshev [3, 13].

Theorem 1 (Chebyshev). Let f, g : [a, b] 7→ R be integrable functions, both

non-decreasing or both non-increasing. Furthermore, let p : [a, b] 7→ R≥0

be an integrable nonnegative function. Then∫ b

a

p(x) dx

∫ b

a

p(x)f(x)g(x) dx ≥
∫ b

a

p(x)f(x) dx

∫ b

a

p(x)g(x) dx .

If one of the functions f or g is non-decreasing and the other non-incre-

asing, then the sign of inequality is reversed.

The discrete analog is the following statement.

Corollary. For similarly ordered vectors a ∈ Rn and b ∈ Rn and any

nonnegative vector p ∈ Rn
≥0, we have(

n∑
i=1

piai

)(
n∑

i=1

pibi

)
≤

(
n∑

i=1

pi

)(
n∑

i=1

piaibi

)
.

The inequality is reversed if a and b are conversely ordered.

If p ∈ Rn
≥0 is nonzero, this corresponds to the following weighted arith-

metic means relation:∑n
i=1 piai∑n
i=1 pi

·
∑n

i=1 pibi∑n
i=1 pi

≤
∑n

i=1 piaibi∑n
i=1 pi

.

A direct consequence is the following. Given a, b ∈ Rn and r ∈ R, suppose
that ari and bri are defined within R for all i ∈ [n] and that the corre-

sponding tuples (ar1, . . . , a
r
n) and (br1, . . . , b

r
n) are similarly ordered. Then

we have ∑n
i=1 pia

r
i∑n

i=1 pi
·
∑n

i=1 pib
r
i∑n

i=1 pi
≤
∑n

i=1 pi(aibi)
r∑n

i=1 pi
.

One particular case where such inequalities can be obtained occurs for

arbitrary exponents r and nonnegative vectors a and b that are similarly

or conversely ordered. Another special case is for odd integer exponents r

(or their reciprocals) and arbitrary real vectors a and b.
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Corollary. If the vectors a ∈ Rn and b ∈ Rn are similarly ordered, then(
n∑

i=1

ai

)(
n∑

i=1

bi

)
≤ n

n∑
i=1

aibi .

The inequality is reversed if a and b are conversely ordered.

For n > 0, this is the same as the following relation between arithmetic

means: ∑n
i=1 ai
n

·
∑n

i=1 bi
n

≤
∑n

i=1 aibi
n

.

All those variants are called Chebyshev’s (sum) inequality.

2 Zagreb indices and walks

2.1 The Zagreb indices inequality

The first and the second Zagreb [group] index for an undirected graph

G = (V,E) are defined as†

M1 =
∑
v∈V

d2v and M2 =
∑

{x,y}∈E

dxdy .

Assume that V = {v1, . . . , vn} and that the vertex degrees are abbre-

viated by di = d(vi). Recently, an article was published by Nadeem and

Siddique [14] that contains the following statement concerning the degree-

sums Si :=
∑

vj∈N(vi)
d(vj), where N(vi) := {vj ∈ V | {vi, vj} ∈ E} is the

set of neighbors of vi.

Theorem 2. Let G be a connected graph having degree sequence (di),

degree-sum sequence (Si), order n and size m. If (di) and (Si) are similarly

ordered, then
M1(G)

n
≤ M2(G)

m
.

†The first explicit definition of those indices appeared in the paper by Gutman et
al. [6]. Erroneously, it referred to the earlier article by Gutman and Trinajstić [7] as the
point where these measures where introduced. Actually, this is not true. This historical
development was clarified recently by Gutman [4].
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Equality is attained if and only if G is a regular or a complete bipartite

graph.

They also remark for the part with the sufficient condition, that the

Zagreb indices inequality holds for both, connected and non-connected

graphs.

That means, this result uses Chebyshev’s sum inequality to establish

the Zagreb indices inequality in the case where the sequences (di) and (Si)

are similarly ordered.

2.2 The number of walks form

For a long time during the research on topological indices in chemical graph

theory, it has been overlooked that two of the most popular descriptors

were in fact just special cases of measures defined by the number of walks.

Only after decades, it was observed by Nikolić et al. [15] and Braun et

al. [2] that M1 = w2 (which is also implicitly contained in the paper by

Gutman et al. [5], but not explicitly stated there) and that M2 = w3/2.

Together with n = w0 and m = w1/2, the Zagreb indices inequality

can be rephrased as

w2/w0 ≤ w3/w1 .

In the same line, we observe that the degree-sum Si equals the number

of 2-step walks starting at vi, i.e., Si = w2(vi). And as already noted, we

have di = w1(vi).

In this respect, Theorem 2 can also be expressed as a statement about

walks:

Theorem 3. Let G be a graph having number of 1-step walks sequence

(w1(vi)) and number of 2-step walks sequence (w2(vi)). If (w1(vi)) and

(w2(vi)) are similarly ordered, then

w2/w0 ≤ w3/w1 .

Actually, this is not a new result. It is a special case of a more general

theorem by Täubig [16, 18], see the corollary of Theorem 4 in the next
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section. Note also that a related observation corresponding to the Za-

greb indices inequality has already been made by London [12] in the more

general case of entry sums of nonnegative symmetric matrices.

The Zagreb indices inequality has been shown to hold for several special

graph classes, such as trees [1, 21], chemical graphs [8], or subdivision

graphs [10,17], while it does not hold for connected graphs in general [8,11]

or for bipartite graphs, not even for forests (see Chapter 5 of [16] or [18]).

3 Applying Chebyshev’s sum inequality to

directed graphs

In order to obtain inequalities for the number of walks in directed graphs

and for entry sums in nonsymmetric matrices, it is sometimes possible to

apply Chebyshev’s sum inequality. In those cases we are able to obtain

statements by elementary proofs without using any eigenvalues.

Theorem 4. For any matrix A such that the column sums of Ak and the

row sums of Aℓ (i.e., c[k] and r[ℓ]) are similarly ordered, we have

sum
(
Ak
)
· sum

(
Aℓ
)
≤ n · sum

(
Ak+ℓ

)
.

The inequality is reversed if c[k] and r[ℓ] are conversely ordered.

Proof. For every n× n matrix A, we have

sum
(
Ak+ℓ

)
= 1T

n

(
AkAℓ

)
1n =

(
1T
nA

k
) (

Aℓ1n

)
=
∑
i∈[n]

c
[k]
i · r[ℓ]i .

The inequality is now a direct consequence of Theorem 1:

sum
(
Ak
)
· sum

(
Aℓ
)

=

(
n∑

i=1

c
[k]
i

)(
n∑

i=1

r
[ℓ]
i

)

≤ n

n∑
i=1

c
[k]
i r

[ℓ]
i = n · sum

(
Ak+ℓ

)
.
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Note that for all Hermitian matrices A and integers k, ℓ where k+ℓ is an

even number, Theorem 4 holds in general without the ordering assump-

tion. Those inequalities and related results for real symmetric matrices

and walks in undirected graphs were discussed in [20] and [19].

For the special case of adjacency matrices, Theorem 4 translates to the

following statement about the number of walks in digraphs.

Corollary. For every directed graph G = (V,E) where the vectors of walk

numbers ek(v) and sℓ(v), v ∈ V , are similarly ordered, we have

wk · wℓ ≤ n · wk+ℓ .

Obviously, this inequality is applicable to undirected graphs if wk(vi)

and wℓ(vi), i ∈ [n], are similarly ordered sequences (here, we have wk(vi) =

sk(vi) = ek(vi) for all i, k ∈ N). In particular, this is interesting if k+ ℓ is

an odd number.

Inverted inequality: According to Chebyshev’s sum inequality (see

Theorem 1), the inequality is inverted if ek(vi) and sℓ(vi) are conversely

ordered. For instance, this would be applicable for k = ℓ = 1 if for each

vertex either the in-degree or the out-degree is equal to 1 and the other

one is greater or equal to 1. Another example would be the class of graphs

where all vertices have the same sum of the in-degree and the out-degree

(that is, the same total degree).

Sum-symmetric matrices: From Theorem 4, we obtain a special case

if the row sums and the column sums of a matrix are similarly ordered.

This happens, for example, in the case of sum-symmetric matrices, i.e., if

ri(A) = ci(A) for all i ∈ [n].

Corollary. For any sum-symmetric matrix A, we have

sum(A)2 ≤ n · sum(A2) .
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Note that this corollary also follows from Cauchy’s inequality:

sum(A)2 =

(
n∑

i=1

ri

)2

≤ n

n∑
i=1

r2i = n

n∑
i=1

rici = n · sum(A2) .

Eulerian directed graphs: We can apply this result to directed graphs

as follows. If there is a vertex ordering which is monotonically increasing

with respect to the in- and out-degrees, then the graph obeys the inequality

nw2 ≥ w2
1. For instance, this is true if the in-degree of each vertex equals

its out-degree.

Corollary. For every Eulerian directed graph (∀v ∈ V : din(v) = dout(v)),

we have

w2
1 ≤ n · w2 or w1/w0 ≤ w2/w1 .
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[13] D. S. Mitrinović, P. M. Vasić, History, variations and generalisations
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