Bounding the First Zagreb Index of a Tree in Term of Its Repetition Number

Hong Lin ${ }^{a, *}$, Jianguo Qian ${ }^{b}$
${ }^{a}$ School of Sciences, Jimei University, Xiamen, Fujian, 361021, P.R.China
${ }^{b}$ School of Mathematics, Xiamen University, Xiamen, Fujian, 361005, P.R.China
linhong@jmu.edu.cn, jgqian@xmu.edu.cn

(Received October 11, 2022)

Abstract

The first Zagreb index M_{1} of a graph G is equal to the sum of squares of the vertex degrees of G. The repetition number of a graph is the maximum multiplicity in the list of its vertex degrees. In this note, we bound the first Zagreb index of a tree from both below and above by expressions depending solely on its repetition number.

1 Introduction

All graphs considered in this paper are simple and connected graphs. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex v in G is the number of edges of G incident with v. The degree sequence of a graph is the non-increasing sequence of its vertex degrees. In a tree, a vertex of degree one is called a pendent vertex, and a vertex of degree at least three is called a branching vertex. As usual, S_{n} and P_{n} denote, respectively, the star and the path on n vertices. The first Zagreb index, defined as

[^0]$$
M_{1}(G)=\sum_{u \in V(G)}\left(d_{G}(u)\right)^{2}
$$
is a widely studied degree-based topological index which was introduced by Gutman and Trinajstić [9] in 1972 and elaborated in [10]. It is an important molecular descriptor and has been closely correlated with many chemical properties. Chemists are often interested in the first Zagreb index of certain trees which represent some acyclic molecular structures. Gutman and Das summarized the main mathematical properties of M_{1} in the survey [8]. For more results on this topic, we refer the readers the papers $[2,4-7$, $12-14]$ and the recent survey [1].

Motivated by the well-known fact in graph theory which states that every graph (with no loops or multiedges) has two vertices with the same degree, Caro and West [3] defined the repetition number rep (G) of a graph G to be the maximum multiplicity in the list of its vertex degrees. The main work of [3] is to established various lower bounds on $\operatorname{rep}(G)$ for trees, maximal outerplanar graphs, planar triangulations, and claw-free graphs.

Roughly speaking, the repetition number provides a measure of regularity of a simple graph. For an n-vertex graph G, the largest possible value of $\operatorname{rep}(G)$ is n. If $\operatorname{rep}(G)=n$, then G is regular. It is interesting that both the first Zagreb index and the repetition number are degreebased invariants of graphs. The purpose of the present paper is to find some relationship between the two graph invariants, perhaps one possible research direction is to determine the upper bound and lower bound of the first Zagreb index of trees with given repetition number.

In $[6,7]$, Goubko and Gutman established a remarkable result bounding the minimum value of M_{1} of a tree in term of the number of pendent vertices, and only with this parameter. Another purpose of the present paper is provide a result with the fiavor of such type.

To state the results of this paper, we need some further terminologies and notations.

Let n be a positive integer. A sequence of positive integers $\left(n_{1}, n_{2}, \ldots\right.$, n_{k}) with $n_{1} \geq n_{2} \geq \ldots \geq n_{k} \geq 1$ is said to be a partition of n if $n=$ $n_{1}+n_{2}+\ldots+n_{k}$. The set of all partitions of n is denoted by \mathbb{P}_{n}. For more
details on this topic, we refer the readers to the Chapter 4 of [11]. For a positive integer n, we define a function $f(n)$ as follows:

$$
\begin{gathered}
f(n)=\max \left\{\left(n_{1}+2\right)^{2}+\left(n_{2}+2\right)^{2}+\ldots+\left(n_{k}+2\right)^{2} \mid 1 \leq k \leq\right. \\
\left.n,\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in \mathbb{P}_{n}\right\}
\end{gathered}
$$

In the sequel, for convenience of discussion, for a tree T we always use the symbol $\Delta(T)$ to denote the maximum degree of T, and use the symbol $r_{i}(T)$ to denote the number of vertices of T with degree i, where $1 \leq i \leq \Delta(T)$.

Let \mathbb{T}_{r} be the set of trees with repetition number r. Now we can state the main result of the present paper.
Theorem 1.1. Let $T \in \mathbb{T}_{r}$, where $r \geq 4$. Then

$$
4 r+2 \leq M_{1}(T) \leq f(r-2)+5 r
$$

The lower bound is achieved if and only if $T=P_{r+2}$, and if T^{*} is a tree satisfying the upper bound, then $r_{1}\left(T^{*}\right)=r_{2}\left(T^{*}\right)=\operatorname{rep}\left(T^{*}\right)$.

The rest of this paper is organized as follows. In Section 2, we provide some useful results which will help to prove our main result. We close this paper in Section 3 by proving Theorem 1.1 and proposing some new problems for research.

2 Preliminaries

The following theorem obtained by Gutman and Das [8] is an elementary result on the first Zagreb index of trees.
Theorem 2.1. Let T be a tree on n vertices, then

$$
4 n-6 \leq M_{1}(T) \leq n(n-1)
$$

The lower bound is attained if and only if $T=P_{n}$ and the upper bound is attained if and only if $T=S_{n}$.

A tree is called a caterpillar if the removal of all pendent vertices results in a path. In [12], one author of the present paper obtained the following result (see Lemma 3 of [12]).

Lemma 2.2 ([12]). Suppose T is an n-vertex non-caterpillar, then there exists an n-vertex caterpillar T^{\prime} such that T^{\prime} and T have the same degree sequence.
Lemma 2.3. For any tree $T, \operatorname{rep}(T)=\max \left\{r_{1}(T), r_{2}(T)\right\}$.
Proof. Suppose, to the contrary, that $\operatorname{rep}(T)=r_{i}(T)$ holds for some $3 \leq i \leq \Delta(T)$. Set $\Delta(T)=\Delta$ and $r_{t}=r_{t}(T)$ for each $1 \leq t \leq \Delta(T)$. Assume that T has n vertices (and thus with $n-1$ edges), then

$$
\begin{equation*}
r_{1}+r_{2}+\ldots+r_{\Delta}=n \tag{1}
\end{equation*}
$$

By the handshaking lemma,

$$
\begin{equation*}
r_{1}+2 r_{2}+\ldots+\Delta r_{\Delta}=2|E(T)|=2(n-1) . \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& 2(n-1) \\
& =r_{1}+2 r_{2}+3 r_{3}+\ldots+\Delta r_{\Delta} \quad(\text { by }(2)) \\
& =\left(2 r_{1}+2 r_{2}+3 r_{3}+\ldots+(i-1) r_{i-1}+(i-1) r_{i}+(i+1) r_{i+1}+\ldots+\right.
\end{aligned}
$$

$$
\left.\Delta r_{\Delta}\right)+\left(r_{i}-r_{1}\right)
$$

$$
\geq 2\left(r_{1}+r_{2}+r_{3}+\ldots+r_{i-1}+r_{i}+r_{i+1}+\ldots+r_{\Delta}\right)+\left(r_{i}-r_{1}\right) \quad \text { (since }
$$

$$
i \geq 3)
$$

$$
=2 n+\left(r_{i}-r_{1}\right) \quad(\text { by }(1))
$$

$$
\geq 2 n, \quad\left(\text { since } r_{i}=\operatorname{rep}(T) \geq r_{1}\right)
$$

a contradiction.

3 Proof of Theorem 1.1 and further discussion

Proof. Set $|V(T)|=n$. Since $T \in \mathbb{T}_{r}, r \geq 4$, thus $n \geq r+1 \geq 5$. If $n=r+1$, by Lemma 2.3, T has exactly $(n-1)=r$ vertices with the same degree one or two. Notice that T has at least two pendent vertices, it is easy to see that $T=S_{r+1}$.

If $n \geq r+2$, note that $P_{r+2} \in \mathbb{T}_{r}$, by Theorem 2.1,

$$
M_{1}(T) \geq M_{1}\left(P_{n}\right) \geq M_{1}\left(P_{r+2}\right)=4(r+2)-6=4 r+2
$$

with equality if and only if $n=r+2$ and $T=P_{r+2}$.
Therefore, the tree with the minimal first Zagreb index in \mathbb{T}_{r} is either S_{r+1} or P_{r+2}. Notice that
$M_{1}\left(S_{r+1}\right)-M_{1}\left(P_{r+2}\right)$
$=\left(r^{2}+r\right)-(4 r+2)=r(r-3)-2>0 . \quad($ since $r \geq 4)$
So P_{r+2} is the sole graph in \mathbb{T}_{r} that attains the minimal value of the first Zagreb index.

Now we turn to determine the upper bound of $M_{1}(T)$.
Let T^{*} be a tree with the maximal first Zagreb index in \mathbb{T}_{r} and let π be its degree sequence. By Lemma 2.2, we can always find a caterpillar $T_{c}^{*} \in \mathbb{T}_{r}$ with π as its degree sequence (if T^{*} is a caterpillar, we may set $\left.T_{c}^{*}=T^{*}\right)$. Consequently,

$$
M_{1}\left(T^{*}\right)=M_{1}\left(T_{c}^{*}\right)
$$

Set $r_{i}=r_{i}\left(T_{c}^{*}\right)$ for each $i \leq \Delta\left(T_{c}^{*}\right)$.
Claim 1. T_{c}^{*} has at least one branching vertex.
Suppose, to the contrary, T_{c}^{*} contains no branching vertex. Then T_{c}^{*} is a path. Since $\operatorname{rep}\left(T_{c}^{*}\right)=r$, thus $T_{c}^{*}=P_{r+2}$. Note that $S_{r+1} \in \mathbb{T}_{r}$, but
$M_{1}\left(S_{r+1}\right)-M_{1}\left(P_{r+2}\right)=\left(r^{2}+r\right)-(4 r+2)=r(r-3)-2>0, \quad$ (since $r \geq 4$)
contradicting to the maximality of T_{c}^{*}.
Claim 2. $\quad r_{1} \geq r_{2}$.
Suppose, to the contrary, $r_{1}<r_{2}$. Let T_{1} be the tree obtained from T_{c}^{*} by adding a new vertex x and joining x to one branching vertex u of T_{c}^{*}. By Lemma 2.3, it is clear that $T_{1} \in \mathbb{T}_{r}$, but
$M_{1}\left(T_{1}\right)-M_{1}\left(T_{c}^{*}\right)=d_{T_{1}}^{2}(u)-d_{T_{c}^{*}}^{2}(u)+d_{T_{1}}^{2}(x)=\left[d_{T_{c}^{*}}(u)+1\right]^{2}-d_{T_{c}^{*}}^{2}(u)+$ $1=2 d_{T_{c}^{*}}(u)+2>0$,
contradicting to the maximality of T_{c}^{*}.
Claim 3. $\quad r_{2} \geq r_{1}$.
Suppose, to the contrary, $r_{2}<r_{1}$. Let v be a pendent vertex of T_{c}^{*} and u the unique neighbor of v. Let T_{2} be the tree obtained from T_{c}^{*} by inserting a new vertex y on the edge $u v$. By Lemma 2.3, it is clear that $T_{2} \in \mathbb{T}_{r}$, but

$$
M_{1}\left(T_{2}\right)-M_{1}\left(T_{c}^{*}\right)=d_{T_{2}}^{2}(y)=4
$$

contradicting to the maximality of T_{c}^{*}.
Now from Claim 2, Claim 3 and Lemma 2.3, we arrive at

$$
\begin{equation*}
r_{1}=r_{2}=\operatorname{rep}\left(T_{c}^{*}\right)=\operatorname{rep}\left(T^{*}\right)=r \tag{3}
\end{equation*}
$$

Let $P=y_{0} y_{1} y_{2} \ldots y_{l-1} y_{l}$ be a longest path of T_{c}^{*}, then y_{0}, y_{l} are two pendent vertices. Recall that T_{c}^{*} is a caterpillar, thus each vertex of degree two lies on P. Now by (3), we can deduce that for the remaining $r-2$ pendent vertices (other than y_{0} and y_{l}), each is adjacent to some y_{i} for some $1 \leq i \leq l-1$.

Assume that T_{c}^{*} has k branching vertices, by Claim 1 and (3), $k \geq$ 1 and T_{c}^{*} has exactly $k+2 r$ vertices. We may further assume that $\left(d_{1}, d_{2}, \ldots, d_{k+2 r}\right)$ is the degree sequence of T_{c}^{*} with
$d_{1} \geq d_{2} \geq \ldots \geq d_{k} \geq 3>d_{k+1}=\ldots=d_{k+r}=2>d_{k+r+1}=\ldots=d_{k+2 r}=$ 1.

Note that each branching vertex of T_{c}^{*} has exactly two neighbors in the path $P=y_{0} y_{1} y_{2} \ldots y_{l-1} y_{l}$ and each pendent vertex (other than y_{0} and y_{l}) is adjacent to one branching vertex of T_{c}^{*}, thus

$$
\begin{equation*}
\left(d_{1}-2\right)+\left(d_{2}-2\right)+\ldots\left(d_{k}-2\right)=r-2 \tag{4}
\end{equation*}
$$

namely, $\left(d_{1}-2, d_{2}-2, \ldots, d_{k}-2\right)$ is a partition of $r-2$.
This leads to

$$
\begin{aligned}
& M_{1}\left(T_{c}^{*}\right) \\
& =d_{1}^{2}+d_{2}^{2}+\ldots d_{k}^{2}+4 r+r \\
& =d_{1}^{2}+d_{2}^{2}+\ldots d_{k}^{2}+5 r \\
& =f(r-2)+5 r, \quad \text { by the maximality of } T_{c}^{*} \text { and the definition of the }
\end{aligned}
$$ function $f(n)$) by which the proof of Theorem 1.1 is completed.

It is somewhat mysterious that we know much less about the structural properties for the extremal trees with the maximum value of M_{1} of trees in the class \mathbb{T}_{r} other than that $r_{1}(T)=r_{2}(T)=\operatorname{rep}(T)$ for each extremal tree T. To get more information about the extremal trees, we need some further notation.

Let π be a partition of a positive integer n, we use the symbol $p(\pi, n)$ to denote the number of parts of the partition π. For examples, $\pi_{1}=$ $(3,1,1,1)$ is a partition of 6 with 4 parts, so $p\left(\pi_{1}, 6\right)=4$ and $\pi_{2}=(3,3,1)$ is a partition of 7 with 3 parts and hence $p\left(\pi_{2}, 7\right)=3$. Clearly, for any positive integer n, two specific partitions (n) and $(\underbrace{1,1, \ldots, 1}_{n})$ are two partitions of n with the minimal and maximal values of $p(\pi, n)$ respectively. So for a partition $\pi \in \mathbb{P}_{n}$, we have

$$
\begin{equation*}
1 \leq p(\pi, n) \leq n \tag{5}
\end{equation*}
$$

Corollary 3.1. Let $T^{*} \in \mathbb{T}_{r}(r \geq 4)$ be a tree satisfying the right-hand side equality in Theorem 1.1, namely, $M_{1}\left(T^{*}\right)=f(r-2)+5 r$, then

$$
\begin{equation*}
2 r+1 \leq\left|V\left(T^{*}\right)\right| \leq 3 r-2 \tag{6}
\end{equation*}
$$

Proof. From the proof of Theorem 1.1, we know that the degree sequence of T^{*} has the following form

$$
(\underbrace{d_{1}, d_{2}, \ldots, d_{k}}_{k}, \underbrace{2, \ldots, 2}_{r}, \underbrace{1, \ldots, 1}_{r})
$$

where k is the number of branching vertices of T^{*} and $\left(d_{1}-2, d_{2}-2, \ldots, d_{k}-\right.$ 2) is a partition of $r-2$ such that $d_{1}^{2}+d_{1}^{2}+\ldots+d_{k}^{2}=f(r-2)$. So according to (5),

$$
1 \leq k \leq r-2
$$

Note that $\left|V\left(T^{*}\right)\right|=k+2 r$, hence $2 r+1 \leq\left|V\left(T^{*}\right)\right| \leq 3 r-2$.
Remark. We remark that for some specific integer r, the extremal trees in \mathbb{T}_{r} realizing the upper bound in Theorem 1 might have different number of vertices. In case of $r=6$, the set of all partitions of 4 is $\mathbb{P}_{4}=$ $\{(4),(3,1),(2,2),(2,1,1),(1,1,1,1)\}$. It is easily checked that $f(r-2)=$ $f(4)=36$ is attained by two partitions (4) and (1, 1, 1, 1). In the class \mathbb{T}_{6}, the maximum value of M_{1} is $f(r-4)+5 r=f(4)+30=66$. In Figure 1, two trees in \mathbb{T}_{6} with maximum value of M_{1} are depicted. The tree T_{1} has $2 r+1=13$ (attains the lower bound in (6)) vertices and the
degree sequence $(6,2,2,2,2,2,2,1,1,1,1,1,1)$, while the tree T_{2} possesses $3 r-2=16$ vertices (attains the upper bound in (6)) and the degree sequence $(3,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1)$.

Figure 1. Two trees T_{1} and T_{2} in \mathbb{T}_{6} with maximum value of $M_{1}=66$.

In the end of the paper, we leave the following problems which might be worthwhile to study.
Problem. Could such type results as stated in Theorem 1.1 be extended to some classes of graphs with more cycles, such as unicyclic and bicyclic graphs?

Acknowledgment: This project is supported by the Foundation of Fujian Provincial Department of Education(JAT190325).

References

[1] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5-84.
[2] B. Borovićanin, On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices, MATCH Commun. Math. Comput. Chem. 74 (2015) 57-79.
[3] Y. Caro, D. B. West, Repetition number of graphs, El. J. Comb. 16 (2009) \#R7.
[4] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597-616.
[5] S. Filipovski, New bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 85 (2021) 303-312.
[6] M. Goubko, Minimizing degree-based topological indices for trees with given number of pendent vertices, MATCH Commun. Math. Comput. Chem. 71 (2014) 33-46.
[7] I. Gutman, M. Goubko, Trees with fixed number of pendent vertices with minimal first Zagreb index, Bull. Int. Math. Virt. Inst. 3 (2013) 161-164.
[8] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[9] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[10] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[11] M. Hall, Combinatorial Theory, Wiley, New York, 1986.
[12] H. Lin, On segments, vertices of degree two and the first Zagreb index of trees, MATCH Commun. Math. Comput. Chem. 72 (2014) 825834.
[13] R. Rasi, S. M. Sheikholeslami, A. Behmaram, An upper bound on the first Zagreb index in trees, Iran. J. Math. Chem. 8 (2017) 71-82.
[14] A. Vasilyev, R. Darda, D. Stevanović, Trees of given order and independence number with minimal first Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014) 775-782.

[^0]: *Corresponding author.

