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Abstract

A vertex-degree-based molecular structure descriptor was intro-
duced by Ivan Gutman, named the Sombor index. The Sombor in-
dex of a graph G is defined as SO(G) =

∑
uv∈E(G)

√
dG(u)2 + dG(v)2,

where dG(u) denotes the degree of the vertex u in G. In this pa-
per we determine the extremal values of Sombor index of tricyclic
graphs.

1 Introduction

In this paper, we only consider connected, simple and undirected graphs.

Let G be a graph with vertex set V (G) and edge set E(G), where |V (G)| =
n and |E(G)| = m. For v ∈ V (G), NG(v) denotes the set of all neighbors of

v, and dG(v) = |NG(v)| denotes the degree of vertex v in G. If dG(v) = 1,

then v is called a pendent vertex (or a leaf) of G and the unique edge

incident with a pendent vertex v is called a pendent edge of G. If there is

an edge from vertex u to vertex v, we indicate this by writing uv (or vu).

For uv ∈ E(G), denote by G− uv the subgraph of G obtained from G by

deleting the edge uv. For two nonadjacent vertices u and v of G, denote
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by G+uv the graph obtained from G by adding the edge uv. We refer the

reader to [1] for terminology and notation not given here.

The topological indices and graph invariants based on distances be-

tween vertices of a graph are widely used for characterizing molecular

graphs, predicting biological activity of chemical compounds, establishing

relationships between structure and properties of molecules, and making

their chemical applications. The Sombor index of a graph G is defined as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2

in [2], which is a vertex-degree-based molecular structure descriptor was

proposed by Ivan Gutman. This topological index was motivated by the ge-

ometric interpretation of the degree radius of an edge uv of G, which is the

distance from the origin to the ordered pair (dG(u), dG(v)). The Sombor

index gave rise to numerous publications on its mathematical properties

and chemical applications [3–12].

In recent years, the extreme value problem has been a hot topic in

Sombor index research. In the review [13] authors collected an enormous

number of bounds and extremal results related to the Sombor index and its

variants. Until now the graphs extremal Sombor index were determined

in the acyclic [2], unicyclic and bicyclic [14], and tetracyclic [15] cases.

The tricyclic case has not been considered so far. Inspired by the works

about unicyclic and bicyclic graphs extremal Sombor index done by Cruz

and Rada [14], we are concerned with the Sombor index of tricyclic graphs.

The main goal of this paper is to characterize the connected tricyclic graphs

with minimum and maximum Sombor index. For convenience, let Gn,3 be

the set of all the tricyclic graphs with n vertices.

2 Tricyclic graphs with the minimum Som-

bor index

In this section, we study the tricyclic graphs with the minimum Sombor

index. In order to find the minimum Sombor index over the set of Gn,3,

we will introduce two transformations that decrease the Sombor index.
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Lemma 2.1. Let G be a connected graph and w ∈ V (G) such that dG(w) ≥
3. The two paths of G are wu1u2 · · ·ur−1ur and wv1v2 · · · vq−1vq such that

dG(ur) = dG(vq) = 1, and dG(ui) = dG(vj) = 2 whenever 0 < i < r,

0 < j < q. Let G
′
= G− wv1 + urv1. Then, SO(G) > SO(G

′
).

w

u1

ur

ur−1

v1

v2

vq−1

vq

G

w

u1

ur−1

ur

v1

v2

vq
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G
′

Figure 1. Graphs used in Lemma 2.1.

Proof. Let G0 = G − {u1, · · · , ur, v1, · · · , vq} and x = dG(w) ≥ 3. We

distinguish the following three cases.

Case 1. If r > 1, q > 1, it follows that

SO(G)− SO(G
′
)

=
∑

v∈NG0
(w)

[√
dG(v)2 + x2 −

√
dG(v)2 + (x− 1)2

]

+
[√

x2 + 22 −
√
(x− 1)2 + 22

]
+
[√

22 + 12 −
√
22 + 22

]
+
[√

x2 + 22 −
√
22 + 22

]
>
√
x2 + 22 +

√
22 + 12 − 2

√
22 + 22

≥
√
13 +

√
5− 4

√
2 ≈ 0.1848 > 0

Case 2. If r = 1, q = 1. Since
[
x2 + 1

]
−

[
(x− 1)2 + 4

]
= 2x − 4 ≥ 2

for x ≥ 3, which means
√
x2 + 1−

√
(x− 1)2 + 4 > 0 for x ≥ 3. Then we
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have that

SO(G)− SO(G
′
)

=
∑

v∈NG0
(w)

[√
dG(v)2 + x2 −

√
dG(v)2 + (x− 1)2

]

+
[√

x2 + 1−
√
(x− 1)2 + 22

]
+
[√

x2 + 12 −
√
22 + 12

]
>
√
x2 + 1−

√
(x− 1)2 + 4 > 0

Case 3. If r = 1, q > 1, it follows that

SO(G)− SO(G
′
)

=
∑

v∈NG0
(w)

[√
dG(v)2 + x2 −

√
dG(v)2 + (x− 1)2

]

+
[√

x2 + 1−
√
(x− 1)2 + 22

]
+
[√

x2 + 22 −
√
22 + 22

]
>
√
x2 + 1− 2

√
2 ≥

√
10− 2

√
2 ≈ 0.3339 > 0

Thus, we complete the proof of Lemma 2.1.

Lemma 2.2. Let G be a connected graph with wv ∈ E(G) such that

dG(w) ≥ 3, dG(v) ≥ 2. The path of G is wu1u2 · · ·ur−1ur such that

dG(ur) = 1 and dG(ui) = 2 whenever 0 < i < r. Let G
′
= G− wv + vur.

Then, SO(G) > SO(G
′
).

w

v

w

v

u1 ur−1ur urur−1u1

G G
′

Figure 2. Graphs used in Lemma 2.2.
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Proof. Let G1 = G − {v, u1, · · · , ur} and x = dG(w) ≥ 3, y = dG(v) ≥ 2.

We distinguish the following two cases.

Case 1. If r > 1, it follows that

SO(G)− SO(G
′
)

=
∑

v0∈NG1
(w)

[√
dG(v0)2 + x2 −

√
dG(v0)2 + (x− 1)2

]

+
[√

x2 + 22 −
√
(x− 1)2 + 22

]
+
[√

x2 + y2 −
√
22 + y2

]
+
[√

22 + 12 −
√
22 + 22

]
>
√
x2 + 4−

√
(x− 1)2 + 4 +

√
5− 2

√
2

≥
√
13 +

√
5− 4

√
2 ≈ 0.1848 > 0

Case 2. If r = 1. Since
[
x2 + 1

]
−

[
(x− 1)2 + 4

]
= 2x− 4 ≥ 2 for x ≥ 3,

which means
√
x2 + 1−

√
(x− 1)2 + 4 > 0 for x ≥ 3. Then we have

SO(G)− SO(G
′
)

=
∑

v0∈NG1
(w)

[√
dG(v0)2 + x2 −

√
dG(v0)2 + (x− 1)2

]

+
[√

x2 + 1−
√
(x− 1)2 + 22

]
+
[√

x2 + y2 −
√
22 + y2

]
>
√
x2 + 1−

√
(x− 1)2 + 4 > 0

Thus, we complete the proof of Lemma 2.2.

Remark 1. By Lemma 2.1 and Lemma 2.2, a graph in Gn,3 with minimum

Sombor index must be a tricyclic graph without pendent vertices.

Thus, we only need to find the minimum Sombor index in the base

tricyclic graphs of n vertices.

Recall that if G ∈ Gn,3, the base B(G) is the minimal tricyclic subgraph

of G, which is the unique tricyclic subgraph of G containing no pendent

vertex. A tricyclic graph G can be constructed from B(G) by adding trees
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to some or all vertices of B(G). According to [16], we know that there are

precisely fifteen types of base tricyclic graphs in the set of Gn,3, which are

denoted by Ti(i = 1, 2, ..., 15), respectively. (see Figure.3)
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Figure 3. Bases in Gn,3.

In order to calculate the values of the Sombor index for all classes of

base tricyclic graphs with n vertices, we introduce the following definition.

Definition 1. T n
i denotes the set of graphs in Ti(i = 1, 5) with n ver-

tices. T n
i (l1) denotes the set of graphs in Ti(i = 2, 7, 8, 14) with n vertices.

T n
i (l1, l2) denotes the set of graphs in Ti(i = 4, 6, 11) with n vertices.

T n
i (l1, l2, l3) denotes the set of graphs in Ti(i = 3, 9, 12) with n vertices.
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T n
i (l1, l2, l3, l4) denotes the set of graphs in Ti(i = 10, 13) with n vertices.

T n
15(l1, l2, l3, l4, l5) denotes the set of graphs in T15 with n vertices. Note

that lk ≥ 1(k = 1, · · · , 5) is the length of the path connecting cycles or the

common path formed by cycles.

We give the values list of the Sombor index of the graphs in these

subclasses, shown in Table 1.

Table 1. The values of the Sombor index over the set of base tricyclic
graphs with n vertices

The tricyclic graph G belong to The value of the Sombor index of G

T n
1 2

√
2n+ 12

√
10− 8

√
2

T n
5 2

√
2n+ 16

√
5− 12

√
2

T n
2 (1)∪T n

8 (1) 2
√
2n+ 4

√
29 +

√
34 + 2

√
13− 10

√
2

T n
2 (≥ 2)∪T n

8 (≥ 2) 2
√
2n+ 5

√
29 + 3

√
13− 12

√
2

T n
3 (≥ 2, 1, 1)∪T n

6 (1, 1)∪T n
10(1, 1,≥ 2,≥ 2)∪T n

13(1, 1,≥ 2,≥ 2)∪
T n
15(1, 1,≥ 2,≥ 2,≥ 2)

2
√
2n+ 8

√
13− 10

√
2

T n
3 (≥ 2, 1,≥ 2)∪T n

6 (1,≥ 2)∪T n
10(≥ 2, 1,≥ 2,≥ 2)∪

T n
13(≥ 2, 1,≥ 2,≥ 2)∪T n

15(≥ 2, 1,≥ 2,≥ 2,≥ 2)
2
√
2n+ 10

√
13− 15

√
2

T n
3 (≥ 2,≥ 2,≥ 2)∪T n

6 (≥ 2,≥ 2)∪T n
10(≥ 2,≥ 2,≥ 2,≥ 2)∪

T n
13(≥ 2,≥ 2,≥ 2,≥ 2)∪T n

15(≥ 2,≥ 2,≥ 2,≥ 2,≥ 2)
2
√
2n+ 12

√
13− 20

√
2

T n
4 (≥ 2,≥ 2)∪T n

7 (≥ 2)∪T n
9 (≥ 2,≥ 2,≥ 2)∪T n

11(≥ 2,≥ 2)∪
T n
12(≥ 2,≥ 2,≥ 2)

2
√
2n+ 8

√
5 + 6

√
13− 16

√
2

T n
4 (1, 1)∪T n

9 (≥ 2, 1, 1)∪T n
11(1, 1)∪T n

12(1, 1,≥ 2) 2
√
2n+ 10 + 4

√
5 + 4

√
13− 12

√
2

T n
4 (≥ 2, 1)∪T n

9 (≥ 2,≥ 2, 1)∪T n
11(≥ 2, 1)∪T n

12(≥ 2, 1,≥ 2) 2
√
2n+ 5 + 6

√
5 + 5

√
13− 14

√
2

T n
7 (1)∪T n

9 (1,≥ 2,≥ 2)∪T n
12(≥ 2,≥ 2, 1) 2

√
2n+ 8

√
5 + 4

√
13− 11

√
2

T n
3 (1, 1, 1)∪T n

10(1, 1,≥ 2, 1)∪T n
13(1, 1,≥ 2, 1)∪T n

15(1, 1,≥ 2, 1,≥ 2) 2
√
2n+ 6

√
13− 5

√
2

T n
9 (1, 1, 1)∪T n

12(1, 1, 1) 2
√
2n+ 10 + 4

√
5 + 2

√
13− 7

√
2

T n
9 (1,≥ 2, 1)∪T n

12(≥ 2, 1, 1) 2
√
2n+ 5 + 6

√
5 + 3

√
13− 9

√
2

T n
10(1, 1, 1, 1)∪T n

13(1, 1, 1, 1)∪T n
15(1, 1, 1, 1,≥ 2) 2

√
2n+ 4

√
13

T n
14(1) 2

√
2n+ 12

√
5− 6

√
2

T n
14(≥ 2) 2

√
2n+ 16

√
5− 12

√
2

T n
15(1, 1, 1, 1, 1) 2

√
2n+ 2

√
13 + 5

√
2

By comparing the values in Table 1, we get that the minimum Sombor

index over the set of base tricyclic graphs with n vertices is attained in

T n
15(1, 1, 1, 1, 1). (see Figure.4)

From Lemma 2.1, 2.2 and Table 1, we can get the following theorem.

Theorem 2.3. Let G ∈ Gn,3, Then

SO(G) ≥ 2
√
2n+ 2

√
13 + 5

√
2 = SO(G̃)

where G̃ is the graph in T n
15(1, 1, 1, 1, 1).
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Figure 4. The tricyclic graph with minimum value of the Sombor in-
dex.

3 Tricyclic graphs with the maximum Som-

bor index

In this section, we study the tricyclic graphs with the maximum Sombor

index and give some valuable lemmas used frequently in the sequel section.

Lemma 3.1. Let φ(x, y) =
√
x2 + y2 −

√
(x+ 1)2 + y2, where x ≥ 1 and

y ≥ 1. Then, for any value of y ≥ 1, φ is decreasing as a function of x;

and for any value of x ≥ 1, φ is increasing as a function of y.

Proof. Since, x2
[
(x+ 1)2 + y2

]
− (x+1)2(x2 + y2) = −y2(2x+1) < 0 for

x ≥ 1 and y ≥ 1, which means x
√
(x+ 1)2 + y2 − (x + 1)

√
x2 + y2 < 0

for x ≥ 1 and y ≥ 1.

Then we obtain the partial derivative of the function φ about x is

∂φ(x, y)

∂x
=

x
√
(x+ 1)2 + y2 − (x+ 1)

√
x2 + y2

√
x2 + y2

√
(x+ 1)2 + y2

< 0

The partial derivative of the function φ about y is

∂φ(x, y)

∂y
=

y
√
(x+ 1)2 + y2 − y

√
x2 + y2

√
x2 + y2

√
(x+ 1)2 + y2

> 0

for x ≥ 1, and y ≥ 1.

Thus we complete the proof of Lemma 3.1.

Lemma 3.2 ( [17]). Let x1 ≥ x2 > s > 0 and c > 0. Then,√
(x1 + s)2 + c2 +

√
(x2 − s)2 + c2 >

√
x2
1 + c2 +

√
x2
2 + c2
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Corollary 3.3. Let x ≥ 2, y ≥ 2 and z > 0. Then√
(x+ y − 1)2 + z2 +

√
1 + z2 >

√
x2 + z2 +

√
y2 + z2

Proof. Reference Lemma 3.2, let x ≥ y > y − 1 ≥ 1, z > 0 and x = x1,

y = x2, s = y − 1, c = z, then we obtain
√
(x+ y − 1)2 + z2 +

√
1 + z2 >√

x2 + z2 +
√

y2 + z2.

In order to find the maximum Sombor index over the set of Gn,3, we

introduce two transformations that increase the Sombor index in our fol-

lowing result.

To identify nonadjacent vertices u and v of a graph G is to replace

these vertices by a single vertex w incident to all the edges which were

incident in G to either u or v. The resulting graph G/{x, y} has one less

vertex than G; To contract an edge e = uv of a graph G is to delete the

edge and then identify its ends. The resulting graph G/uv has one less

edge than G.

Lemma 3.4. Let G be a connected graph and u, v ∈ E(G) such that

dG(u) ≥ 2 and dG(v) ≥ 2. Note that NG(u) \ {v} ∩NG(v) \ {u} = ∅. Let

G
′
be a graph obtained by contracting the edge uv to a vertex w, further

adding a pendent vertex adjacent to the vertex w. Then

SO(G
′
) > SO(G)

G

u v

G
′

w

Figure 5. Graphs used in Lemma 3.4.

Proof. Let x = dG(u) ≥ 2, y = dG(v) ≥ 2

SO(G)− SO(G
′
)
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=
∑

v0∈NG(u)\{v}

[√
dG(v0)2 + x2 −

√
dG(v0)2 + (x+ y − 1)2

]

+
∑

v1∈NG(v)\{u}

[√
dG(v1)2 + y2 −

√
dG(v1)2 + (x+ y − 1)2

]

+
[√

x2 + y2 −
√
(x+ y − 1)2 + 12

]
<
√

x2 + y2 −
√
(x+ y − 1)2 + 1

=
√

x2 + y2 −
√
x2 + y2 + 2(x− 1)(y − 1)

Since x, y ≥ 2, we obtain that SO(G)− SO(G
′
) < 0.

Remark 2. Repeating the transformation in Lemma 3.4, any tree T of size

t attached to a graph can be changed into a star St+1, and the Sombor

index increases by Lemma 3.4. In addition, if G is a graph from Gn,3 with

maximum Sombor index, then the length of the base cycle in G is 3.

Lemma 3.5. Let G be a connected graph and u, v,m ∈ V (G), uv /∈ E(G)

such that dG(u) ≥ 2, dG(v) ≥ 2. Note that NG(u)∩NG(v) = {m}. Let G
′

be a graph obtained by identifying the vertices u, v and deleting one edge

of mu and mv, further adding a pendent vertex adjacent to the vertex m.

Then

SO(G
′
) > SO(G)

G G
′

m

u

v

m w

Figure 6. Graphs used in Lemma 3.5.
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Proof. Let x = dG(u) ≥ 2, y = dG(v) ≥ 2, z = dG(m)

SO(G)− SO(G
′
)

=
∑

v0∈NG(u)\{m}

[√
dG(v0)2 + x2 −

√
dG(v0)2 + (x+ y − 1)2

]

+
∑

v1∈NG(v)\{m}

[√
dG(v1)2 + y2 −

√
dG(v1)2 + (x+ y − 1)2

]

+
[√

x2 + z2 +
√

y2 + z2
]
−
[√

(x+ y − 1)2 + z2 +
√
12 + z2

]
<
[√

x2 + z2 +
√

y2 + z2
]
−
[√

(x+ y − 1)2 + z2 +
√
1 + z2

]
Using Corollary 3.3, we obtain that SO(G)− SO(G

′
) < 0.

Let T14(n, p1, p2, q1, q2, q3) ∈ Gn,3, where p1, p2, q1, q2, q3 ≥ 0 are the

number of pendent vertices and p1+p2+q1+q2+q3 = n−5, be a tricyclic

graph shown in Figure.7.

Let T15(n, q1, q2, q3, q4) ∈ Gn,3, where q1, q2, q3, q4 ≥ 0 are the number

of pendent vertices and q1+q2+q3+q4 = n−4, be a tricyclic graph shown

in Figure.7.

p1 p2

q1

q2

q1

q2

q3 q4

q3

Figure 7. T14(n, p1, p2, q1, q2, q3)(left) and T15(n, q1, q2, q3, q4)(right).

Remark 3. By Lemma 3.4 and Lemma 3.5, a graph in Gn,3 with maxi-
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mum Sombor index is of the form of T14(n, p1, p2, q1, q2, q3) or T15(n, q1, q2,

q3, q4).

To better understand the Remark 3, we give the Example 1.

Example 1. Let G ∈ Gn,3 and G has a base graph in T6. Note that

a, b, c, d, e, f, g, h, i, j, k ≥ 0 are the number of pendent vertices and j ≥
c+ d+ 1, k ≥ f + g + 1.

Using Lemma 3.4, we can obtain SO(G) < SO(G1) and SO(G1) <

SO(G2) (See Figure.8).
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Figure 8. Graphs of the forms G1 → G2.

Using Lemma 3.5, we can obtain SO(G2) < SO(G3) and SO(G3) <

SO(G4) (See Figure.9).
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Figure 9. Graphs of the forms G2 → G3 → G4.

Let k + 1 = q1, b+ i = q2, a+ e+ h+ 1 = q3, and j + 1 = q4, then we

obtain SO(G) < SO(T15(n, q1, q2, q3, q4)).

By the same way, we get that SO(G) < SO(T15(n, q1, q2, q3, q4)) for

those tricyclic graphs having a base graph in Ti(i = 1, 2, · · · , 13). More-

over, when tricyclic graph G has a base graph in Ti(i = 1, 2, · · · , 8, 11, 13),
we also have that SO(G) < SO(T14(n, p1, p2, q1, q2, q3)).

Thus, we only need to find the maximum Sombor index in the forms

of T14(n, p1, p2, q1, q2, q3) and T15(n, q1, q2, q3, q4).

Denote by f(x, y) =
√
x2 + y2, where x, y ≥ 1. Then we have φ(x, y) =

f(x, y)− f(x+ 1, y).
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Lemma 3.6. Let n ≥ 5. For any values of p1, p2, q1, q2, q3 ≥ 0 and

p1 + p2 + q1 + q2 + q3 = n− 5. We have that

SO(T14(n, p1, p2, q1, q2, q3)) < SO(T14(n, n− 5, 0, 0, 0, 0))

Proof. We first prove the following four inequalities:

(1) For any values of p1 ≥ p2 ≥ 1,

SO(T14(n, p1, p2, q1, q2, q3)) < SO(T14(n, p1 + 1, p2 − 1, q1, q2, q3))

∆1 = SO(T14(n, p1, p2, q1, q2, q3))− SO(T14(n, p1 + 1, p2 − 1, q1, q2, q3))

= p1 [f(p1 + 4, 1)− f(p1 + 5, 1)]− p2 [f(p2 + 3, 1)− f(p2 + 4, 1)]

+ [f(p2 + 3, 1)− f(p1 + 5, 1)]

+ [f(p1 + 4, p2 + 4)− f(p1 + 5, p2 + 3)]

+ [f(p1 + 4, q1 + 2)− f(p1 + 5, q1 + 2)]

− [f(p2 + 3, q1 + 2)− f(p2 + 4, q1 + 2)]

+ [f(p1 + 4, q2 + 2)− f(p1 + 5, q2 + 2)]

− [f(p2 + 3, q2 + 2)− f(p2 + 4, q2 + 2)]

+ [f(p1 + 4, q3 + 2)− f(p1 + 5, q3 + 2)]

− [f(p2 + 3, q3 + 2)− f(p2 + 4, q3 + 2)]

= [p1φ(p1 + 4, 1)− p2φ(p2 + 3, 1)] + [f(p2 + 3, 1)− f(p1 + 5, 1)]

+ [f(p1 + 4, p2 + 4)− f(p1 + 5, p2 + 3)]

+ [φ(p1 + 4, q1 + 2)− φ(p2 + 3, q1 + 2)]

+ [φ(p1 + 4, q2 + 2)− φ(p2 + 3, q2 + 2)]

+ [φ(p1 + 4, q3 + 2)− φ(p2 + 3, q3 + 2)]

Since p1 ≥ p2, using Lemma 3.1 we have that

∆1 < f(p1 + 4, p2 + 4)− f(p1 + 5, p2 + 3)

=
√

p21 + p22 + 8p1 + 8p2 + 32−
√

p21 + p22 + 10p1 + 6p2 + 34 < 0

By the same way, we can deduce the following inequalities (2) and (3).



754

(2) For any values of q1 ≥ q2 ≥ 1,

SO(T14(n, p1, 0, q1, q2, q3)) < SO(T14(n, p1, 0, q1 + 1, q2 − 1, q3))

(3) For any values of p1 ≥ q1 ≥ 1,

SO(T14(n, p1, 0, q1, 0, 0)) < SO(T14(n, p1 + 1, 0, q1 − 1, 0, 0))

(4) For any values of q1 ≥ p1 + 1,

SO(T14(n, p1, 0, q1, 0, 0)) < SO(T14(n, p1 − 1, 0, q1 + 1, 0, 0))

∆2 = SO(T14(n, p1, 0, q1, 0, 0))− SO(T14(n, p1 − 1, 0, q1 + 1, 0, 0))

= q1 [f(q1 + 2, 1)− f(q1 + 3, 1)]− p1 [f(p1 + 3, 1)− f(p1 + 4, 1)]

+ [f(p1 + 3, 1)− f(q1 + 3, 1)] + 2 [f(p1 + 4, 2)− f(p1 + 3, 2)]

+ [f(q1 + 2, 4)− f(q1 + 3, 4)]− [f(p1 + 3, 4)− f(p1 + 4, 4)]

+ [f(p1 + 4, q1 + 2)− f(p1 + 3, q1 + 3)]

= [q1φ(q1 + 2, 1)− p1φ(p1 + 3, 1)] + [f(p1 + 3, 1)− f(q1 + 3, 1)]

+2 [f(p1 + 4, 2)− f(p1 + 3, 2)] + [φ(q1 + 2, 4)− φ(p1 + 3, 4)]

+ [f(p1 + 4, q1 + 2)− f(p1 + 3, q1 + 3)]

Since q1 ≥ p1 + 1, using Lemma 3.1 we have that

q1φ(q1 + 2, 1)− p1φ(p1 + 3, 1) ≤ (p1 + 1)φ(p1 + 3, 1)− p1φ(p1 + 3, 1)

= φ(p1 + 3, 1)

= f(p1 + 3, 1)− f(p1 + 4, 1)

2[f(p1 + 4, 2)− f(p1 + 3, 2)] < 2[f(p1 + 4, 1)− f(p1 + 3, 1)]

φ(q1 + 2, 4)− φ(p1 + 3, 4) ≤ 0

Thus, we can get that

∆2 < [f(p1 + 3, 1)− f(p1 + 4, 1)] + [f(p1 + 3, 1)− f(q1 + 3, 1)]

+2 [f(p1 + 4, 1)− f(p1 + 3, 1)]

+ [f(p1 + 4, q1 + 2)− f(p1 + 3, q1 + 3)]
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< f(p1 + 4, q1 + 2)− f(p1 + 3, q1 + 3)

=
√
p21 + q21 + 8p1 + 4q1 + 20−

√
p21 + q21 + 6p1 + 6q1 + 18 ≤ 0

Using iteratively inequalities (1), (2), (3) and (4), we conclude that the

graph of the form T14(n, p1, p2, q1, q2, q3) with maximum value of the Som-

bor index is T14(n, n−5, 0, 0, 0, 0) or T14(n, 0, 0, n−5, 0, 0). (see Figure.10)

n− 5

n− 5

Figure 10. T14(n, n−5, 0, 0, 0, 0)(left) and T14(n, 0, 0, n−5, 0, 0)(right).

SO(T14(n, n− 5, 0, 0, 0, 0)) = (n− 5)
√
(n− 1)2 + 1 + 3

√
(n− 1)2 + 4

+
√
(n− 1)2 + 16 + 3

√
20

SO(T14(n, 0, 0, n− 5, 0, 0) = (n− 5)
√

(n− 3)2 + 1 + 2
√
(n− 3)2 + 16

+
√
32 + 4

√
20

It is easy to see that SO(T14(n, 0, 0, n − 5, 0, 0)) < SO(T14(n, n − 5, 0, 0,

0, 0)).

By using the method similar to the proof of Lemma 3.6, we can have

the following Lemma 3.7.

Lemma 3.7. Let n ≥ 4. For any values of q1, q2, q3, q4 ≥ 0 and q1 + q2 +

q3 + q4 = n− 4. We have that

SO(T15(n, q1, q2, q3, q4) < SO(T15(n, n− 4, 0, 0, 0))
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n− 4

T15(n, n− 4, 0, 0, 0)

Figure 11. Graph used in Lemma 3.7 and Lemma 3.8.

Lemma 3.8. Let n ≥ 5. We have that

SO(T14(n, n− 5, 0, 0, 0, 0)) > SO(T15(n, n− 4, 0, 0, 0))

Proof. For any values of n ≥ 5,

∆3 = SO(T14(n, n− 5, 0, 0, 0, 0))− SO(T15(n, n− 4, 0, 0, 0))

= 3
[√

(n− 1)2 + 4−
√
(n− 1)2 + 9

]
+ 3

√
20− 3

√
18

+
[√

(n− 1)2 + 16−
√
(n− 1)2 + 1

]
Consider a function f(n) = 3

[√
(n− 1)2 + 4−

√
(n− 1)2 + 9

]
, where

n ≥ 5. By Lemma 3.1, f(n) is strictly increasing for n ≥ 5.

When n ≥ 12, f(n) ≥ f(12) = 3
√
125 − 3

√
130, then ∆3 > 3

√
125 −

3
√
130 + 3

√
20− 3

√
18 > 0.

When 5 ≤ n ≤ 11, by simple calculations, we have that ∆3 > 0.

Hence, we can obtain that SO(T14(n, n−5, 0, 0, 0, 0)) > SO(T15(n, n−
4, 0, 0, 0)).

From Lemma 3.4− 3.8, we can get the following theorem.

Theorem 3.9. Let G ∈ Gn,3 and n ≥ 5. Then

SO(G) ≤ (n−5)
√
(n− 1)2 + 1+3

√
(n− 1)2 + 4+

√
(n− 1)2 + 16+3

√
20

with equality if and only if G is isomorphic to the graph T14(n, n− 5, 0, 0,

0, 0).
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