Chemical Trees with Maximal VDB Topological Indices

Wei Gao
Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, 19001, USA
wvg5121@psu.edu

(Received September 2, 2022)

Abstract

A general vertex-degree-based (VDB) topological index of a graph G is defined as $$
\mathcal{T}_{f}=\mathcal{T}_{f}(G)=\sum_{u v \in E(G)} f\left(d_{G}(u), d_{G}(v)\right)
$$ where $f(x, y)>0$ is a symmetric real function with $x \geq 1$ and $y \geq 1$. Let $\mathcal{C} \mathcal{T}_{n}$ be the set of all chemical trees of order n, and let $\hat{T}_{f}=\max \left\{\mathcal{T}_{f}(T) \mid T \in \mathcal{C} \mathcal{T}_{n}\right\}$. A chemical tree $T \in \mathcal{C} \mathcal{T}_{n}$ is an n-optimal \mathcal{T}_{f} chemical tree if $\mathcal{T}_{f}(T)=\hat{T}_{f}$.

One important topic in chemical graph theory is the extremal value problem of VDB topological indices over $\mathcal{C} \mathcal{T}_{n}$. In this work, we get the following results. (1) We propose six conditions (C1)-(C6) for the symmetric real function $f(x, y)$. For a VDB topological index \mathcal{T}_{f} satisfied the conditions (C1)-(C6), we obtained the necessary and sufficient conditions for $T \in \mathcal{C} \mathcal{T}_{n}$ to be an n-optimal \mathcal{T}_{f} chemical tree. (2) For twenty-five VDB topological indices (as shown in Table 4.1 of Section 4), the n-optimal \mathcal{T}_{f} chemical trees are characterized, and the maximum \mathcal{T}_{f} values are determined, too.

1 Introduction

A general vertex-degree-based (VDB for short) topological index of a graph G is given by

$$
\begin{equation*}
\mathcal{T}_{f}=\mathcal{T}_{f}(G)=\sum_{u v \in E(G)} f\left(d_{G}(u), d_{G}(v)\right), \tag{1}
\end{equation*}
$$

where $f(x, y)>0$ is a symmetric real function with $x \geq 1$ and $y \geq 1$.
A tree T is a chemical tree (or molecular tree) if $d_{T}(v) \leq 4$ for $v \in$ $V(T)$. Let $\mathcal{C} \mathcal{T}_{n}$ be the set of all chemical trees of order n, and let $\hat{T}_{f}=$ $\max \left\{\mathcal{T}_{f}(T) \mid T \in \mathcal{C} \mathcal{T}_{n}\right\}$. A chemical tree $T \in \mathcal{C} \mathcal{T}_{n}$ is an n-optimal \mathcal{T}_{f} chemical tree if $\mathcal{T}_{f}(T)=\hat{T}_{f}$.

The problem of finding extremal values of a VDB topological index over $\mathcal{C} \mathcal{T}_{n}$ has attracted considerable attention in the mathematical-chemistry literature. It is well known that the n-optimal \mathcal{T}_{f} chemical trees of some VDB topological indices \mathcal{T}_{f} have been determined, for example, the Randić index $\chi\left(f(x, y)=\frac{1}{\sqrt{x y}}\right)[1,2]$; geometrical-arithmetic index $\mathcal{G A}(f(x, y)=$ $\left.\frac{2 \sqrt{x y}}{x+y}\right)[3,4]$; arithmetic-geometric index $\mathcal{A G}\left(f(x, y)=\frac{x+y}{2 \sqrt{x y}}\right)[3,4]$; Harmonic index $\mathcal{H}\left(f(x, y)=\frac{2}{x+y}\right)$ [5]; first Zagreb index $\mathcal{M}_{1}(f(x, y)=x+y)$ $[6,7]$; second Zagreb index $\mathcal{M}_{2}(f(x, y)=x y)[6,7]$; forgotten index \mathcal{F} $\left(f(x, y)=x^{2}+y^{2}\right)[8] ;$ symmetric division deg index $\mathcal{S D D}\left(f(x, y)=\frac{x}{y}+\frac{y}{x}\right)$ [9]; Sombor index $\mathcal{S O}\left(f(x, y)=\sqrt{x^{2}+y^{2}}\right)$ [10, 11]; reduced Sombor index $\mathcal{S O}_{\text {red }}\left(f(x, y)=\sqrt{(x-1)^{2}+(y-1)^{2}}\right)$ [10]; inverse sum indeg index $\mathcal{I S I}\left(f(x, y)=\frac{x y}{x+y}\right)$ [12]; and exponential first Zagreb index $e^{\mathcal{M}_{1}}$ $\left(f(x, y)=e^{x+y}\right)[7]$.

In this paper, we study VDB topological indices over $\mathcal{C} \mathcal{T}_{n}$. The main aim is to establish a general theorem that can capture the common properties necessary for the n-optimal \mathcal{T}_{f} chemical trees of all VDB topological indices \mathcal{T}_{f} satisfying certain conditions. We also apply our results to obtain the maximum values of some VDB topological indices over $\mathcal{C} \mathcal{T}_{n}$.

In Section 2, we propose six conditions for the symmetric real function $f(x, y)$, and prove that for a VDB topological index \mathcal{T}_{f} satisfied these conditions, if a chemical tree T is an n-optimal \mathcal{T}_{f} chemical tree, then the number of 2 -vertices and 3 -vertices in T is at most one.

In Section 3, we obtain the necessary and sufficient conditions for a chemical tree to be an n-optimal \mathcal{T}_{f} chemical tree when the VDB topological index \mathcal{T}_{f} satisfied these conditions.

In Section 4, as an application of the main theorem in Section 3, for twenty-five VDB topological indices \mathcal{T}_{f} (as shown in Table 4.1 of Section $4)$, we completely characterize the n-optimal \mathcal{T}_{f} chemical trees, and the maximum \mathcal{T}_{f} values are determined, too.

2 Lemmas

Let $f(x, y)>0$ be a symmetric real function with $x \geq 1$ and $y \geq 1$. In this section, we will consider the VDB topological indices \mathcal{T}_{f} satisfied the following conditions:
(C1) $\frac{\partial f(x, y)}{\partial x}>0$ and $\frac{\partial^{2} f(x, y)}{\partial x^{2}} \geq 0$ for $x>1$ and $y \geq 1$;
(C2) $f(1,4)-f(2,2) \geq 0$;
(C3) $f(1,3)+f(3,4)-f(2,2)-f(2,4) \geq 0$;
(C4) $f(2,4)+f(3,4)-2 f(3,3) \geq 0$;
(C5) $f(2,2)+f(4,4)-f(1,3)-f(3,4) \geq 0$;
(C6) $f(1,2)+f(4,4)-f(1,3)-f(3,3) \geq 0$.

Lemma 2.1. Let $f(x, y)>0$ be a symmetric real function satisfied the condition (C1). Then for any fixed $y \geq 1$, we have
(1) $f(1, y)+f(4, y) \geq f(2, y)+f(3, y)$;
(2) $f(1, y)+f(3, y) \geq 2 f(2, y)$;
(3) $f(2, y)+f(4, y) \geq 2 f(3, y)$.

Proof. By Mean Value Theorem, §

$$
\begin{aligned}
f(1, y)+f(4, y)-f(2, y)-f(3, y) & =f(4, y)-f(3, y)-(f(2, y)-f(1, y)) \\
& =f_{x}^{\prime}\left(\theta_{11}, y\right)-f_{x}^{\prime}\left(\theta_{12}, y\right) \geq 0 \\
f(1, y)+f(3, y)-2 f(2, y) & =f(3, y)-f(2, y)-(f(2, y)-f(1, y)) \\
& =f_{x}^{\prime}\left(\theta_{21}, y\right)-f_{x}^{\prime}\left(\theta_{22}, y\right) \geq 0 \\
f(2, y)+f(4, y)-2 f(3, y) & =f(4, y)-f(3, y)-(f(3, y)-f(2, y)) \\
& =f_{x}^{\prime}\left(\theta_{31}, y\right)-f_{x}^{\prime}\left(\theta_{32}, y\right) \geq 0
\end{aligned}
$$

where $\theta_{11} \in(3,4), \theta_{12} \in(1,2), \theta_{21} \in(2,3), \theta_{22} \in(1,2), \theta_{31} \in(3,4)$, and $\theta_{32} \in(2,3)$.

Let T be a tree of order n. A vertex $v \in V(T)$ will be called k-vertex if $d_{T}(v)=k$, and a edge $u v \in E(T)$ will be called a (k, ℓ)-edge if $d_{T}(u)=k$ and $d_{T}(v)=\ell$. Let us denote by $n_{k}(T)$ the number of k-vertices of T, and $m_{k, \ell}(T)$ the number of (k, ℓ)-edges of T.

Lemma 2.2. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and let $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $m_{2,3}(T)=0$.

T

T^{\prime}

Figure 1. The chemical trees T and T^{\prime} for Lemma 2.2.

Proof. Suppose to the contrary that $m_{2,3}(T) \geq 1$, that is, there is $u v \in$ $E(T)$ such that $d_{T}(u)=3$ and $d_{T}(v)=2$. Let $N_{T}(u)=\left\{v, u_{1}, u_{2}\right\}$, $N_{T}(v)=\left\{u, v_{1}\right\}$, and $T^{\prime}=T-v v_{1}+u v_{1}$ (as depicted in Fig. 1). We claim that $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.

Note that

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(4, d_{T}\left(u_{1}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)+f\left(4, d_{T}\left(v_{1}\right)\right)+f(1,4) \\
& -f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right)-f\left(2, d_{T}\left(v_{1}\right)\right)-f(2,3) .
\end{aligned}
$$

Since $n \geq 7, \max \left\{d_{T}\left(u_{1}\right), d_{T}\left(u_{2}\right), d_{T}\left(v_{1}\right)\right\} \geq 2$. Without loss of generality, we assume that $d_{T}\left(u_{1}\right) \leq d_{T}\left(u_{2}\right)$.

Case 1. $2 \leq d_{T}\left(v_{1}\right) \leq 3$.
From the condition (C1), we deduce that $f\left(4, d_{T}\left(u_{1}\right)\right)>f\left(3, d_{T}\left(u_{1}\right)\right)$, $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(3, d_{T}\left(u_{2}\right)\right), f(1,4)>f\left(1, d_{T}\left(v_{1}\right)\right)$, and $f\left(3, d_{T}\left(v_{1}\right)\right) \geq$ $f(2,3)$. By Lemma 2.1, we get $f\left(4, d_{T}\left(v_{1}\right)\right)+f\left(1, d_{T}\left(v_{1}\right)\right) \geq f\left(2, d_{T}\left(v_{1}\right)\right)+$
$f\left(3, d_{T}\left(v_{1}\right)\right)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & >f\left(4, d_{T}\left(v_{1}\right)\right)+f\left(1, d_{T}\left(v_{1}\right)\right)-f\left(2, d_{T}\left(v_{1}\right)\right)-f(2,3) \\
& \geq f\left(2, d_{T}\left(v_{1}\right)\right)+f\left(3, d_{T}\left(v_{1}\right)\right)-f\left(2, d_{T}\left(v_{1}\right)\right)-f(2,3) \geq 0
\end{aligned}
$$

Case 2. $d_{T}\left(v_{1}\right)=4$.
From the condition $(\mathrm{C} 1)$, we deduce that $f\left(4, d_{T}\left(u_{1}\right)\right)>f\left(3, d_{T}\left(u_{1}\right)\right)$ and $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(3, d_{T}\left(u_{2}\right)\right)$. By Lemma 2.1, we get $f(4,4)+f(1,4) \geq$ $f(2,4)+f(3,4)>f(2,4)+f(2,3)$. So

$$
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)>f(4,4)+f(1,4)-f(2,4)-f(2,3)>0
$$

Case 3. $d_{T}\left(u_{2}\right)=4$.
From the condition (C1), we deduce that $f\left(4, d_{T}\left(u_{1}\right)\right)>f\left(3, d_{T}\left(u_{1}\right)\right)$ and $f\left(4, d_{T}\left(v_{1}\right)\right)>f\left(2, d_{T}\left(v_{1}\right)\right)$. By Lemma 2.1, $f(4,4)+f(1,4) \geq$ $f(2,4)+f(3,4)>f(2,3)+f(3,4)$. Then

$$
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)>f(4,4)+f(1,4)-f(3,4)-f(2,3)>0 .
$$

Case 4. $d_{T}\left(v_{1}\right)=1$ and $d_{T}\left(u_{1}\right)=d_{T}\left(u_{2}\right)=3$.
From the conditions (C1), (C2) and (C4), we have $f(2,4)>f(2,3)$, $f(2,2)>f(1,2), f(1,4) \geq f(2,2)$, and $f(3,4) \geq 2 f(3,3)-f(2,4)$. Ву Lemma 2.1, $f(1,4)+f(3,4) \geq 2 f(2,4)$. So

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & (f(3,4)+f(1,4))+f(3,4)+f(1,4)-2 f(3,3) \\
& \quad-f(1,2)-f(2,3) \\
> & 2 f(2,4)+2 f(3,3)-f(2,4)+f(2,2)-2 f(3,3) \\
& -f(1,2)-f(2,3) \\
= & f(2,4)+f(2,2)-f(1,2)-f(2,3)>0
\end{aligned}
$$

Case 5. $d_{T}\left(v_{1}\right)=1$ and $d_{T}\left(u_{1}\right)=2\left(\right.$ or $d_{T}\left(v_{1}\right)=1$ and $\left.d_{T}\left(u_{2}\right)=2\right)$.
From the conditions (C1) and (C2), we deduce that $f\left(4, d_{T}\left(u_{2}\right)\right)>$ $f\left(3, d_{T}\left(u_{2}\right)\right)$, and $f(1,4) \geq f(2,2)>f(1,2)$. By Lemma 2.1, we get
$f(2,4)+f(2,2) \geq 2 f(2,3)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & >f(2,4)+2 f(1,4)-2 f(2,3)-f(1,2) \\
& >f(2,4)+f(2,2)-2 f(2,3) \geq 0
\end{aligned}
$$

So $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$ and it contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

Lemma 2.3. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $m_{2,2}(T)=$ 0 .

Proof. Suppose to the contrary that $m_{2,2}(T) \geq 1$. We claim that there exists a chemical tree $T^{\prime} \in \mathcal{C} \mathcal{T}_{n}$ such that $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.

Case 1. $n_{4}(T)=0$.
By Lemma 2.2, $m_{2,3}(T)=0$. Then $n_{3}(T)=0$, and T is a path as depicted in Fig. 2. Let $T^{\prime}=T-v_{1} v_{2}-v_{2} v_{3}-v_{3} v_{4}-v_{4} v_{5}+v_{5} v_{1}+v_{5} v_{2}+$ $v_{6} v_{3}+v_{6} v_{4}$.

Figure 2. The chemical trees T and T^{\prime} for Case 1 of Lemma 2.3.

If $n=7$, then from the conditions (C1) and (C2), we have $f(1,3)>$ $f(1,2)$, and $f(1,4) \geq f(2,2)$. By Lemma 2.1, $f(1,4)+f(3,4) \geq 2 f(2,4)>$ $2 f(2,2)$. So

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & =2 f(1,3)+3 f(1,4)+f(3,4)-2 f(1,2)-4 f(2,2) \\
& >2 f(1,3)+2 f(1,4)+2 f(2,2)-2 f(1,2)-4 f(2,2)>0
\end{aligned}
$$

If $n \geq 8$, then from the conditions (C1) and (C2), we have $f(1,3)>$ $f(1,2), f(2,4)>f(2,2)$, and $f(1,4) \geq f(2,2)$. By Lemma 2.1, $f(1,3)+$
$f(3,4)=f(1,3)+f(4,3) \geq f(2,3)+f(3,3)>2 f(2,2)$. So

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & =2 f(1,3)+2 f(1,4)+f(3,4)+f(2,4)-f(1,2)-5 f(2,2) \\
& >f(1,3)+2 f(1,4)+2 f(2,2)+f(2,4)-f(1,2)-5 f(2,2) \\
& >0
\end{aligned}
$$

Case 2. $n_{4}(T) \geq 1$.
Let $u v \in E(T)$ be a $(2,2)$-edge, $N_{T}(u)=\left\{u_{1}, v\right\}$ and $N_{T}(v)=\left\{u, v_{1}\right\}$. By Lemma $2.2, m_{2,3}(T)=0$. Then we can choose the vertices u, v appropriately, such that $d_{T}\left(v_{1}\right)=4$. Note that $d_{T}\left(u_{1}\right) \in\{1,2,4\}$.

Subcase 2.1. $d_{T}\left(u_{1}\right)=2$.
Let $N_{T}\left(u_{1}\right)=\left\{u_{2}, u\right\}$, and $T^{\prime}=T-u u_{1}-u_{1} u_{2}+v u_{1}+v u_{2}$ as depicted in Fig. 3.

Figure 3. The chemical trees T and T^{\prime} for Subcase 2.1 of Lemma 2.3.

From the condition (C1), we have $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(2, d_{T}\left(u_{2}\right)\right)$. By Lemma 2.1, $f(4,4)+f(1,4) \geq f(2,4)+f(3,4)$, and $f(1,4)+f(3,4) \geq$ $2 f(2,4)>2 f(2,2)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(4, d_{T}\left(u_{2}\right)\right)+f(4,4)+2 f(1,4)-f\left(2, d_{T}\left(u_{2}\right)\right) \\
& -f(2,4)-2 f(2,2) \\
> & f(4,4)+2 f(1,4)-f(2,4)-2 f(2,2) \\
\geq & f(2,4)+f(3,4)+f(1,4)-f(2,4)-2 f(2,2)>0
\end{aligned}
$$

Subcase 2.2. $d_{T}\left(u_{1}\right) \neq 2$.
In this case $d_{T}\left(u_{1}\right) \in\{1,4\}$. Let $T^{\prime}=T-u u_{1}+v u_{1}$ as depicted in Fig. 4.

Figure 4. The chemical trees T and T^{\prime} for Subcase 2.2 of Lemma 2.3.

If $d_{T}\left(u_{1}\right)=1$, from the conditions (C1) and (C3), we get

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & =2 f(1,3)+f(3,4)-f(1,2)-f(2,2)-f(2,4) \\
& >f(1,3)+f(3,4)-f(2,2)-f(2,4) \geq 0
\end{aligned}
$$

If $d_{T}\left(u_{1}\right)=4$, from the conditions (C1) and (C3), we get

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & =f(1,3)+2 f(3,4)-f(2,2)-2 f(2,4) \\
& >f(1,3)+f(3,4)-f(2,2)-f(2,4) \geq 0
\end{aligned}
$$

So $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$ and it contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

Lemma 2.4. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $m_{3,3}(T)=$ 0 .

Proof. Suppose to the contrary that $m_{3,3}(T) \geq 1$. We claim that there exists a chemical tree $T^{\prime} \in \mathcal{C} \mathcal{T}_{n}$ such that $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.

Case 1. $n_{4}(T)=0$.
By Lemma 2.2, $n_{2}(T)=0$. Then the degrees of all vertices of T are from the set $\{1,3\}$. In this case, we can assume that T is a chemical tree as depicted in Fig. 5, where $d_{T}\left(v_{1}\right)=d_{T}\left(v_{m+1}\right)=1, d_{T}\left(v_{i}\right)=3$ and $d_{T}\left(u_{i}\right) \in\{1,3\}$ for $i=2,3, \ldots, m$. Since $n \geq 7$, then $m \geq 4$.

Figure 5. The chemical trees T and T^{\prime} for Case 1 of Lemma 2.4.

Let $T^{\prime}=T-v_{2} u_{2}+v_{m} u_{2}$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(4, d_{T}\left(u_{2}\right)\right)+f\left(4, d_{T}\left(u_{m}\right)\right)+f(1,4)+f(3,4) \\
& +f(1,2)+f(3,2)-f\left(3, d_{T}\left(u_{2}\right)\right)-f\left(3, d_{T}\left(v_{m}\right)\right) \\
& -2 f(1,3)-2 f(3,3)
\end{aligned}
$$

From the condition (C1), we have $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(3, d_{T}\left(u_{2}\right)\right)$ and $f\left(4, d_{T}\left(u_{m}\right)\right)>f\left(3, d_{T}\left(u_{m}\right)\right)$. By Lemma 2.1, $f(1,4)+f(1,2) \geq 2 f(1,3)$, and $f(3,4)+f(3,2) \geq 2 f(3,3)$. Then $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.

Case 2. $n_{4}(T) \geq 1$.
Let $u v \in E(T)$ be a (3,3)-edge, $N_{T}(u)=\left\{v, u_{1}, u_{2}\right\}$, and $N_{T}(v)=$ $\left\{u, v_{1}, v_{2}\right\}$. By Lemma 2.2, the degrees of the vertices $u_{1}, u_{2}, v_{1}, v_{2}$ are from the set $\{1,3,4\}$. We can choose the vertices u, v appropriately, such that the set $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ contains at least one 4 -vertex. Without loss of generality, assume that $d_{T}\left(v_{2}\right)=4$, and $d_{T}\left(u_{1}\right) \leq d_{T}\left(u_{2}\right)$. Let $T^{\prime}=$ $T-u u_{2}+v u_{2}$ (see Fig. 6). Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(2, d_{T}\left(u_{1}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)+f\left(4, d_{T}\left(v_{1}\right)\right)+f(2,4) \\
& +f(4,4)-f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right)-f\left(3, d_{T}\left(v_{1}\right)\right) \\
& -f(3,3)-f(3,4) .
\end{aligned}
$$

Figure 6. The chemical trees T and T^{\prime} for Case 2 of Lemma 2.4.

From the condition $(\mathrm{C} 1)$, we have $f\left(4, d_{T}\left(v_{1}\right)\right)>f\left(3, d_{T}\left(v_{1}\right)\right)$. So

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)> & f\left(2, d_{T}\left(u_{1}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)+f(2,4)+f(4,4) \\
& -f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right)-f(3,3)-f(3,4)
\end{aligned}
$$

Kept in mind that the degrees of the vertices u_{1}, u_{2} are from the set $\{1,3,4\}$, and $d_{T}\left(u_{1}\right) \leq d_{T}\left(u_{2}\right)$.

Subcase 2.1. $d_{T}\left(u_{1}\right)=d_{T}\left(u_{2}\right)=1$.
By Lemma 2.1, we have $f(1,2)+f(1,4) \geq 2 f(1,3)$, and $f(2,4)+$ $f(4,4) \geq 2 f(3,4)>f(3,3)+f(3,4)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)> & f(1,2)+f(1,4)+f(2,4)+f(4,4)-2 f(1,3) \\
& -f(3,3)-f(3,4)>0
\end{aligned}
$$

Subcase 2.2. $d_{T}\left(u_{1}\right)=1$ and $d_{T}\left(u_{2}\right)=3$.
By Lemma 2.1, we have $f(1,2)+f(2,4) \geq f(2,2)+f(2,3)$, and $f(2,3)+$ $f(3,4) \geq 2 f(3,3)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)> & f(1,2)+f(3,4)+f(2,4)+f(4,4)-f(1,3) \\
& -2 f(3,3)-f(3,4) \\
\geq & f(2,2)+f(2,3)+f(3,4)+f(4,4)-f(1,3) \\
& -2 f(3,3)-f(3,4) \\
\geq & f(2,2)+2 f(3,3)+f(4,4)-f(1,3)-2 f(3,3)-f(3,4) \\
= & f(2,2)+f(4,4)-f(1,3)-f(3,4)
\end{aligned}
$$

From the condition (C5), $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.
Subcase 2.3. $d_{T}\left(u_{1}\right)=1$ and $d_{T}\left(u_{2}\right)=4$.
By Lemma 2.1, we have $f(4,4)+f(2,4) \geq 2 f(3,4)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & >f(1,2)+2 f(4,4)+f(2,4)-f(1,3)-2 f(3,4)-f(3,3) \\
& \geq f(1,2)+f(4,4)+2 f(3,4)-f(1,3)-2 f(3,4)-f(3,3) \\
& =f(1,2)+f(4,4)-f(1,3)-f(3,3)
\end{aligned}
$$

From the condition $(\mathrm{C} 6), \mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$.

Subcase 2.4. $d_{T}\left(u_{1}\right)=3$.
From the condition (C1), we have $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(3, d_{T}\left(u_{2}\right)\right)$. By Lemma 2.1, $f(2,4)+f(4,4) \geq 2 f(3,4)$, and $f(3,2)+f(3,4) \geq 2 f(3,3)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & >f(2,3)+f(2,4)+f(4,4)-2 f(3,3)-f(3,4) \\
& \geq f(2,3)+2 f(3,4)-2 f(3,3)-f(3,4) \\
& =f(2,3)+f(3,4)-2 f(3,3) \geq 0 .
\end{aligned}
$$

Subcase 2.5. $d_{T}\left(u_{1}\right)=d_{T}\left(u_{2}\right)=4$.
From the condition (C1), we have $f(3,4)>f(3,3)$. By Lemma 2.1, $f(2,4)+f(4,4) \geq 2 f(3,4)$. Therefore

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T) & >2 f(2,4)+2 f(4,4)-3 f(3,4)-f(3,3) \\
& \geq 4 f(3,4)-3 f(3,4)-f(3,3)>0
\end{aligned}
$$

So $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$ and it contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

By Lemmas 2.2-2.4, we have the following conclusion.
Theorem 2.5. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $m_{2,3}(T)=0, m_{2,2}(T)=0$, and $m_{3,3}(T)=0$.

Lemma 2.6. Let $f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $n_{2}(T) \leq 1$.

Figure 7. The chemical trees T and T^{\prime} for Lemma 2.6.

Proof. Suppose to the contrary that $n_{2}(T) \geq 2$, that is, there are $u, v \in$ $V(T)$ such that $d_{T}(u)=d_{T}(v)=2$. By Theorem $2.5, u v \notin E(T)$.

Let $N_{T}(u)=\left\{u_{1}, u_{2}\right\}$ and $N_{T}(v)=\left\{v_{1}, v_{2}\right\}$ such that the unique path from u to v goes through u_{2} and v_{2} as depicted in Fig. 7. By Theorem $2.5, d_{T}\left(u_{2}\right)=d_{T}\left(v_{2}\right)=4$.

Let $T^{\prime}=T-v v_{1}+u v_{1}$. From the condition (C1), we have $f\left(3, d_{T}\left(u_{1}\right)\right)$ $>f\left(2, d_{T}\left(u_{1}\right)\right)$, and $f\left(3, d_{T}\left(v_{1}\right)\right)>f\left(2, d_{T}\left(v_{1}\right)\right)$. By Lemma 2.1, $f(1,4)+$ $f(3,4) \geq 2 f(2,4)$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(3, d_{T}\left(u_{1}\right)\right)+f\left(3, d_{T}\left(v_{1}\right)\right)+f(3,4)+f(1,4) \\
& -f\left(2, d_{T}\left(u_{1}\right)\right)-f\left(2, d_{T}\left(v_{1}\right)\right)-2 f(2,4)>0
\end{aligned}
$$

and it contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

Lemma 2.7. Let $f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $n_{3}(T) \leq 1$.

Figure 8. The chemical trees T and T^{\prime} for Lemma 2.7.

Proof. Suppose to the contrary that $n_{3}(T) \geq 2$, that is, there are $u, v \in$ $V(T)$ such that $d_{T}(u)=d_{T}(v)=3$. By Theorem 2.5, uv $\notin E(T)$.

Let $N_{T}(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $N_{T}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$ such that the unique path from u to v goes through u_{3} and v_{3} as depicted in Fig. 8. By Theorem $2.5, d_{T}\left(u_{3}\right)=d_{T}\left(v_{3}\right)=4$, and the degrees of the vertices $u_{1}, u_{2}, v_{1}, v_{2}$ are from the set $\{1,4\}$. Then at least two degrees of the vertices $u_{1}, u_{2}, v_{1}, v_{2}$ are the same. Without loss of generality, assume that $d_{T}\left(v_{1}\right)=d_{T}\left(u_{1}\right)$ (or $\left.d_{T}\left(v_{1}\right)=d_{T}\left(v_{2}\right)\right)$. Let $T^{\prime}=T-v v_{2}+u v_{2}$ (see Fig. 8).

From the condition (C1), we have $f\left(4, d_{T}\left(u_{2}\right)\right)>f\left(3, d_{T}\left(u_{2}\right)\right)$, and $f\left(4, d_{T}\left(v_{2}\right)\right)>f\left(3, d_{T}\left(v_{2}\right)\right)$. By Lemma 2.1, $f(2,4)+f(4,4) \geq 2 f(3,4)$.

Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(4, d_{T}\left(u_{1}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)+f\left(4, d_{T}\left(v_{2}\right)\right)+f(4,4) \\
& +f(2,4)+f\left(2, d_{T}\left(v_{1}\right)\right)-f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right) \\
& -2 f(3,4)-f\left(3, d_{T}\left(v_{2}\right)\right)-f\left(3, d_{T}\left(v_{1}\right)\right) \\
> & f\left(4, d_{T}\left(u_{1}\right)\right)+f\left(2, d_{T}\left(v_{1}\right)\right)-f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(v_{1}\right)\right) .
\end{aligned}
$$

Noting that $d_{T}\left(v_{1}\right)=d_{T}\left(u_{1}\right)$, by Lemma 2.1, $\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)>0$. This result contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

Theorem 2.8. Let $f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $n_{2}(T)+$ $n_{3}(T) \leq 1$.

T^{\prime}

Figure 9. The chemical trees T and T^{\prime} for Theorem 2.8.

Proof. By Lemmas 2.6 and $2.7, n_{2}(T)+n_{3}(T) \leq 2$. Suppose to the contrary that $u, v \in V(T)$ with $d_{T}(u)=3, d_{T}(v)=2$, and u, v are not adjacent (due to Lemma 2.2). Let $N_{T}(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $N_{T}(v)=\left\{v_{1}, v_{2}\right\}$ such that unique path from u to v goes through u_{3} and v_{2} as depicted in Fig. 9 . By Lemmas 2.6 and $2.7, d_{T}\left(u_{3}\right)=d_{T}\left(v_{2}\right)=4$. Let $T^{\prime}=T-v v_{1}+u v_{1}$. Then

$$
\begin{aligned}
\mathcal{T}_{f}\left(T^{\prime}\right)-\mathcal{T}_{f}(T)= & f\left(4, d_{T}\left(u_{1}\right)\right)+f\left(4, d_{T}\left(u_{2}\right)\right)+f\left(4, d_{T}\left(v_{1}\right)\right)+f(4,4) \\
& +f(1,4)-f\left(3, d_{T}\left(u_{1}\right)\right)-f\left(3, d_{T}\left(u_{2}\right)\right)-f(3,4) \\
& -f(2,4)-f\left(2, d_{T}\left(v_{1}\right)\right) \\
> & f(4,4)+f(1,4)-f(3,4)-f(2,4)
\end{aligned}
$$

By Lemma 2.1, $\mathcal{T}_{f}\left(T^{\prime}\right)>\mathcal{T}_{f}(T)$, and it contradicts that T is an n-optimal \mathcal{T}_{f} chemical tree.

3 Main Results

Let $f(x, y)$ satisfy the conditions (C1)-(C6). In this section, we will complete characterize the n-optimal \mathcal{T}_{f} chemical trees. Denote

$$
\begin{align*}
& \mathcal{C} \mathcal{T}_{n}^{(0)}=\left\{T \in \mathcal{C} \mathcal{T}_{n} \mid n_{2}(T)=n_{3}(T)=0\right\}, \tag{2}\\
& \mathcal{C T}_{n}^{(1)}=\left\{T \in \mathcal{C} \mathcal{T}_{n} \mid n_{2}(T)=0, n_{3}(T)=1, m_{1,3}(T)=2, m_{3,4}(T)=1\right\}, \tag{3}\\
& \mathcal{C J}_{n}^{(2)}=\left\{T \in \mathcal{C} \mathcal{T}_{n} \mid n_{2}(T)=0, n_{3}(T)=1, m_{1,3}(T)=1, m_{3,4}(T)=2\right\}, \tag{4}\\
& \mathcal{C J}_{n}^{(3)}=\left\{T \in \mathcal{C} \mathcal{T}_{n} \mid n_{2}(T)=0, n_{3}(T)=1, m_{1,3}(T)=0, m_{3,4}(T)=3\right\}, \tag{5}\\
& \mathcal{C} \mathcal{T}_{n}^{(4)}=\left\{T \in \mathcal{C} \mathcal{T}_{n} \mid n_{2}(T)=1, n_{3}(T)=0, m_{1,2}(T)=1, m_{2,4}(T)=1\right\}, \tag{6}\\
& \mathcal{C} \mathcal{T}_{n}^{(5)}=\left\{T \in \mathcal{C T}_{n} \mid n_{2}(T)=1, n_{3}(T)=0, m_{1,2}(T)=0, m_{2,4}(T)=2\right\} . \tag{7}
\end{align*}
$$

Theorem 3.1. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$ be n-optimal \mathcal{T}_{f}. Then $T \in \bigcup_{i=0}^{i=5} \mathcal{C T}_{n}^{(i)}$.

Proof. By Theorem 2.8, $n_{2}(T)+n_{3}(T) \leq 1$.
Case 1. $n_{2}(T)=n_{3}(T)=0$. Then $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$.
Case 2. $n_{2}(T)=0$ and $n_{3}(T)=1$.
Let u be the unique 3 -vertex of T, and $N_{T}(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ with $d_{T}\left(u_{1}\right) \leq d_{T}\left(u_{2}\right) \leq d_{T}\left(u_{3}\right)$. Note that $n_{2}(T)=0$. Then $d_{T}\left(u_{i}\right) \in\{1,4\}$ for $i=1,2,3$.

Subcase 2.1. If $d_{T}\left(u_{1}\right)=d_{T}\left(u_{2}\right)=1$ and $d_{T}\left(u_{3}\right)=4$, then $m_{1,3}(T)=$ 2 , and $m_{3,4}(T)=1$, that is, $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$.

Subcase 2.2. If $d_{T}\left(u_{1}\right)=1$ and $d_{T}\left(u_{3}\right)=d_{T}\left(u_{2}\right)=4$, then $m_{1,3}(T)=$ 1 , and $m_{3,4}(T)=2$, that is, $T \in \mathcal{C} \mathcal{T}_{n}^{(2)}$.

Subcase 2.3. If $d_{T}\left(u_{1}\right)=d_{T}\left(u_{2}\right)=d_{T}\left(u_{3}\right)=4$, then $m_{1,3}(T)=0$, and $m_{3,4}(T)=3$, that is, $T \in \mathcal{C} \mathcal{T}_{n}^{(3)}$.

So in this case, $T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$.
Case 3. $n_{2}(T)=1$ and $n_{3}(T)=0$.
Let v be the unique 2-vertex of T. Denote $N_{T}(v)=\left\{v_{1}, v_{2}\right\}$ with $d_{T}\left(v_{1}\right) \leq d_{T}\left(v_{2}\right)$. Then $d_{T}\left(v_{i}\right) \in\{1,4\}$ for $i=1,2$.

Subcase 3.1. If $d_{T}\left(v_{1}\right)=1$ and $d_{T}\left(v_{2}\right)=4$, then $m_{1,2}(T)=1$ and $m_{2,4}(T)=1$, that is, $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$;

Subcase 3.2. If $d_{T}\left(v_{1}\right)=d_{T}\left(v_{2}\right)=4$, then $m_{1,2}(T)=0$ and $m_{2,4}(T)=$ 2, that is, $T \in \mathcal{C} \mathcal{T}_{n}^{(5)}$.

So in this case, $T \in \mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$.
Note that for a chemical tree $T \in \mathcal{C} \mathcal{T}_{n}$,

$$
\begin{align*}
& n_{1}(T)+n_{2}(T)+n_{3}(T)+n_{4}(T)=n \tag{8}\\
& n_{1}(T)+2 n_{2}(T)+3 n_{3}(T)+4 n_{4}(T)=2(n-1) \tag{9}\\
& m_{1,2}(T)+m_{1,3}(T)+m_{1,4}(T)=n_{1}(T) \tag{10}\\
& m_{1,2}(T)+2 m_{2,2}(T)+m_{2,3}(T)+m_{2,4}(T)=2 n_{2}(T) \tag{11}\\
& m_{1,3}(T)+m_{2,3}(T)+2 m_{3,3}(T)+m_{3,4}(T)=3 n_{3}(T) \tag{12}\\
& m_{1,4}(T)+m_{2,4}(T)+m_{3,4}(T)+2 m_{4,4}(T)=4 n_{4}(T) \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{f}(T)=\sum_{u v \in E(T)} f\left(d_{T}(u), d_{T}(v)\right)=\sum_{1 \leq k \leq \ell \leq 4} m_{k, \ell}(T) f(k, \ell) \tag{14}
\end{equation*}
$$

Lemma 3.2. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$. Then $n \equiv 2(\bmod 3)$, and

$$
\mathcal{T}_{f}(T)=\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4)
$$

Proof. Note that $n_{2}(T)=n_{3}(T)=0$. By (8) and (9),

$$
\begin{aligned}
& n_{1}(T)+n_{4}(T)=n \\
& n_{1}(T)+4 n_{4}(T)=2(n-1)
\end{aligned}
$$

Then $n_{1}(T)=\frac{2 n+2}{3}, n_{4}(T)=\frac{n-2}{3}$, and $n \equiv 2(\bmod 3)$. By (10) and (13), $m_{1,4}(T)=n_{1}(T)=\frac{2 n+2}{3}$ and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2} m_{1,4}(T)=\frac{n-5}{3}$, which combined with (14) yields

$$
\begin{aligned}
\mathcal{T}_{f}(T) & =m_{1,4}(T) f(1,4)+m_{4,4}(T) f(4,4) \\
& =\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4)
\end{aligned}
$$

Lemma 3.3. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$.

Then $n \equiv 1(\bmod 3)$, and

$$
\mathcal{T}_{f}(T)= \begin{cases}2 f(1,3)+f(3,4)+\frac{2 n-5}{3} f(1,4)+\frac{n-7}{3} f(4,4), & \text { if } T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \\ f(1,3)+2 f(3,4)+\frac{2 n-2}{3} f(1,4)+\frac{n-10}{3} f(4,4), & \text { if } T \in \mathcal{C} \mathcal{T}_{n}^{(2)} \\ 3 f(3,4)+\frac{2 n+1}{3} f(1,4)+\frac{n-13}{3} f(4,4), & \text { if } T \in \mathcal{C} \mathcal{T}_{n}^{(3)}\end{cases}
$$

Proof. Noticing that $n_{2}(T)=0$ and $n_{3}(T)=1$, by (8) and (9),

$$
\begin{aligned}
& n_{1}(T)+n_{4}(T)+1=n \\
& n_{1}(T)+3+4 n_{4}(T)=2(n-1)
\end{aligned}
$$

Then $n_{1}(T)=\frac{2 n+1}{3}, n_{4}(T)=\frac{n-4}{3}$, and $n \equiv 1(\bmod 3)$. By (14),
$\mathcal{T}_{f}(T)=m_{1,3}(T) f(1,3)+m_{3,4}(T) f(3,4)+m_{1,4}(T) f(1,4)+m_{4,4}(T) f(4,4)$.

Case 1. $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$.
Noting that $m_{1,3}(T)=2$ and $m_{3,4}(T)=1$, by (10) and (13), we get $m_{1,4}(T)=n_{1}(T)-m_{1,3}(T)=\frac{2 n-5}{3}$, and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2}\left(\left(m_{1,4}(T)+\right.\right.$ $\left.m_{3,4}(T)\right)=\frac{n-7}{3}$. Then

$$
\mathcal{T}_{f}(T)=2 f(1,3)+f(3,4)+\frac{2 n-5}{3} f(1,4)+\frac{n-7}{3} f(4,4)
$$

Case 2. $T \in \mathcal{C} \mathcal{T}_{n}^{(2)}$.
Noting that $m_{1,3}(T)=1$ and $m_{3,4}(T)=2$, by (10) and (13), we get $m_{1,4}(T)=n_{1}(T)-m_{1,3}(T)=\frac{2 n-2}{3}$, and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2}\left(m_{1,4}(T)+\right.$ $\left.m_{3,4}(T)\right)=\frac{n-10}{3}$. Then

$$
\mathcal{T}_{f}(T)=f(1,3)+2 f(3,4)+\frac{2 n-2}{3} f(1,4)+\frac{n-10}{3} f(4,4) .
$$

Case 3. $T \in \mathcal{C} \mathcal{T}_{n}^{(3)}$.
Noting that $m_{1,3}(T)=0$ and $m_{3,4}(T)=3$, by (10) and (13), we get $m_{1,4}(T)=n_{1}(T)=\frac{2 n+1}{3}$, and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2}\left(m_{1,4}(T)+m_{3,4}(T)\right)$ $=\frac{n-13}{3}$. Then

$$
\mathcal{T}_{f}(T)=3 f(3,4)+\frac{2 n+1}{3} f(1,4)+\frac{n-13}{3} f(4,4) .
$$

Lemma 3.4. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$. Then $n \equiv 0(\bmod 3)$, and

$$
\mathcal{T}_{f}(T)= \begin{cases}f(1,2)+f(2,4)+\frac{2 n-3}{3} f(1,4)+\frac{n-6}{3} f(4,4), & \text { if } T \in \mathcal{C} \mathcal{T}_{n}^{(4)}, \\ 2 f(2,4)+\frac{2 n}{3} f(1,4)+\frac{n-9}{3} f(4,4), & \text { if } T \in \mathcal{C} \mathcal{T}_{n}^{(5)}\end{cases}
$$

Proof. Noticing that $n_{2}(T)=1$ and $n_{3}(T)=0$, by (8) and (9),

$$
\begin{aligned}
& n_{1}(T)+1+n_{4}(T)=n \\
& n_{1}(T)+2+4 n_{4}(T)=2(n-1)
\end{aligned}
$$

So $n_{1}(T)=\frac{2 n}{3}, n_{4}(T)=\frac{n-3}{3}$, and $n \equiv 0(\bmod 3)$. By (14),
$\mathcal{T}_{f}(T)=m_{1,2}(T) f(1,2)+m_{2,4}(T) f(2,4)+m_{1,4}(T) f(1,4)+m_{4,4}(T) f(4,4)$.
Case 1. $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$.
Noting that $m_{1,2}(T)=1$ and $m_{2,4}(T)=1$, by (10) and (13), we get $m_{1,4}(T)=n_{1}(T)-m_{1,2}(T)=\frac{2 n-3}{3}$, and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2}\left(m_{1,4}(T)+\right.$ $\left.m_{2,4}(T)\right)=\frac{n-6}{3}$. Then

$$
\mathcal{T}_{f}(T)=f(1,2)+f(2,4)+\frac{2 n-3}{3} f(1,4)+\frac{n-6}{3} f(4,4) .
$$

Case 2. $T \in \mathcal{C} \mathcal{T}_{n}^{(5)}$.
Noting that $m_{1,2}(T)=0$ and $m_{2,4}(T)=2$, by (10) and (13), we get $m_{1,4}(T)=n_{1}(T)=\frac{2 n}{3}$, and $m_{4,4}(T)=2 n_{4}(T)-\frac{1}{2}\left(m_{1,4}(T)+m_{2,4}(T)\right)=$ $\frac{n-9}{3}$. Then

$$
\mathcal{T}_{f}(T)=2 f(2,4)+\frac{2 n}{3} f(1,4)+\frac{n-9}{3} f(4,4) .
$$

By Lemmas 3.2, 3.3, and 3.4, we can use $\mathcal{T}_{f}^{(i)}$ to denote the VDB topological index \mathcal{T}_{f} of the chemical trees in $\mathcal{C} \mathcal{T}_{n}^{(i)}$ for $i=0,1, \ldots, 5$, that
is,

$$
\begin{align*}
& \mathcal{T}_{f}^{(0)}=\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4) \tag{15}\\
& \mathcal{T}_{f}^{(1)}=2 f(1,3)+f(3,4)+\frac{2 n-5}{3} f(1,4)+\frac{n-7}{3} f(4,4) \tag{16}\\
& \mathcal{T}_{f}^{(2)}=f(1,3)+2 f(3,4)+\frac{2 n-2}{3} f(1,4)+\frac{n-10}{3} f(4,4), \tag{17}\\
& \mathcal{T}_{f}^{(3)}=3 f(3,4)+\frac{2 n+1}{3} f(1,4)+\frac{n-13}{3} f(4,4) \tag{18}\\
& \mathcal{T}_{f}^{(4)}=f(1,2)+f(2,4)+\frac{2 n-3}{3} f(1,4)+\frac{n-6}{3} f(4,4) \tag{19}\\
& \mathcal{T}_{f}^{(5)}=2 f(2,4)+\frac{2 n}{3} f(1,4)+\frac{n-9}{3} f(4,4) \tag{20}
\end{align*}
$$

Take

$$
\begin{align*}
A_{f} & =f(1,4)+f(3,4)-f(1,3)-f(4,4) \tag{21}\\
B_{f} & =f(1,4)+f(2,4)-f(1,2)-f(4,4) \tag{22}
\end{align*}
$$

Then

$$
\begin{equation*}
\mathcal{T}_{f}^{(3)}-\mathcal{T}_{f}^{(2)}=\mathcal{T}_{f}^{(2)}-\mathcal{T}_{f}^{(1)}=A_{f}, \quad \mathcal{T}_{f}^{(5)}-\mathcal{T}_{f}^{(4)}=B_{f} \tag{23}
\end{equation*}
$$

So

$$
\begin{cases}\mathcal{T}_{f}^{(1)}>\mathcal{T}_{f}^{(2)}>\mathcal{T}_{f}^{(3)}, & \text { if } A_{f}<0 \tag{3.23}\\ \mathcal{T}_{f}^{(3)}>\mathcal{T}_{f}^{(2)}>\mathcal{T}_{f}^{(1)}, & \text { if } A_{f}>0 \\ \mathcal{T}_{f}^{(1)}=\mathcal{T}_{f}^{(2)}=\mathcal{T}_{f}^{(3)}, & \text { if } A_{f}=0\end{cases}
$$

and

$$
\begin{cases}\mathcal{T}_{f}^{(4)}>\mathcal{T}_{f}^{(5)}, & \text { if } B_{f}<0 \tag{3.24}\\ \mathcal{T}_{f}^{(5)}>\mathcal{T}_{f}^{(4)}, & \text { if } B_{f}>0 \\ \mathcal{T}_{f}^{(4)}=\mathcal{T}_{f}^{(5)}, & \text { if } B_{f}=0\end{cases}
$$

The following is the main theorem of this section.
Theorem 3.5. Let $n \geq 7, f(x, y)>0$ be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{C} \mathcal{T}_{n}$.
(1) If $n \equiv 2(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(0)}$.
(2) If $n \equiv 1(\bmod 3)$ and $A_{f}<0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(1)}$.

If $n \equiv 1(\bmod 3)$ and $A_{f}>0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(3)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(3)}$.

If $n \equiv 1(\bmod 3)$ and $A_{f}=0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(1)}=\mathcal{T}_{f}^{(2)}=$ $\mathcal{T}_{f}^{(3)}$.
(3) If $n \equiv 0(\bmod 3)$ and $B_{f}<0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(4)}$.

If $n \equiv 0(\bmod 3)$ and $B_{f}>0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(5)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(5)}$.

If $n \equiv 0(\bmod 3)$ and $B_{f}=0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(4)}=\mathcal{T}_{f}^{(5)}$.

Proof. Case 1. $n \equiv 2(\bmod 3)$.
By Lemmas 3.2, 3.3 and 3.4, $\mathcal{C} \mathcal{T}_{n}^{(0)} \neq \phi$, and $\mathcal{C} \mathcal{T}_{n}^{(i)}=\phi$ for $i=1, \ldots, 5$. So $\bigcup_{i=0}^{i=5} \mathcal{C} \mathcal{T}_{n}^{(i)}=\mathcal{C} \mathcal{T}_{n}^{(0)}$. By Theorem 3.1, T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$. The maximum index value $\hat{T}_{f}=\mathcal{T}_{f}^{(0)}$.

Case 2. $n \equiv 1(\bmod 3)$.
By Lemmas 3.2, 3.3 and 3.4, $\mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)} \neq \phi$, and $\mathcal{C} \mathcal{T}_{n}^{(i)}=\phi$ for $i=0,4,5$. So $\bigcup_{i=0}^{i=5} \mathcal{C} \mathcal{T}_{n}^{(i)}=\mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$. By Theorem 3.1 and Eq. (3.23), we have

- If $A_{f}<0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(1)}$.
- If $A_{f}>0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(3)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(3)}$.
- If $A_{f}=0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(1)}=\mathcal{T}_{f}^{(2)}=\mathcal{T}_{f}^{(3)}$.

Case 3. $n \equiv 0(\bmod 3)$.
By Lemmas 3.2, 3.3 and 3.4, $\mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)} \neq \phi$ and $\mathcal{C} \mathcal{T}_{n}^{(i)}=\phi$ for $i=0,1,2,3$, and so $\bigcup_{i=0}^{i=5} \mathcal{C} \mathcal{T}_{n}^{(i)}=\mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$. By Theorem 3.1 and Eq. (3.24), we have

- If $B_{f}<0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(4)}$.
- If $B_{f}>0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(5)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(5)}$.
- If $B_{f}=0$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$, and $\hat{T}_{f}=\mathcal{T}_{f}^{(4)}=\mathcal{T}_{f}^{(5)}$.

The theorem now follows.

4 Applications

In this section, we will consider the following twenty-five VDB topological indices (as shown in Table 4.1), and characterize the n-optimal \mathcal{T}_{f} chemical trees.

Table 4.1 Some VDB topological indices \mathcal{T}_{f}

No.	Name	$f(x, y)$	A_{f}	B_{f}	Ref.
1	Sombor index	$\sqrt{x^{2}+y^{2}}$	$\mathcal{S O}$	$\begin{gathered} A_{f}>0, \\ B_{f}>0 \\ \hline \end{gathered}$	[10, 11]
2	Reduced Sombor index	$\sqrt{(x-1)^{2}+(y-1)^{2}}$	$\mathcal{S O} \mathcal{O}_{\text {red }}$	$\begin{gathered} A_{f}>0, \\ B_{f}>0 \\ \hline \end{gathered}$	[10, 11]
3	First Zagreb index	$x+y$	\mathcal{M}_{1}	$\begin{gathered} A_{f}=0, \\ B_{f}=0 \\ \hline \end{gathered}$	[6, 7]
4	Forgotten index	$x^{2}+y^{2}$	\mathcal{F}	$\begin{gathered} A_{f}=0, \\ B_{f}=0 \\ \hline \end{gathered}$	[8]
5	Second Zagreb index	$x y$	\mathcal{M}_{2}	$\begin{aligned} & A_{f}<0, \\ & B_{f}<0 \\ & \hline \end{aligned}$	[6,7]
6	First hyper-Zagreb index	$(x+y)^{2}$	$\mathcal{H P M}_{1}$	$\begin{aligned} & A_{f}<0, \\ & B_{f}<0 \\ & \hline \end{aligned}$	
7	Second hyper-Zagreb index	$(x y)^{2}$	$\mathcal{H}^{(1)}$	$\begin{aligned} & A_{f}<0, \\ & B_{f}<0 \\ & \hline \end{aligned}$	
8	First Gourava index	$x+y+x y$	$\mathcal{G} \mathcal{O}_{1}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
9	Second Gourava index	$(x+y) x y$	$\mathcal{G O}{ }_{2}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
10	First hyper-Gourava index	$(x+y+x y)^{2}$	$\mathcal{H G O}_{1}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
11	Second hyper-Gourava index	$((x+y) x y)^{2}$	$\mathcal{H G O}_{2}$	$\begin{aligned} & A_{f}<0, \\ & B_{f}<0 \\ & \hline \end{aligned}$	
12	Exponential Sombor index	$e^{\sqrt{x^{2}+y^{2}}}$	$e^{\mathcal{S O}}$	$\begin{aligned} & A_{f}<0, \\ & B_{f}<0 \\ & \hline \end{aligned}$	

13	Exponential reduced Sombor index	$e^{\sqrt{(x-1)^{2}+(y-1)^{2}}}$	$e^{\mathcal{S} \mathcal{O}_{\text {red }}}$	$\begin{gathered} A_{f}<0 \\ B_{f}<0 \\ \hline \end{gathered}$	
14	Exponential first Zagreb index	e^{x+y}	$e^{\mathcal{M}_{1}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	[7]
15	Exponential forgotten index	$e^{x^{2}+y^{2}}$	$e^{\mathcal{F}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
16	Exponential second Zagreb index	$e^{x y}$	$e^{\mathcal{M}_{2}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
17	Exponential reciprocal Randić index	$e^{\sqrt{x y}}$	$e^{\mathcal{R} \mathcal{R}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
18	Exponential reciprocal sum-connectivity index	$e^{\sqrt{x+y}}$	$e^{\mathcal{R S C}}$	$\begin{gathered} A_{f}<0 \\ B_{f}<0 \\ \hline \end{gathered}$	
19	Exponential first hyper-Zagreb index	$e^{(x+y)^{2}}$	$e^{\mathcal{H} \mathcal{M}_{1}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
20	Exponential second hyper-Zagreb index	$e^{(x y)^{2}}$	$e^{\mathcal{H} \mathcal{M}_{2}}$	$\begin{gathered} A_{f}<0 \\ B_{f}<0 \end{gathered}$	
21	Exponential first Gourava index	$e^{x+y+x y}$	$e^{\mathcal{G} \mathcal{O}_{1}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
22	Exponential second Gourava index	$e^{(x+y) x y}$	$e^{\mathcal{G} \mathcal{O}_{2}}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \end{gathered}$	
23	Exponential first hyper-Gourava index	$e^{(x+y+x y)^{2}}$	$e^{\mathcal{H G O}}{ }_{1}$	$\begin{gathered} A_{f}<0, \\ B_{f}<0 \\ \hline \end{gathered}$	
24	Exponential second hyper-Gourava index	$e^{((x+y) x y)^{2}}$	$e^{\mathcal{H G O} \mathcal{O}_{2}}$	$\begin{gathered} A_{f}<0 \\ B_{f}<0 \end{gathered}$	
25	Exponential product-connectivity Gourava index	$e^{\sqrt{(x+y) x y}}$	$e^{\mathcal{P C G}}$	$\begin{gathered} A_{f}<0 \\ B_{f}<0 \end{gathered}$	

It is not difficult to verify that these VDB topological indices satisfy the conditions (C1)-(C6). By Theorem 3.5, the following three theorems are straightforward.

Theorem 4.1. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}$. Then for the Sombor index and reduced Sombor index, the following results hold.
(1) If $n \equiv 2(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$, and

$$
\hat{T}_{f}=\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4) .
$$

(2) If $n \equiv 1(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(3)}$, and

$$
\hat{T}_{f}=3 f(3,4)+\frac{2 n+1}{3} f(1,4)+\frac{n-13}{3} f(4,4) .
$$

(3) If $n \equiv 0(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(5)}$, and

$$
\hat{T}_{f}=2 f(2,4)+\frac{2 n}{3} f(1,4)+\frac{n-9}{3} f(4,4) .
$$

Theorem 4.2. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}$. Then for the first Zagreb index and forgotten index, the following results hold.
(1) If $n \equiv 2(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$, and

$$
\hat{T}_{f}=\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4)
$$

(2) If $n \equiv 1(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)} \cup \mathcal{C} \mathcal{T}_{n}^{(2)} \cup \mathcal{C} \mathcal{T}_{n}^{(3)}$, and

$$
\hat{T}_{f}=2 f(1,3)+f(3,4)+\frac{2 n-5}{3} f(1,4)+\frac{n-7}{3} f(4,4) .
$$

(3) If $n \equiv 0(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)} \cup \mathcal{C} \mathcal{T}_{n}^{(5)}$, and

$$
\hat{T}_{f}=f(1,2)+f(2,4)+\frac{2 n-3}{3} f(1,4)+\frac{n-6}{3} f(4,4) .
$$

Theorem 4.3. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}$. Then for the VDB topological indices numbered from 5 to 25 as shown in Table 4.1, the following results hold.
(1) If $n \equiv 2(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$, and

$$
\hat{T}_{f}=\frac{2 n+2}{3} f(1,4)+\frac{n-5}{3} f(4,4) .
$$

(2) If $n \equiv 1(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$, and

$$
\hat{T}_{f}=2 f(1,3)+f(3,4)+\frac{2 n-5}{3} f(1,4)+\frac{n-7}{3} f(4,4) .
$$

(3) If $n \equiv 0(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$, and

$$
\hat{T}_{f}=f(1,2)+f(2,4)+\frac{2 n-3}{3} f(1,4)+\frac{n-6}{3} f(4,4) .
$$

In particularly, for the exponential reduced Sombor index $e^{\mathcal{S O}_{\text {red }}}$, induced by $f(x, y)=e^{\sqrt{(x-1)^{2}+(y-1)^{2}}}$, we have the following result. This result shows that Conjecture 3.1 in [13] is incorrect.

Corollary 4.4. Let $n \geq 7$ and $T \in \mathcal{C} \mathcal{T}_{n}$. Then for the exponential reduced Sombor index, the following results hold.
(1) If $n \equiv 2(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(0)}$. The maximal exponential reduced Sombor index is

$$
\frac{1}{3}(n-5) e^{3 \sqrt{2}}+\frac{2}{3}(n+1) e^{3}
$$

(2) If $n \equiv 1(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(1)}$. The maximal exponential reduced Sombor index is

$$
\frac{1}{3}(n-7) e^{3 \sqrt{2}}+\frac{1}{3}(2 n-5) e^{3}+e^{\sqrt{13}}+2 e^{2}
$$

(3) If $n \equiv 0(\bmod 3)$, then T is an n-optimal \mathcal{T}_{f} chemical tree when and only when $T \in \mathcal{C} \mathcal{T}_{n}^{(4)}$. The maximal exponential reduced Sombor index is

$$
\frac{1}{3}(2 n-3) e^{3}+\frac{1}{3}(n-6) e^{3 \sqrt{2}}+e^{\sqrt{10}}+e .
$$

References

[1] I. Gutman, O. Miljković, Molecules with smallest connectivity indices, MATCH Commun. Math. Comput. Chem. 41 (2000) 57-70.
[2] I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, Chem. Phys. Lett. 306 (1999) 366-372.
[3] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[4] S. Vujošević, G. Popivoda, Ž. Kovijanić Vukićević, B. Furtula, R. Škrekovski, Arithmetic-geometric index and its relations with geometric-arithmetic index, Appl. Math. Comput. 391 (2021) \#125706.
[5] S. Liu, J. Li, Some properties on the Harmonic index of molecular trees, ISRN Appl. Math. 2014 (2014) \#781648.
[6] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb indices and coindices, Iran. J. Math. Chem. 5 (2014) 19-29.
[7] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degreebased topological indices of chemical trees, Appl. Math. Comput. 380 (2020) \#125281.
[8] H. Abdo, D. Dimitrov, I. Gutman, On extremal trees with respect to the F-index, Kuwait J. Sci. 44 (2017) 1-8.
[9] A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 205-220.
[10] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum. Chem. 121 (2021) \#e26622.
[11] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) \#126018.
[12] Y. Jiang, X. Chen, W. Lin, A note on chemical trees with maximal inverse sum indeg index, MATCH Commun. Math. Comput. Chem. 86 (2021) 29-38.
[13] H. Liu, L. You, Z. Tang, J. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729-753.

