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Abstract

Recently, establishing proper dynamical models to describe the
relationship among different chemical substances has become a vi-
tal theme in chemistry. In this present article, we set up a new
fractional-order delayed glycolytic oscillator model. Utilizing the
contraction mapping theorem, we explore the existence and unique-
ness of the solution to the involved fractional glycolytic oscillator
model with delay. By virtue of some suitable analytical skills, we
discuss the non-negativeness of the solution to the established frac-
tional glycolytic oscillator system. Taking advantage of a suitable
function, we investigate the boundedness of the fractional glycolytic
oscillator system. Exploiting the stability and bifurcation theory of
fractional dynamical system, we study the stability and the genera-
tion of Hopf bifurcation of the fractional glycolytic oscillator system
with delay. Making use of delayed feedback controller and PDα con-
troller, we deal with the Hopf bifurcation control of the fractional
glycolytic oscillator system owing delay. Computer simulation re-
sults are displayed to support the obtained assertions. The acquired
results of this article own great theoretical value in dominating the
concentrations of different chemical compositions.
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1 Introduction

Applying mathematical tools to explore the dynamical behavior of chem-

ical reaction models has become a vital topic in chemistry. In particular,

in order to describe the changing relationship among different chemical

compositions, differential dynamic system has become a common tool.

How to set up a suitable dynamical model to describe the change law

of different chemical compositions is a crucial aspect. In the past few

decades, a great deal of chemical differential models have been established

and fruitful results have been gained. For example, Khan [1] investigated

the Neimark-Sacker bifurcation in a 2D discrete-time chemical dynamical

model; Zafar et al. [2] dealt with the numerical modeling of a biochemical

reaction model; Din and Haider [3] studied the Hopf bifurcation and chaos

suppression in a Schnakenberg model; Kim et al. [4] discussed the positiv-

ity of a BGK model involving slow chemical reactions. Wang and Jia [5]

explored the Hopf bifurcation and stability of a generalized Gray-Scott

chemical reaction model; Wang et al. [6] dealt with the global dynamical

trait of a stochastic chemostat model involving delays. For more related

publications on this aspect, we refer the readers to [7–13].

In [14–16], the authors have investigated the following glycolytic oscil-

lator model 
dv1(t)

dt
= a− bv1(t)− v1(t)v

2
2(t),

dv2(t)

dt
= bv1(t) + v1(t)v

2
2(t)− v2(t),

(1)

where v1 and v1 stand for the concentration of fructose-6-phosphate and

the concentration of adenosine diphosphate, respectively; a > 0, b > 0

are real numbers. For more concrete background of system (1), one can

see [14–17].

Delay has a great influence on dynamics of differential dynamical sys-

tems. Usually, delay can make the dynamical system lose its stability, gen-

erate oscillation, emerge chaotic behavior and so on [18–20]. In system (1),

the variation of the concentration of fructose-6-phosphate and the concen-

tration of adenosine diphosphate depends upon the current time and the

history time. That is to say, delay shall be appear in glycolytic oscillator
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model. Based on this viewpoint, here we assume that the concentration

of fructose-6-phosphate and the concentration of adenosine diphosphate

owns the self-feedback delay, then we can amend system (1) as follows:
dv1(t)

dt
= a− bv1(t− ϑ)− v1(t)v

2
2(t),

dv2(t)

dt
= bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ),

(2)

where ϑ > 0 represents a delay.

During the recent decades, numerous researchers hold that fractional-

order dynamical model can be considered a very valuable implement to

depict the authentic natural law in object society than the integer-order

ones because of the serious highlight of fractional-order dynamical model

in the memory aspect and hereditary function of diverse substances and

development process [21, 22]. Recently, fractional-order dynamical model

has aroused great interest from lots of researchers due to its tremendous

application aspect in complex networks, life sciences, neural networks,

electronics, mechanics, secure cryptography, finance, artificial intelligence,

chemistry and so on [23–28]. Currently, abundant results on fractional-

order dynamical models have been acquired. For example, Yousef et

al. [29] discussed the impact of fear in a fractional-order prey-predator

model involving predator density-dependent prey mortality. Ghanbari and

Djilali [30] carried out mathematical analysis on a fractional-order prey-

predator model. Shafiya and Nagamani [31] set up a novel finite-time pas-

sivity criterion for a class of delayed fractional-order neural networks via

Lyapunov function approach. Tan et al. [32] dealt with the event-triggered

impulsive synchronization for a class of fractional-order coupled neural

networks. Xu et al. [33] explored the Hopf bifurcation of fractional-order

BAM neural networks with delays. In details, one can see [34–38]. Espe-

cially, delay-drived Hopf bifurcation of fractional-order dynamical systems

is an important aspect in fractional-order dynamical systems. Exploring

the impact of time delay on the stability and Hopf bifurcation behavior

of fractional-order dynamical systems has aroused much interest form nu-

merous researchers. Besides, dominating the stability region and the time

of occurrence of Hopf bifurcation of fractional-order dynamical systems is
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still a valuable work. Nowadays, some excellent works on Hopf bifurcation

of fractional-order dynamical systems have been achieved (see [39–44]).

However, there are merely very few publications dealing with the Hopf bi-

furcation of fractional-order chemical reaction models. What impact does

the delay has on the dynamics of fractional-order chemical reaction mod-

els? How to build a proper controller to dominate the stability region

and the time of the occurrence of Hopf bifurcation in such fractional-order

chemical reaction models? We hope that these aspects can be effectively

solved. Based on system (2) and the exploration above, we build the fol-

lowing fractional-order delayed glycolytic oscillator model and explore its

Hopf bifurcation and Hopf bifurcation control aspect:
dαv1(t)

dtα
= a− bv1(t− ϑ)− v1(t)v

2
2(t),

dαv2(t)

dtα
= bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ),

(3)

where 0 < α ≤ 1.

The primary object of this article lie in the following aspects:

• Explore the stability and onset of Hopf bifurcation of the fractional-order

delayed glycolytic oscillator model (3).

• Design two suitable controllers to control the stability region and the

time of onset of Hopf bifurcation of the fractional-order delayed glycolytic

oscillator model (3).

The key highlights of this work are presented as follows:

• Based on the earlier publications, a novel fractional-order delayed gly-

colytic oscillator model is set up.

• A new delay-dependent sufficient criterion guaranteeing the stability and

occurrence of Hopf bifurcation of the fractional-order delayed glycolytic

oscillator model (3) is derived. The influence of delay on the stability and

bifurcation of the fractional-order delayed glycolytic oscillator model (3)

is availably displayed.

• Proper delayed feedback controller and PDα controller are designed to

control the stability region and the time of occurrence of Hopf bifurcation

of the fractional-order delayed glycolytic oscillator model (3).
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• So far, the exploration on Hopf bifurcation and Hopf bifurcation control

of the fractional-order delayed glycolytic oscillator model is very scarce.

The outline of this article is as follows. Section 2 lists the essential

basic knowledge on fractional-order dynamical system. Section 3 explores

the existence and uniqueness, non-negativeness and boundedness of the so-

lution to system (3). Section 4 sets up a sufficient criterion about stability

and Hopf bifurcation of system (3). Section 5 investigates the Hopf bi-

furcation control issue via delay feedback controller. Section 6 studies the

Hopf bifurcation control issue via PDα controller. Section 7 executes the

computer simulations to validate the acquired chief conclusions. Section 8

draws a conclusion to complete this work.

2 Fundamental knowledge

In this passage, we are be about to provide some needful principles on

fractional dynamical system.

Definition 2.1. [45] Label the fractional integral of order α of the function

l(ν) as follows

Iαl(ν) =
1

Γ(α)

∫ ν

ν0

(ν − s)α−1l(s)ds,

where ν ≥ ν0, α > 0, and Γ(s) =
∫∞
0

νs−1e−νdν expresses the Gamma

function.

Definition 2.2. [45] Label l(ν) ∈ C([ν0,∞), R). The Caputo-type fracti-

onal-order derivative of order α of l(ν) is given by:

Dαl(ν) =
1

Γ(l − α)

∫ ν

ν0

l(m)(s)

(α− s)α−m+1
ds,

where ν ≥ ν0 and m is a positive integer obeying m−1 ≤ α < m. Especially,

when 0 < α < 1, then

Dαl(ν) =
1

Γ(1− α)

∫ ν

ν0

l
′
(s)

(ν − s)α
ds.
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Definition 2.3. [46] Take into account the following fractional model:

Dαvi(t) = li(vi(t)), i = 1, 2, · · · , n, (4)

where α ∈ (0, 1], vi(t) = (v1(t), v2(t), · · · , vn(t)), li(t) = (l1(t), l2(t), · · · ,
ln(t)). Then we call (v∗1 , v

∗
2 , · · · , v∗n) an equilibrium point of model (4) when

li(v
∗
i ) = 0.

Lemma 2.1. [47] Label α ∈ (0, 1] and l(t) ∈ C[ϵ1, ϵ2] and Dαl(t) ∈
C[ϵ1, ϵ2]. If Dαl(t) ≥ 0, t ∈ (ϵ1, ϵ2), then l(t) is a non-decreasing function

∀ t ∈ (ϵ1, ϵ2). If Dαl(t) ≤ 0, t ∈ (ϵ1, ϵ2), then l(t) is a non-increasing

function ∀ t ∈ (ϵ1, ϵ2).

Lemma 2.2. [48] Take into account the fractional model Dαv = Sv,
v(0) = v0 where 0 < α < 1, v ∈ Rm,S ∈ Rm×m. Label µl(l = 1, 2, · · · ,m)

the root of the characteristic equation of Dαv = Sv. Then the model

Dαv = Sv is asymptotically stable ⇔ |arg(µl)| > απ
2 (l = 1, 2, · · · ,m).

Especially, this system is stable ⇔ |arg(µl)| > απ
2 (l = 1, 2, · · · ,m) and

every critical eigenvalue satisfying |arg(µl)| = απ
2 (l = 1, 2, · · · ,m) owns

geometric multiplicity one.

Lemma 2.3. [49] Take into account the fractional model Dαv(t) =

S1v(t) + S2v(t − τ), where v(t) = ϖ(t), t ∈ [−τ, 0], α ∈ (0, 1], v ∈ Rm,S1,

S2 ∈ Rm×m. Then the characteristic equation of the model can be ex-

pressed as: det |sαI − S1 − S2e
−sτ | = 0. Then the zero solution of the

system is asymptotically stable provided that every root of the equation

det |sαI − S1 − S2e
−sτ | = 0 has negative real part.

Lemma 2.4. [50] Suppose that ϕ(t) ∈ C[t0,∞) and obeys{
Dαϖ(t) ≤ −r1ϖ(t) + r2,

ϖ(t0) = ϖt0 ,

where α ∈ (0, 1), r1, r2 ∈ R, r1 ̸= 0, t0 ≥ 0, then

ϖ(t) ≤
(
ϖ(t0)−

r2
r1

)
Eα[−r1(t− t0)

α] +
r2
r1

.
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3 Property of solution

In this section, we are going to explore the existence and uniqueness, non-

negativeness of the solution to system (3).

Theorem 3.1. Set ∆ = {v1, v2) ∈ R2 : max{|v1|, |v2|} ≤ V}, where

V > 0 implies a constant. ∀ (v1ς , v2ς) ∈ ∆, where ς ∈ [ϑ, t0], t0 > 0 is

constant, the system (3) concerning the initial value (v1ς , v2ς) admits a

unique solution V = (v1, v2) ∈ ∆.

Proof Label

Π(V ) = (Π1(V ),Π2(V )), (5)

where {
Π1(V ) = a− bv1(t− ϑ)− v1(t)v

2
2(t),

Π2(V ) = bv1(t) + v1(t)v
2
2(t)− v2(t− ϑ).

(6)

∀ V, Ṽ ∈ ∆, one gains

||Π(V )−Π(Ṽ )|| =
∣∣a− bv1(t− ϑ)− v1(t)v

2
2(t)

−[a− bṽ1(t− ϑ)− ṽ1(t)ṽ
2
2(t)]

∣∣
+
∣∣bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ)

−[bṽ1(t) + ṽ1(t)ṽ
2
2(t)− ṽ2(t− ϑ)]

∣∣
≤ 2b |v1(t− ϑ)− ṽ1(t− ϑ)|+ |v1(t)v22(t)− ṽ1(t)ṽ

2
2(t)|

+ |v2(t− ϑ)− ṽ2(t− ϑ)|+ |v1(t)v22(t)− ṽ1(t)ṽ
2
2(t)|

≤ 2b |v1(t)− ṽ1(t)|+ V2|v1(t)− ṽ1(t)|+ 2V2|v2(t)− ṽ2(t)|

+ |v2(t)− ṽ2(t)|+ V2|v1(t)− ṽ1(t)|+ 2V2|v2(t)− ṽ2(t)|

=
(
2b+ 2V2

)
|v1(t)− ṽ1(t)|+ (1+ 4V2)|v2(t)− ṽ2(t)|

≤ κ||V − Ṽ ||, (7)

where

κ = max{2b+ 2V2, 1 + 4V2}. (8)
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Hence Π(V ) obeys Lipschitz condition regarding V (see [50]). Thus The-

orem 3.1 holds. ■

Theorem 3.2. Every solution to model (3) beginning from R2
+ is non-

negative.

Proof Label V (t0) = (V1(t0), V2(t0)) the initial value of model (3). Sup-

pose that ∃ a constant tv satisfying t0 < t < tv such that
v1(t) = 0, t0 < t < tv,

v1(tv) = 0,

v1(t
+
v ) < 0.

(9)

In the light of model (3), one gains

Dαv1(t)|v1(tv)=0 = a > 0. (10)

By Lemma 2.1, we can conclude that va(t
+
v ) > 0, which contradicts model

(3.5)(refer to [51]). Thus va(t) ≥ 0 ∀ t ≥ t0. In a same way, we can lightly

verify that v2(t) ≥ 0 ∀ t ≥ t0. ■

Theorem 3.3. All solutions of model (3) beginning from R2
+ are uni-

formly bounded.

Label

W (t) = v1(t) + v2(t). (11)

Then

DαW (t) = Dαv1(t) +Dαv2(t)

= a− bv1(t− ϑ)− v1(t)v
2
2(t)

+bv1(t) + v1(t)v
2
2(t)− v2(t− ϑ)

= −bv1(t− ϑ)− v2(t− ϑ) + a+ bV

≤ −min{b, 1}W (t) + a+ bV, (12)

which results in

DαW (t) + min{b, 1}W (t) ≤ a+ bV. (13)
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In view of Lemma 2.4, one gains

W (t) ≤
(
W (t0)−

a+ bV
min{b, 1}

)
Eα[−min{b, 1}(t− t0)

α]+
a+ bV

min{b, 1}
, (14)

then

W (t) → a+ bV
min{b, 1}

, as t → ∞. (15)

The proof of Theorem 3.3 comes to an end. ■

4 Bifurcation discussion of model (3)

In this part, we are about to deal with the stability trait and bifurca-

tion phenomenon of model (3). Obviously, model (3) admits one positive

equilibrium point E(v1∗, v2∗). where v1∗ =
a

b+ a2
,

v2∗ = a.
(16)

Label {
v̄1(t) = v1(t)− v1∗,

v̄2(t) = v2(t)− v2∗,
(17)

then {
v1(t) = v̄1(t) + v1∗,

v2(t) = v̄2(t) + v2∗.
(18)

Applying (18) and (3) brings about
dαv̄1(t)

dtα
= a− b[v̄1(t− ϑ) + v1∗]− (v̄1(t) + v1∗)(v̄2(t) + v2∗)

2

dαv̄2(t)

dtα
= b(v̄1(t) + v1∗) + (v̄1(t) + v1∗)(v̄2(t) + v2∗)

2

− [v̄2(t− ϑ) + v2∗].

(19)
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Linearizing system (19) at (0, 0) leads to
dαv̄1(t)

dtα
= −v22∗v̄1(t)− 2v1∗v2∗v̄2(t)− bv̄1(t− ϑ),

dαv̄2(t)

dtα
= (b+ v22∗)v̄1(t) + 2v1∗v2∗v̄2(t)− v̄2(t− ϑ).

(20)

The characteristic equation of Eq. (20) is given by

det

[
sα + v22∗ − be−sϑ 2v1∗v2∗

−(b+ v22∗) sα − 2v1∗v2∗ + e−sϑ

]
= 0, (21)

which brings about

s2α + α1s
α + α2 + (α3s

α + α4)e
−sϑ + α5e

−2sϑ = 0, (22)

where 

α1 = v22∗ − 2v1∗v2∗,

α2 = 2bv1∗v2∗,

α3 = −b,

α4 = 2bv1∗v2∗ + v22∗,

α5 = −b.

(23)

The following essential hypothesis is provided:

(Q1) α1 + α3 > 0, α2 + α4 + α5 > 0.

Lemma 4.1. Provided that (Q1) holds, then the positive equilibrium point

E(v1∗, v2∗) of model (3) is locally asymptotically stable.

Proof If ϑ = 0, then Eq.(22) turns into:

λ2 + (α1 + α3)λ+ α2 + α4 + α5 = 0. (24)

In the light of (Q1), the double roots λ1 and λ1 of (24) satify |arg(λ1)| >
απ
2 , |arg(λ2)| > απ

2 . Exploiting Lemma 2.2, one can understand that the

positive equilibrium point E(v1∗, v2∗) of model (3) is locally asymptotically

stable. The proof comes to an end. ■
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Now we rewrite Eq.(22) as

(s2α + α1s
α + α2)e

sα + α3s
α + α4 + α5e

−sα = 0. (25)

Label s = iϱ = ϱ
(
cos π

2 + i sin π
2

)
the root of Eq.(25). Then[

ϱ2α(cosαπ + i sinαπ) + α1ϱ
α
(
cos

απ

2
+ i sin

απ

2

)
+ α2

]
×(cos ϱϑ+ i sin ϱϑ) + α3ϱ

α
(
cos

απ

2
+ i sin

απ

2

)
+α4+α5(cos ϱϑ−i sin ϱϑ) = 0, (26)

which brings about {
b1 cos ϱϑ− b2 sin ϱϑ = b3,

b2 cos ϱϑ+ b4 sin ϱϑ = b5,
(27)

where 

b1 = c1ϱ
2α + c2ϱ

α + c3,

b2 = c4ϱ
2α + c5ϱ

α,

b3 = c6ϱ
α + c7,

b4 = c1ϱ
2α + c2ϱ

α + c8,

b5 = c9ϱ
α,

(28)

where 

c1 = cosαπ,

c2 = α1 cos
απ

2
,

c3 = α2 + α5,

c4 = sinαπ,

c5 = α1 sin
απ

2
,

c6 = −α3 cos
απ

2
,

c7 = −α4,

c8 = α2 − α5,

c9 = −α3 sin
απ

2
.

(29)
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In view of (27), one gains
cos ϱϑ =

b3b4 + b2b5
b1b4 + b22

,

sin ϱϑ =
b1b5 − b2b3
b1b4 + b22

(30)

and

(b3b4 + b2b5)
2 + (b1b5 − b2b3)

2 = (b1b4 + b22)
2. (31)

Using (31), one gains

η1ϱ
8α+η2ϱ

7α+η3ϱ
6α+η4ϱ

5α+η5ϱ
4α+η6ϱ

3α+η7ϱ
2α+η8ϱ

α+η9 = 0, (32)

where

η1 = (c21 + c24)
2,

η2 = 4(c21 + c24)
2(c1c2 + c4c5),

η3 = 4(c1c2 + c4c5)
2 + 2(c21 + c24)(c1c8 + c1c3 + c22 + c25)

− (c1c6 + c4c6)
2 − (c1c9 − c4c6)

2,

η4 = 2(c21 + c24)(c2c8 + c2c3)

− 2(c1c6 + c4c6)(c2c6 + c5c6 + c1c7)

− 2(c1c9 − c4c6)(c2c9 − c4c7 − c5c6),

η5 = (c1c8 + c1c3 + c22 + c25)
2 + 4(c1c2 + c4c5)(c2c8 + c2c3),

− (c2c6 + c5c6 + c1c7)
2 − 2(c1c6 + c4c6)(c6c8 + c2c7)

− (c2c9 − c4c7 − c5c6)
2 − 2(c1c9 − c4c6)(c3c9 − c5c7),

η6 = 4c3c8(c1c2 + c4c5) + 2(c1c8 + c1c3 + c22 + c25)(c2c8 + c2c3)

− 2c7c8(c1c6 + c4c6)− 2(c2c6 + c5c6 + c1c7)(c6c8 + c2c7)

− 2(c2c9 − c4c7 − c5c6)(c3c9 − c5c7),

η7 = 2c3c8(c1c8 + c1c3 + c22 + c25) + (c2c8 + c2c3)
2

− (c6c8 + c2c7)
2 − 2c7c8(c2c6 + c5c6 + c1c7)

− (c3c9 − c5c7)
2,

η8 = 2c3c8(c2c8 + c2c3)− 2c7c8(c6c8 + c2c7),

η9 = (c3c8)
2 − (c7c8)

2.

(33)

Label

Θ1(ϱ) = η1ϱ
8α + η2ϱ

7α + η3ϱ
6α + η4ϱ

5α
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+η5ϱ
4α + η6ϱ

3α + η7ϱ
2α + η8ϱ

α + η9. (34)

Suppose that

(Q2) |c3| < |c7|

is fulfilled, consider that dΘ1(ϱ)
dϱ > 0, ∀ ϱ > 0, then one easily know that

Eq.(32) admits at the very least one positive real root. Hence Eq.(25)

admits at the very least one couple of purely roots.

Suppose that Eq.(32) admits eight real roots (say ϱj > 0(j = 1, 2, · · · , 8).
In conformity with (30), one gains

ϑh
j =

1

ϱi

[
arccos

(
b3b4 + b2b5
b1b4 + b22

)
+ 2hπ

]
, (35)

where h = 0, 1, 2, · · · , j = 1, 2, · · · , 8. Label

ϑ0 = min
j=1,2,··· ,8

{ϑ0
j}, ϱ0 = ϱ|ϑ=ϑ0

. (36)

Now we list the following indispensable hypothesis:

(Q3) U1M1 + U2M2 > 0, where

U1 = 2αϱ2α−1
0 cos

(2α− 1)π

2
+ α1αϱ

α−1
0 cos

(α− 1)π

2

+ α3αϱ
α−1
0 cos

(α− 1)π

2
cos ϱ0ϑ0

+ α3αϱ
α−1
0 sin

(α− 1)π

2
sin ϱ0ϑ0,

U2 = 2αϱ2α−1
0 sin

(2α− 1)π

2
+ α1αϱ

α−1
0 sin

(α− 1)π

2

− α3αϱ
α−1
0 cos

(α− 1)π

2
sin ϱ0ϑ0

+ α3αϱ
α−1
0 sin

(α− 1)π

2
cos ϱ0ϑ0,

M1 =
(
α3ϱ

α
0 cos

απ

2
+ α4

)
ϱ0 sin ϱ0ϑ0

−
(
α3ϱ

α
0 sin

απ

2

)
ϱ0 cos ϱ0ϑ0,

M2 =
(
α3ϱ

α
0 cos

απ

2
+ α4

)
ϱ0 cos ϱ0ϑ0

+
(
α3ϱ

α
0 sin

απ

2

)
ϱ0 sin ϱ0ϑ0.

(37)

Lemma 4.2. Label s(ϑ) = ξ1(ϑ) + iξ2(ϑ) the root of (22) around θ = θ0
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obeying ξ1(ϑ0) = 0, ξ2(ϑ0) = ϱ0, then Re
[
ds
dϑ

]
ϑ=ϑ0,ϱ=ϱ0

> 0.

Proof Depending on (22), one gains

[
2αs2α−1 + α1αs

α−1
] ds

dϑ
+ α3αs

α−1e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)
(α3s

α + α4)− 2α5e
−2sϑ

(
ds

dϑ
ϑ+ s

)
= 0. (38)

By (38), one gets (
ds

dϑ

)−1

=
U

M
− ϑ

s
, (39)

where {
U = 2αs2α−1 + α1αs

α−1 + α3αs
α−1e−sϑ,

M = e−sϑs(α3s
α + α4) + 2α5ϑe

−2sϑ.
(40)

Then

Re

[(
ds

dϑ

)−1
]
= Re

[(
U

M

)−1
]
. (41)

Hence

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,ϱ=ϱ0

=
U1M1 + U2M2

M2
1 +M2

2

. (42)

Using (Q3), one gains

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ0,ϱ=ϱ0

> 0. (43)

The proof of Lemma 4.2 comes to an end. ■

Relying on the investigation above, the following result is lightly acquired.

Theorem 4.1. If (A1)-(A3) are fulfilled, the positive equilibrium point

E(v1∗, v2∗) of model (3) is locally asymptotically stable if ϑ remains in the

range [0, ϑ0) and model (3) is about to produce a Hopf bifurcation around

E(v1∗, v2∗) when ϑ passes through the number ϑ0.
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5 Control of bifurcation via delayed feed-

back controller

In this part, we are about to use PDα controller to control the stability

domain and Hopf bifurcation of model (3). The PDα controller is designed

as follows:

w1(t) = κ[v1(t)− v1(t− ϑ)], (44)

where κ stand for the gain coefficient, ϑ denotes a delay. Adding (44) to

the first equation of model (3), one gains
dαv1(t)

dtα
= a− bv1(t− ϑ)− v1(t)v

2
2(t) + κ[v1(t)− v1(t− ϑ)],

dαv2(t)

dtα
= bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ).

(45)

One can lightly know that model (45) owns the equilibrium point

E(v1∗, v2∗). Linearizing model (45) around E(v1∗, v2∗) leads to
dαv̄1(t)

dtα
= −(v22∗ − κ)v̄1(t)− 2v1∗v2∗v̄2(t)− (b+ κ)v̄1(t− ϑ),

dαv̄2(t)

dtα
= (b+ v22∗)v̄1(t) + 2v1∗v2∗v̄2(t)− v̄2(t− ϑ).

(46)

The characteristic equation of Eq. (46) is given by

det

[
sα + v22∗ − κ− (b+ κ)e−sϑ 2v1∗v2∗

−(b+ v22∗) sα − 2v1∗v2∗ + e−sϑ

]
= 0, (47)

which results in

s2α + β1s
α + β2 + (β3s

α + β4)e
−sϑ + β5e

−2sϑ = 0, (48)

where 

β1 = v22∗ − κ− 2v1∗v2∗,

β2 = 2(b− κ)v1∗v2∗,

β3 = 1− (b+ κ),

β4 = 2(b+ κ)v1∗v2∗ + v22∗ − κ,

β5 = −(b+ κ).

(49)
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The following essential hypothesis is provided:

(Q4) β1 + β3 > 0, β2 + β4 + β5 > 0.

Lemma 5.1. Provided that (Q4) holds, then the positive equilibrium point

E(v1∗, v2∗) of model (45) is locally asymptotically stable.

Proof If ϑ = 0, then Eq.(48) turns into:

λ2 + (β1 + β3)λ+ β2 + β4 + β5 = 0. (50)

In the light of (Q4), the double roots λ1 and λ1 of (50) satify |arg(λ1)| >
απ
2 , |arg(λ2)| > απ

2 . Exploiting Lemma 2.2, one can understand that the

positive equilibrium point E(v1∗, v2∗) of model (45) is locally asymptoti-

cally stable. The proof comes to an end. ■

Now we rewrite Eq.(50) as

(s2α + β1s
α + β2)e

sα + β3s
α + β4 + β5e

−sα = 0. (51)

Label s = iρ = ρ
(
cos π

2 + i sin π
2

)
the root of Eq.(51). Then[

ρ2α(cosαπ + i sinαπ) + β1ρ
α
(
cos

απ

2
+ i sin

απ

2

)
+ β2

]
×(cos ρϑ+ i sin ρϑ) + β3ρ

α
(
cos

απ

2
+ i sin

απ

2

)
+β4 +β5(cos ρϑ− i sin ρϑ) = 0, (52)

which results in {
e1 cos ρϑ− e2 sin ρϑ = e3,

e2 cos ρϑ+ e1 sin ρϑ = e5,
(53)

where 

e1 = f1ρ
2α + f2ρ

α + f3,

e2 = f4ρ
2α + f5ρ

α,

e3 = f6ρ
α + f7,

e4 = f1ρ
2α + f2ρ

α + f8,

e5 = f9ρ
α,

(54)
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where 

f1 = cosαπ,

f2 = β1 cos
απ

2
,

f3 = β2 + β5,

f4 = sinαπ,

f5 = β1 sin
απ

2
,

f6 = −β3 cos
απ

2
,

f7 = −β4,

f8 = β2 − β5,

f9 = −β3 sin
απ

2
.

(55)

In view of (53), we gain
cos ρϑ =

e3e4 + e2e5
e1e4 + e22

,

sin ρϑ =
e1e5 − e2e3
e1e4 + e22

(56)

and

(e3e4 + e2e5)
2 + (e1e5 − e2e3)

2 = (e1e4 + e22)
2. (57)

Using (57), one gains

ε1ρ
8α+ε2ρ

7α+ε3ρ
6α+ε4ρ

5α+ε5ρ
4α+ε6ρ

3α+ε7ρ
2α+ε8ρ

α+ε9 = 0, (58)

where 

ε1 = (f2
1 + f2

4 )
2,

ε2 = 4(f2
1 + f2

4 )
2(f1f2 + f4f5),

ε3 = 4(f1f2 + f4f5)
2 + 2(f2

1 + f2
4 )

× (f1f8 + f1f3 + f2
2 + f2

5 )

− (f1f6 + f4f6)
2 − (f1f9 − f4f6)

2,

ε4 = 2(f2
1 + f2

4 )(f2f8 + f2f3)

− 2(f1f6 + f4f6)(f2f6 + f5f6 + f1f7)

− 2(f1f9 − f4f6)(f2f9 − f4f7 − f5f6),
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and 

ε5 = (f1f8 + f1f3 + f2
2 + f2

5 )
2

+ 4(f1f2 + f4f5)(f2f8 + f2f3)

− (f2f6 + f5f6 + f1f7)
2

− 2(f1f6 + f4f6)(f6f8 + f2f7)

− (f2f9 − f4f7 − f5f6)
2

− 2(f1f9 − f4f6)(f3f9 − f5f7),

ε6 = 4f3f8(f1f2 + f4f5)

+ 2(f1f8 + f1f3 + f2
2 + f2

5 )(f2f8 + f2f3)

− 2f7f8(f1f6 + f4f6)− 2(f2f6 + f5f6 + f1f7)

× (f6f8 + f2f7)− 2(f2f9 − f4f7 − f5f6)

× (f3f9 − f5f7),

ε7 = 2f3f8(f1f8 + f1f3 + f2
2 + f2

5 )

+ (f2f8 + f2f3)
2 − (f6f8 + f2f7)

2

− 2f7f8(f2f6 + f5f6 + f1f7)− (f3f9 − f5f7)
2,

ε8 = 2f3f8(f2f8 + f2f3)− 2f7f8(f6f8 + f2f7),

ε9 = (f3f8)
2 − (f7f8)

2.

(59)

Label

Θ2(ρ) = ε1ρ
8α + ε2ρ

7α + ε3ρ
6α + ε4ρ

5α

+ε5ρ
4α + ε6ρ

3α + ε7ρ
2α + ε8ρ

α + ε9. (60)

Suppose that

(Q5) |f3| < |f7|

is fulfilled, consider that dΘ2(ρ)
dρ > 0, ∀ ρ > 0, then one easily know that

Eq.(58) admits at the very least one positive real root. Hence Eq.(51)

admits at the very least one couple of purely roots.

Suppose that Eq.(58) admits eight real roots (say ϱj > 0(j = 1, 2, · · · , 8).
In conformity with (56), one gains

ϑk
i =

1

ϱi

[
arccos

e3e4 + e2e5
e1e4 + e22

+ 2kπ

]
, (61)
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where k = 0, 1, 2, · · · , i = 1, 2, · · · , 8. Label

ϑ∗ = min
i=1,2,··· ,8

{ϑ0
j}, ρ0 = ρ|ϑ=ϑ∗ . (62)

Now we list the following indispensable hypothesis:

(Q6) S1T1 + S2T2 > 0, where

S1 = 2αρ2α−1
0 cos

(2α− 1)π

2
+ β1αρ

α−1
0 cos

(α− 1)π

2

+ β3αρ
α−1
0 cos

(α− 1)π

2
cos ρ0ϑ∗

+ β3αρ
α−1
0 sin

(α− 1)π

2
sin ρ0ϑ∗,

S2 = 2αρ2α−1
0 sin

(2α− 1)π

2
+ β1αρ

α−1
0 sin

(α− 1)π

2

− β3αρ
α−1
0 cos

(α− 1)π

2
sin ρ0ϑ∗

+ β3αρ
α−1
0 sin

(α− 1)π

2
cos ρ0ϑ∗,

T1 =
(
β3ρ

α
0 cos

απ

2
+ β4

)
ρ0 sin ρ0ϑ∗

−
(
β3ρ

α
0 sin

απ

2

)
ρ0 cos ρ0ϑ∗,

T2 =
(
β3ρ

α
0 cos

απ

2
+ α4

)
ρ0 cos ρ0ϑ∗

+
(
β3ρ

α
0 sin

απ

2

)
ρ0 sin ρ0ϑ∗.

(63)

Lemma 5.2. Label s(ϑ) = ς1(ϑ) + iς2(ϑ) the root of (48) around θ = θ∗

obeying ς1(ϑ∗) = 0, ς2(ϑ∗) = ϱ0, then Re
[
ds
dϑ

]
ϑ=ϑ∗,ρ=ρ0

> 0.

Proof Relying on (48), one gains

[
2αs2α−1 + β1αs

α−1
] ds

dϑ
+ β3αs

α−1e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)
(β3s

α + β4)− 2β5e
−2sϑ

(
ds

dϑ
ϑ+ s

)
= 0. (64)

By (64), one gets (
ds

dϑ

)−1

=
S

T
− ϑ

s
, (65)
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where {
S = 2αs2α−1 + β1αs

α−1 + β3αs
α−1e−sϑ,

T = e−sϑs(α3s
α + β4) + 2β5ϑe

−2sϑ.
(66)

Then

Re

[(
ds

dϑ

)−1
]
= Re

[(
S

T

)−1
]
. (67)

Hence

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ∗,ρ=ρ0

=
S1T1 + S2T2

T 2
1 + T 2

2

. (68)

Using (Q6), one gains

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ∗,ρ=ρ0

> 0. (69)

The proof of Lemma 5.2 comes to an end. ■

Relying on the investigation above, the following conclusion is lightly

gained.

Theorem 5.1. If (Q4)-(Q6) are fulfilled, the positive equilibrium point

E(v1∗, v2∗) of model (45) is locally asymptotically stable if ϑ keeps in

the range [0, ϑ∗) and model (45) will produces a Hopf bifurcation around

E(v1∗, v2∗) when ϑ exceeds the number ϑ∗.

6 Control of bifurcation via PDα controller

In this part, we are about to design PDα controller to control the stability

domain and Hopf bifurcation of model (3). The PDα controller is designed

as follows:

w2(t) = σp (v2(t− ϑ)− v2⋆) + σd
dα (v2(t)− v2⋆)

dtα
, (70)

where σp and σd ̸= 1 denote the proportional control coefficient and the

derivative control coefficient, respectively, ϑ is a delay. Adding (70) to the
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second equation of model (3), one gains
dαv1(t)

dtα
= a− bv1(t− ϑ)− v1(t)v

2
2(t),

dαv2(t)

dtα
= bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ)

+ σp (v2(t− ϑ)− v2⋆) + σd
dα (v2(t)− v2⋆)

dtα
.

(71)

Model (71) also takes the following expression:
dαv1(t)

dtα
= a− bv1(t− ϑ)− v1(t)v

2
2(t),

dαv2(t)

dtα
=

1

1− σd

[
bv1(t) + v1(t)v

2
2(t)− v2(t− ϑ)

+σp (v2(t− ϑ)− v2∗)] .

(72)

Obviously, model (72) has the unique positive equilibrium point

E(v1∗, v2∗). Linearizing model (72) at E(v1∗, v2∗) leads to
dαv̄1(t)

dtα
= −v22∗v̄1(t)− 2v1∗v2∗v̄2(t)− bv̄1(t− ϑ),

dαv̄2(t)

dtα
=

b+ v22∗
1− σd

v̄1(t) +
2v1∗v2∗
1− σd

v̄2(t)−
1− σp

1− σd
v̄2(t− ϑ).

(73)

The characteristic equation of Eq. (73) is given by

det

[
sα + v22∗ − be−sϑ 2v1∗v2∗

− b+v2
2∗

1−σd
sα − 2v1∗v2∗

1−σd
+

1−σp

1−σd
e−sϑ

]
= 0, (74)

which results in

s2α + γ1s
α + γ2 + (γ3s

α + γ4)e
−sϑ + γ5e

−2sα = 0, (75)
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where 

γ1 = v22∗ −
2v1∗v2∗
1− σd

,

γ2 =
2v1∗v2∗(b+ v22∗)− v22∗(2v1∗v2∗)

1− σd
,

γ3 =
1− σp

1− σd
− b,

γ4 =
2v1∗v2∗b

1− σd
+

v22∗(1− σp)

1− σd
,

γ5 = −b(1− σp)

1− σd
.

(76)

The following essential hypothesis is provided:

(Q7) γ1 + γ3 > 0, γ2 + γ4 + γ5 > 0.

Lemma 6.1. Provided that (Q7) holds, then the positive equilibrium point

E(v1∗, v2∗) of model (71) is locally asymptotically stable.

Proof If ϑ = 0, then Eq.(75) turns into:

λ2 + (γ1 + γ3)λ+ γ2 + γ4 + γ5 = 0. (77)

In the light of (Q7), the double roots λ1 and λ1 of (77) satisfy |arg(λ1)| >
απ
2 , |arg(λ2)| > απ

2 . Exploiting Lemma 2.2, one can understand that the

positive equilibrium point E(v1∗, v2∗) of model (71) is locally asymptoti-

cally stable. The proof comes to an end. ■

Now we rewrite Eq.(75) as

(s2α + γ1s
α + γ2)e

sα + γ3s
α + γ4 + γ5e

−sϑ = 0. (78)

Label s = iϕ = ϕ
(
cos π

2 + i sin π
2

)
the root of Eq.(78). Then[

ϕ2α(cosαπ + i sinαπ) + γ1ϕ
α
(
cos

απ

2
+ i sin

απ

2

)
+ γ2

]
×(cosϕϑ+ i sinϕϑ) + γ3ϕ

α
(
cos

απ

2
+ i sin

απ

2

)
+γ4 + γ5(cosϕϑ− i sinϕϑ) = 0, (79)
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which results in {
g1 cosϕϑ− g2 sinϕϑ = g3,

g2 cosϕϑ+ g4 sinϕϑ = g5,
(80)

where 

g1 = h1ϕ
2α + h2ϕ

α + h3,

g2 = h4ϕ
2α + h5ϕ

α,

g3 = h6ϕ
α + h7,

g4 = h1ϕ
2α + h2ϕ

α + h8,

g5 = h9ϕ
α,

(81)

where 

h1 = cosαπ,

h2 = γ1 cos
απ

2
,

h3 = γ2 + γ5,

h4 = sinαπ,

h5 = γ1 sin
απ

2
,

h6 = −γ3 cos
απ

2
,

h7 = −γ4,

h8 = γ2 − γ5,

h9 = −γ3 sin
απ

2
.

(82)

In view of (80), we gain
cosϕϑ =

g3g4 + g2g5
g1g4 + g22

,

sinϕϑ =
g1g5 − g2g3
g1g4 + g22

(83)

and

(g3g4 + g2g5)
2 + (g1g5 − g2g3)

2 = (g1g4 + g22)
2. (84)

Using (84), one gains

l1ϕ
8α+ l2ϕ

7α+ l3ϕ
6α+ l4ϕ

5α+ l5ϕ
4α+ l6ϕ

3α+ l7ϕ
2α+ l8ϕ

α+ l9 = 0, (85)



126

where

l1 = (h2
1 + h2

4)
2,

l2 = 4(h2
1 + h2

4)
2(h1h2 + h4h5),

l3 = 4(h1h2 + h4h5)
2 + 2(h2

1 + h2
4)(h1h8 + h1h3 + h2

2 + h2
5)

− (h1h6 + h4h6)
2 − (h1h9 − h4h6)

2,

l4 = 2(h2
1 + h2

4)(h2h8 + h2h3)

− 2(h1h6 + h4h6)(h2h6 + h5h6 + h1h7)

− 2(h1h9 − h4h6)(h2h9 − h4h7 − h5h6),

l5 = (h1h8 + h1h3 + h2
2 + h2

5)
2 + 4(h1h2 + h4h5)(h2h8 + h2h3),

− (h2h6 + h5h6 + h1h7)
2 − 2(h1h6 + h4h6)(h6h8 + h2h7)

− (h2h9 − h4h7 − h5h6)
2 − 2(h1h9 − h4h6)(h3h9 − h5h7),

l6 = 4h3h8(h1h2 + h4h5) + 2(h1h8 + h1h3 + h2
2 + h2

5)

× (h2h8 + h2h3)− 2h7h8(h1h6 + h4h6)

− 2(h2h6 + h5h6 + h1h7)(h6h8 + h2h7)

− 2(h2h9 − h4h7 − h5h6)(h3h9 − h5h7),

l7 = 2h3h8(h1h8 + h1h3 + h2
2 + h2

5) + (h2h8 + h2h3)
2

− (h6h8 + h2h7)
2 − 2h7h8(h2h6 + h5h6 + h1h7)

− (h3h9 − h5h7)
2,

l8 = 2h3h8(h2h8 + h2h3)− 2h7h8(h6h8 + h2h7),

l9 = (h3h8)
2 − (h7h8)

2.

(86)

Label

Θ3(ϕ) = l1ϕ
8α+l2ϕ

7α+l3ϕ
6α+l4ϕ

5α+l5ϕ
4α+l6ϕ

3α+l7ϕ
2α+l8ϕ

α+l9. (87)

Suppose that

(Q8) |h3| < |h7|

is fulfilled, consider that dΘ3(ϕ)
dϕ > 0, ∀ ϕ > 0, then one easily know that

Eq.(85) admits at the very least one positive real root. Hence Eq.(78)

admits at the very least one couple of purely roots.

Suppose that Eq.(85) admits eight real roots (say ϕi > 0(i = 1, 2, · · · , 8).
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In conformity with (83), one gains

ϑk
i =

1

ϱi

[
arccos

(
g3g4 + g2g5
g1g4 + g22

)
+ 2kπ

]
, (88)

where k = 0, 1, 2, · · · , i = 1, 2, · · · , 8. Label

ϑ⋆ = min
i=1,2,··· ,8

{ϑ0
i }, ϕ0 = ϕ|ϑ=ϑ⋆ . (89)

Now we list the following indispensable hypothesis:

(Q9) V1Z1 + V2Z2 > 0, where

V1 = 2αϕ2α−1
0 cos

(2α− 1)π

2
+ γ1αϕ

α−1
0 cos

(α− 1)π

2

+ γ3αϕ
α−1
0 cos

(α− 1)π

2
cos ϱ0ϑ0

+ γ3αϕ
α−1
0 sin

(α− 1)π

2
sinϕ0ϑ⋆,

V2 = 2αϕ2α−1
0 sin

(2α− 1)π

2
+ γ1αϕ

α−1
0 sin

(α− 1)π

2

− γ3αϕ
α−1
0 cos

(α− 1)π

2
sinϕ0ϑ⋆

+ γ3αϕ
α−1
0 sin

(α− 1)π

2
cosϕ0ϑ⋆,

Z1 =
(
γ3ϕ

α
0 cos

απ

2
+ γ4

)
ϕ0 sinϕ0ϑ⋆

−
(
γ3ϕ

α
0 sin

απ

2

)
ϕ0 cosϕ0ϑ⋆,

Z2 =
(
γ3ϕ

α
0 cos

απ

2
+ γ4

)
ϕ0 cosϕ0ϑ⋆

+
(
γ3ϕ

α
0 sin

απ

2

)
ϕ0 sinϕ0ϑ⋆.

(90)

Lemma 6.2. Label s(ϑ) = ζ1(ϑ) + iζ2(ϑ) the root of (75) around θ = θ⋆

obeying ζ1(ϑ⋆) = 0, ζ2(ϑ⋆) = ϕ0, then Re
[
ds
dϑ

]
ϑ=ϑ⋆,ϕ=ϕ0

> 0.

Proof Relying on (75), one gains

[
2αs2α−1 + γ1αs

α−1
] ds

dϑ
+ γ3αs

α−1e−sϑ ds

dϑ

−e−sϑ

(
ds

dϑ
ϑ+ s

)
(γ3s

α + γ4)− 2γ5e
−2sϑ

(
ds

dϑ
ϑ+ s

)
= 0. (91)
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By (91), one gets (
ds

dϑ

)−1

=
V

Z
− ϑ

s
, (92)

where {
V = 2αs2α−1 + γ1αs

α−1 + γ3αs
α−1e−sϑ,

Z = e−sϑs(γ3s
α + γ4) + 2γ5ϑe

−2sϑ.
(93)

Then

Re

[(
ds

dϑ

)−1
]
= Re

[(
V

Z

)−1
]
. (94)

Hence

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ⋆,ϕ=ϕ0

=
V1Z1 + V2Z2

Z2
1 + Z2

2

. (95)

Using (Q9), one gains

Re

[(
ds

dϑ

)−1
]
ϑ=ϑ⋆,ϕ=ϕ0

> 0. (96)

The proof of Lemma 6.2 comes to an end. ■

Relying on the exploration above, the following conclusion can be lightly

gained.

Theorem 6.1. If (Q7)-(Q9) are fulfilled, the positive equilibrium point

E(v1∗, v2∗) of model (3) is locally asymptotically stable if ϑ keeps in the

range [0, ϑ⋆) and model (3) is about to generate a Hopf bifurcation around

E(v1∗, v2∗) when ϑ exceeds the number ϑ⋆.

7 Computer simulations

In this part, we are about to perform computer simulation to check the

correctness of Theorem 4.1, Theorem 5.1 and Theorem 6.1 by computer.

We provide the three examples as follows.

Example 7.1. Give the following fractional-order delayed glycolytic os-
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cillator model:
d0.98v1(t)

dt0.98
= 0.5− 0.6v1(t− ϑ)− v1(t)v

2
2(t),

d0.98v2(t)

dt0.98
= 0.6v1(t) + v1(t)v

2
2(t)− v2(t− ϑ).

(97)

It is obvious that model (97) admits the unique equilibrium point E(0.59,

0.5). Exploiting computer software, we can lightly gain ϱ0 = 5.3341 and

ϑ0 = 0.85. The three conditions (Q1)-(Q3) for Theorem 4.1 are met. To

check the correctness of the assertion of Theorem 4.1, we consider two

unequal delay values. Label ϑ = 0.83 < ϑ0 = 0.85. Then the numeri-

cal simulation results of model (97) are presented in Figures 1-4. In the

light of Figures 1-4, we can lightly understand that the equilibrium point

E(0.59, 0.5) of model (97) maintains locally asymptotically stable status.

Figure 1 demonstrates that the variable v1 → 0.59 as t → ∞;
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Figure 1. The trajectory of model (97) concerning ϑ = 0.83 < ϑ0 =
0.85. The equilibrium point E(0.59, 0.5) of model (97)
remains locally asymptotically stable state. The variable
v1 → 0.59 as t → ∞.

Figure 2 demonstrates that the variable v2 → 0.5 as t → ∞;
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Figure 2. The trajectory of model (97) concerning ϑ = 0.83 < ϑ0 =
0.85. The equilibrium point E(0.59, 0.5) of model (97)
remains locally asymptotically stable state. The variable
v2 → 0.5 as t → ∞.

Figure 3 reveals the intercorrelations between variables v1 and v2 as

t → ∞;
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Figure 3. The phase diagram of model (97) concerning ϑ = 0.83 <
ϑ0 = 0.85. The equilibrium point E(0.59, 0.5) of model (97)
remains locally asymptotically stable state. The variable
v1 → 0.59 and the variable v2 → 0.5 as t → ∞.

Figure 4 demonstrates the intercorrelations among variables v1 and v2

and the time t. Label ϑ = 0.88 > ϑ0 = 0.85.
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Figure 4. The three-dimensional space of model (97) concerning ϑ =
0.83 < ϑ0 = 0.85. The equilibrium point E(0.59, 0.5) of
model (97) remains locally asymptotically stable state. It
shows the intercorrelations among variables v1, v2 and the
time t.

Then the numerical simulation results of model (97) are presented in

Figures 5-8. In the light of Figures 5-8, we can lightly understand that

a family of limit cycles (Hopf bifurcations) are about to appear around

the E(0.59, 0.5). Figure 5 demonstrates that the variable v1 is about to

preserve periodic vibration state around the number 0.59 as t → ∞;
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Figure 5. The trajectory of model (97) concerning ϑ = 0.88 > ϑ0 =
0.85. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v1 is about to produce
periodic vibration around the number 0.59 as t → ∞.
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Figure 6 demonstrates that the variable v2 is about to preserve periodic

vibration state around the number 0.5 as t → ∞;
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Figure 6. The trajectory of model (97) concerning ϑ = 0.88 > ϑ0 =
0.85. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v2 is about to produce
periodic vibration around the number 0.5 as t → ∞.

Figure 7 demonstrates the intercorrelations between the variables v1

and v2 as t → ∞;
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Figure 7. The phase diagram of model (97) concerning ϑ = 0.88 >
ϑ0 = 0.85. A family of limit cycles (Hopf bifurcations) ap-
pear around E(0.59, 0.5). The variables v1 and v2 is about
to produce periodic vibration around the numbers 0.59 and
0.5, respectively.

Figure 8 demonstrates the intercorrelations among the variables v1, v2
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and the time t.
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Figure 8. The three-dimensional space of model (97) concerning ϑ =
0.88 > ϑ0 = 0.85. A family of limit cycles (Hopf bifur-
cations) appear around E(0.59, 0.5). The variables v1 and
v2 is about to produce periodic vibration around the num-
bers 0.59 and 0.5, respectively. It shows the intercorrelations
among variables v1, v2 and the time t.

The bifurcation figures of model (97) are also presented in Figures 9-10.
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Figure 9. The bifurcation graph of model (97): ϑ versus v1. It shows
that the bifurcation value ϑ0 ≈ 0.85.
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Figure 10. The bifurcation graph of model (97): ϑ versus v2. It shows
that the bifurcation value ϑ0 ≈ 0.85.

Example 7.2. Give the following fractional-order controlled glycolysis

model with delay:
d0.98v1(t)

dt0.98
= 0.5− 0.6v1(t− ϑ)− v1(t)v

2
2(t) + 0.5[v1(t)− v1(t− ϑ)],

d0.98v2(t)

dt0.98
= 0.6v1(t) + v1(t)v

2
2(t)− v2(t− ϑ).

(98)

It is obvious that model (98) admits the unique equilibrium point E(0.59,

0.5). Exploiting computer software, we can lightly gain ρ0 = 2.0093 and

ϑ⋆ = 0.7. The three conditions (Q4)-(Q6) for Theorem 5.1 are met. To

check the correctness of the assertion of Theorem 5.1, we consider two

unequal delay values. Label ϑ = 0.66 < ϑ∗ = 0.7. Then the numerical

simulation results of model (98) are presented in Figures 11-14. In the

light of Figures 11-14, we can lightly understand that the equilibrium

point E(0.59, 0.5) of model (98) maintains locally asymptotically stable

status. Figure 11 demonstrates that the variable v1 → 0.59 as t → ∞;

Figure 12 demonstrates that the variable v2 → 0.5 as t → ∞; Figure 13

reveals the intercorrelations between variables v1 and v2 as t → ∞; Figure

14 demonstrates the intercorrelations among variables v1 and v2 and the

time t. Label ϑ = 0.8 > ϑ∗ = 0.7.
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Figure 11. The trajectory of model (98) concerning ϑ = 0.66 < ϑ∗ =
0.7. The equilibrium point E(0.59, 0.5) of model (98) re-
mains locally asymptotically stable state. The variable
v1 → 0.59 as t → ∞.
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Figure 12. The trajectory of model (98) concerning ϑ = 0.66 < ϑ∗ =
0.7. The equilibrium point E(0.59, 0.5) of model (98) re-
mains locally asymptotically stable state. The variable
v2 → 0.5 as t → ∞.
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Figure 13. The phase diagram of model (98) concerning ϑ = 0.66 <
ϑ∗ = 0.7. The equilibrium point E(0.59, 0.5) of model (98)
remains locally asymptotically stable state. The variable
v1 → 0.59 and the variable v2 → 0.5 as t → ∞.
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Figure 14. The three-dimensional space of model (98) concerning ϑ =
0.66 < ϑ∗ = 0.7. The equilibrium point E(0.59, 0.5) of
model (98) remains locally asymptotically stable state. It
shows the intercorrelations among variables v1, v2 and the
time t.

Then the numerical simulation results of model (98) are presented in

Figures 15-18. In the light of Figures 15-18, we can lightly understand that

a family of limit cycles (Hopf bifurcations) are about to appear around

the E(0.59, 0.5). Figure 15 demonstrates that the variable v1 is about to

preserve periodic vibration state around the number 0.59 as t → ∞;
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Figure 15. The trajectory of model (98) concerning ϑ = 0.8 > ϑ∗ =
0.7. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v1 is about to produce
periodic vibration around the number 0.59 as t → ∞.

Figure 16 demonstrates that the variable v2 is about to preserve peri-

odic vibration state around the number 0.5 as t → ∞;
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Figure 16. The trajectory of model (98) concerning ϑ = 0.8 > ϑ∗ =
0.7. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v2 is about to produce
periodic vibration around the number 0.59 as t → ∞.

Figure 17 demonstrates the intercorrelations between the variables v1

and v2 as t → ∞;
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Figure 17. The phase diagram of model (98) concerning ϑ = 0.8 >
ϑ∗ = 0.7. A family of limit cycles (Hopf bifurcations) ap-
pear around E(0.59, 0.5). The variables v1 and v2 is about
to produce periodic vibration around the numbers 0.59 and
0.5, respectively.

Figure 18 demonstrates the intercorrelations among the variables v1,

v2 and the time t.
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Figure 18. The three-dimensional space of model (98) concerning ϑ =
0.8 > ϑ∗ = 0.7. A family of limit cycles (Hopf bifurcations)
appear around E(0.59, 0.5). The variables v1 and v2 is
about to produce periodic vibration around the numbers
0.59 and 0.5, respectively. It shows the intercorrelations
among variables v1, v2 and the time t.

The bifurcation figures of model (98) are also presented in Figures 19-

20.
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Figure 19. The bifurcation graph of model (98): ϑ versus v1. It shows
that the bifurcation value ϑ0 ≈ 0.7.
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Figure 20. The bifurcation graph of model (98): ϑ versus v2. It shows
that the bifurcation value ϑ0 ≈ 0.7.

Example 7.3. Give the following fractional-order controlled glycolysis

model with delay:

d0.98v1(t)

dt0.98
= 0.5− 0.6v1(t− ϑ)− v1(t)v

2
2(t),

d0.98v2(t)

dt0.98
= 0.6v1(t) + v1(t)v

2
2(t)− v2(t− ϑ)

+ 0.3 (v2(t− ϑ)− v2⋆) + 0.5
d0.98 (v2(t)− v2⋆)

dt0.98
.

(99)

It is obvious that model (99) admits the unique equilibrium point E(0.59,

0.5). Exploiting computer software, we can lightly gain ϕ0 = 2.7723 and

ϑ⋆ = 0.59. The three conditions (Q7)-(Q9) for Theorem 5.1 are met. To

check the correctness of the assertion of Theorem 5.1, we consider two
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unequal delay values. Label ϑ = 0.57 < ϑ⋆ = 0.59. Then the numerical

simulation results of model (99) are presented in Figures 21-24. In the

light of Figures 21-24, we can lightly understand that the equilibrium point

E(0.59, 0.5) of model (99) maintains locally asymptotically stable status.

Figure 21 demonstrates that the variable v1 → 0.59 as t → ∞;
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Figure 21. The trajectory of model (99) concerning ϑ = 0.57 < ϑ⋆ =
0.59. The equilibrium point E(0.59, 0.5) of model (99) re-
mains locally asymptotically stable state. The variable
v1 → 0.59 as t → ∞.

Figure 22 demonstrates that the variable v2 → 0.5 as t → ∞;
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Figure 22. The trajectory of model (99) concerning ϑ = 0.57 < ϑ⋆ =
0.59. The equilibrium point E(0.59, 0.5) of model (99) re-
mains locally asymptotically stable state. The variable
v2 → 0.5 as t → ∞.

Figure 23 reveals the intercorrelations between variables v1 and v2 as

t → ∞;
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Figure 23. The phase diagram of model (99) concerning ϑ = 0.57 <
ϑ⋆ = 0.59. The equilibrium point E(0.59, 0.5) of model (99)
remains locally asymptotically stable state. The variable
v1 → 0.59 and the variable v2 → 0.5 as t → ∞.

Figure 24 demonstrates the intercorrelations among variables v1 and

v2 and the time t.
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Figure 24. The three-dimensional space of model (99) concerning ϑ =
0.57 < ϑ⋆ = 0.59. The equilibrium point E(0.59, 0.5) of
model (99) remains locally asymptotically stable state. It
shows the intercorrelations among variables v1, v2 and the
time t.

Label ϑ = 0.65 > ϑ⋆ = 0.59. Then the numerical simulation results

of model (99) are presented in Figures 25-28. In the light of Figures 5-8,

we can lightly understand that a family of limit cycles (Hopf bifurcations)

are about to appear around the E(0.59, 0.5). Figure 25 demonstrates that

the variable v1 is about to preserve periodic vibration state around the

number 0.59 as t → ∞;
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Figure 25. The trajectory of model (99) concerning ϑ = 0.65 > ϑ⋆ =
0.59. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v1 is about to produce
periodic vibration around the number 0.59 as t → ∞.

Figure 26 demonstrates that the variable v2 is about to preserve peri-

odic vibration state around the number 0.5 as t → ∞;

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

 v
2
(t

) 

Figure 26. The trajectory of model (99) concerning ϑ = 0.65 > ϑ⋆ =
0.59. A family of limit cycles (Hopf bifurcations) appear
around E(0.59, 0.5). The variable v2 is about to produce
periodic vibration around the number 0.5 as t → ∞.

Figure 27 demonstrates the intercorrelations between the variables v1

and v2 as t → ∞;
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Figure 27. The phase diagram of model (99) concerning ϑ = 0.65 >
ϑ⋆ = 0.59. A family of limit cycles (Hopf bifurcations)
appear around E(0.59, 0.5). The variables v1 and v2 is
about to produce periodic vibration around the numbers
0.59 and 0.5, respectively.

Figure 28 demonstrates the intercorrelations among the variables v1,

v2 and the time t.
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Figure 28. The three-dimensional space of model (99) concerning ϑ =
0.65 > ϑ⋆ = 0.59. A family of limit cycles (Hopf bifurca-
tions) appear around E(0.59, 0.5). The variables v1 and v2
is about to produce periodic vibration around the numbers
0.59 and 0.5, respectively. It shows the intercorrelations
among variables v1, v2 and the time t.

The bifurcation figures of model (99) are also presented in Figures 29-

30.
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Figure 29. The bifurcation graph of model (99): ϑ versus v1. It shows
that the bifurcation value ϑ⋆ ≈ 0.59.
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Figure 30. The bifurcation graph of model (99): ϑ versus v2. It shows
that the bifurcation value ϑ⋆ ≈ 0.59.

8 Conclusions

How to build a proper dynamical model to depict the change rule of

the concentrations of the various chemical substance has become an all-

important subject in chemistry. Relying on the previous research, we set

up a novel fractional-order delayed glycolytic oscillator model. The proper-

ties involving the existence and uniqueness, boundedness, non-negativeness

of the solution to fractional-order delayed glycolytic oscillator model are
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systematically analyzed. Making good use of Laplace transform, the sta-

bility theory and bifurcation knowledge of fractional differential system,

a new delay-independent criterion on the stability and the appearance

of bifurcation of the fractional-order delayed glycolytic oscillator model

is presented. Designing skillfully proper delayed-feedback controller and

PDα controller, we are succeed in regulating the stability domain and the

time of appearance of bifurcation for the fractional-order delayed glycolytic

oscillator model. The gained results of this work own momentous theoret-

ical guiding value in adjusting the concentration of fructose-6-phosphate

and the concentration of adenosine diphosphate in chemistry. The study

method is also exploited to seek bifurcation control aspect in plentiful

delayed dynamical systems in various fields.
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