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Abstract

A general vertex-degree-based (VDB) topological index of a gr-
aph G is defined as

Tr=TiG) = Y fldc(u),da(v)),

uweE(G)

where f(z,y) > 0 is a symmetric real function with x > 1 and
y > 1. Let CT, be the set of all chemical trees of order n, and
let Ty = max{7;(T) | T € CT»}. A chemical tree T € CT, is an
n-optimal 7} chemical tree if T;(T) = T}.

One important topic in chemical graph theory is the extremal
value problem of VDB topological indices over CT . In this work,
we get the following results.

(1) We propose six conditions (C1)-(C6) for the symmetric real
function f(z,y). For a VDB topological index T satisfied the condi-
tions (C1)-(C6), we obtained the necessary and sufficient conditions
for T € CT» to be an n-optimal 7y chemical tree.

(2) For twenty-five VDB topological indices (as shown in Table
4.1 of Section 4), the n-optimal 7; chemical trees are characterized,
and the maximum 7; values are determined, too.
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1 Introduction

A general vertex-degree-based (VDB for short) topological index of a
graph G is given by

7} = 7}(G) = Z f(dG(u)7dG(v))7 (1)

uwveE(G)

where f(z,y) > 0 is a symmetric real function with x > 1 and y > 1.

A tree T is a chemical tree (or molecular tree) if dr(v) < 4 for v €
V(T). Let CT,, be the set of all chemical trees of order n, and let Tf =
max{7;(T) | T € CT,}. A chemical tree T € CT,, is an n-optimal Ty
chemical tree if T;(T) = Ty.

The problem of finding extremal values of a VDB topological index over
CT, has attracted considerable attention in the mathematical-chemistry
literature. It is well known that the n-optimal 7; chemical trees of some
VDB topological indices T have been determined, for example, the Randié

index x (f(z,y) = \/%) [1,2]; geometrical-arithmetic index GA (f(z,y) =

Qz‘i?) [3,4]; arithmetic-geometric index AG (f(z,y) = ;jm%) [3,4]; Har-
monic index H (f(z,y) = z%_y) [5]; first Zagreb index My (f(z,y) = x+y)

[6,7]; second Zagreb index My (f(z,y) = zy) [6,7]; forgotten index F
(f(z,y) = 2®+y?) [8]; symmetric division deg index SDD (f(z,y) = T+2)
[9]; Sombor index SO (f(x,y) = /22 + y2) [10,11]; reduced Sombor in-
dex SOyeq (f(z,y) = /(x —1)2+ (y — 1)2) [10]; inverse sum indeg in-
dex IS8T (f(z,y) = ;—fy) [12]; and exponential first Zagreb index eM:

(f(z,y) =e™*v) [7].
In this paper, we study VDB topological indices over C7,,. The main

aim is to establish a general theorem that can capture the common prop-
erties necessary for the n-optimal 7; chemical trees of all VDB topological
indices 7 satisfying certain conditions. We also apply our results to obtain
the maximum values of some VDB topological indices over CT .

In Section 2, we propose six conditions for the symmetric real function
f(xz,y), and prove that for a VDB topological index T; satisfied these
conditions, if a chemical tree 1" is an n-optimal 7 chemical tree, then the

number of 2-vertices and 3-vertices in 7" is at most one.
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In Section 3, we obtain the necessary and sufficient conditions for a
chemical tree to be an n-optimal 7; chemical tree when the VDB topolog-
ical index Ty satisfied these conditions.

In Section 4, as an application of the main theorem in Section 3, for
twenty-five VDB topological indices Ty (as shown in Table 4.1 of Section
4), we completely characterize the n-optimal 7; chemical trees, and the

maximum 7 values are determined, too.

2 Lemmas

Let f(x,y) > 0 be a symmetric real function with z > 1 and y > 1. In
this section, we will consider the VDB topological indices 7T satisfied the
following conditions:

(C1) W>Oand%20forz>landy21;

(C2) f(1,4) = £(2,2) = 0;

(C3) f(1,3) + £(3,4) — f(2,2) = f(2,4) = 0;
(C4) f(2,4) + f(3,4) —2f(3,3) > 0;

(C5) f(2,2) + f(4,4) — f(1,3) = f(3,4) = 0;
(C6) f(1,2) + f(4,4) — f(1,3) = f(3,3) = 0.

Lemma 2.1. Let f(z,y) > 0 be a symmetric real function satisfied the
condition (C1). Then for any fixed y > 1, we have

(1) f(Ly) + f(4y) = f2,9) + f3,9);

(2) f(Ly) + f(3,y) = 2 (2,9);

(3) F(2,9) + f(4y) = 2f(3,y).

Proof. By Mean Value Theorem, §
fLy)+ f4,y) — f(2,y) = fBy) = f(4y) — fFBy) — (f(2,9) — f(L,v)
= f2(011,y) — f2(012,y) >0,

f(lvy) +f(37y) - 2f(27y) = f('?’vy) - f(27y) - (f(27y) - f(lvy))
= f2(021,y) — fo(622,9) >0,

= fa’:(ei”lay) - fa’c(0323y) Z 07
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where 01, € (3,4), 012 € (1,2), 021 € (2,3), 00 € (1,2), 031 € (3,4), and
O35 € (2,3). [ |

Let T be a tree of order n. A vertex v € V(T') will be called k-vertex if
dr(v) =k, and a edge uv € E(T) will be called a (k, ¢)-edge if dp(u) = k
and dr(v) = £. Let us denote by ng(T) the number of k-vertices of T', and
my.¢(T) the number of (k, £)-edges of T'.

Lemma 2.2. Letn > 7, f(z,y) > 0 be a symmetric real function sat-
isfied the conditions (C1)-(C6), and let T € CT,, be n-optimal Ty. Then
mz’g(T) =0.

Ui u v (%} ur u v

T T

Figure 1. The chemical trees T and T’ for Lemma 2.2.

Proof. Suppose to the contrary that mos(T) > 1, that is, there is uv €
E(T) such that dpr(u) = 3 and dr(v) = 2. Let Np(u) = {v,u1,uz},
Nr(v) ={u,v1}, and 7" = T —vvy +uw; (as depicted in Fig. 1). We claim
that T3(T") > T;(T).

Note that

TH(T") = Ts(T) = f(4,dr(ur)) + f(4,dr(uz)) + f(4,dr(v1)) + f(1,4)
— f(3,dr(ur)) — f(3,dr(u2)) — f(2,dr(v1)) — f(2,3).

Since n > 7, max{dr(u1), dr(uz),dr(v1)} > 2. Without loss of generality,
U2

dr
we assume that dp(up) < dp(us).

Case 1. 2 < dp(v1) < 3.

From the condition (C1), we deduce that f(4,dr(u1)) > f(3,dr(u1)),
Fdr(uz)) > fG3dr(ua), F(L4) > f(1,dp(0r)), and f(3,dr(vr)) >
£(2,3). By Lemma 2.1, we get f(4,dr(v1))+ F(1, dr(v1)) > £(2, dp(vr)) +
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f(3,dr(v1)). Then

TH(T') = T4(T) > f(4,dr(v1)) + f(1,dr(v1)) = f(2,dr(v1)) — f(2,3)
2 f(2,dr(v1)) + f3,dr(v1)) = f(2,dr(v1)) — £(2,3) = 0.

Case 2. dp(v1) = 4.

From the condition (C1), we deduce that f(4,dr(u1)) > f(3,dr(u1))
and f(4,dr(u2)) > f(3,dr(uz)). By Lemma 2.1, we get f(4,4)+ f(1,4) >
f(2,4)+ f(3,4) > f(2,4) + f(2,3). So

Tr(T') = T(T) > f(4,4) + f(1,4) = f(2,4) — f(2,3) > 0.

Case 3. dr(u2) = 4.

From the condition (C1), we deduce that f(4,dr(u1)) > f(3,dr(u1))
and f(4,dr(vi)) > f(2,dr(vi)). By Lemma 2.1, f(4,4) + f(1,4) >
F(2,4)+ f(3,4) > £(2,3) + f(3,4). Then

TH(T') = T(T) > f(4,4) + f(1,4) = f(3,4) — f(2,3) > 0.

Case 4. dT(Ul) =1 and dT(ul) = dT(UQ> = 3.
From the conditions (C1), (C2) and (C4), we have f(2,4) > f(2,3),

f(2,2) > f(1,2), f(1,4) = f(2,2), and f(3,4) = 2f(3,3) — f(2,4). By
Lemma 2.1, f(1,4) + f(3,4) > 2f(2,4). So

Tr(T') = T(T) = (f(3,4) + f(1,4)) + f(3,4) + f(1,4) — 2/(3,3)
- f(1,2) = £(2,3)
>21(2,4)+2f(3,3) — f(2,4) + f(2,2) — 2f(3,3)
- f(1,2) - f(2,3)
=f(2,4)+ f(2,2) — f(1,2) — f(2,3) > 0.
Case 5. dr(vi1) =1 and dr(u1) =2 (or dr(v1) = 1 and dr(ug) = 2)

From the conditions (C1) and (C2), we deduce that f(4,dr(ugz)) >
f3,dr(uz)), and f(1,4) > f(2,2) > f(1,2). By Lemma 2.1, we get
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£(2,4) + f(2,2) > 2f(2,3). Then

7}(T/) - 7—f(T) > f(274) + 2f(174) - 2f(2’3) - f(172)
> £(2,4) + £(2,2) — 2£(2,3) > 0.

So T;(T") > T;(T) and it contradicts that T is an n-optimal 7 chem-

ical tree. n

Lemma 2.3. Letn > 7, f(z,y) > 0 be a symmetric real function satisfied
the conditions (C1)-(C6), and T € CT,, be n-optimal Ty. Then mq o(T) =
0.

Proof. Suppose to the contrary that mgo(T) > 1. We claim that there
exists a chemical tree 7" € CT,, such that T;(T") > T;(T).

Case 1. ny(T) = 0.

By Lemma 2.2, mg3(T) = 0. Then n3(T) = 0, and T is a path as
depicted in Fig. 2. Let T/ = T — v1vs — v9v3 — U304 — U4V5 + V501 + V502 +

Vg3 + V4.

U1 V2 o Un—1 VUn

T
Figure 2. The chemical trees T and T” for Case 1 of Lemma 2.3.

If n = 7, then from the conditions (C1) and (C2), we have f(1,3) >
£(1,2), and f(1,4) > £(2,2). By Lemma 2.1, f(1,4)+ £(3,4) > 2/(2,4) >
2£(2,2). So

TH(T) = T3(T) = 2f(1,3) +3f(1,4) + £(3,4) — 2f(1,2) — 4f(2,2)
> 2f(1,3) +2f(1,4) +2f(2,2) — 2f(1,2) — 4f(2,2) > 0.

If n > 8, then from the conditions (C1) and (C2), we have f(1,3)
f(1,2), f(2,4) > f(2,2), and f(1,4) > f(2,2). By Lemma 2.1, f(1,3) +

V
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f(3,4) = f(1,3) + f(4,3) = f(2,3) + f(3,3) > 2f(2,2). So
THT') = TH(T) = 2f(1,3) + 2f(1,4) + f(3,4) + f(2,4) — f(1,2) - 5f(2,2)
> f(1,3) +2f(1,4) +2f(2,2) + f(2,4) —

> 0.

Case 2. ny(T) > 1.

Let uv € E(T) be a (2,2)-edge, Np(u) = {u1,v} and Nr(v) = {u,v1}.
By Lemma 2.2, mg 3(T) = 0. Then we can choose the vertices u, v appro-
priately, such that dr(v;) = 4. Note that dr(u;) € {1,2,4}.

Subcase 2.1. dp(uy) = 2.

Let Np(uy) = {us,u}, and T" = T — uuy — uyug +vug +vug as depicted

in Fig. 3.
u
uz2 U1 u v (% u2 v U1
U1
T T’

Figure 3. The chemical trees T and T” for Subcase 2.1 of Lemma 2.3.

From the condition (C1), we have f(4,dr(u2)) > f(2,dr(uz)). By
Lemma 2.1, f(4,4) + f(1,4) > f(2,4) + f(3,4), and f(1,4) + f(3,4) >
2f(2,4) > 2f(2,2). Then

TH(T') = TH(T) =f(4, dr(u)) + F(4,4) + 2 (1,4) — F(2,dr(uz))
— F(2,4) — 2f(2,2)
>f(4,4)+2f(1,4) — £(2,4) —2f(2,2)
>F(2.4) + [(3,4) + [(14) — f(2,4) — 2(2,2) > 0.

Subcase 2.2. dp(up) # 2.
In this case dr(u1) € {1,4}. Let 7" = T — uuy + vu; as depicted in
Fig. 4.
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Ui

ur u v V1 u v v1

T T

Figure 4. The chemical trees T' and T’ for Subcase 2.2 of Lemma 2.3.
If dp(uy) = 1, from the conditions (C1) and (C3), we get

Tr(T) = T3(T) = 2f(1,3) + f(3,4) — f(1,2) - f(2,2) - f(2,4)
> f(lv?’) +f(3a4) _f(272) _f(274) > 0.

If dp(u1) = 4, from the conditions (C1) and (C3), we get

Ti(T") = Tp(T) = f(1,3) +2£(3,4) — £(2,2) — 2f(2,4)
>f(173)+f(374)_f(272) ( )2

So T¢(T") > T;(T) and it contradicts that T is an n-optimal Ty chem-
ical tree. u

Lemma 2.4. Letn > 7, f(x,y) > 0 be a symmetric real function satisfied
the conditions (C1)-(C6), and T € CT,, be n-optimal Ty. Then ms 3(T) =
0.

Proof. Suppose to the contrary that mg3(T") > 1. We claim that there
exists a chemical tree 7" € CT,, such that T;(T") > T¢(T).

Case 1. ny(T) = 0.

By Lemma 2.2, na(T) = 0. Then the degrees of all vertices of T are
from the set {1,3}. In this case, we can assume that 7" is a chemical tree
as depicted in Fig. 5, where dr(v1) = dr(vm+41) = 1, dr(v;) = 3 and
dr(u;) € {1,3} for i =2,3,...,m. Since n > 7, then m > 4.



Mﬂi

Um  Um+1 V1 Um  Um+1
Figure 5. The chemical trees T' and T’ for Case 1 of Lemma 2.4.
Let T/ =T — vaus + v,,ua. Then

Tr(T') = Tp(T) =f (4, dr(u2)) + (4, dr (um)) + f(1,4) + f(3,4)
+ f(la 2) + f(37 2) - f(37dT(u2)) - f(3a dT(Um))
—2f(1,3) —2f(3,3).

From the condition (C1), we have f(4,dr(uz2)) > f(3,dr(usz)) and
fd,dr(um)) > f(3,dr(um)). By Lemma 2.1, f(1,4) + f(1,2) > 2f(1,3),
and f(3,4) + f(3,2) > 2f(3,3). Then T¢(T") > T¢(T).

Case 2. ny(T) > 1.

Let wv € E(T) be a (3,3)-edge, Nr(u) = {v,u1,u2}, and Nr(v) =
{u,v1,v2}. By Lemma 2.2, the degrees of the vertices uy,us,v1,vs are
from the set {1,3,4}. We can choose the vertices u,v appropriately, such
that the set {u1,us,v1,v2} contains at least one 4-vertex. Without loss
of generality, assume that dr(ve) = 4, and dr(uy) < dp(ug). Let T' =
T — uus + vus (see Fig. 6). Then

Ti(T') = Tp(T) =f(2,dr(u1)) + f(4,dr(ug)) + f(4,dr(v1)) + £(2,4)
+ f(4,4) = f(3,dr(w1)) — f(3,dr(u2)) — f(3,dr(v1))
- f(373) - f(3a4)

u2 U1 u2 V1
ur u v V2 ur u v V2
T T’

Figure 6. The chemical trees T and T” for Case 2 of Lemma 2.4.



708
From the condition (C1), we have f(4,dr(v1)) > f(3,dr(v1)). So

Tr(T') = T4(T) > £(2,dr(u1)) + f(4, dr(u2)) + £(2,4) + f(4,4)
— [, dr(w)) = F(3,dr(uz)) — f(3,3) — f(3,4).

Kept in mind that the degrees of the vertices wy,us are from the set
{1,3,4}, and dr(uy) < dr(usg).

Subcase 2.1. dp(u1) = dp(ug) = 1.

By Lemma 2.1, we have f(1,2) + f(1,4) > 2f(1,3), and f(2,4) +
f4,4) > 2f(3,4) > f(3,3) + f(3,4). Then

Ti(T) = Ti(T) >f(1,2) + f(1,4) + f(2,4) + f(4,4) = 2f(1,3)
— f(3,3) — f(3,4) > 0.

Subcase 2.2. dr(u;) =1 and dr(usz) = 3.
By Lemma 2.1, we have f(1,2)+f(2,4) > f(2,2)+f(2,3), and f(2,3)+
£(3,4) > 2f(3,3). Then

+.f(3a4)+f( )+f(474)*f(1,3)
(3,3) — f(3,4)

+12,3)+ F3,4) + f(4,4) - £(1,3)
(

Ti(T') = Ty(T) >£(1,2)

2) )
3,3) — f(3,4)
2) + 2£(3,3) +
2)+

2
2f
( )
2f

>f(2,
(27

f(4,4) = 1(1, ) £, 4)

From the condition (C5), T¢(T") > T¢(T).
Subcase 2.3. dr(u1) = 1 and dr(usz) = 4.
By Lemma 2.1, we have f(4,4) + f(2,4) > 2f(3,4). Then

Tr(T) = Tp(T) > f(1,2) +2f(4,4) + £(2,4) — £(1,3) = 2f(3,4) — £(3,3)
> f(1,2) + f(4,4) +2f(3,4) — f(1,3) — 2f(3,4) — f(3,3)
:f(]-v )+f(474)7f(1’3) (3’ )

(1
(1

From the condition (C6), T;(T") > T;(T).
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Subcase 2.4. dr(u;) = 3.

From the condition (C1), we have f(4,dr(us)) > f(3,dr(uz2)). By
Lemma 2.1, f(2,4) + f(4,4) > 2f(3,4), and f(3,2) + f(3,4) > 2f(3,3).
Then

Tr(T') = Tp(T) > f(2,3) + f(2,4) + f(4,4) = 2f(3,3) = f(3,4)
> f(2,3)+2f(3,4) —2/(3,3) — f(3,4)
= f(273) +f(3’4) - 2f(373) > 0.
Subcase 2.5. dp(u1) = dr(usg) = 4.

From the condition (C1), we have f(3,4) > f(3,3). By Lemma 2.1,
f(2,4) 4+ f(4,4) > 2f(3,4). Therefore

Tr(T') = Tp(T) > 2f(2,4) +2f(4,4) — 3f(3,4) — £(3,3)
> 4f(3,4) — 3f(3,4) — £(3,3) > 0.

So T;(T") > T;(T) and it contradicts that T is an n-optimal 7y chem-

ical tree. u
By Lemmas 2.2-2.4, we have the following conclusion.

Theorem 2.5. Letn > 7, f(x,y) > 0 be a symmetric real function
satisfied the conditions (C1)-(C6), and T € CT,, be n-optimal T¢. Then
m273(T) == 0, mgﬁg(T) = O, and mgvg(T) =0.

Lemma 2.6. Let f(z,y) > 0 be a symmetric real function satisfied the
conditions (C1)-(C6), and T € CT,, be n-optimal Ty. Then nyo(T) < 1.

U1

U u U2 V2 v U1 Uy u o u2 V2 v

T T

Figure 7. The chemical trees T and T’ for Lemma 2.6.
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Proof. Suppose to the contrary that no(T) > 2, that is, there are u,v €
V(T) such that dr(u) = dr(v) = 2. By Theorem 2.5, uv ¢ E(T).

Let Np(u) = {uy,us} and Nr(v) = {vy,v2} such that the unique path
from u to v goes through us and ve as depicted in Fig. 7. By Theorem
2.5, dr(ug) = dr(ve) = 4.

Let 7" = T —vv; +uwvy. From the condition (C1), we have f(3,dr(u1))
> f(2,dr(u1)), and f(3,dr(v1)) > f(2,dr(v1)). By Lemma 2.1, f(1,4) +
£(3,4) > 2f(2,4). Then

Te(T") = T¢(T) = f(3,dr(u1)) + f(3,dr(v1)) + f(3,4) + f(1,4)
— f(2,dr(u1)) — f(2,dr(v1)) — 2f(2,4) > 0,
and it contradicts that T" is an n-optimal T chemical tree. |

Lemma 2.7. Let f(z,y) > 0 be a symmetric real function satisfied the
conditions (C1)-(C6), and T € CT,, be n-optimal Ty. Then n3(T) < 1.

Figure 8. The chemical trees T and 7" for Lemma 2.7.

Proof. Suppose to the contrary that ns(T) > 2, that is, there are u,v €
V(T) such that dr(u) = dr(v) = 3. By Theorem 2.5, uv ¢ E(T).

Let Nr(u) = {u1, ua,us} and Np(v) = {v1, va,v3} such that the unique
path from u to v goes through uz and vs as depicted in Fig. 8. By Theorem
2.5, dr(us) = dp(vs) = 4, and the degrees of the vertices uq, us, vy, vy are
from the set {1,4}. Then at least two degrees of the vertices uy, ug, vy, vg
are the same. Without loss of generality, assume that dr(vi) = dr(uq) (or
dr(vi) = dr(ve)). Let T =T — vvg 4+ uvs (see Fig. 8).

From the condition (C1), we have f(4,dr(uz)) > f(3,dr(u2)), and
f,dr(v2)) > f(3,dr(ve)). By Lemma 2.1, f(2,4) + f(4,4) > 2f(3,4).
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Then

Ti(T") = TH(T) =f(4,dr(u1)) + f(4,dr(u2)) + f(4,dr(v2)) + f(4,4)
+ £(2,4) + f(2,dr(v1)) — f(3,dr(u1)) — f(3, dr(u2))
—2f(3,4) = f(3,dr(v2)) — f(3,dr(v1))
>f(4,dr(w)) + f(2,dr(v1)) = f(3,dr(u1)) — f(3,dr(v1)).

Noting that dr(vi) = dp(u1), by Lemma 2.1, T3(T") — T;(T) > 0. This
result contradicts that 7" is an n-optimal 7; chemical tree. |

Theorem 2.8. Let f(x,y) > 0 be a symmetric real function satisfied

the conditions (C1)-(C6), and T € CT,, be n-optimal Ty. Then no(T) +
3(T) < 1.

oo o

Figure 9. The chemical trees T and T for Theorem 2.8.

Proof. By Lemmas 2.6 and 2.7, n2(T) + n3(T) < 2. Suppose to the con-
trary that u,v € V(T') with dr(u) = 3, dr(v) = 2, and u, v are not adjacent
(due to Lemma 2.2). Let Np(u) = {u1,us,us} and Np(v) = {v1,v2} such
that unique path from w to v goes through us and v as depicted in Fig. 9.
By Lemmas 2.6 and 2.7, dr(u3) = dr(vy) = 4. Let T = T — vvy + uv;.
Then

Ti(T') = Ty(T) =f(4,dr(w)) + f(4,dr(u2)) + f(4,dr(v1)) + f(4,4)
+ f(1,4) = f(3,dr(u1)) — f(3,dr(uz)) — f(3,4)
= f(2,4) = f(2,dr(v1))
>f(4,4) + f(1,4) — f(3,4) — f(2,4).

By Lemma 2.1, 7;(T") > T;(T), and it contradicts that T is an n-optimal
T; chemical tree. |
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3 Main Results

Let f(z,y) satisfy the conditions (C1)-(C6). In this section, we will
complete characterize the n-optimal 7; chemical trees. Denote

CTY) ={T € CT» | na(T) = ns(T) = 0}, (2)
CTY ={T € CTn | na(T) = 0,ns(T) = 1,m1 5(T) = 2,ms 4(T) =1}, (3)
CT ={T € CTn | n2(T) =0,n3(T) = 1,m13(T) = 1,msa(T) =2}, (4)
CT® ={T € CTn | na(T) = 0,ns(T) = 1,m15(T) = 0,ms 4(T) =3}, (5)
CTW ={T € CTn | n2(T) = 1,n3(T) = 0,m12(T) = 1,maa(T) =1}, (6)

(T) (T) )

Theorem 3.1. Letn > 7, f(x,y) > 0 be a symmetric real function
satisfied the conditions (C1)-(C6), and T € CT,, be n-optimal T¢. Then
TeUZCTY.

Proof. By Theorem 2.8, no(T) + n3(T) < 1.

Case 1. ny(T) = ng(T) = 0. Then T' e CTY.

Case 2. no(T) =0 and n3(T) = 1.

Let w be the unique 3-vertex of T, and Nr(u) = {u1,us,us} with
dr(ui) < dp(uz) < dr(ug). Note that na(T) = 0. Then dr(u;) € {1,4}
fori=1,2,3.

Subcase 2.1. If dr(u;) = dr(uz) = 1 and dr(ug) = 4, then mq 3(T) =
2, and ma 4(T) = 1, that is, T € CT(V.

Subcase 2.2. If dp(u1) = 1 and dp(us) = dr(ug) = 4, then my 3(T) =
1, and ms 4(T) = 2, that is, T € CT?.

Subcase 2.3. If dr(u1) = dr(uz) = dr(us) = 4, then my 3(T) = 0,
and mg 4(T) = 3, that is, T € CTY.

So in this case, T € CTH ucT@ UucT®.

Case 3. no(T) =1 and ng(T) = 0.

Let v be the unique 2-vertex of T. Denote Np(v) = {v1,v2} with
dr(v1) < dr(vz). Then dr(v;) € {1,4} for i = 1, 2.

Subcase 3.1. If dp(v1) = 1 and dp(v2) = 4, then m; 2(T) = 1 and
ma4(T) =1, that is, T € CTW;

Subcase 3.2. If dp(v1) = dr(ve) = 4, then my o(T) = 0 and mo 4(T) =
2, that is, T' € CT,(E).
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So in this case, T € CTW uCT®. |

Note that for a chemical tree T € CT ,,,

n1(T) + na(T) +n3(T) + na(T) = n, (8)
n1(T) + 2n2(T) + 3n3(T) + 4n4a(T) = 2(n — 1), (9)
my2(T) +my3(T) + mia(T) = n(T), (10)
mi,2(T) + 2maoo(T) + ma3(T) + me a(T) = 2ns(T), (11)
my 3(T) +ma3(T) + 2m3 3(T) + ms3 4(T) = 3nz(T), (12)
my4(T) +maa(T) +msa(T) + 2maa(T) = 4ny(T), (13)

and

S fdr(u),dr Z mu (D) f(k,0).  (14)

weE(T) <4

Lemma 3.2. Letn>7 and T € CTY). Then n = 2(mod 3), and

2n + 2 n—>5
3 f(1,4) + Tf(474)'

Ti(T) =
Proof. Note that na(T) = ng(T) = 0. By (8) and (9),

n1(T) + na(T) = n,
n1(T) + 4na(T) = 2(n — 1).

Then ny(T) = 252, ny(T) = 252, and n = 2(mod 3). By (10) and (13),
maq 4( ) = N1 ) = 2n+2 and my 4(T) = 2”4(T) — %m174(T) = nT%’ which

(T
combined with (14) ylelds

Ty(T) = m1a(T)f(1,4) +maa(T)f(4,4)

=22 )+ "0 ),

Lemma 3.3. Letn>7 and T € CTV ucT@ ucT®.
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Then n = 1(mod 3), and

2f(1,3) + £(3,4) + 250 f(1,4) + 257 f(4,4), f T €CTY,

THT) =3 f(1,3) +2f(3,4) + 2272 f(1,4) + "0 f(4,4), T eCTY,
3f(3,4) + 2L f(1,4) 4 218 £ (4, 4), if T ecT?.

Proof. Noticing that no(T) = 0 and n3(T) = 1, by (8) and (9),

n(T) +n4(T)+1=mn,
n1(T) + 3+ 4ny(T) = 2(n — 1).

Then ny(T) = 2%, ny(T) = ”?_4, and n = 1(mod 3). By (14),

Ti(T) = my3(T)f(1,3)+ms.a(T)f(3,4) +m1a(T)f(1,4) +maa(T)f(4,4).

Case 1. T € CTWM.

Noting that m; 3(T) = 2 and ms4(T) = 1, by (10) and (13), we get
m14(T) =n1(T)—my 3(T) = 252, and my 4 (T) = 2n4(T) — 5 ((m1,4(T)+
ms3.4(T)) = 257. Then

2n —5 n—17

f(4,4).

Case 2. T € CT.

Noting that m1 3(T) = 1 and ms4(T) = 2, by (10) and (13), we get
m14(T) = ny(T) —ma3(T) = 222, and my 4(T) = 2n4(T) — 5 (m14(T) +
m3.4(T)) = 5% Then

-2 -1
2n f(174)+n 0

Tr(T) = f(1,3) +2/(3,4) + f(4,4).

Case 3. T € CTY.

Noting that m; 3(T) = 0 and ms4(T) = 3, by (10) and (13), we get
m174 (T) = N1 (T) = %TJrl, and m474 (T) = 277,4 (T) — % (m1,4(T) + m374(T))

= "%13 Then

2n+1 n—13

Tr(T) =3f(3,4) + f(1,4) +

f(4,4).
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Lemma 3.4. Letn > 7 and T € CTY UCT®. Then n = 0(mod 3),

and

() = FL2)+ f(2,4) + 223 (1,4) + 255 F(4,4), ifTecTl,
U7 2£2,4) + 22 7(1,4) + 252 £(4,4), if T ecT®.

Proof. Noticing that na(T) = 1 and n3(T) = 0, by (8) and (9),

n1(T) + 1+ ny(T) =n,
n(T) + 2+ 4ny(T) = 2(n —1).

So ny(T) = 2%, na(T) = 253, and n = 0(mod 3). By (14),

Ti(T) =my2(T)f(1,2)+moa(T)f(2,4)+mya(T) f(1,4) +maa(T)f(4,4).

Case 1. T € CTW.

Noting that mq 2(T) = 1 and mo4(T) = 1, by (10) and (13), we get
mya(T) = n1(T) —mao(T) = 2222, and my 4(T) = 2n4(T) — 3 (m 4(T) +
ma4(T)) = 25°. Then

2n—3f(1,4)+n76

T(T) = f(1,2) + f(2,4) + f(4,4).

Case 2. T € CTY.

Noting that m; 2(T) = 0 and mg4(T) = 2, by (10) and (13), we get
m1.4(T) =n(T) = %", and myg 4(T) = 2n4(T) — % (m1,4(T) +moa(T)) =
”T’g. Then

n—9

THT) = 27(2,4) + 211 4) + T2 (4, 9),
]

By Lemmas 3.2, 3.3, and 3.4, we can use Tf(i) to denote the VDB
topological index T of the chemical trees in CTS) fori=0,1,...,5, that
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is,

7O =220 0 4 2 ), (15)
T Z28(1,3) + £3,4) + 2 p(1,4) + 2T (a4, (16)
) -1
T = 1,3 420634 + 22, + 20w, an)
79 = 376,0) + 2 p, 4 + PP pa,a), (18)
T = £(1,2) + f(2,4) + 2n3_ 3f(1,4) + 2 6f(4,4), (19)
-9
T = 2£(2,4) + %"m,zx) + B (4, 4), (20)
Take
A = f(1, 4) — f(1,3) — f(4,4 (21)
By = f(1,4 4) = f(1.2) - f(4.4 (22)
Then
Tf(?’) - Tf(2) _ Tf(2) _ Tf(” = Ay, Tf(5) _ Tf(“) = By. (23)
So
TV > TP > T, it Af <o,
7}(3) > 7}(2) > ’Tf(l)’ if Ay >0, (3.23)
TV =72 =T, ifA; =0,
and

TV > 710, it By <o,
77 > 7Y, if By >0, (3.24)
4 5 .
TV =7, if By =0,
The following is the main theorem of this section.
Theorem 3.5. Letn > 7, f(xz,y) > 0 be a symmetric real function
satisfied the conditions (C1)-(C6), and T € CT .

(1) If n = 2(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTY, and Ty = 7}(0).
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(2) If n = 1(mod 3) and Ay < 0, then T is an n-optimal T; chemical
tree when and only when T € CT'V, and Tf = 7}(1).

If n = 1(mod 3) and Ay > 0, then T is an n-optimal Ty chemical tree
when and only when T € CT'® | and Tf = ’7}(3).

If n =1(mod 3) and Ay =0, then T is an n-optimal T; chemical tree
when and only when T € CTV UCT® UCT®, and Ty = 'Tf(l) = 7}(2) =
7.

!

(3) If n = 0(mod 3) and By < 0, then T is an n-optimal T; chemical
tree when and only when T € CTY, and Tf = 7}(4).

If n = 0(mod 3) and By > 0, then T is an n-optimal Ty chemical tree
when and only when T € CT®) | and Tf = 7}(5).

If n = 0(mod 3) and By =0, then T is an n-optimal T; chemical tree
when and only when T € CTH UCTY), and Ty = 7}(4) = 7}(5).

n n 7’

Proof. Case 1. n = 2(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CT'?) # ¢, and T = ¢ fori =1,...,5.
So UZo T = T, By Theorem 3.1, T is an n-optimal 7 chemical
tree when and only when 7' € CT'?). The maximum index value Ty = f(o).

Case 2. n = 1(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CT Y UCcTP ucT® +# ¢, and TV = ¢
for i = 0,4,5. So Uig cTW =cTWueT® uceT®. By Theorem 3.1
and Eq. (3.23), we have

o If Ay <0, then T is an n-optimal 7; chemical tree when and only
when T € T\, and Ty = 7}(1).

o If Ay > 0, then T is an n-optimal T chemical tree when and only
when T € CT'Y), and Ty = ’Tf(B).

o If Ay =0, then T is an n-optimal T chemical tree when and only
when T e TV ueT® ueT® | and Tf = ’7}(1) = 7}(2) = ’7}(3).

Case 3. n = 0(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CTY UCT® #£ ¢ and CTY = ¢ for
i=0,1,2,3, and so J/=, T = cTW uCT. By Theorem 3.1 and Eq.
(3.24), we have
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o If By < 0, then T is an n-optimal 7; chemical tree when and only

when T € CTW, and Ty = 7}(4).

e If By > 0, then T is an n-optimal T chemical tree when and only

when T € T, and Ty = ’Tf(S).

o If By = 0, then 7" is an n-optimal 7 chemical tree when and only

The theorem now follows.

4 Applications

when T e CTW UCT®), and Ty = 7}(4) = 7}(5).

In this section, we will consider the following twenty-five VDB topo-

logical indices (as shown in Table 4.1), and characterize the n-optimal Ty

chemical trees.

Table 4.1 Some VDB topological indices 7

No. Name f(z,y) Ay By Ref.
. Ay >0,
1 Sombor index Va2 4+ y? SO [10,11]
Bf >0
A 0
2 Reduced Sombor index Ve =12+ (y—1)2 SOyea r =0 [10,11]
Bf >0
Ap =0,
3 First Zagreb index T4y My 4 [6,7]
By =0
Ay =0,
4 Forgotten index z2 4+ 42 F f [8]
Bf =0
Af <0,
5 S d 7z b ind M 6,7
econd Zagreb index Ty 2 By <0 [6,7]
First hyper-Zagreb 2 Af <0,
6
index @+y) MMy By <0
Second hyper-Zagreb 5 Ay <0,
7
index (zy) HM: By <0
8 First G ind +y+ Go Ap <0,
irst Gourava index z x
Y Y 1 By <0
Af <0
9 S d G ind o ’
econ ourava index (z + y)zy GOy By <0
First hyper-Gourava 2 Ay <0,
10 (@]
index (@+y+ay) HGO: By <0
Second hyper-Gourava 2 Ay <0,
11
index (@ + y)zy) HGO2 By <0
19 Expone-ntial Sombor e\/m SO Ay <0,
index By <0




719

13 Exponential reduced N @D (12 ¢SOred Ay <0,
Sombor index By <0

14 Exponential first Zagreb e M1 Ay <0, (7]
index By <0
15 Exponential forgotten e’2+y2 oF Ay <0,
index By <0
16 Exponential second ooy Mo Af <0,
Zagreb index By <0
17 Exponential reciprocal oVET SRR Ar <0,
Randi¢ index By <0
18 Exponential reciprocal VETT  RSC Ay <0,
sum-connectivity index By <0
19 Exponential first €(Z+y)2 SHMy Ay <0,
hyper-Zagreb index By <0
20 Exponential second e(“’)2 HM Ay <0,
hyper-Zagreb index By <0
o1 Exponential first patutay 901 Ay <0,
Gourava index By <0
99 Exponential second Jetv)ay 905 Ay <0,
Gourava index By <0
23 Exponential first C(I+y+zy)2 cHGO1 Ay <0,
hyper-Gourava index By <0
o4 Exponential second e((z+y)zy)2 HGOy Ay <0,
hyper-Gourava index By <0
Exponential A, <0
25 product-connectivity eV (@t+y)ry ePco 4 ’

By <0
Gourava index f

It is not difficult to verify that these VDB topological indices satisfy
the conditions (C1)-(C6). By Theorem 3.5, the following three theorems

are straightforward.

Theorem 4.1. Letn >7 and T € CT,,. Then for the Sombor index and
reduced Sombor indez, the following results hold.

(1) If n = 2(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CT;O), and

N 2 2 -
Fr= 2102004y 4 P20

f(4,4).

(2) If n = 1(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CT®), and

L0+ ),

Ty =3f(3,4) + 3
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(3) If n = 0(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTY, and

Ty = 2£(2.4) + 51,4+ "0

f(4,4).

Theorem 4.2. Letn>7 and T € CT,,. Then for the first Zagreb index
and forgotten index, the following results hold.

(1) If n = 2(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTY, and

- 2n + 2 n—>»5
Ty=—5—f1,49+

f(4,4).

(2) If n = 1(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTY UCT® UueT®, and

2n—5f(174)+n—7

Ty =2f(1,3)+ f(3,4) + £(4,4).

(3) If n = 0(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTP UCT®, and

2n—3f(174)+n—6

Ty = f(1,2) + f(2,4) + £(4,4).

Theorem 4.3. Letn >7 and T € CT,,. Then for the VDB topological
indices numbered from 5 to 25 as shown in Table 4.1, the following results
hold.

(1) If n = 2(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CT®, and

A 2n + 2 n—>5

f(4,4).

(2) If n = 1(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTY, and

2n—5 n—"17
f(1,4) +

Ty = 2f(1,3) + f(3,4) + f(4,4).
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(3) If n = 0(mod 3), then T is an n-optimal Ty chemical tree when and
only when T € CTW, and

2n —3 n—=~6
f(1,4) +

Ty = f(1,2) + f(2,4) + F(4.4).

In particularly, for the exponential reduced Sombor index eS©

duced by f(z,y) = eV@ D*+U=1? e have the following result. This

result shows that Conjecture 3.1 in [13] is incorrect.

P
red - In-

Corollary 4.4. Letn > 7 and T € CT . Then for the exponential reduced
Sombor indez, the following results hold.
(1) If n = 2(mod 3), then T is an n-optimal Ty chemical tree when and

only when T' € CT,SO). The mazimal exponential reduced Sombor index is
1 2
g(n - 5)@3‘/5 + g(n +1)e?.

(2) If n = 1(mod 3), then T is an n-optimal Ty chemical tree when and

only when T € CTS). The mazimal exponential reduced Sombor index is
1 3va 1 3 V13 2
g(n77)e +§(2n75)e +evVi? 4 2e”.

(3) If n = 0(mod 3), then T is an n-optimal Ty chemical tree when and

only when T € CTM. The mazimal exponential reduced Sombor index is

1 1
§(2n —3)e® + g(n - 6)63\6 +eVi0 4.
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