Chemical Trees with Maximal VDB Topological Indices

Wei Gao

Department of Mathematics, Pennsylvania State University at Abington, Abington, PA, 19001, USA

wvg5121@psu.edu

(Received September 2, 2022)

Abstract

A general vertex-degree-based (VDB) topological index of a graph G is defined as

$$\mathcal{T}_f = \mathcal{T}_f(G) = \sum_{uv \in E(G)} f(d_G(u), d_G(v)),$$

where f(x, y) > 0 is a symmetric real function with $x \ge 1$ and $y \ge 1$. Let \mathcal{CT}_n be the set of all chemical trees of order n, and let $\hat{T}_f = \max\{\mathcal{T}_f(T) \mid T \in \mathcal{CT}_n\}$. A chemical tree $T \in \mathcal{CT}_n$ is an n-optimal \mathcal{T}_f chemical tree if $\mathcal{T}_f(T) = \hat{T}_f$.

One important topic in chemical graph theory is the extremal value problem of VDB topological indices over \mathcal{CT}_n . In this work, we get the following results.

(1) We propose six conditions (C1)-(C6) for the symmetric real function f(x, y). For a VDB topological index \mathcal{T}_f satisfied the conditions (C1)-(C6), we obtained the necessary and sufficient conditions for $T \in \mathcal{CT}_n$ to be an *n*-optimal \mathcal{T}_f chemical tree.

(2) For twenty-five VDB topological indices (as shown in Table 4.1 of Section 4), the *n*-optimal \mathcal{T}_f chemical trees are characterized, and the maximum \mathcal{T}_f values are determined, too.

1 Introduction

A general vertex-degree-based (VDB for short) topological index of a graph G is given by

$$\mathcal{T}_f = \mathcal{T}_f(G) = \sum_{uv \in E(G)} f(d_G(u), d_G(v)), \tag{1}$$

where f(x, y) > 0 is a symmetric real function with $x \ge 1$ and $y \ge 1$.

A tree T is a chemical tree (or molecular tree) if $d_T(v) \leq 4$ for $v \in V(T)$. Let \mathcal{CT}_n be the set of all chemical trees of order n, and let $\hat{T}_f = \max\{\mathcal{T}_f(T) \mid T \in \mathcal{CT}_n\}$. A chemical tree $T \in \mathcal{CT}_n$ is an n-optimal \mathcal{T}_f chemical tree if $\mathcal{T}_f(T) = \hat{T}_f$.

The problem of finding extremal values of a VDB topological index over \mathcal{CT}_n has attracted considerable attention in the mathematical-chemistry literature. It is well known that the *n*-optimal \mathcal{T}_f chemical trees of some VDB topological indices \mathcal{T}_f have been determined, for example, the Randić index χ $(f(x,y) = \frac{1}{\sqrt{xy}})$ [1,2]; geometrical-arithmetic index \mathcal{GA} $(f(x,y) = \frac{2\sqrt{xy}}{x+y})$ [3,4]; arithmetic-geometric index \mathcal{AG} $(f(x,y) = \frac{x+y}{2\sqrt{xy}})$ [3,4]; Harmonic index \mathcal{H} $(f(x,y) = \frac{2}{x+y})$ [5]; first Zagreb index \mathcal{M}_1 (f(x,y) = x+y) [6,7]; second Zagreb index \mathcal{M}_2 (f(x,y) = xy) [6,7]; forgotten index \mathcal{F} $(f(x,y) = x^2 + y^2)$ [8]; symmetric division deg index \mathcal{SDD} $(f(x,y) = \frac{x}{y} + \frac{y}{x})$ [9]; Sombor index \mathcal{SO} $(f(x,y) = \sqrt{(x-1)^2 + (y-1)^2})$ [10]; inverse sum indeg index \mathcal{ISI} $(f(x,y) = \frac{xy}{x+y})$ [12]; and exponential first Zagreb index $e^{\mathcal{M}_1}$ $(f(x,y) = e^{x+y})$ [7].

In this paper, we study VDB topological indices over \mathcal{CT}_n . The main aim is to establish a general theorem that can capture the common properties necessary for the *n*-optimal \mathcal{T}_f chemical trees of all VDB topological indices \mathcal{T}_f satisfying certain conditions. We also apply our results to obtain the maximum values of some VDB topological indices over \mathcal{CT}_n .

In Section 2, we propose six conditions for the symmetric real function f(x, y), and prove that for a VDB topological index \mathcal{T}_f satisfied these conditions, if a chemical tree T is an n-optimal \mathcal{T}_f chemical tree, then the number of 2-vertices and 3-vertices in T is at most one.

In Section 3, we obtain the necessary and sufficient conditions for a chemical tree to be an *n*-optimal \mathcal{T}_f chemical tree when the VDB topological index \mathcal{T}_f satisfied these conditions.

In Section 4, as an application of the main theorem in Section 3, for twenty-five VDB topological indices \mathcal{T}_f (as shown in Table 4.1 of Section 4), we completely characterize the *n*-optimal \mathcal{T}_f chemical trees, and the maximum \mathcal{T}_f values are determined, too.

2 Lemmas

Let f(x, y) > 0 be a symmetric real function with $x \ge 1$ and $y \ge 1$. In this section, we will consider the VDB topological indices \mathcal{T}_f satisfied the following conditions:

 $\begin{array}{l} (\text{C1}) \ \frac{\partial f(x,y)}{\partial x} > 0 \ \text{and} \ \frac{\partial^2 f(x,y)}{\partial x^2} \ge 0 \ \text{for} \ x > 1 \ \text{and} \ y \ge 1; \\ (\text{C2}) \ f(1,4) - f(2,2) \ge 0; \\ (\text{C3}) \ f(1,3) + f(3,4) - f(2,2) - f(2,4) \ge 0; \\ (\text{C4}) \ f(2,4) + f(3,4) - 2f(3,3) \ge 0; \\ (\text{C5}) \ f(2,2) + f(4,4) - f(1,3) - f(3,4) \ge 0; \\ (\text{C6}) \ f(1,2) + f(4,4) - f(1,3) - f(3,3) \ge 0. \end{array}$

Lemma 2.1. Let f(x, y) > 0 be a symmetric real function satisfied the condition (C1). Then for any fixed $y \ge 1$, we have

 $\begin{array}{l} (1) \ f(1,y) + f(4,y) \geq f(2,y) + f(3,y); \\ (2) \ f(1,y) + f(3,y) \geq 2f(2,y); \\ (3) \ f(2,y) + f(4,y) \geq 2f(3,y). \end{array}$

Proof. By Mean Value Theorem, §

$$\begin{aligned} f(1,y) + f(4,y) - f(2,y) - f(3,y) &= f(4,y) - f(3,y) - (f(2,y) - f(1,y)) \\ &= f'_x(\theta_{11},y) - f'_x(\theta_{12},y) \ge 0, \\ f(1,y) + f(3,y) - 2f(2,y) &= f(3,y) - f(2,y) - (f(2,y) - f(1,y)) \\ &= f'_x(\theta_{21},y) - f'_x(\theta_{22},y) \ge 0, \\ f(2,y) + f(4,y) - 2f(3,y) &= f(4,y) - f(3,y) - (f(3,y) - f(2,y)) \\ &= f'_x(\theta_{31},y) - f'_x(\theta_{32},y) \ge 0, \end{aligned}$$

where $\theta_{11} \in (3,4), \ \theta_{12} \in (1,2), \ \theta_{21} \in (2,3), \ \theta_{22} \in (1,2), \ \theta_{31} \in (3,4), \ \text{and} \ \theta_{32} \in (2,3).$

Let T be a tree of order n. A vertex $v \in V(T)$ will be called k-vertex if $d_T(v) = k$, and a edge $uv \in E(T)$ will be called a (k, ℓ) -edge if $d_T(u) = k$ and $d_T(v) = \ell$. Let us denote by $n_k(T)$ the number of k-vertices of T, and $m_{k,\ell}(T)$ the number of (k, ℓ) -edges of T.

Lemma 2.2. Let $n \geq 7$, f(x,y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and let $T \in CT_n$ be n-optimal T_f . Then $m_{2,3}(T) = 0$.

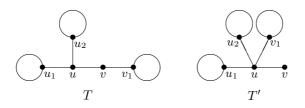


Figure 1. The chemical trees T and T' for Lemma 2.2.

Proof. Suppose to the contrary that $m_{2,3}(T) \geq 1$, that is, there is $uv \in E(T)$ such that $d_T(u) = 3$ and $d_T(v) = 2$. Let $N_T(u) = \{v, u_1, u_2\}$, $N_T(v) = \{u, v_1\}$, and $T' = T - vv_1 + uv_1$ (as depicted in Fig. 1). We claim that $\mathcal{T}_f(T') > \mathcal{T}_f(T)$.

Note that

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) = f(4, d_{T}(u_{1})) + f(4, d_{T}(u_{2})) + f(4, d_{T}(v_{1})) + f(1, 4)$$
$$- f(3, d_{T}(u_{1})) - f(3, d_{T}(u_{2})) - f(2, d_{T}(v_{1})) - f(2, 3)$$

Since $n \ge 7$, $\max\{d_T(u_1), d_T(u_2), d_T(v_1)\} \ge 2$. Without loss of generality, we assume that $d_T(u_1) \le d_T(u_2)$.

Case 1. $2 \le d_T(v_1) \le 3$.

From the condition (C1), we deduce that $f(4, d_T(u_1)) > f(3, d_T(u_1))$, $f(4, d_T(u_2)) > f(3, d_T(u_2))$, $f(1, 4) > f(1, d_T(v_1))$, and $f(3, d_T(v_1)) \ge f(2, 3)$. By Lemma 2.1, we get $f(4, d_T(v_1)) + f(1, d_T(v_1)) \ge f(2, d_T(v_1)) + f(1, d_T(v_1)) \le f(2, d_T(v_1)) + f(1, d_T(v_1)) \ge f(2, d_T(v_1)) + f(1, d_T(v_1)) \le f(2, d_T(v_1)) + f(1, d_T(v_1)) \le f(2, d_T(v_1)) + f(1, d_T(v_1)) \le f(2, d_T(v_1)) + f(2, d_T(v_1)) = f(2, d_T(v_1)) =$ $f(3, d_T(v_1))$. Then

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) > f(4, d_{T}(v_{1})) + f(1, d_{T}(v_{1})) - f(2, d_{T}(v_{1})) - f(2, 3)$$

$$\geq f(2, d_{T}(v_{1})) + f(3, d_{T}(v_{1})) - f(2, d_{T}(v_{1})) - f(2, 3) \geq 0.$$

Case 2. $d_T(v_1) = 4$.

From the condition (C1), we deduce that $f(4, d_T(u_1)) > f(3, d_T(u_1))$ and $f(4, d_T(u_2)) > f(3, d_T(u_2))$. By Lemma 2.1, we get $f(4, 4) + f(1, 4) \ge f(2, 4) + f(3, 4) > f(2, 4) + f(2, 3)$. So

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > f(4,4) + f(1,4) - f(2,4) - f(2,3) > 0.$$

Case 3. $d_T(u_2) = 4$.

From the condition (C1), we deduce that $f(4, d_T(u_1)) > f(3, d_T(u_1))$ and $f(4, d_T(v_1)) > f(2, d_T(v_1))$. By Lemma 2.1, $f(4, 4) + f(1, 4) \ge f(2, 4) + f(3, 4) > f(2, 3) + f(3, 4)$. Then

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > f(4,4) + f(1,4) - f(3,4) - f(2,3) > 0.$$

Case 4. $d_T(v_1) = 1$ and $d_T(u_1) = d_T(u_2) = 3$.

From the conditions (C1), (C2) and (C4), we have f(2,4) > f(2,3), f(2,2) > f(1,2), $f(1,4) \ge f(2,2)$, and $f(3,4) \ge 2f(3,3) - f(2,4)$. By Lemma 2.1, $f(1,4) + f(3,4) \ge 2f(2,4)$. So

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) = (f(3,4) + f(1,4)) + f(3,4) + f(1,4) - 2f(3,3) - f(1,2) - f(2,3) > 2f(2,4) + 2f(3,3) - f(2,4) + f(2,2) - 2f(3,3) - f(1,2) - f(2,3) = f(2,4) + f(2,2) - f(1,2) - f(2,3) > 0.$$

Case 5. $d_T(v_1) = 1$ and $d_T(u_1) = 2$ (or $d_T(v_1) = 1$ and $d_T(u_2) = 2$).

From the conditions (C1) and (C2), we deduce that $f(4, d_T(u_2)) > f(3, d_T(u_2))$, and $f(1, 4) \ge f(2, 2) > f(1, 2)$. By Lemma 2.1, we get

 $f(2,4) + f(2,2) \ge 2f(2,3)$. Then

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > f(2,4) + 2f(1,4) - 2f(2,3) - f(1,2)$$

> $f(2,4) + f(2,2) - 2f(2,3) \ge 0.$

So $\mathcal{T}_f(T') > \mathcal{T}_f(T)$ and it contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

Lemma 2.3. Let $n \ge 7$, f(x, y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal T_f . Then $m_{2,2}(T) = 0$.

Proof. Suppose to the contrary that $m_{2,2}(T) \ge 1$. We claim that there exists a chemical tree $T' \in \mathcal{CT}_n$ such that $\mathcal{T}_f(T') > \mathcal{T}_f(T)$.

Case 1. $n_4(T) = 0$.

By Lemma 2.2, $m_{2,3}(T) = 0$. Then $n_3(T) = 0$, and T is a path as depicted in Fig. 2. Let $T' = T - v_1v_2 - v_2v_3 - v_3v_4 - v_4v_5 + v_5v_1 + v_5v_2 + v_6v_3 + v_6v_4$.

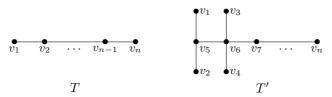


Figure 2. The chemical trees T and T' for Case 1 of Lemma 2.3.

If n = 7, then from the conditions (C1) and (C2), we have f(1,3) > f(1,2), and $f(1,4) \ge f(2,2)$. By Lemma 2.1, $f(1,4) + f(3,4) \ge 2f(2,4) > 2f(2,2)$. So

$$\begin{aligned} \mathcal{T}_f(T') - \mathcal{T}_f(T) &= 2f(1,3) + 3f(1,4) + f(3,4) - 2f(1,2) - 4f(2,2) \\ &> 2f(1,3) + 2f(1,4) + 2f(2,2) - 2f(1,2) - 4f(2,2) > 0. \end{aligned}$$

If $n \ge 8$, then from the conditions (C1) and (C2), we have f(1,3) > f(1,2), f(2,4) > f(2,2), and $f(1,4) \ge f(2,2)$. By Lemma 2.1, f(1,3) + f(1,3) = f(2,3).

$$f(3,4) = f(1,3) + f(4,3) \ge f(2,3) + f(3,3) > 2f(2,2).$$
 So
$$\mathcal{T}_f(T') - \mathcal{T}_f(T) = 2f(1,3) + 2f(1,4) + f(3,4) + f(2,4) - f(1,2) - 5f(2,2)$$
$$> f(1,3) + 2f(1,4) + 2f(2,2) + f(2,4) - f(1,2) - 5f(2,2)$$
$$> 0.$$

Case 2. $n_4(T) \ge 1$.

Let $uv \in E(T)$ be a (2, 2)-edge, $N_T(u) = \{u_1, v\}$ and $N_T(v) = \{u, v_1\}$. By Lemma 2.2, $m_{2,3}(T) = 0$. Then we can choose the vertices u, v appropriately, such that $d_T(v_1) = 4$. Note that $d_T(u_1) \in \{1, 2, 4\}$.

Subcase 2.1. $d_T(u_1) = 2$.

Let $N_T(u_1) = \{u_2, u\}$, and $T' = T - uu_1 - u_1u_2 + vu_1 + vu_2$ as depicted in Fig. 3.

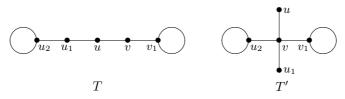


Figure 3. The chemical trees T and T' for Subcase 2.1 of Lemma 2.3.

From the condition (C1), we have $f(4, d_T(u_2)) > f(2, d_T(u_2))$. By Lemma 2.1, $f(4, 4) + f(1, 4) \ge f(2, 4) + f(3, 4)$, and $f(1, 4) + f(3, 4) \ge 2f(2, 4) > 2f(2, 2)$. Then

$$\begin{aligned} \mathcal{T}_f(T') &- \mathcal{T}_f(T) = f(4, d_T(u_2)) + f(4, 4) + 2f(1, 4) - f(2, d_T(u_2)) \\ &- f(2, 4) - 2f(2, 2) \\ &> f(4, 4) + 2f(1, 4) - f(2, 4) - 2f(2, 2) \\ &\geq f(2, 4) + f(3, 4) + f(1, 4) - f(2, 4) - 2f(2, 2) > 0 \end{aligned}$$

Subcase 2.2. $d_T(u_1) \neq 2$.

In this case $d_T(u_1) \in \{1, 4\}$. Let $T' = T - uu_1 + vu_1$ as depicted in Fig. 4.

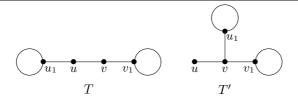


Figure 4. The chemical trees T and T' for Subcase 2.2 of Lemma 2.3.

If $d_T(u_1) = 1$, from the conditions (C1) and (C3), we get

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) = 2f(1,3) + f(3,4) - f(1,2) - f(2,2) - f(2,4)$$

> $f(1,3) + f(3,4) - f(2,2) - f(2,4) \ge 0.$

If $d_T(u_1) = 4$, from the conditions (C1) and (C3), we get

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) = f(1,3) + 2f(3,4) - f(2,2) - 2f(2,4)$$

> f(1,3) + f(3,4) - f(2,2) - f(2,4) \ge 0.

So $\mathcal{T}_f(T') > \mathcal{T}_f(T)$ and it contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

Lemma 2.4. Let $n \ge 7$, f(x, y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal T_f . Then $m_{3,3}(T) = 0$.

Proof. Suppose to the contrary that $m_{3,3}(T) \ge 1$. We claim that there exists a chemical tree $T' \in \mathcal{CT}_n$ such that $\mathcal{T}_f(T') > \mathcal{T}_f(T)$.

Case 1. $n_4(T) = 0$.

By Lemma 2.2, $n_2(T) = 0$. Then the degrees of all vertices of T are from the set $\{1,3\}$. In this case, we can assume that T is a chemical tree as depicted in Fig. 5, where $d_T(v_1) = d_T(v_{m+1}) = 1$, $d_T(v_i) = 3$ and $d_T(u_i) \in \{1,3\}$ for $i = 2, 3, \ldots, m$. Since $n \ge 7$, then $m \ge 4$.

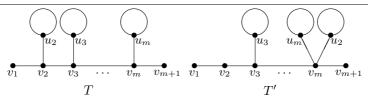


Figure 5. The chemical trees T and T' for Case 1 of Lemma 2.4.

Let $T' = T - v_2 u_2 + v_m u_2$. Then

$$\begin{aligned} \mathcal{T}_f(T') - \mathcal{T}_f(T) = & f(4, d_T(u_2)) + f(4, d_T(u_m)) + f(1, 4) + f(3, 4) \\ & + f(1, 2) + f(3, 2) - f(3, d_T(u_2)) - f(3, d_T(v_m)) \\ & - 2f(1, 3) - 2f(3, 3). \end{aligned}$$

From the condition (C1), we have $f(4, d_T(u_2)) > f(3, d_T(u_2))$ and $f(4, d_T(u_m)) > f(3, d_T(u_m))$. By Lemma 2.1, $f(1, 4) + f(1, 2) \ge 2f(1, 3)$, and $f(3, 4) + f(3, 2) \ge 2f(3, 3)$. Then $\mathcal{T}_f(T') > \mathcal{T}_f(T)$.

Case 2. $n_4(T) \ge 1$.

Let $uv \in E(T)$ be a (3,3)-edge, $N_T(u) = \{v, u_1, u_2\}$, and $N_T(v) = \{u, v_1, v_2\}$. By Lemma 2.2, the degrees of the vertices u_1, u_2, v_1, v_2 are from the set $\{1, 3, 4\}$. We can choose the vertices u, v appropriately, such that the set $\{u_1, u_2, v_1, v_2\}$ contains at least one 4-vertex. Without loss of generality, assume that $d_T(v_2) = 4$, and $d_T(u_1) \leq d_T(u_2)$. Let $T' = T - uu_2 + vu_2$ (see Fig. 6). Then

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) = f(2, d_{T}(u_{1})) + f(4, d_{T}(u_{2})) + f(4, d_{T}(v_{1})) + f(2, 4) + f(4, 4) - f(3, d_{T}(u_{1})) - f(3, d_{T}(u_{2})) - f(3, d_{T}(v_{1})) - f(3, 3) - f(3, 4).$$

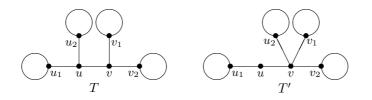


Figure 6. The chemical trees T and T' for Case 2 of Lemma 2.4.

From the condition (C1), we have $f(4, d_T(v_1)) > f(3, d_T(v_1))$. So

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > f(2, d_T(u_1)) + f(4, d_T(u_2)) + f(2, 4) + f(4, 4) - f(3, d_T(u_1)) - f(3, d_T(u_2)) - f(3, 3) - f(3, 4).$$

Kept in mind that the degrees of the vertices u_1, u_2 are from the set $\{1, 3, 4\}$, and $d_T(u_1) \leq d_T(u_2)$.

Subcase 2.1. $d_T(u_1) = d_T(u_2) = 1$.

By Lemma 2.1, we have $f(1,2) + f(1,4) \ge 2f(1,3)$, and $f(2,4) + f(4,4) \ge 2f(3,4) > f(3,3) + f(3,4)$. Then

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > f(1,2) + f(1,4) + f(2,4) + f(4,4) - 2f(1,3) - f(3,3) - f(3,4) > 0.$$

Subcase 2.2. $d_T(u_1) = 1$ and $d_T(u_2) = 3$.

By Lemma 2.1, we have $f(1,2)+f(2,4) \ge f(2,2)+f(2,3)$, and $f(2,3)+f(3,4) \ge 2f(3,3)$. Then

$$\begin{aligned} \mathcal{T}_f(T') &- \mathcal{T}_f(T) > f(1,2) + f(3,4) + f(2,4) + f(4,4) - f(1,3) \\ &- 2f(3,3) - f(3,4) \\ \geq & f(2,2) + f(2,3) + f(3,4) + f(4,4) - f(1,3) \\ &- 2f(3,3) - f(3,4) \\ \geq & f(2,2) + 2f(3,3) + f(4,4) - f(1,3) - 2f(3,3) - f(3,4) \\ &= & f(2,2) + f(4,4) - f(1,3) - f(3,4). \end{aligned}$$

From the condition (C5), $\mathcal{T}_{f}(T') > \mathcal{T}_{f}(T)$. **Subcase 2.3.** $d_{T}(u_{1}) = 1$ and $d_{T}(u_{2}) = 4$. By Lemma 2.1, we have $f(4, 4) + f(2, 4) \geq 2f(3, 4)$. Then

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) > f(1,2) + 2f(4,4) + f(2,4) - f(1,3) - 2f(3,4) - f(3,3)$$

$$\geq f(1,2) + f(4,4) + 2f(3,4) - f(1,3) - 2f(3,4) - f(3,3)$$

$$= f(1,2) + f(4,4) - f(1,3) - f(3,3).$$

From the condition (C6), $\mathcal{T}_f(T') > \mathcal{T}_f(T)$.

Subcase 2.4. $d_T(u_1) = 3$.

From the condition (C1), we have $f(4, d_T(u_2)) > f(3, d_T(u_2))$. By Lemma 2.1, $f(2,4) + f(4,4) \ge 2f(3,4)$, and $f(3,2) + f(3,4) \ge 2f(3,3)$. Then

$$\mathcal{T}_{f}(T') - \mathcal{T}_{f}(T) > f(2,3) + f(2,4) + f(4,4) - 2f(3,3) - f(3,4)$$

$$\geq f(2,3) + 2f(3,4) - 2f(3,3) - f(3,4)$$

$$= f(2,3) + f(3,4) - 2f(3,3) \geq 0.$$

Subcase 2.5. $d_T(u_1) = d_T(u_2) = 4$.

From the condition (C1), we have f(3,4) > f(3,3). By Lemma 2.1, $f(2,4) + f(4,4) \ge 2f(3,4)$. Therefore

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) > 2f(2,4) + 2f(4,4) - 3f(3,4) - f(3,3)$$

$$\geq 4f(3,4) - 3f(3,4) - f(3,3) > 0.$$

So $\mathcal{T}_f(T') > \mathcal{T}_f(T)$ and it contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

By Lemmas 2.2-2.4, we have the following conclusion.

Theorem 2.5. Let $n \ge 7$, f(x, y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal T_f . Then $m_{2,3}(T) = 0$, $m_{2,2}(T) = 0$, and $m_{3,3}(T) = 0$.

Lemma 2.6. Let f(x, y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal T_f . Then $n_2(T) \leq 1$.

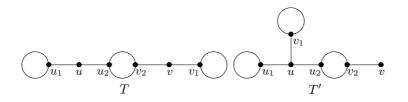


Figure 7. The chemical trees T and T' for Lemma 2.6.

Proof. Suppose to the contrary that $n_2(T) \ge 2$, that is, there are $u, v \in V(T)$ such that $d_T(u) = d_T(v) = 2$. By Theorem 2.5, $uv \notin E(T)$.

Let $N_T(u) = \{u_1, u_2\}$ and $N_T(v) = \{v_1, v_2\}$ such that the unique path from u to v goes through u_2 and v_2 as depicted in Fig. 7. By Theorem 2.5, $d_T(u_2) = d_T(v_2) = 4$.

Let $T' = T - vv_1 + uv_1$. From the condition (C1), we have $f(3, d_T(u_1)) > f(2, d_T(u_1))$, and $f(3, d_T(v_1)) > f(2, d_T(v_1))$. By Lemma 2.1, $f(1, 4) + f(3, 4) \ge 2f(2, 4)$. Then

$$\mathcal{T}_f(T') - \mathcal{T}_f(T) = f(3, d_T(u_1)) + f(3, d_T(v_1)) + f(3, 4) + f(1, 4) - f(2, d_T(u_1)) - f(2, d_T(v_1)) - 2f(2, 4) > 0,$$

and it contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

Lemma 2.7. Let f(x,y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal T_f . Then $n_3(T) \leq 1$.

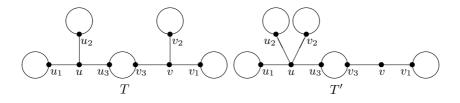


Figure 8. The chemical trees T and T' for Lemma 2.7.

Proof. Suppose to the contrary that $n_3(T) \ge 2$, that is, there are $u, v \in V(T)$ such that $d_T(u) = d_T(v) = 3$. By Theorem 2.5, $uv \notin E(T)$.

Let $N_T(u) = \{u_1, u_2, u_3\}$ and $N_T(v) = \{v_1, v_2, v_3\}$ such that the unique path from u to v goes through u_3 and v_3 as depicted in Fig. 8. By Theorem 2.5, $d_T(u_3) = d_T(v_3) = 4$, and the degrees of the vertices u_1, u_2, v_1, v_2 are from the set $\{1, 4\}$. Then at least two degrees of the vertices u_1, u_2, v_1, v_2 are the same. Without loss of generality, assume that $d_T(v_1) = d_T(u_1)$ (or $d_T(v_1) = d_T(v_2)$). Let $T' = T - vv_2 + uv_2$ (see Fig. 8).

From the condition (C1), we have $f(4, d_T(u_2)) > f(3, d_T(u_2))$, and $f(4, d_T(v_2)) > f(3, d_T(v_2))$. By Lemma 2.1, $f(2, 4) + f(4, 4) \ge 2f(3, 4)$.

Then

$$\begin{aligned} \mathcal{T}_f(T') - \mathcal{T}_f(T) = & f(4, d_T(u_1)) + f(4, d_T(u_2)) + f(4, d_T(v_2)) + f(4, 4) \\ & + f(2, 4) + f(2, d_T(v_1)) - f(3, d_T(u_1)) - f(3, d_T(u_2)) \\ & - 2f(3, 4) - f(3, d_T(v_2)) - f(3, d_T(v_1)) \\ & > f(4, d_T(u_1)) + f(2, d_T(v_1)) - f(3, d_T(u_1)) - f(3, d_T(v_1)). \end{aligned}$$

Noting that $d_T(v_1) = d_T(u_1)$, by Lemma 2.1, $\mathcal{T}_f(T') - \mathcal{T}_f(T) > 0$. This result contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

Theorem 2.8. Let f(x, y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$ be n-optimal \mathcal{T}_f . Then $n_2(T) + n_3(T) \leq 1$.

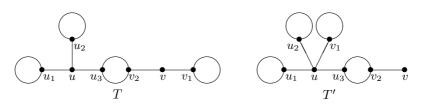


Figure 9. The chemical trees T and T' for Theorem 2.8.

Proof. By Lemmas 2.6 and 2.7, $n_2(T) + n_3(T) \leq 2$. Suppose to the contrary that $u, v \in V(T)$ with $d_T(u) = 3$, $d_T(v) = 2$, and u, v are not adjacent (due to Lemma 2.2). Let $N_T(u) = \{u_1, u_2, u_3\}$ and $N_T(v) = \{v_1, v_2\}$ such that unique path from u to v goes through u_3 and v_2 as depicted in Fig. 9. By Lemmas 2.6 and 2.7, $d_T(u_3) = d_T(v_2) = 4$. Let $T' = T - vv_1 + uv_1$. Then

$$\begin{aligned} \mathcal{T}_f(T') &- \mathcal{T}_f(T) = f(4, d_T(u_1)) + f(4, d_T(u_2)) + f(4, d_T(v_1)) + f(4, 4) \\ &+ f(1, 4) - f(3, d_T(u_1)) - f(3, d_T(u_2)) - f(3, 4) \\ &- f(2, 4) - f(2, d_T(v_1)) \\ &> f(4, 4) + f(1, 4) - f(3, 4) - f(2, 4). \end{aligned}$$

By Lemma 2.1, $\mathcal{T}_f(T') > \mathcal{T}_f(T)$, and it contradicts that T is an n-optimal \mathcal{T}_f chemical tree.

3 Main Results

712

Let f(x, y) satisfy the conditions (C1)-(C6). In this section, we will complete characterize the *n*-optimal \mathcal{T}_f chemical trees. Denote

$$\mathcal{CT}_{n}^{(0)} = \{ T \in \mathcal{CT}_{n} \mid n_{2}(T) = n_{3}(T) = 0 \},$$
(2)

$$\mathcal{CT}_n^{(1)} = \{ T \in \mathcal{CT}_n \mid n_2(T) = 0, n_3(T) = 1, m_{1,3}(T) = 2, m_{3,4}(T) = 1 \}, \quad (3)$$

$$\mathcal{CT}_n^{(2)} = \{ T \in \mathcal{CT}_n \mid n_2(T) = 0, n_3(T) = 1, m_{1,3}(T) = 1, m_{3,4}(T) = 2 \}, \quad (4)$$

$$\mathcal{CT}_n^{(3)} = \{ T \in \mathcal{CT}_n \mid n_2(T) = 0, n_3(T) = 1, m_{1,3}(T) = 0, m_{3,4}(T) = 3 \},$$
 (5)

$$\mathcal{CT}_n^{(4)} = \{ T \in \mathcal{CT}_n \mid n_2(T) = 1, n_3(T) = 0, m_{1,2}(T) = 1, m_{2,4}(T) = 1 \},$$
(6)

$$\mathcal{CT}_n^{(5)} = \{ T \in \mathcal{CT}_n \mid n_2(T) = 1, n_3(T) = 0, m_{1,2}(T) = 0, m_{2,4}(T) = 2 \}.$$
(7)

Theorem 3.1. Let $n \ge 7$, f(x,y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in \mathcal{CT}_n$ be n-optimal \mathcal{T}_f . Then $T \in \bigcup_{i=0}^{i=5} \mathcal{CT}_n^{(i)}.$

Proof. By Theorem 2.8, $n_2(T) + n_3(T) \le 1$. **Case 1.** $n_2(T) = n_3(T) = 0$. Then $T \in \mathcal{CT}_n^{(0)}$. **Case 2.** $n_2(T) = 0$ and $n_3(T) = 1$.

Let u be the unique 3-vertex of T, and $N_T(u) = \{u_1, u_2, u_3\}$ with $d_T(u_1) \leq d_T(u_2) \leq d_T(u_3)$. Note that $n_2(T) = 0$. Then $d_T(u_i) \in \{1, 4\}$ for i = 1, 2, 3.

Subcase 2.1. If $d_T(u_1) = d_T(u_2) = 1$ and $d_T(u_3) = 4$, then $m_{1,3}(T) = 0$ 2, and $m_{3,4}(T) = 1$, that is, $T \in \mathcal{CT}_n^{(1)}$.

Subcase 2.2. If $d_T(u_1) = 1$ and $d_T(u_3) = d_T(u_2) = 4$, then $m_{1,3}(T) =$ 1, and $m_{3,4}(T) = 2$, that is, $T \in \mathcal{CT}_n^{(2)}$.

Subcase 2.3. If $d_T(u_1) = d_T(u_2) = d_T(u_3) = 4$, then $m_{1,3}(T) = 0$, and $m_{3,4}(T) = 3$, that is, $T \in \mathcal{CT}_n^{(3)}$. So in this case, $T \in \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$.

Case 3. $n_2(T) = 1$ and $n_3(T) = 0$.

Let v be the unique 2-vertex of T. Denote $N_T(v) = \{v_1, v_2\}$ with $d_T(v_1) \leq d_T(v_2)$. Then $d_T(v_i) \in \{1, 4\}$ for i = 1, 2.

Subcase 3.1. If $d_T(v_1) = 1$ and $d_T(v_2) = 4$, then $m_{1,2}(T) = 1$ and $m_{2,4}(T) = 1$, that is, $T \in \mathcal{CT}_n^{(4)}$;

Subcase 3.2. If $d_T(v_1) = d_T(v_2) = 4$, then $m_{1,2}(T) = 0$ and $m_{2,4}(T) = 0$ 2, that is, $T \in \mathcal{CT}_n^{(5)}$.

So in this case, $T \in \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$.

Note that for a chemical tree $T \in \mathcal{CT}_n$,

$$n_1(T) + n_2(T) + n_3(T) + n_4(T) = n,$$
(8)

$$n_1(T) + 2n_2(T) + 3n_3(T) + 4n_4(T) = 2(n-1),$$
(9)

$$m_{1,2}(T) + m_{1,3}(T) + m_{1,4}(T) = n_1(T),$$
 (10)

$$m_{1,2}(T) + 2m_{2,2}(T) + m_{2,3}(T) + m_{2,4}(T) = 2n_2(T),$$
 (11)

$$m_{1,3}(T) + m_{2,3}(T) + 2m_{3,3}(T) + m_{3,4}(T) = 3n_3(T),$$
(12)

$$m_{1,4}(T) + m_{2,4}(T) + m_{3,4}(T) + 2m_{4,4}(T) = 4n_4(T),$$
(13)

and

$$\mathcal{T}_f(T) = \sum_{uv \in E(T)} f(d_T(u), d_T(v)) = \sum_{1 \le k \le \ell \le 4} m_{k,\ell}(T) f(k,\ell).$$
(14)

Lemma 3.2. Let $n \ge 7$ and $T \in \mathcal{CT}_n^{(0)}$. Then $n \equiv 2 \pmod{3}$, and

$$\mathcal{T}_f(T) = \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4).$$

Proof. Note that $n_2(T) = n_3(T) = 0$. By (8) and (9),

$$n_1(T) + n_4(T) = n,$$

 $n_1(T) + 4n_4(T) = 2(n-1).$

Then $n_1(T) = \frac{2n+2}{3}$, $n_4(T) = \frac{n-2}{3}$, and $n \equiv 2 \pmod{3}$. By (10) and (13), $m_{1,4}(T) = n_1(T) = \frac{2n+2}{3}$ and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}m_{1,4}(T) = \frac{n-5}{3}$, which combined with (14) yields

$$\mathcal{T}_f(T) = m_{1,4}(T)f(1,4) + m_{4,4}(T)f(4,4)$$
$$= \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4).$$

Lemma 3.3. Let $n \ge 7$ and $T \in \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$.

Then $n \equiv 1 \pmod{3}$, and

$$\mathcal{T}_{f}(T) = \begin{cases} 2f(1,3) + f(3,4) + \frac{2n-5}{3}f(1,4) + \frac{n-7}{3}f(4,4), & \text{if } T \in \mathcal{CT}_{n}^{(1)}, \\ f(1,3) + 2f(3,4) + \frac{2n-2}{3}f(1,4) + \frac{n-10}{3}f(4,4), & \text{if } T \in \mathcal{CT}_{n}^{(2)}, \\ 3f(3,4) + \frac{2n+1}{3}f(1,4) + \frac{n-13}{3}f(4,4), & \text{if } T \in \mathcal{CT}_{n}^{(3)}. \end{cases}$$

Proof. Noticing that $n_2(T) = 0$ and $n_3(T) = 1$, by (8) and (9),

$$n_1(T) + n_4(T) + 1 = n,$$

 $n_1(T) + 3 + 4n_4(T) = 2(n-1)$

Then $n_1(T) = \frac{2n+1}{3}$, $n_4(T) = \frac{n-4}{3}$, and $n \equiv 1 \pmod{3}$. By (14),

$$\mathcal{T}_f(T) = m_{1,3}(T)f(1,3) + m_{3,4}(T)f(3,4) + m_{1,4}(T)f(1,4) + m_{4,4}(T)f(4,4) +$$

Case 1. $T \in \mathcal{CT}_n^{(1)}$.

Noting that $m_{1,3}(T) = 2$ and $m_{3,4}(T) = 1$, by (10) and (13), we get $m_{1,4}(T) = n_1(T) - m_{1,3}(T) = \frac{2n-5}{3}$, and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}((m_{1,4}(T) + m_{3,4}(T))) = \frac{n-7}{3}$. Then

$$\mathcal{T}_f(T) = 2f(1,3) + f(3,4) + \frac{2n-5}{3}f(1,4) + \frac{n-7}{3}f(4,4).$$

Case 2. $T \in \mathcal{CT}_n^{(2)}$.

Noting that $m_{1,3}(T) = 1$ and $m_{3,4}(T) = 2$, by (10) and (13), we get $m_{1,4}(T) = n_1(T) - m_{1,3}(T) = \frac{2n-2}{3}$, and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}(m_{1,4}(T) + m_{3,4}(T)) = \frac{n-10}{3}$. Then

$$\mathcal{T}_f(T) = f(1,3) + 2f(3,4) + \frac{2n-2}{3}f(1,4) + \frac{n-10}{3}f(4,4).$$

Case 3. $T \in \mathcal{CT}_n^{(3)}$.

Noting that $m_{1,3}(T) = 0$ and $m_{3,4}(T) = 3$, by (10) and (13), we get $m_{1,4}(T) = n_1(T) = \frac{2n+1}{3}$, and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}(m_{1,4}(T) + m_{3,4}(T)) = \frac{n-13}{3}$. Then

$$\mathcal{T}_f(T) = 3f(3,4) + \frac{2n+1}{3}f(1,4) + \frac{n-13}{3}f(4,4).$$

Lemma 3.4. Let $n \ge 7$ and $T \in \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$. Then $n \equiv 0 \pmod{3}$, and

$$\mathcal{T}_{f}(T) = \begin{cases} f(1,2) + f(2,4) + \frac{2n-3}{3}f(1,4) + \frac{n-6}{3}f(4,4), & \text{if } T \in \mathcal{CT}_{n}^{(4)}, \\ 2f(2,4) + \frac{2n}{3}f(1,4) + \frac{n-9}{3}f(4,4), & \text{if } T \in \mathcal{CT}_{n}^{(5)}. \end{cases}$$

Proof. Noticing that $n_2(T) = 1$ and $n_3(T) = 0$, by (8) and (9),

$$n_1(T) + 1 + n_4(T) = n,$$

 $n_1(T) + 2 + 4n_4(T) = 2(n-1).$

So $n_1(T) = \frac{2n}{3}$, $n_4(T) = \frac{n-3}{3}$, and $n \equiv 0 \pmod{3}$. By (14),

$$\mathcal{T}_f(T) = m_{1,2}(T)f(1,2) + m_{2,4}(T)f(2,4) + m_{1,4}(T)f(1,4) + m_{4,4}(T)f(4,4).$$

Case 1. $T \in \mathcal{CT}_n^{(4)}$.

Noting that $m_{1,2}(T) = 1$ and $m_{2,4}(T) = 1$, by (10) and (13), we get $m_{1,4}(T) = n_1(T) - m_{1,2}(T) = \frac{2n-3}{3}$, and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}(m_{1,4}(T) + m_{2,4}(T)) = \frac{n-6}{3}$. Then

$$\mathcal{T}_f(T) = f(1,2) + f(2,4) + \frac{2n-3}{3}f(1,4) + \frac{n-6}{3}f(4,4)$$

Case 2. $T \in \mathcal{CT}_n^{(5)}$.

Noting that $m_{1,2}(T) = 0$ and $m_{2,4}(T) = 2$, by (10) and (13), we get $m_{1,4}(T) = n_1(T) = \frac{2n}{3}$, and $m_{4,4}(T) = 2n_4(T) - \frac{1}{2}(m_{1,4}(T) + m_{2,4}(T)) = \frac{n-9}{3}$. Then

$$\mathcal{T}_f(T) = 2f(2,4) + \frac{2n}{3}f(1,4) + \frac{n-9}{3}f(4,4).$$

By Lemmas 3.2, 3.3, and 3.4, we can use $\mathcal{T}_f^{(i)}$ to denote the VDB topological index \mathcal{T}_f of the chemical trees in $\mathcal{CT}_n^{(i)}$ for $i = 0, 1, \ldots, 5$, that

$$\mathcal{T}_{f}^{(0)} = \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4), \tag{15}$$

$$\mathcal{T}_{f}^{(1)} = 2f(1,3) + f(3,4) + \frac{2n-5}{3}f(1,4) + \frac{n-7}{3}f(4,4), \tag{16}$$

$$\mathcal{T}_{f}^{(2)} = f(1,3) + 2f(3,4) + \frac{2n-2}{3}f(1,4) + \frac{n-10}{3}f(4,4), \tag{17}$$

$$\mathcal{T}_{f}^{(3)} = 3f(3,4) + \frac{2n+1}{3}f(1,4) + \frac{n-13}{3}f(4,4), \tag{18}$$

$$\mathcal{T}_{f}^{(4)} = f(1,2) + f(2,4) + \frac{2n-3}{3}f(1,4) + \frac{n-6}{3}f(4,4), \tag{19}$$

$$\mathcal{T}_{f}^{(5)} = 2f(2,4) + \frac{2n}{3}f(1,4) + \frac{n-9}{3}f(4,4).$$
(20)

Take

$$A_f = f(1,4) + f(3,4) - f(1,3) - f(4,4),$$
(21)

$$B_f = f(1,4) + f(2,4) - f(1,2) - f(4,4).$$
(22)

Then

$$\mathcal{T}_{f}^{(3)} - \mathcal{T}_{f}^{(2)} = \mathcal{T}_{f}^{(2)} - \mathcal{T}_{f}^{(1)} = A_{f}, \quad \mathcal{T}_{f}^{(5)} - \mathcal{T}_{f}^{(4)} = B_{f}.$$
 (23)

 \mathbf{So}

$$\begin{cases} \mathcal{T}_{f}^{(1)} > \mathcal{T}_{f}^{(2)} > \mathcal{T}_{f}^{(3)}, & \text{if } A_{f} < 0, \\ \mathcal{T}_{f}^{(3)} > \mathcal{T}_{f}^{(2)} > \mathcal{T}_{f}^{(1)}, & \text{if } A_{f} > 0, \\ \mathcal{T}_{f}^{(1)} = \mathcal{T}_{f}^{(2)} = \mathcal{T}_{f}^{(3)}, & \text{if } A_{f} = 0, \end{cases}$$
(3.23)

and

$$\begin{cases} \mathcal{T}_{f}^{(4)} > \mathcal{T}_{f}^{(5)}, & \text{if } B_{f} < 0, \\ \mathcal{T}_{f}^{(5)} > \mathcal{T}_{f}^{(4)}, & \text{if } B_{f} > 0, \\ \mathcal{T}_{f}^{(4)} = \mathcal{T}_{f}^{(5)}, & \text{if } B_{f} = 0, \end{cases}$$
(3.24)

The following is the main theorem of this section.

Theorem 3.5. Let $n \ge 7$, f(x,y) > 0 be a symmetric real function satisfied the conditions (C1)-(C6), and $T \in CT_n$.

(1) If $n \equiv 2 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$, and $\hat{T}_f = \mathcal{T}_f^{(0)}$.

(2) If $n \equiv 1 \pmod{3}$ and $A_f < 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)}$, and $\hat{T}_f = \mathcal{T}_f^{(1)}$.

If $n \equiv 1 \pmod{3}$ and $A_f > 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(3)}$, and $\hat{T}_f = \mathcal{T}_f^{(3)}$.

If $n \equiv 1 \pmod{3}$ and $A_f = 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$, and $\hat{T}_f = \mathcal{T}_f^{(1)} = \mathcal{T}_f^{(2)} = \mathcal{T}_f^{(3)}$.

(3) If $n \equiv 0 \pmod{3}$ and $B_f < 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)}$, and $\hat{T}_f = \mathcal{T}_f^{(4)}$.

If $n \equiv 0 \pmod{3}$ and $B_f > 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(5)}$, and $\hat{T}_f = \mathcal{T}_f^{(5)}$.

If $n \equiv 0 \pmod{3}$ and $B_f = 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$, and $\hat{T}_f = \mathcal{T}_f^{(4)} = \mathcal{T}_f^{(5)}$.

Proof. Case 1. $n \equiv 2 \pmod{3}$.

By Lemmas 3.2, 3.3 and 3.4, $\mathcal{CT}_n^{(0)} \neq \phi$, and $\mathcal{CT}_n^{(i)} = \phi$ for i = 1, ..., 5. So $\bigcup_{i=0}^{i=5} \mathcal{CT}_n^{(i)} = \mathcal{CT}_n^{(0)}$. By Theorem 3.1, T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$. The maximum index value $\hat{T}_f = \mathcal{T}_f^{(0)}$.

Case 2. $n \equiv 1 \pmod{3}$.

By Lemmas 3.2, 3.3 and 3.4, $\mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)} \neq \phi$, and $\mathcal{CT}_n^{(i)} = \phi$ for i = 0, 4, 5. So $\bigcup_{i=0}^{i=5} \mathcal{CT}_n^{(i)} = \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$. By Theorem 3.1 and Eq. (3.23), we have

- If $A_f < 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)}$, and $\hat{T}_f = \mathcal{T}_f^{(1)}$.
- If $A_f > 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(3)}$, and $\hat{T}_f = \mathcal{T}_f^{(3)}$.
- If $A_f = 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$, and $\hat{T}_f = \mathcal{T}_f^{(1)} = \mathcal{T}_f^{(2)} = \mathcal{T}_f^{(3)}$.

Case 3. $n \equiv 0 \pmod{3}$.

By Lemmas 3.2, 3.3 and 3.4, $\mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)} \neq \phi$ and $\mathcal{CT}_n^{(i)} = \phi$ for i = 0, 1, 2, 3, and so $\bigcup_{i=0}^{i=5} \mathcal{CT}_n^{(i)} = \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$. By Theorem 3.1 and Eq. (3.24), we have

- If $B_f < 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)}$, and $\hat{T}_f = \mathcal{T}_f^{(4)}$.
- If $B_f > 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(5)}$, and $\hat{T}_f = \mathcal{T}_f^{(5)}$.
- If $B_f = 0$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$, and $\hat{T}_f = \mathcal{T}_f^{(4)} = \mathcal{T}_f^{(5)}$.

The theorem now follows.

4 Applications

In this section, we will consider the following twenty-five VDB topological indices (as shown in Table 4.1), and characterize the *n*-optimal \mathcal{T}_f chemical trees.

No.	Name	f(x,y)	A_f	B_f	Ref.
1	Sombor index	$\sqrt{x^2 + y^2}$	<i>S0</i>	$\begin{aligned} A_f &> 0, \\ B_f &> 0 \end{aligned}$	[10, 11]
2	Reduced Sombor index	$\sqrt{(x-1)^2 + (y-1)^2}$	\mathcal{SO}_{red}	$\begin{aligned} A_f &> 0, \\ B_f &> 0 \end{aligned}$	[10, 11]
3	First Zagreb index	x + y	\mathcal{M}_1	$\begin{aligned} A_f &= 0, \\ B_f &= 0 \end{aligned}$	[6, 7]
4	Forgotten index	$x^{2} + y^{2}$	${\cal F}$	$\begin{aligned} A_f &= 0, \\ B_f &= 0 \end{aligned}$	[8]
5	Second Zagreb index	xy	\mathcal{M}_2	$\begin{aligned} A_f < 0, \\ B_f < 0 \end{aligned}$	[6, 7]
6	First hyper-Zagreb index	$(x+y)^2$	\mathcal{HM}_1	$\begin{aligned} A_f < 0, \\ B_f < 0 \end{aligned}$	
7	Second hyper-Zagreb index	$(xy)^2$	\mathcal{HM}_2	$\begin{aligned} A_f < 0, \\ B_f < 0 \end{aligned}$	
8	First Gourava index	x + y + xy	\mathcal{GO}_1	$\begin{aligned} A_f < 0, \\ B_f < 0 \end{aligned}$	
9	Second Gourava index	(x+y)xy	\mathcal{GO}_2	$A_f < 0,$ $B_f < 0$	
10	First hyper-Gourava index	$(x+y+xy)^2$	\mathcal{HGO}_1	$A_f < 0,$ $B_f < 0$	
11	Second hyper-Gourava index	$((x+y)xy)^2$	\mathcal{HGO}_2	$A_f < 0,$ $B_f < 0$	
12	Exponential Sombor index	$e^{\sqrt{x^2+y^2}}$	e^{SO}	$A_f < 0,$ $B_f < 0$	

Table 4.1 Some VDB topological indices \mathcal{T}_f

13	Exponential reduced	$e^{\sqrt{(x-1)^2+(y-1)^2}}$	$e^{\mathcal{SO}_{red}}$	$A_f < 0,$	
	Sombor index			$B_f < 0$	
14	Exponential first Zagreb	e^{x+y}	$e^{\mathcal{M}_1}$	$A_f < 0,$	[7]
	index			$B_f < 0$	[']
15	Exponential forgotten	$e^{x^2+y^2}$	$e^{\mathcal{F}}$	$A_f < 0,$	
	index			$B_f < 0$	
16	Exponential second	e^{xy}	$e^{\mathcal{M}_2}$	$A_f < 0,$	
	Zagreb index			$B_f < 0$	
17	Exponential reciprocal	$e^{\sqrt{xy}}$	$e^{\mathcal{R}\mathcal{R}}$	$A_f < 0,$	
	Randić index			$B_f < 0$	
18	Exponential reciprocal	$e^{\sqrt{x+y}}$	$e^{\mathcal{RSC}}$	$A_f < 0,$	
	sum-connectivity index			$B_f < 0$	
19	Exponential first	$e^{(x+y)^2}$	$e^{\mathcal{HM}_1}$	$A_f < 0,$	
	hyper-Zagreb index			$B_f < 0$	
20	Exponential second	$e^{(xy)^2}$	$e^{\mathcal{HM}_2}$	$A_f < 0,$	
20	hyper-Zagreb index			$B_f < 0$	
21	Exponential first	e^{x+y+xy}	$e^{\mathcal{GO}_1}$	$A_f < 0,$	
21	Gourava index			$B_f < 0$	
22	Exponential second	$e^{(x+y)xy}$	$e^{\mathcal{GO}_2}$	$A_f < 0,$	
	Gourava index			$B_f < 0$	
23	Exponential first	$e^{(x+y+xy)^2}$	$e^{\mathcal{HGO}_1}$	$A_f < 0,$	
	hyper-Gourava index			$B_f < 0$	
24	Exponential second	$e^{((x+y)xy)^2}$	$e^{\mathcal{HGO}_2}$		
	hyper-Gourava index			$B_f < 0$	
25	Exponential	$e^{\sqrt{(x+y)xy}}$	$e^{\mathcal{PCG}}$		
	product-connectivity			$\begin{aligned} A_f &< 0, \\ B_f &< 0 \end{aligned}$	
	Gourava index			$D_f < 0$	

It is not difficult to verify that these VDB topological indices satisfy the conditions (C1)-(C6). By Theorem 3.5, the following three theorems are straightforward.

Theorem 4.1. Let $n \ge 7$ and $T \in CT_n$. Then for the Sombor index and reduced Sombor index, the following results hold.

(1) If $n \equiv 2 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$, and

$$\hat{T}_f = \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4).$$

(2) If $n \equiv 1 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(3)}$, and

$$\hat{T}_f = 3f(3,4) + \frac{2n+1}{3}f(1,4) + \frac{n-13}{3}f(4,4).$$

(3) If $n \equiv 0 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(5)}$, and

$$\hat{T}_f = 2f(2,4) + \frac{2n}{3}f(1,4) + \frac{n-9}{3}f(4,4).$$

Theorem 4.2. Let $n \ge 7$ and $T \in CT_n$. Then for the first Zagreb index and forgotten index, the following results hold.

(1) If $n \equiv 2 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$, and

$$\hat{T}_f = \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4).$$

(2) If $n \equiv 1 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)} \cup \mathcal{CT}_n^{(2)} \cup \mathcal{CT}_n^{(3)}$, and

$$\hat{T}_f = 2f(1,3) + f(3,4) + \frac{2n-5}{3}f(1,4) + \frac{n-7}{3}f(4,4)$$

(3) If $n \equiv 0 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)} \cup \mathcal{CT}_n^{(5)}$, and

$$\hat{T}_f = f(1,2) + f(2,4) + \frac{2n-3}{3}f(1,4) + \frac{n-6}{3}f(4,4).$$

Theorem 4.3. Let $n \ge 7$ and $T \in CT_n$. Then for the VDB topological indices numbered from 5 to 25 as shown in Table 4.1, the following results hold.

(1) If $n \equiv 2 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$, and

$$\hat{T}_f = \frac{2n+2}{3}f(1,4) + \frac{n-5}{3}f(4,4).$$

(2) If $n \equiv 1 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)}$, and

$$\hat{T}_f = 2f(1,3) + f(3,4) + \frac{2n-5}{3}f(1,4) + \frac{n-7}{3}f(4,4).$$

(3) If $n \equiv 0 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)}$, and

$$\hat{T}_f = f(1,2) + f(2,4) + \frac{2n-3}{3}f(1,4) + \frac{n-6}{3}f(4,4).$$

In particularly, for the exponential reduced Sombor index $e^{S\mathcal{O}_{red}}$, induced by $f(x,y) = e^{\sqrt{(x-1)^2+(y-1)^2}}$, we have the following result. This result shows that Conjecture 3.1 in [13] is incorrect.

Corollary 4.4. Let $n \ge 7$ and $T \in CT_n$. Then for the exponential reduced Sombor index, the following results hold.

(1) If $n \equiv 2 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(0)}$. The maximal exponential reduced Sombor index is

$$\frac{1}{3}(n-5)e^{3\sqrt{2}} + \frac{2}{3}(n+1)e^3.$$

(2) If $n \equiv 1 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(1)}$. The maximal exponential reduced Sombor index is

$$\frac{1}{3}(n-7)e^{3\sqrt{2}} + \frac{1}{3}(2n-5)e^3 + e^{\sqrt{13}} + 2e^2.$$

(3) If $n \equiv 0 \pmod{3}$, then T is an n-optimal \mathcal{T}_f chemical tree when and only when $T \in \mathcal{CT}_n^{(4)}$. The maximal exponential reduced Sombor index is

$$\frac{1}{3}(2n-3)e^3 + \frac{1}{3}(n-6)e^{3\sqrt{2}} + e^{\sqrt{10}} + e^{\sqrt{10}}$$

References

- I. Gutman, O. Miljković, Molecules with smallest connectivity indices, MATCH Commun. Math. Comput. Chem. 41 (2000) 57–70.
- [2] I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, *Chem. Phys. Lett.* **306** (1999) 366–372.
- [3] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–1376.

- [4] S. Vujošević, G. Popivoda, Ž. Kovijanić Vukićević, B. Furtula, R. Škrekovski, Arithmetic-geometric index and its relations with geometric-arithmetic index, *Appl. Math. Comput.* **391** (2021) #125706.
- [5] S. Liu, J. Li, Some properties on the Harmonic index of molecular trees, ISRN Appl. Math. 2014 (2014) #781648.
- [6] Ž. Kovijanić Vukićević, G. Popivoda, Chemical trees with extreme values of Zagreb indices and coindices, *Iran. J. Math. Chem.* 5 (2014) 19–29.
- [7] R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degreebased topological indices of chemical trees, *Appl. Math. Comput.* 380 (2020) #125281.
- [8] H. Abdo, D. Dimitrov, I. Gutman, On extremal trees with respect to the F-index, Kuwait J. Sci. 44 (2017) 1–8.
- [9] A. Ali, S. Elumalai, T. Mansour, On the symmetric division deg index of molecular graphs, *MATCH Commun. Math. Comput. Chem.* 83 (2020) 205–220.
- [10] H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum. Chem. 121 (2021) #e26622.
- [11] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput. 399 (2021) #126018.
- [12] Y. Jiang, X. Chen, W. Lin, A note on chemical trees with maximal inverse sum indeg index, MATCH Commun. Math. Comput. Chem. 86 (2021) 29–38.
- [13] H. Liu, L. You, Z. Tang, J. Liu, On the reduced Sombor index and its applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 729–753.