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Abstract

The first Zagreb index M1 of a graph G is equal to the sum
of squares of the vertex degrees of G. The repetition number of a
graph is the maximum multiplicity in the list of its vertex degrees.
In this note, we bound the first Zagreb index of a tree from both
below and above by expressions depending solely on its repetition
number.

1 Introduction

All graphs considered in this paper are simple and connected graphs. Let

G be a graph with vertex set V (G) and edge set E(G). The degree dG(v)

of a vertex v in G is the number of edges of G incident with v. The degree

sequence of a graph is the non-increasing sequence of its vertex degrees.

In a tree, a vertex of degree one is called a pendent vertex, and a vertex

of degree at least three is called a branching vertex. As usual, Sn and Pn

denote, respectively, the star and the path on n vertices. The first Zagreb

index, defined as
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M1(G) =
∑

u∈V (G)

(dG(u))
2,

is a widely studied degree-based topological index which was introduced

by Gutman and Trinajstić [9] in 1972 and elaborated in [10]. It is an

important molecular descriptor and has been closely correlated with many

chemical properties. Chemists are often interested in the first Zagreb index

of certain trees which represent some acyclic molecular structures. Gutman

and Das summarized the main mathematical properties ofM1 in the survey

[8]. For more results on this topic, we refer the readers the papers [2,4–7,

12–14] and the recent survey [1].

Motivated by the well-known fact in graph theory which states that

every graph (with no loops or multiedges) has two vertices with the same

degree, Caro and West [3] defined the repetition number rep(G) of a graph

G to be the maximum multiplicity in the list of its vertex degrees. The

main work of [3] is to established various lower bounds on rep(G) for trees,

maximal outerplanar graphs, planar triangulations, and claw-free graphs.

Roughly speaking, the repetition number provides a measure of regu-

larity of a simple graph. For an n−vertex graph G, the largest possible

value of rep(G) is n. If rep(G) = n, then G is regular. It is interesting

that both the first Zagreb index and the repetition number are degree-

based invariants of graphs. The purpose of the present paper is to find

some relationship between the two graph invariants, perhaps one possible

research direction is to determine the upper bound and lower bound of the

first Zagreb index of trees with given repetition number.

In [6,7], Goubko and Gutman established a remarkable result bounding

the minimum value of M1 of a tree in term of the number of pendent

vertices, and only with this parameter. Another purpose of the present

paper is provide a result with the fiavor of such type.

To state the results of this paper, we need some further terminologies

and notations.

Let n be a positive integer. A sequence of positive integers (n1, n2, ...,

nk) with n1 ≥ n2 ≥ ... ≥ nk ≥ 1 is said to be a partition of n if n =

n1+n2+ ...+nk. The set of all partitions of n is denoted by Pn. For more
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details on this topic, we refer the readers to the Chapter 4 of [11]. For a

positive integer n, we define a function f(n) as follows:

f(n) = max{(n1 + 2)2 + (n2 + 2)2 + ...+ (nk + 2)2 | 1 ≤ k ≤
n, (n1, n2, ..., nk) ∈ Pn}.

In the sequel, for convenience of discussion, for a tree T we always

use the symbol ∆(T ) to denote the maximum degree of T , and use the

symbol ri(T ) to denote the number of vertices of T with degree i, where

1 ≤ i ≤ ∆(T ).

Let Tr be the set of trees with repetition number r. Now we can state

the main result of the present paper.

Theorem 1.1. Let T ∈ Tr, where r ≥ 4. Then

4r + 2 ≤ M1(T ) ≤ f(r − 2) + 5r.

The lower bound is achieved if and only if T = Pr+2, and if T ∗ is a tree

satisfying the upper bound, then r1(T
∗) = r2(T

∗) = rep(T ∗).

The rest of this paper is organized as follows. In Section 2, we provide

some useful results which will help to prove our main result. We close

this paper in Section 3 by proving Theorem 1.1 and proposing some new

problems for research.

2 Preliminaries

The following theorem obtained by Gutman and Das [8] is an elementary

result on the first Zagreb index of trees.

Theorem 2.1. Let T be a tree on n vertices, then

4n− 6 ≤ M1(T ) ≤ n(n− 1).

The lower bound is attained if and only if T = Pn and the upper bound is

attained if and only if T = Sn.

A tree is called a caterpillar if the removal of all pendent vertices results

in a path. In [12], one author of the present paper obtained the following

result (see Lemma 3 of [12]).
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Lemma 2.2 ( [12]). Suppose T is an n−vertex non-caterpillar, then

there exists an n−vertex caterpillar T ′ such that T ′ and T have the same

degree sequence.

Lemma 2.3. For any tree T , rep(T ) = max{r1(T ), r2(T )}.
Proof. Suppose, to the contrary, that rep(T ) = ri(T ) holds for some

3 ≤ i ≤ ∆(T ). Set ∆(T ) = ∆ and rt = rt(T ) for each 1 ≤ t ≤ ∆(T ).

Assume that T has n vertices (and thus with n− 1 edges), then

r1 + r2 + ...+ r∆ = n. (1)

By the handshaking lemma,

r1 + 2r2 + ...+∆r∆ = 2 | E(T ) |= 2(n− 1). (2)

Now,

2(n− 1)

= r1 + 2r2 + 3r3 + ...+∆r∆ (by (2))

= (2r1 + 2r2 + 3r3 + ... + (i − 1)ri−1 + (i − 1)ri + (i + 1)ri+1 + ... +

∆r∆) + (ri − r1)

≥ 2(r1 + r2 + r3 + ...+ ri−1 + ri + ri+1 + ...+ r∆) + (ri − r1) (since

i ≥ 3)

= 2n+ (ri − r1) (by (1))

≥ 2n, (since ri = rep(T ) ≥ r1)

a contradiction. □

3 Proof of Theorem 1.1 and further discus-

sion

Proof. Set | V (T ) |= n. Since T ∈ Tr, r ≥ 4, thus n ≥ r + 1 ≥ 5. If

n = r+1, by Lemma 2.3, T has exactly (n−1) = r vertices with the same

degree one or two. Notice that T has at least two pendent vertices, it is

easy to see that T = Sr+1.

If n ≥ r + 2, note that Pr+2 ∈ Tr, by Theorem 2.1,

M1(T ) ≥ M1(Pn) ≥ M1(Pr+2) = 4(r + 2)− 6 = 4r + 2,



727

with equality if and only if n = r + 2 and T = Pr+2.

Therefore, the tree with the minimal first Zagreb index in Tr is either

Sr+1 or Pr+2. Notice that

M1(Sr+1)−M1(Pr+2)

=(r2 + r)− (4r + 2) = r(r − 3)− 2 > 0. (since r ≥ 4)

So Pr+2 is the sole graph in Tr that attains the minimal value of the

first Zagreb index.

Now we turn to determine the upper bound of M1(T ).

Let T ∗ be a tree with the maximal first Zagreb index in Tr and let π

be its degree sequence. By Lemma 2.2, we can always find a caterpillar

T ∗
c ∈ Tr with π as its degree sequence (if T ∗ is a caterpillar, we may set

T ∗
c = T ∗). Consequently,

M1(T
∗) = M1(T

∗
c ).

Set ri = ri(T
∗
c ) for each i ≤ ∆(T ∗

c ).

Claim 1. T ∗
c has at least one branching vertex.

Suppose, to the contrary, T ∗
c contains no branching vertex. Then T ∗

c

is a path. Since rep(T ∗
c ) = r, thus T ∗

c = Pr+2. Note that Sr+1 ∈ Tr, but

M1(Sr+1)−M1(Pr+2) = (r2 + r)− (4r+ 2) = r(r− 3)− 2 > 0, (since

r ≥ 4)

contradicting to the maximality of T ∗
c .

Claim 2. r1 ≥ r2.

Suppose, to the contrary, r1 < r2. Let T1 be the tree obtained from T ∗
c

by adding a new vertex x and joining x to one branching vertex u of T ∗
c .

By Lemma 2.3, it is clear that T1 ∈ Tr, but

M1(T1)−M1(T
∗
c ) = d2T1

(u)−d2T∗
c
(u)+d2T1

(x) = [dT∗
c
(u)+1]2−d2T∗

c
(u)+

1 = 2dT∗
c
(u) + 2 > 0,

contradicting to the maximality of T ∗
c .

Claim 3. r2 ≥ r1.

Suppose, to the contrary, r2 < r1. Let v be a pendent vertex of T ∗
c

and u the unique neighbor of v. Let T2 be the tree obtained from T ∗
c by

inserting a new vertex y on the edge uv. By Lemma 2.3, it is clear that

T2 ∈ Tr, but

M1(T2)−M1(T
∗
c ) = d2T2

(y) = 4,
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contradicting to the maximality of T ∗
c .

Now from Claim 2, Claim 3 and Lemma 2.3, we arrive at

r1 = r2 = rep(T ∗
c ) = rep(T ∗) = r. (3)

Let P = y0y1y2...yl−1yl be a longest path of T ∗
c , then y0, yl are two

pendent vertices. Recall that T ∗
c is a caterpillar, thus each vertex of degree

two lies on P . Now by (3), we can deduce that for the remaining r − 2

pendent vertices (other than y0 and yl), each is adjacent to some yi for

some 1 ≤ i ≤ l − 1.

Assume that T ∗
c has k branching vertices, by Claim 1 and (3), k ≥

1 and T ∗
c has exactly k + 2r vertices. We may further assume that

(d1, d2, ..., dk+2r) is the degree sequence of T ∗
c with

d1 ≥ d2 ≥ ... ≥ dk ≥ 3 > dk+1 = ... = dk+r = 2 > dk+r+1 = ... = dk+2r =

1.

Note that each branching vertex of T ∗
c has exactly two neighbors in the

path P = y0y1y2...yl−1yl and each pendent vertex (other than y0 and yl)

is adjacent to one branching vertex of T ∗
c , thus

(d1 − 2) + (d2 − 2) + ...(dk − 2) = r − 2, (4)

namely, (d1 − 2, d2 − 2, ..., dk − 2) is a partition of r − 2.

This leads to

M1(T
∗
c )

= d21 + d22 + ...d2k + 4r + r

= d21 + d22 + ...d2k + 5r

= f(r − 2) + 5r, (by the maximality of T ∗
c and the definition of the

function f(n))

by which the proof of Theorem 1.1 is completed. □

It is somewhat mysterious that we know much less about the structural

properties for the extremal trees with the maximum value of M1 of trees

in the class Tr other than that r1(T ) = r2(T ) = rep(T ) for each extremal

tree T . To get more information about the extremal trees, we need some

further notation.
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Let π be a partition of a positive integer n, we use the symbol p(π, n)

to denote the number of parts of the partition π. For examples, π1 =

(3, 1, 1, 1) is a partition of 6 with 4 parts, so p(π1, 6) = 4 and π2 = (3, 3, 1)

is a partition of 7 with 3 parts and hence p(π2, 7) = 3. Clearly, for any

positive integer n, two specific partitions (n) and (1, 1, ..., 1︸ ︷︷ ︸
n

) are two par-

titions of n with the minimal and maximal values of p(π, n) respectively.

So for a partition π ∈ Pn, we have

1 ≤ p(π, n) ≤ n. (5)

Corollary 3.1. Let T ∗ ∈ Tr (r ≥ 4) be a tree satisfying the right-hand

side equality in Theorem 1.1, namely, M1(T
∗) = f(r − 2) + 5r, then

2r + 1 ≤| V (T ∗) |≤ 3r − 2. (6)

Proof. From the proof of Theorem 1.1, we know that the degree sequence

of T ∗ has the following form

(d1, d2, ..., dk︸ ︷︷ ︸
k

, 2, ..., 2︸ ︷︷ ︸
r

, 1, ..., 1︸ ︷︷ ︸
r

),

where k is the number of branching vertices of T ∗ and (d1−2, d2−2, ..., dk−
2) is a partition of r−2 such that d21+d21+ ...+d2k = f(r−2). So according

to (5),

1 ≤ k ≤ r − 2.

Note that | V (T ∗) |= k + 2r, hence 2r + 1 ≤| V (T ∗) |≤ 3r − 2. □

Remark. We remark that for some specific integer r, the extremal trees

in Tr realizing the upper bound in Theorem 1 might have different num-

ber of vertices. In case of r = 6, the set of all partitions of 4 is P4 =

{(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}. It is easily checked that f(r − 2) =

f(4) = 36 is attained by two partitions (4) and (1, 1, 1, 1). In the class

T6, the maximum value of M1 is f(r − 4) + 5r = f(4) + 30 = 66. In

Figure 1, two trees in T6 with maximum value of M1 are depicted. The

tree T1 has 2r + 1 = 13 (attains the lower bound in (6)) vertices and the
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degree sequence (6, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1), while the tree T2

possesses 3r − 2 = 16 vertices (attains the upper bound in (6)) and the

degree sequence (3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1).

a q a a a a a a a a q q q q a a a a a a aa a a a a a a a
�A�@

T1 T2

Figure 1. Two trees T1 and T2 in T6 with maximum value of M1 = 66.

In the end of the paper, we leave the following problems which might

be worthwhile to study.

Problem. Could such type results as stated in Theorem 1.1 be extended

to some classes of graphs with more cycles, such as unicyclic and bicyclic

graphs?
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[2] B. Borovićanin, On the extremal Zagreb indices of trees with given
number of segments or given number of branching vertices, MATCH
Commun. Math. Comput. Chem. 74 (2015) 57–79.

[3] Y. Caro, D. B. West, Repetition number of graphs, El. J. Comb. 16
(2009) #R7.

[4] H. Deng, A unified approach to the extremal Zagreb indices for trees,
unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Com-
put. Chem. 57 (2007) 597–616.

[5] S. Filipovski, New bounds for the first Zagreb index, MATCH Com-
mun. Math. Comput. Chem. 85 (2021) 303–312.

[6] M. Goubko, Minimizing degree-based topological indices for trees with
given number of pendent vertices, MATCH Commun. Math. Comput.
Chem. 71 (2014) 33–46.



731

[7] I. Gutman, M. Goubko, Trees with fixed number of pendent vertices
with minimal first Zagreb index, Bull. Int. Math. Virt. Inst. 3 (2013)
161–164.

[8] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH
Commun. Math. Comput. Chem. 50 (2004) 83–92.
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pendence number with minimal first Zagreb index,MATCH Commun.
Math. Comput. Chem. 72 (2014) 775–782.


	Introduction 
	Preliminaries
	Proof of Theorem 1.1 and further discussion

