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Abstract

A general vertex-degree-based (VDB) topological index of a gr-
aph G is defined as

Tf = Tf (G) =
∑

uv∈E(G)

f(dG(u), dG(v)),

where f(x, y) > 0 is a symmetric real function with x ≥ 1 and
y ≥ 1. Let CT n be the set of all chemical trees of order n, and
let T̂f = max{Tf (T ) | T ∈ CT n}. A chemical tree T ∈ CT n is an
n-optimal Tf chemical tree if Tf (T ) = T̂f .

One important topic in chemical graph theory is the extremal
value problem of VDB topological indices over CT n. In this work,
we get the following results.

(1) We propose six conditions (C1)-(C6) for the symmetric real
function f(x, y). For a VDB topological index Tf satisfied the condi-
tions (C1)-(C6), we obtained the necessary and sufficient conditions
for T ∈ CT n to be an n-optimal Tf chemical tree.

(2) For twenty-five VDB topological indices (as shown in Table
4.1 of Section 4), the n-optimal Tf chemical trees are characterized,
and the maximum Tf values are determined, too.

https://doi.org/10.46793/match.89-3.699G
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1 Introduction

A general vertex-degree-based (VDB for short) topological index of a

graph G is given by

Tf = Tf (G) =
∑

uv∈E(G)

f(dG(u), dG(v)), (1)

where f(x, y) > 0 is a symmetric real function with x ≥ 1 and y ≥ 1.

A tree T is a chemical tree (or molecular tree) if dT (v) ≤ 4 for v ∈
V (T ). Let CT n be the set of all chemical trees of order n, and let T̂f =

max{Tf (T ) | T ∈ CT n}. A chemical tree T ∈ CT n is an n-optimal Tf
chemical tree if Tf (T ) = T̂f .

The problem of finding extremal values of a VDB topological index over

CT n has attracted considerable attention in the mathematical-chemistry

literature. It is well known that the n-optimal Tf chemical trees of some

VDB topological indices Tf have been determined, for example, the Randić

index χ (f(x, y) = 1√
xy ) [1,2]; geometrical-arithmetic index GA (f(x, y) =

2
√
xy

x+y ) [3, 4]; arithmetic-geometric index AG (f(x, y) = x+y
2
√
xy ) [3, 4]; Har-

monic index H (f(x, y) = 2
x+y ) [5]; first Zagreb index M1 (f(x, y) = x+y)

[6, 7]; second Zagreb index M2 (f(x, y) = xy) [6, 7]; forgotten index F
(f(x, y) = x2+y2) [8]; symmetric division deg index SDD (f(x, y) = x

y+
y
x )

[9]; Sombor index SO (f(x, y) =
√
x2 + y2) [10, 11]; reduced Sombor in-

dex SOred (f(x, y) =
√
(x− 1)2 + (y − 1)2) [10]; inverse sum indeg in-

dex ISI (f(x, y) = xy
x+y ) [12]; and exponential first Zagreb index eM1

(f(x, y) = ex+y) [7].

In this paper, we study VDB topological indices over CT n. The main

aim is to establish a general theorem that can capture the common prop-

erties necessary for the n-optimal Tf chemical trees of all VDB topological

indices Tf satisfying certain conditions. We also apply our results to obtain

the maximum values of some VDB topological indices over CT n.

In Section 2, we propose six conditions for the symmetric real function

f(x, y), and prove that for a VDB topological index Tf satisfied these

conditions, if a chemical tree T is an n-optimal Tf chemical tree, then the

number of 2-vertices and 3-vertices in T is at most one.
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In Section 3, we obtain the necessary and sufficient conditions for a

chemical tree to be an n-optimal Tf chemical tree when the VDB topolog-

ical index Tf satisfied these conditions.

In Section 4, as an application of the main theorem in Section 3, for

twenty-five VDB topological indices Tf (as shown in Table 4.1 of Section

4), we completely characterize the n-optimal Tf chemical trees, and the

maximum Tf values are determined, too.

2 Lemmas

Let f(x, y) > 0 be a symmetric real function with x ≥ 1 and y ≥ 1. In

this section, we will consider the VDB topological indices Tf satisfied the

following conditions:

(C1) ∂f(x,y)
∂x > 0 and ∂2f(x,y)

∂x2 ≥ 0 for x > 1 and y ≥ 1;

(C2) f(1, 4)− f(2, 2) ≥ 0;

(C3) f(1, 3) + f(3, 4)− f(2, 2)− f(2, 4) ≥ 0;

(C4) f(2, 4) + f(3, 4)− 2f(3, 3) ≥ 0;

(C5) f(2, 2) + f(4, 4)− f(1, 3)− f(3, 4) ≥ 0;

(C6) f(1, 2) + f(4, 4)− f(1, 3)− f(3, 3) ≥ 0.

Lemma 2.1. Let f(x, y) > 0 be a symmetric real function satisfied the

condition (C1). Then for any fixed y ≥ 1, we have

(1) f(1, y) + f(4, y) ≥ f(2, y) + f(3, y);

(2) f(1, y) + f(3, y) ≥ 2f(2, y);

(3) f(2, y) + f(4, y) ≥ 2f(3, y).

Proof. By Mean Value Theorem, §

f(1, y) + f(4, y)− f(2, y)− f(3, y) = f(4, y)− f(3, y)− (f(2, y)− f(1, y))

= f ′
x(θ11, y)− f ′

x(θ12, y) ≥ 0,

f(1, y) + f(3, y)− 2f(2, y) = f(3, y)− f(2, y)− (f(2, y)− f(1, y))

= f ′
x(θ21, y)− f ′

x(θ22, y) ≥ 0,

f(2, y) + f(4, y)− 2f(3, y) = f(4, y)− f(3, y)− (f(3, y)− f(2, y))

= f ′
x(θ31, y)− f ′

x(θ32, y) ≥ 0,
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where θ11 ∈ (3, 4), θ12 ∈ (1, 2), θ21 ∈ (2, 3), θ22 ∈ (1, 2), θ31 ∈ (3, 4), and

θ32 ∈ (2, 3).

Let T be a tree of order n. A vertex v ∈ V (T ) will be called k-vertex if

dT (v) = k, and a edge uv ∈ E(T ) will be called a (k, ℓ)-edge if dT (u) = k

and dT (v) = ℓ. Let us denote by nk(T ) the number of k-vertices of T , and

mk,ℓ(T ) the number of (k, ℓ)-edges of T .

Lemma 2.2. Let n ≥ 7, f(x, y) > 0 be a symmetric real function sat-

isfied the conditions (C1)-(C6), and let T ∈ CT n be n-optimal Tf . Then

m2,3(T ) = 0.

• • • •

•����

���� ����
u1 u v

u2

v1

T

• • •�
��

A
AA

••

������������
u1

u2

vu

v1

T ′

Figure 1. The chemical trees T and T ′ for Lemma 2.2.

Proof. Suppose to the contrary that m2,3(T ) ≥ 1, that is, there is uv ∈
E(T ) such that dT (u) = 3 and dT (v) = 2. Let NT (u) = {v, u1, u2},
NT (v) = {u, v1}, and T ′ = T −vv1+uv1 (as depicted in Fig. 1). We claim

that Tf (T ′) > Tf (T ).
Note that

Tf (T ′)− Tf (T ) = f(4, dT (u1)) + f(4, dT (u2)) + f(4, dT (v1)) + f(1, 4)

− f(3, dT (u1))− f(3, dT (u2))− f(2, dT (v1))− f(2, 3).

Since n ≥ 7, max{dT (u1), dT (u2), dT (v1)} ≥ 2. Without loss of generality,

we assume that dT (u1) ≤ dT (u2).

Case 1. 2 ≤ dT (v1) ≤ 3.

From the condition (C1), we deduce that f(4, dT (u1)) > f(3, dT (u1)),

f(4, dT (u2)) > f(3, dT (u2)), f(1, 4) > f(1, dT (v1)), and f(3, dT (v1)) ≥
f(2, 3). By Lemma 2.1, we get f(4, dT (v1))+f(1, dT (v1)) ≥ f(2, dT (v1))+
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f(3, dT (v1)). Then

Tf (T ′)− Tf (T ) > f(4, dT (v1)) + f(1, dT (v1))− f(2, dT (v1))− f(2, 3)

≥ f(2, dT (v1)) + f(3, dT (v1))− f(2, dT (v1))− f(2, 3) ≥ 0.

Case 2. dT (v1) = 4.

From the condition (C1), we deduce that f(4, dT (u1)) > f(3, dT (u1))

and f(4, dT (u2)) > f(3, dT (u2)). By Lemma 2.1, we get f(4, 4)+f(1, 4) ≥
f(2, 4) + f(3, 4) > f(2, 4) + f(2, 3). So

Tf (T ′)− Tf (T ) > f(4, 4) + f(1, 4)− f(2, 4)− f(2, 3) > 0.

Case 3. dT (u2) = 4.

From the condition (C1), we deduce that f(4, dT (u1)) > f(3, dT (u1))

and f(4, dT (v1)) > f(2, dT (v1)). By Lemma 2.1, f(4, 4) + f(1, 4) ≥
f(2, 4) + f(3, 4) > f(2, 3) + f(3, 4). Then

Tf (T ′)− Tf (T ) > f(4, 4) + f(1, 4)− f(3, 4)− f(2, 3) > 0.

Case 4. dT (v1) = 1 and dT (u1) = dT (u2) = 3.

From the conditions (C1), (C2) and (C4), we have f(2, 4) > f(2, 3),

f(2, 2) > f(1, 2), f(1, 4) ≥ f(2, 2), and f(3, 4) ≥ 2f(3, 3) − f(2, 4). By

Lemma 2.1, f(1, 4) + f(3, 4) ≥ 2f(2, 4). So

Tf (T ′)− Tf (T ) = (f(3, 4) + f(1, 4)) + f(3, 4) + f(1, 4)− 2f(3, 3)

− f(1, 2)− f(2, 3)

>2f(2, 4) + 2f(3, 3)− f(2, 4) + f(2, 2)− 2f(3, 3)

− f(1, 2)− f(2, 3)

=f(2, 4) + f(2, 2)− f(1, 2)− f(2, 3) > 0.

Case 5. dT (v1) = 1 and dT (u1) = 2 (or dT (v1) = 1 and dT (u2) = 2).

From the conditions (C1) and (C2), we deduce that f(4, dT (u2)) >

f(3, dT (u2)), and f(1, 4) ≥ f(2, 2) > f(1, 2). By Lemma 2.1, we get
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f(2, 4) + f(2, 2) ≥ 2f(2, 3). Then

Tf (T ′)− Tf (T ) > f(2, 4) + 2f(1, 4)− 2f(2, 3)− f(1, 2)

> f(2, 4) + f(2, 2)− 2f(2, 3) ≥ 0.

So Tf (T ′) > Tf (T ) and it contradicts that T is an n-optimal Tf chem-

ical tree.

Lemma 2.3. Let n ≥ 7, f(x, y) > 0 be a symmetric real function satisfied

the conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then m2,2(T ) =

0.

Proof. Suppose to the contrary that m2,2(T ) ≥ 1. We claim that there

exists a chemical tree T ′ ∈ CT n such that Tf (T ′) > Tf (T ).
Case 1. n4(T ) = 0.

By Lemma 2.2, m2,3(T ) = 0. Then n3(T ) = 0, and T is a path as

depicted in Fig. 2. Let T ′ = T − v1v2 − v2v3 − v3v4 − v4v5 + v5v1 + v5v2 +

v6v3 + v6v4.

• • • •
v1 v2 · · · vn−1 vn

T

• • •

•

•

•

•v1

v2

v3

v4

v5 v6 v7 · · · •
vn

T ′

Figure 2. The chemical trees T and T ′ for Case 1 of Lemma 2.3.

If n = 7, then from the conditions (C1) and (C2), we have f(1, 3) >

f(1, 2), and f(1, 4) ≥ f(2, 2). By Lemma 2.1, f(1, 4)+f(3, 4) ≥ 2f(2, 4) >

2f(2, 2). So

Tf (T ′)− Tf (T ) = 2f(1, 3) + 3f(1, 4) + f(3, 4)− 2f(1, 2)− 4f(2, 2)

> 2f(1, 3) + 2f(1, 4) + 2f(2, 2)− 2f(1, 2)− 4f(2, 2) > 0.

If n ≥ 8, then from the conditions (C1) and (C2), we have f(1, 3) >

f(1, 2), f(2, 4) > f(2, 2), and f(1, 4) ≥ f(2, 2). By Lemma 2.1, f(1, 3) +
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f(3, 4) = f(1, 3) + f(4, 3) ≥ f(2, 3) + f(3, 3) > 2f(2, 2). So

Tf (T
′)− Tf (T ) = 2f(1, 3) + 2f(1, 4) + f(3, 4) + f(2, 4)− f(1, 2)− 5f(2, 2)

> f(1, 3) + 2f(1, 4) + 2f(2, 2) + f(2, 4)− f(1, 2)− 5f(2, 2)

> 0.

Case 2. n4(T ) ≥ 1.

Let uv ∈ E(T ) be a (2, 2)-edge, NT (u) = {u1, v} and NT (v) = {u, v1}.
By Lemma 2.2, m2,3(T ) = 0. Then we can choose the vertices u, v appro-

priately, such that dT (v1) = 4. Note that dT (u1) ∈ {1, 2, 4}.
Subcase 2.1. dT (u1) = 2.

Let NT (u1) = {u2, u}, and T ′ = T −uu1−u1u2+vu1+vu2 as depicted

in Fig. 3.

• • • • •���� ����
u2 u1 u v v1

T

• • •

•

•

���� ����
u2 v1

u

v

u1

T ′

Figure 3. The chemical trees T and T ′ for Subcase 2.1 of Lemma 2.3.

From the condition (C1), we have f(4, dT (u2)) > f(2, dT (u2)). By

Lemma 2.1, f(4, 4) + f(1, 4) ≥ f(2, 4) + f(3, 4), and f(1, 4) + f(3, 4) ≥
2f(2, 4) > 2f(2, 2). Then

Tf (T ′)− Tf (T ) =f(4, dT (u2)) + f(4, 4) + 2f(1, 4)− f(2, dT (u2))

− f(2, 4)− 2f(2, 2)

>f(4, 4) + 2f(1, 4)− f(2, 4)− 2f(2, 2)

≥f(2, 4) + f(3, 4) + f(1, 4)− f(2, 4)− 2f(2, 2) > 0.

Subcase 2.2. dT (u1) ̸= 2.

In this case dT (u1) ∈ {1, 4}. Let T ′ = T − uu1 + vu1 as depicted in

Fig. 4.
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• • • •���� ����
u1 u v v1

T

• • •

•����

����
u v v1

u1

T ′

Figure 4. The chemical trees T and T ′ for Subcase 2.2 of Lemma 2.3.

If dT (u1) = 1, from the conditions (C1) and (C3), we get

Tf (T ′)− Tf (T ) = 2f(1, 3) + f(3, 4)− f(1, 2)− f(2, 2)− f(2, 4)

> f(1, 3) + f(3, 4)− f(2, 2)− f(2, 4) ≥ 0.

If dT (u1) = 4, from the conditions (C1) and (C3), we get

Tf (T ′)− Tf (T ) = f(1, 3) + 2f(3, 4)− f(2, 2)− 2f(2, 4)

> f(1, 3) + f(3, 4)− f(2, 2)− f(2, 4) ≥ 0.

So Tf (T ′) > Tf (T ) and it contradicts that T is an n-optimal Tf chem-

ical tree.

Lemma 2.4. Let n ≥ 7, f(x, y) > 0 be a symmetric real function satisfied

the conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then m3,3(T ) =

0.

Proof. Suppose to the contrary that m3,3(T ) ≥ 1. We claim that there

exists a chemical tree T ′ ∈ CT n such that Tf (T ′) > Tf (T ).
Case 1. n4(T ) = 0.

By Lemma 2.2, n2(T ) = 0. Then the degrees of all vertices of T are

from the set {1, 3}. In this case, we can assume that T is a chemical tree

as depicted in Fig. 5, where dT (v1) = dT (vm+1) = 1, dT (vi) = 3 and

dT (ui) ∈ {1, 3} for i = 2, 3, . . . ,m. Since n ≥ 7, then m ≥ 4.
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• • •
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•����
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Figure 5. The chemical trees T and T ′ for Case 1 of Lemma 2.4.

Let T ′ = T − v2u2 + vmu2. Then

Tf (T ′)− Tf (T ) =f(4, dT (u2)) + f(4, dT (um)) + f(1, 4) + f(3, 4)

+ f(1, 2) + f(3, 2)− f(3, dT (u2))− f(3, dT (vm))

− 2f(1, 3)− 2f(3, 3).

From the condition (C1), we have f(4, dT (u2)) > f(3, dT (u2)) and

f(4, dT (um)) > f(3, dT (um)). By Lemma 2.1, f(1, 4) + f(1, 2) ≥ 2f(1, 3),

and f(3, 4) + f(3, 2) ≥ 2f(3, 3). Then Tf (T ′) > Tf (T ).
Case 2. n4(T ) ≥ 1.

Let uv ∈ E(T ) be a (3, 3)-edge, NT (u) = {v, u1, u2}, and NT (v) =

{u, v1, v2}. By Lemma 2.2, the degrees of the vertices u1, u2, v1, v2 are

from the set {1, 3, 4}. We can choose the vertices u, v appropriately, such

that the set {u1, u2, v1, v2} contains at least one 4-vertex. Without loss

of generality, assume that dT (v2) = 4, and dT (u1) ≤ dT (u2). Let T ′ =

T − uu2 + vu2 (see Fig. 6). Then

Tf (T ′)− Tf (T ) =f(2, dT (u1)) + f(4, dT (u2)) + f(4, dT (v1)) + f(2, 4)

+ f(4, 4)− f(3, dT (u1))− f(3, dT (u2))− f(3, dT (v1))

− f(3, 3)− f(3, 4).

• • • •

• •

������������

����
u1 u v

u2 v1

v2
T

• • • •�
��

A
AA

••

���� ������������
u1

u2

v2u v

v1

T ′

Figure 6. The chemical trees T and T ′ for Case 2 of Lemma 2.4.
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From the condition (C1), we have f(4, dT (v1)) > f(3, dT (v1)). So

Tf (T ′)− Tf (T ) > f(2, dT (u1)) + f(4, dT (u2)) + f(2, 4) + f(4, 4)

− f(3, dT (u1))− f(3, dT (u2))− f(3, 3)− f(3, 4).

Kept in mind that the degrees of the vertices u1, u2 are from the set

{1, 3, 4}, and dT (u1) ≤ dT (u2).

Subcase 2.1. dT (u1) = dT (u2) = 1.

By Lemma 2.1, we have f(1, 2) + f(1, 4) ≥ 2f(1, 3), and f(2, 4) +

f(4, 4) ≥ 2f(3, 4) > f(3, 3) + f(3, 4). Then

Tf (T ′)− Tf (T ) >f(1, 2) + f(1, 4) + f(2, 4) + f(4, 4)− 2f(1, 3)

− f(3, 3)− f(3, 4) > 0.

Subcase 2.2. dT (u1) = 1 and dT (u2) = 3.

By Lemma 2.1, we have f(1, 2)+f(2, 4) ≥ f(2, 2)+f(2, 3), and f(2, 3)+

f(3, 4) ≥ 2f(3, 3). Then

Tf (T ′)− Tf (T ) >f(1, 2) + f(3, 4) + f(2, 4) + f(4, 4)− f(1, 3)

− 2f(3, 3)− f(3, 4)

≥f(2, 2) + f(2, 3) + f(3, 4) + f(4, 4)− f(1, 3)

− 2f(3, 3)− f(3, 4)

≥f(2, 2) + 2f(3, 3) + f(4, 4)− f(1, 3)− 2f(3, 3)− f(3, 4)

=f(2, 2) + f(4, 4)− f(1, 3)− f(3, 4).

From the condition (C5), Tf (T ′) > Tf (T ).
Subcase 2.3. dT (u1) = 1 and dT (u2) = 4.

By Lemma 2.1, we have f(4, 4) + f(2, 4) ≥ 2f(3, 4). Then

Tf (T ′)− Tf (T ) > f(1, 2) + 2f(4, 4) + f(2, 4)− f(1, 3)− 2f(3, 4)− f(3, 3)

≥ f(1, 2) + f(4, 4) + 2f(3, 4)− f(1, 3)− 2f(3, 4)− f(3, 3)

= f(1, 2) + f(4, 4)− f(1, 3)− f(3, 3).

From the condition (C6), Tf (T ′) > Tf (T ).
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Subcase 2.4. dT (u1) = 3.

From the condition (C1), we have f(4, dT (u2)) > f(3, dT (u2)). By

Lemma 2.1, f(2, 4) + f(4, 4) ≥ 2f(3, 4), and f(3, 2) + f(3, 4) ≥ 2f(3, 3).

Then

Tf (T ′)− Tf (T ) > f(2, 3) + f(2, 4) + f(4, 4)− 2f(3, 3)− f(3, 4)

≥ f(2, 3) + 2f(3, 4)− 2f(3, 3)− f(3, 4)

= f(2, 3) + f(3, 4)− 2f(3, 3) ≥ 0.

Subcase 2.5. dT (u1) = dT (u2) = 4.

From the condition (C1), we have f(3, 4) > f(3, 3). By Lemma 2.1,

f(2, 4) + f(4, 4) ≥ 2f(3, 4). Therefore

Tf (T ′)− Tf (T ) > 2f(2, 4) + 2f(4, 4)− 3f(3, 4)− f(3, 3)

≥ 4f(3, 4)− 3f(3, 4)− f(3, 3) > 0.

So Tf (T ′) > Tf (T ) and it contradicts that T is an n-optimal Tf chem-

ical tree.

By Lemmas 2.2-2.4, we have the following conclusion.

Theorem 2.5. Let n ≥ 7, f(x, y) > 0 be a symmetric real function

satisfied the conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then

m2,3(T ) = 0, m2,2(T ) = 0, and m3,3(T ) = 0.

Lemma 2.6. Let f(x, y) > 0 be a symmetric real function satisfied the

conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then n2(T ) ≤ 1.

• • •����
u1 u u2����

• • •����
v2 v v1

T

• • •����
u1 u u2����

• •
v2 v

•����
v1

T ′

Figure 7. The chemical trees T and T ′ for Lemma 2.6.
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Proof. Suppose to the contrary that n2(T ) ≥ 2, that is, there are u, v ∈
V (T ) such that dT (u) = dT (v) = 2. By Theorem 2.5, uv ̸∈ E(T ).

Let NT (u) = {u1, u2} and NT (v) = {v1, v2} such that the unique path

from u to v goes through u2 and v2 as depicted in Fig. 7. By Theorem

2.5, dT (u2) = dT (v2) = 4.

Let T ′ = T −vv1+uv1. From the condition (C1), we have f(3, dT (u1))

> f(2, dT (u1)), and f(3, dT (v1)) > f(2, dT (v1)). By Lemma 2.1, f(1, 4) +

f(3, 4) ≥ 2f(2, 4). Then

Tf (T ′)− Tf (T ) = f(3, dT (u1)) + f(3, dT (v1)) + f(3, 4) + f(1, 4)

− f(2, dT (u1))− f(2, dT (v1))− 2f(2, 4) > 0,

and it contradicts that T is an n-optimal Tf chemical tree.

Lemma 2.7. Let f(x, y) > 0 be a symmetric real function satisfied the

conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then n3(T ) ≤ 1.

• • •����
u1 u u3

•����
u2

����
• • •����
v3 v v1

•����
v2

T

• • •����
u1 u u3

�
��

A
AA
• •��������

u2 v2

����
• • •����
v3 v v1

T ′

Figure 8. The chemical trees T and T ′ for Lemma 2.7.

Proof. Suppose to the contrary that n3(T ) ≥ 2, that is, there are u, v ∈
V (T ) such that dT (u) = dT (v) = 3. By Theorem 2.5, uv ̸∈ E(T ).

Let NT (u) = {u1, u2, u3} and NT (v) = {v1, v2, v3} such that the unique

path from u to v goes through u3 and v3 as depicted in Fig. 8. By Theorem

2.5, dT (u3) = dT (v3) = 4, and the degrees of the vertices u1, u2, v1, v2 are

from the set {1, 4}. Then at least two degrees of the vertices u1, u2, v1, v2

are the same. Without loss of generality, assume that dT (v1) = dT (u1) (or

dT (v1) = dT (v2)). Let T
′ = T − vv2 + uv2 (see Fig. 8).

From the condition (C1), we have f(4, dT (u2)) > f(3, dT (u2)), and

f(4, dT (v2)) > f(3, dT (v2)). By Lemma 2.1, f(2, 4) + f(4, 4) ≥ 2f(3, 4).
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Then

Tf (T
′)− Tf (T ) =f(4, dT (u1)) + f(4, dT (u2)) + f(4, dT (v2)) + f(4, 4)

+ f(2, 4) + f(2, dT (v1))− f(3, dT (u1))− f(3, dT (u2))

− 2f(3, 4)− f(3, dT (v2))− f(3, dT (v1))

>f(4, dT (u1)) + f(2, dT (v1))− f(3, dT (u1))− f(3, dT (v1)).

Noting that dT (v1) = dT (u1), by Lemma 2.1, Tf (T ′) − Tf (T ) > 0. This

result contradicts that T is an n-optimal Tf chemical tree.

Theorem 2.8. Let f(x, y) > 0 be a symmetric real function satisfied

the conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then n2(T ) +

n3(T ) ≤ 1.

• • •����
u1 u u3

•����
u2

����
• • •����
v2 v v1

T

• • •����
u1 u u3

�
��

A
AA
• •��������

u2 v1

����
• •
v2 v

T ′

Figure 9. The chemical trees T and T ′ for Theorem 2.8.

Proof. By Lemmas 2.6 and 2.7, n2(T ) + n3(T ) ≤ 2. Suppose to the con-

trary that u, v ∈ V (T ) with dT (u) = 3, dT (v) = 2, and u, v are not adjacent

(due to Lemma 2.2). Let NT (u) = {u1, u2, u3} and NT (v) = {v1, v2} such

that unique path from u to v goes through u3 and v2 as depicted in Fig. 9.

By Lemmas 2.6 and 2.7, dT (u3) = dT (v2) = 4. Let T ′ = T − vv1 + uv1.

Then

Tf (T ′)− Tf (T ) =f(4, dT (u1)) + f(4, dT (u2)) + f(4, dT (v1)) + f(4, 4)

+ f(1, 4)− f(3, dT (u1))− f(3, dT (u2))− f(3, 4)

− f(2, 4)− f(2, dT (v1))

>f(4, 4) + f(1, 4)− f(3, 4)− f(2, 4).

By Lemma 2.1, Tf (T ′) > Tf (T ), and it contradicts that T is an n-optimal

Tf chemical tree.
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3 Main Results

Let f(x, y) satisfy the conditions (C1)-(C6). In this section, we will

complete characterize the n-optimal Tf chemical trees. Denote

CT (0)
n = {T ∈ CT n | n2(T ) = n3(T ) = 0}, (2)

CT (1)
n = {T ∈ CT n | n2(T ) = 0, n3(T ) = 1,m1,3(T ) = 2,m3,4(T ) = 1}, (3)

CT (2)
n = {T ∈ CT n | n2(T ) = 0, n3(T ) = 1,m1,3(T ) = 1,m3,4(T ) = 2}, (4)

CT (3)
n = {T ∈ CT n | n2(T ) = 0, n3(T ) = 1,m1,3(T ) = 0,m3,4(T ) = 3}, (5)

CT (4)
n = {T ∈ CT n | n2(T ) = 1, n3(T ) = 0,m1,2(T ) = 1,m2,4(T ) = 1}, (6)

CT (5)
n = {T ∈ CT n | n2(T ) = 1, n3(T ) = 0,m1,2(T ) = 0,m2,4(T ) = 2}. (7)

Theorem 3.1. Let n ≥ 7, f(x, y) > 0 be a symmetric real function

satisfied the conditions (C1)-(C6), and T ∈ CT n be n-optimal Tf . Then

T ∈
⋃i=5

i=0 CT
(i)
n .

Proof. By Theorem 2.8, n2(T ) + n3(T ) ≤ 1.

Case 1. n2(T ) = n3(T ) = 0. Then T ∈ CT (0)
n .

Case 2. n2(T ) = 0 and n3(T ) = 1.

Let u be the unique 3-vertex of T , and NT (u) = {u1, u2, u3} with

dT (u1) ≤ dT (u2) ≤ dT (u3). Note that n2(T ) = 0. Then dT (ui) ∈ {1, 4}
for i = 1, 2, 3.

Subcase 2.1. If dT (u1) = dT (u2) = 1 and dT (u3) = 4, then m1,3(T ) =

2, and m3,4(T ) = 1, that is, T ∈ CT (1)
n .

Subcase 2.2. If dT (u1) = 1 and dT (u3) = dT (u2) = 4, then m1,3(T ) =

1, and m3,4(T ) = 2, that is, T ∈ CT (2)
n .

Subcase 2.3. If dT (u1) = dT (u2) = dT (u3) = 4, then m1,3(T ) = 0,

and m3,4(T ) = 3, that is, T ∈ CT (3)
n .

So in this case, T ∈ CT (1)
n ∪ CT (2)

n ∪ CT (3)
n .

Case 3. n2(T ) = 1 and n3(T ) = 0.

Let v be the unique 2-vertex of T . Denote NT (v) = {v1, v2} with

dT (v1) ≤ dT (v2). Then dT (vi) ∈ {1, 4} for i = 1, 2.

Subcase 3.1. If dT (v1) = 1 and dT (v2) = 4, then m1,2(T ) = 1 and

m2,4(T ) = 1, that is, T ∈ CT (4)
n ;

Subcase 3.2. If dT (v1) = dT (v2) = 4, thenm1,2(T ) = 0 andm2,4(T ) =

2, that is, T ∈ CT (5)
n .
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So in this case, T ∈ CT (4)
n ∪ CT (5)

n .

Note that for a chemical tree T ∈ CT n,

n1(T ) + n2(T ) + n3(T ) + n4(T ) = n, (8)

n1(T ) + 2n2(T ) + 3n3(T ) + 4n4(T ) = 2(n− 1), (9)

m1,2(T ) +m1,3(T ) +m1,4(T ) = n1(T ), (10)

m1,2(T ) + 2m2,2(T ) +m2,3(T ) +m2,4(T ) = 2n2(T ), (11)

m1,3(T ) +m2,3(T ) + 2m3,3(T ) +m3,4(T ) = 3n3(T ), (12)

m1,4(T ) +m2,4(T ) +m3,4(T ) + 2m4,4(T ) = 4n4(T ), (13)

and

Tf (T ) =
∑

uv∈E(T )

f(dT (u), dT (v)) =
∑

1≤k≤ℓ≤4

mk,ℓ(T )f(k, ℓ). (14)

Lemma 3.2. Let n ≥ 7 and T ∈ CT (0)
n . Then n ≡ 2(mod 3), and

Tf (T ) =
2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4).

Proof. Note that n2(T ) = n3(T ) = 0. By (8) and (9),

n1(T ) + n4(T ) = n,

n1(T ) + 4n4(T ) = 2(n− 1).

Then n1(T ) =
2n+2

3 , n4(T ) =
n−2
3 , and n ≡ 2(mod 3). By (10) and (13),

m1,4(T ) = n1(T ) =
2n+2

3 and m4,4(T ) = 2n4(T )− 1
2m1,4(T ) =

n−5
3 , which

combined with (14) yields

Tf (T ) = m1,4(T )f(1, 4) +m4,4(T )f(4, 4)

=
2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4).

Lemma 3.3. Let n ≥ 7 and T ∈ CT (1)
n ∪ CT (2)

n ∪ CT (3)
n .
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Then n ≡ 1(mod 3), and

Tf (T ) =


2f(1, 3) + f(3, 4) + 2n−5

3
f(1, 4) + n−7

3
f(4, 4), if T ∈ CT (1)

n ,

f(1, 3) + 2f(3, 4) + 2n−2
3

f(1, 4) + n−10
3

f(4, 4), if T ∈ CT (2)
n ,

3f(3, 4) + 2n+1
3

f(1, 4) + n−13
3

f(4, 4), if T ∈ CT (3)
n .

Proof. Noticing that n2(T ) = 0 and n3(T ) = 1, by (8) and (9),

n1(T ) + n4(T ) + 1 = n,

n1(T ) + 3 + 4n4(T ) = 2(n− 1).

Then n1(T ) =
2n+1

3 , n4(T ) =
n−4
3 , and n ≡ 1(mod 3). By (14),

Tf (T ) = m1,3(T )f(1, 3)+m3,4(T )f(3, 4)+m1,4(T )f(1, 4)+m4,4(T )f(4, 4).

Case 1. T ∈ CT (1)
n .

Noting that m1,3(T ) = 2 and m3,4(T ) = 1, by (10) and (13), we get

m1,4(T ) = n1(T )−m1,3(T ) =
2n−5

3 , and m4,4(T ) = 2n4(T )− 1
2 ((m1,4(T )+

m3,4(T )) =
n−7
3 . Then

Tf (T ) = 2f(1, 3) + f(3, 4) +
2n− 5

3
f(1, 4) +

n− 7

3
f(4, 4).

Case 2. T ∈ CT (2)
n .

Noting that m1,3(T ) = 1 and m3,4(T ) = 2, by (10) and (13), we get

m1,4(T ) = n1(T )−m1,3(T ) =
2n−2

3 , and m4,4(T ) = 2n4(T )− 1
2 (m1,4(T )+

m3,4(T )) =
n−10

3 . Then

Tf (T ) = f(1, 3) + 2f(3, 4) +
2n− 2

3
f(1, 4) +

n− 10

3
f(4, 4).

Case 3. T ∈ CT (3)
n .

Noting that m1,3(T ) = 0 and m3,4(T ) = 3, by (10) and (13), we get

m1,4(T ) = n1(T ) =
2n+1

3 , and m4,4(T ) = 2n4(T )− 1
2 (m1,4(T ) +m3,4(T ))

= n−13
3 . Then

Tf (T ) = 3f(3, 4) +
2n+ 1

3
f(1, 4) +

n− 13

3
f(4, 4).
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Lemma 3.4. Let n ≥ 7 and T ∈ CT (4)
n ∪ CT (5)

n . Then n ≡ 0(mod 3),

and

Tf (T ) =

{
f(1, 2) + f(2, 4) + 2n−3

3 f(1, 4) + n−6
3 f(4, 4), if T ∈ CT (4)

n ,

2f(2, 4) + 2n
3 f(1, 4) + n−9

3 f(4, 4), if T ∈ CT (5)
n .

Proof. Noticing that n2(T ) = 1 and n3(T ) = 0, by (8) and (9),

n1(T ) + 1 + n4(T ) = n,

n1(T ) + 2 + 4n4(T ) = 2(n− 1).

So n1(T ) =
2n
3 , n4(T ) =

n−3
3 , and n ≡ 0(mod 3). By (14),

Tf (T ) = m1,2(T )f(1, 2)+m2,4(T )f(2, 4)+m1,4(T )f(1, 4)+m4,4(T )f(4, 4).

Case 1. T ∈ CT (4)
n .

Noting that m1,2(T ) = 1 and m2,4(T ) = 1, by (10) and (13), we get

m1,4(T ) = n1(T )−m1,2(T ) =
2n−3

3 , and m4,4(T ) = 2n4(T )− 1
2 (m1,4(T )+

m2,4(T )) =
n−6
3 . Then

Tf (T ) = f(1, 2) + f(2, 4) +
2n− 3

3
f(1, 4) +

n− 6

3
f(4, 4).

Case 2. T ∈ CT (5)
n .

Noting that m1,2(T ) = 0 and m2,4(T ) = 2, by (10) and (13), we get

m1,4(T ) = n1(T ) =
2n
3 , and m4,4(T ) = 2n4(T )− 1

2 (m1,4(T ) +m2,4(T )) =
n−9
3 . Then

Tf (T ) = 2f(2, 4) +
2n

3
f(1, 4) +

n− 9

3
f(4, 4).

By Lemmas 3.2, 3.3, and 3.4, we can use T (i)
f to denote the VDB

topological index Tf of the chemical trees in CT (i)
n for i = 0, 1, . . . , 5, that
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is,

T (0)
f =

2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4), (15)

T (1)
f = 2f(1, 3) + f(3, 4) +

2n− 5

3
f(1, 4) +

n− 7

3
f(4, 4), (16)

T (2)
f = f(1, 3) + 2f(3, 4) +

2n− 2

3
f(1, 4) +

n− 10

3
f(4, 4), (17)

T (3)
f = 3f(3, 4) +

2n+ 1

3
f(1, 4) +

n− 13

3
f(4, 4), (18)

T (4)
f = f(1, 2) + f(2, 4) +

2n− 3

3
f(1, 4) +

n− 6

3
f(4, 4), (19)

T (5)
f = 2f(2, 4) +

2n

3
f(1, 4) +

n− 9

3
f(4, 4). (20)

Take

Af = f(1, 4) + f(3, 4)− f(1, 3)− f(4, 4), (21)

Bf = f(1, 4) + f(2, 4)− f(1, 2)− f(4, 4). (22)

Then

T (3)
f − T (2)

f = T (2)
f − T (1)

f = Af , T (5)
f − T (4)

f = Bf . (23)

So 
T (1)
f > T (2)

f > T (3)
f , if Af < 0,

T (3)
f > T (2)

f > T (1)
f , if Af > 0,

T (1)
f = T (2)

f = T (3)
f , if Af = 0,

(3.23)

and 
T (4)
f > T (5)

f , if Bf < 0,

T (5)
f > T (4)

f , if Bf > 0,

T (4)
f = T (5)

f , if Bf = 0,

(3.24)

The following is the main theorem of this section.

Theorem 3.5. Let n ≥ 7, f(x, y) > 0 be a symmetric real function

satisfied the conditions (C1)-(C6), and T ∈ CT n.

(1) If n ≡ 2(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (0)
n , and T̂f = T (0)

f .
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(2) If n ≡ 1(mod 3) and Af < 0, then T is an n-optimal Tf chemical

tree when and only when T ∈ CT (1)
n , and T̂f = T (1)

f .

If n ≡ 1(mod 3) and Af > 0, then T is an n-optimal Tf chemical tree

when and only when T ∈ CT (3)
n , and T̂f = T (3)

f .

If n ≡ 1(mod 3) and Af = 0, then T is an n-optimal Tf chemical tree

when and only when T ∈ CT (1)
n ∪ CT (2)

n ∪ CT (3)
n , and T̂f = T (1)

f = T (2)
f =

T (3)
f .

(3) If n ≡ 0(mod 3) and Bf < 0, then T is an n-optimal Tf chemical

tree when and only when T ∈ CT (4)
n , and T̂f = T (4)

f .

If n ≡ 0(mod 3) and Bf > 0, then T is an n-optimal Tf chemical tree

when and only when T ∈ CT (5)
n , and T̂f = T (5)

f .

If n ≡ 0(mod 3) and Bf = 0, then T is an n-optimal Tf chemical tree

when and only when T ∈ CT (4)
n ∪ CT (5)

n , and T̂f = T (4)
f = T (5)

f .

Proof. Case 1. n ≡ 2(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CT (0)
n ̸= ϕ, and CT (i)

n = ϕ for i = 1, . . . , 5.

So
⋃i=5

i=0 CT
(i)
n = CT (0)

n . By Theorem 3.1, T is an n-optimal Tf chemical

tree when and only when T ∈ CT (0)
n . The maximum index value T̂f = T (0)

f .

Case 2. n ≡ 1(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CT (1)
n ∪CT (2)

n ∪CT (3)
n ̸= ϕ, and CT (i)

n = ϕ

for i = 0, 4, 5. So
⋃i=5

i=0 CT
(i)
n = CT (1)

n ∪ CT (2)
n ∪ CT (3)

n . By Theorem 3.1

and Eq. (3.23), we have

• If Af < 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (1)
n , and T̂f = T (1)

f .

• If Af > 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (3)
n , and T̂f = T (3)

f .

• If Af = 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (1)
n ∪ CT (2)

n ∪ CT (3)
n , and T̂f = T (1)

f = T (2)
f = T (3)

f .

Case 3. n ≡ 0(mod 3).

By Lemmas 3.2, 3.3 and 3.4, CT (4)
n ∪ CT (5)

n ̸= ϕ and CT (i)
n = ϕ for

i = 0, 1, 2, 3, and so
⋃i=5

i=0 CT
(i)
n = CT (4)

n ∪CT (5)
n . By Theorem 3.1 and Eq.

(3.24), we have
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• If Bf < 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (4)
n , and T̂f = T (4)

f .

• If Bf > 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (5)
n , and T̂f = T (5)

f .

• If Bf = 0, then T is an n-optimal Tf chemical tree when and only

when T ∈ CT (4)
n ∪ CT (5)

n , and T̂f = T (4)
f = T (5)

f .

The theorem now follows.

4 Applications

In this section, we will consider the following twenty-five VDB topo-

logical indices (as shown in Table 4.1), and characterize the n-optimal Tf
chemical trees.

Table 4.1 Some VDB topological indices Tf
No. Name f(x, y) Af Bf Ref.

1 Sombor index
√

x2 + y2 SO
Af > 0,

Bf > 0
[10,11]

2 Reduced Sombor index
√

(x − 1)2 + (y − 1)2 SOred
Af > 0,

Bf > 0
[10,11]

3 First Zagreb index x + y M1
Af = 0,

Bf = 0
[6,7]

4 Forgotten index x2 + y2 F
Af = 0,

Bf = 0
[8]

5 Second Zagreb index xy M2
Af < 0,

Bf < 0
[6, 7]

6
First hyper-Zagreb

index
(x + y)2 HM1

Af < 0,

Bf < 0

7
Second hyper-Zagreb

index
(xy)2 HM2

Af < 0,

Bf < 0

8 First Gourava index x + y + xy GO1
Af < 0,

Bf < 0

9 Second Gourava index (x + y)xy GO2
Af < 0,

Bf < 0

10
First hyper-Gourava

index
(x + y + xy)2 HGO1

Af < 0,

Bf < 0

11
Second hyper-Gourava

index
((x + y)xy)2 HGO2

Af < 0,

Bf < 0

12
Exponential Sombor

index
e
√

x2+y2 eSO Af < 0,

Bf < 0
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13
Exponential reduced

Sombor index
e
√

(x−1)2+(y−1)2 eSOred
Af < 0,

Bf < 0

14
Exponential first Zagreb

index
ex+y eM1

Af < 0,

Bf < 0
[7]

15
Exponential forgotten

index
ex

2+y2
eF

Af < 0,

Bf < 0

16
Exponential second

Zagreb index
exy eM2

Af < 0,

Bf < 0

17
Exponential reciprocal

Randić index
e
√

xy eRR Af < 0,

Bf < 0

18
Exponential reciprocal

sum-connectivity index
e
√

x+y eRSC Af < 0,

Bf < 0

19
Exponential first

hyper-Zagreb index
e(x+y)2 eHM1

Af < 0,

Bf < 0

20
Exponential second

hyper-Zagreb index
e(xy)2 eHM2

Af < 0,

Bf < 0

21
Exponential first

Gourava index
ex+y+xy eGO1

Af < 0,

Bf < 0

22
Exponential second

Gourava index
e(x+y)xy eGO2

Af < 0,

Bf < 0

23
Exponential first

hyper-Gourava index
e(x+y+xy)2 eHGO1

Af < 0,

Bf < 0

24
Exponential second

hyper-Gourava index
e((x+y)xy)2 eHGO2

Af < 0,

Bf < 0

25

Exponential

product-connectivity

Gourava index

e
√

(x+y)xy ePCG Af < 0,

Bf < 0

It is not difficult to verify that these VDB topological indices satisfy

the conditions (C1)-(C6). By Theorem 3.5, the following three theorems

are straightforward.

Theorem 4.1. Let n ≥ 7 and T ∈ CT n. Then for the Sombor index and

reduced Sombor index, the following results hold.

(1) If n ≡ 2(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (0)
n , and

T̂f =
2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4).

(2) If n ≡ 1(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (3)
n , and

T̂f = 3f(3, 4) +
2n+ 1

3
f(1, 4) +

n− 13

3
f(4, 4).
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(3) If n ≡ 0(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (5)
n , and

T̂f = 2f(2, 4) +
2n

3
f(1, 4) +

n− 9

3
f(4, 4).

Theorem 4.2. Let n ≥ 7 and T ∈ CT n. Then for the first Zagreb index

and forgotten index, the following results hold.

(1) If n ≡ 2(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (0)
n , and

T̂f =
2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4).

(2) If n ≡ 1(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (1)
n ∪ CT (2)

n ∪ CT (3)
n , and

T̂f = 2f(1, 3) + f(3, 4) +
2n− 5

3
f(1, 4) +

n− 7

3
f(4, 4).

(3) If n ≡ 0(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (4)
n ∪ CT (5)

n , and

T̂f = f(1, 2) + f(2, 4) +
2n− 3

3
f(1, 4) +

n− 6

3
f(4, 4).

Theorem 4.3. Let n ≥ 7 and T ∈ CT n. Then for the VDB topological

indices numbered from 5 to 25 as shown in Table 4.1, the following results

hold.

(1) If n ≡ 2(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (0)
n , and

T̂f =
2n+ 2

3
f(1, 4) +

n− 5

3
f(4, 4).

(2) If n ≡ 1(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (1)
n , and

T̂f = 2f(1, 3) + f(3, 4) +
2n− 5

3
f(1, 4) +

n− 7

3
f(4, 4).
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(3) If n ≡ 0(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (4)
n , and

T̂f = f(1, 2) + f(2, 4) +
2n− 3

3
f(1, 4) +

n− 6

3
f(4, 4).

In particularly, for the exponential reduced Sombor index eSOred , in-

duced by f(x, y) = e
√

(x−1)2+(y−1)2 , we have the following result. This

result shows that Conjecture 3.1 in [13] is incorrect.

Corollary 4.4. Let n ≥ 7 and T ∈ CT n. Then for the exponential reduced

Sombor index, the following results hold.

(1) If n ≡ 2(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (0)
n . The maximal exponential reduced Sombor index is

1

3
(n− 5)e3

√
2 +

2

3
(n+ 1)e3.

(2) If n ≡ 1(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (1)
n . The maximal exponential reduced Sombor index is

1

3
(n− 7)e3

√
2 +

1

3
(2n− 5)e3 + e

√
13 + 2e2.

(3) If n ≡ 0(mod 3), then T is an n-optimal Tf chemical tree when and

only when T ∈ CT (4)
n . The maximal exponential reduced Sombor index is

1

3
(2n− 3)e3 +

1

3
(n− 6)e3

√
2 + e

√
10 + e.
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