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Abstract

We define a general unary graph operation and give several ap-
plications of these operation in this paper. The adjacency matrix
and the complete spectrum of the derived graphs are determined.
Different methods for generating sequences of orderenergetic graphs
from known orderenergetic graphs are described. Several meth-
ods are described for generating orderenergetic graphs from non-
orderenergetic graphs. Methods for generating new families of inte-
gral graphs using this new operation are also discussed. It is also
possible to generate infinite sequences of pair of equienergetic and
non-cospectral graphs using this graph operation.

1 Introduction

Let G = (V,E) be a graph on n vertices and e edges and AG denotes

the adjacency matrix of this graph. The characteristic polynomial of the

graph G is the characterestic polynomial of the adjacency matrix AG and is

denoted by fG(λ). Suppose that the eigenvalues of AG are λ1, λ2, · · · , λn.
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Then the energy of this graph [8] is defined to be the sum of the absolute

value of the eigenvalues and is denoted by

EG =

n∑
i=1

|λi| . (1)

The energy of graphs are having applications in chemical graph theory and

it can be used to approximate the total π-electron energy of a molecule

[9, 12,15].

Comparing the order of the graphs and their energies, graphs can be

grouped into different classes. An orderenergetic graph is recently defined

in [1]. A graph G with order n is said to be an orderenergetic graph if EG =

n. If EG < n, then such a graph is called hypoenergetic graph [9]. A graph

is said to be hyperenergetic graph [7] if EG > 2n−2. The class of graphs for

which EG = 2n− 2 are called borderenergetic graphs [4]. If two graphs G

and G′ are having equal energy, then such graphs are called equienergetic

graphs [14]. Non-cospectral equienergetic graphs are graphs with same

energy but with different spectra. A graph is said to be an integral graph

if all of its eigenvalues are integers [10]. Construction and classification of

all these kinds of graphs and their applications can be found in [2,3,6,9,12]

and references therein. But, the study of orderenergetic graphs are in their

initial stage and certain methods for constructing such graphs can be found

in [1, 11]. An integral energy graph is defined as a graph whose energy is

an integer. All integral graphs are clearly integral energy graphs, but not

conversely. Orderenergetic graphs and borderenergetic graphs are always

integral energy graphs.

It is shown that the families of complete bipartite graphsKp,p and com-

plete tripartite graphs Kp,p,6p are orderenergetic graphs [1], where p is any

positive integer. They have also shown that the connected graphs obtained

by taking the direct product of any two orderenergetic graphs with orders

m and n, one of which is a non-bipartite graph, will be also a connected or-

derenergetic graph with order mn. Methods for constructing two different

sequences of orderenergetic graphs from a given orderenergetic graph are

given in [11]. Another method for generating orderenergetic graphs from

non-orderenergetic graphs is also given in [11]. In this paper we present
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several new methods for generating orderenergetic graphs, integral graphs,

integral energy graphs and equienergetic graphs.

In the next section a general unary graph operation is defined. This

is used to generate families of new graphs from a given seed graph. The

adjacency spectrum of the generated graph is computed in terms of the

seed graph and is given in the third section. Several special cases of this

graph operation is discussed in the fourth section. In each of these cases it

s possible to generate new sequences of integral graphs and integral energy

graphs. The main application of this graph operation is the construction of

new sequences of orderenergetic graphs form given orderenergetic graphs

and non-orderenergetic graphs.

2 A generalized unary graph operation

Let G = (VG, EG) be a graph with order n and number of edges e. Let

the vertex set VG = {1, 2, 3, · · · , n}. Given any two positive integers p =

p1+p2+p3 and q = q1+ q2+ q3, where pi’s and qi’s non-negative integers,

a new graph H = (VH , EH) is constructed from the given graph G as

follows.

1. The vertex set of H is

VH = {uij/1 ≤ i ≤ p, 1 ≤ j ≤ n} ∪ {vkl/1 ≤ k ≤ q, 1 ≤ l ≤ n}.

2. The edges in H are obtained as follows. Let (j, k) is an edge in G,

then,

• the edges (uij , uik) ∈ EH for all 1 ≤ i ≤ p1 + p2,

• the edges (vij , vik) ∈ EH for all 1 ≤ i ≤ q1 + q2,

• the edges (uij , ulk) ∈ EH for all 1 ≤ i ≤ p1, 1 ≤ l ≤ p1, l ̸= i,

• the edges (vij , vlk) ∈ EH ffor all 1 ≤ i ≤ q1, 1 ≤ l ≤ q1, l ̸= i,

• the edges (uij , vlk) ∈ EH for all 1 ≤ l ≤ q, 1 ≤ i ≤ p,

• the edges (uik, vlj) ∈ EH for all 1 ≤ l ≤ q, 1 ≤ i ≤ p.

The total number of vertices in the derived graph H will be n(p+ q) and

the total number of edges will be e(2pq + p21 + q21 + p2 + q2). This graph

constructed from the graph G is denoted by the symbol H = G
(q1,q2,q3)
(p1,p2,p3)

.
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The above unary graph operation is illustrated in some examples. The

graph H constructed from the complete graph on two vertices K2 with

p1 = p2 = q1 = q2 = 1 and p3 = q3 = 0 is the first graph in figure 1. The

graph H constructed from K2 with p1 = q2 = 1, p2 = 3, p3 = q1 = q3 = 0

is the second graph shown in figure 1. The third and fourth graphs given

in figure 1 are obtained from K2 with p1 = p2 = p3 = q1 = q2 = q3 = 1 and

p1 = 1, p2 = q3 = 2, p3 = q1 = q2 = 0 respectively. Graphs constructed

from the path graph P3 with edges (1, 2) and (1, 3) are shown in figure 2.

First graph is obtained by taking p1 = p2 = q1 = 1, p3 = q2 = q3 = 0 and

second graph is obtained by taking p1 = q1 = 1, p2 = 2, p3 = q2 = q3 = 0.
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v21

u21

u22

G(1,1,0)
(1,1,0)

u11
u12

v12v11
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G(0,1,0)
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u31u32

G(0,0,2)
(1,2,0)

Figure 1. Graphs constructed from the graph G = K2, using the graph
operation defined in section 2. The first graph is obtained
from G with p1 = p2 = q1 = q2 = 1 and p3 = q3 = 0,
second graph is obtained from G with p1 = q2 = 1, p2 =
3, p3 = q1 = q3 = 0, third graph is obtained from G with
p1 = p2 = p3 = q1 = q2 = q3 = 1 and the fourth graph is
obtained form G with p1 = 1, p2 = q3 = 2, p3 = q1 = q2 = 0.
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Figure 2. Graphs constructed from the path graph G = P3, using the
graph operation defined in section 2. The first graph is ob-
tained from P3 with p1 = p2 = q1 = 1, p3 = q2 = q3 = 0
and the second graph is obtained from P3 with p1 = q1 =
1, p2 = 2, p3 = q2 = q3 = 0.

3 Spectrum of the graph H = G
(q1,q2,q3)
(p1,p2,p3)

We find out the spectrum of the graph H = G
(q1,q2,q3)
(p1,p2,p3)

constructed from

the graph G using the operation defined in the previous section. The

spectrum of the derived graph is to be expressed in terms of the spectrum

of the given graph G. After a careful examination of the graph operation

defined, we find that the adjacency matrix of the graph H = G
(q1,q2,q3)
(p1,p2,p3)

is

given by the following Kronecker product

AH = J
(q1,q2,q3)
(p1,p2,p3)

⊗AG, (2)

where AG is the adjacency matrix of the graph G and J
(q1,q2,q3)
(p1,p2,p3)

is a square

matrix of order p+ q, whose block matrix representation is given by

J
(q1,q2,q3)
(p1,p2,p3)

=

[
C Jpq

Jqp D

]
. (3)
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Here C and D are again block matrices of order p and q respectively and

are given by given by

C =

Jp1
0 0

0 Ip2
0

0 0 0p3

 (4)

and

D =

Jq1 0 0

0 Iq2 0

0 0 0q3

 . (5)

Here, Jmn represents the all one matrix of order m × n, Jm represents

the all one square matrix of order m, Im represents the identity matrix of

order m, 0m represents a square zero matrix of order m and all other 0’s

represents zero matrices of compatible orders.

We state some known results from theory of matrices as lemmas, which

are needed to prove the main theorem [5,13].

Lemma 1. If A and D are square matrices(need not be same order) and

B and C are matrices with compatible orders, then the determinant of the

following block matrix is given by

Det

[
A B

C D

]
= Det (D)Det

(
A−BD−1C

)
= Det (A)Det

(
D − CA−1B

)
.

(6)

provided D−1 or A−1exists.

Lemma 2. A block diagonal matrix

A =



A1 0 0 ... 0

0 A2 0 ... 0

. . . .

. . . .

. . . .

0 0 0 ... Ak


(7)
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is invertible if and only if each of its main-diagonal blocks Ai are invertible,

and in this case its inverse is given by the block diagonal matrix

A−1 =



A−1
1 0 0 ... 0

0 A−1
2 0 ... 0

. . . .

. . . .

. . . .

0 0 0 ... A−1
k


. (8)

Also we have

det(A) = det(A1)det(A2) · · · det(Ak). (9)

Lemma 3. Let A be an rth order square matrix with eigenvalues {αi}, 1 ≤
i ≤ r and B be an sth order square matrix with eigenvalues {βi}, 1 ≤ i ≤ s,

then the eigenvalues of the square matrix A ⊗ B of order rs is given by

all possible products {αiβj}, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, which is rs in

number.

Lemma 4. If B = [bij ] is a nth order square matrix, then

JmnBJnm =

 n∑
i=1

n∑
j=1

bij

 Jm. (10)

Lemma 5.

Det (λIm − Jm) = λm−1 (λ−m) . (11)

Lemma 6 (Sherman–Morrison formula). Let A be an nth order invertible

square matrix and u and v be column vectors of length n. If 1+vTA−1u ̸=
0, then A+ uvT is invertible and the inverse is given by

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u
. (12)

In addition to above lemmas we need the following new lemmas to

prove the next theorem.
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Lemma 7.

(i) (λIn − Jn)
−1

=
1

λ
In +

1

λ (λ− n)
Jn.

(ii) Jmn (λIn − Jn)
−1

Jnm =
n

λ− n
Jm.

(13)

Proof. Letting A = λIn and u = −v = −1n in lemma 6, where 1n is the

length n column vector of 1’s, we get,

(λIn − Jn)
−1

=
(
λIn + (−1n)1

T
n

)−1

= (λIn)
−1 − (λIn)

−1
(−1n)1

T
n (λIn)

−1

1 + 1T
n (λIn)

−1
(−1n)

=
1

λ
In +

1
λ2 Jn

1− 1
λn

=
1

λ
In +

1

λ (λ− n)
Jn.

(14)

Then,

Jmn (λIn − Jn)
−1

Jnm = JmnΓJnm, where Γ =
1

λ
In +

1

λ (λ− n)
Jn

=

 n∑
i=1

n∑
j=1

γij

 Jm, from lemma 4 and Γ = [γij ]

=

(
n

λ
+

n2

λ (λ− n)

)
Jm

=
n

λ− n
Jn.

(15)

Lemma 8.

det

([
(a+ c)Is 0

0 (a+ b)Ip−s

]
− a Jp

)
= (a+ b)

p−s−1
(a+ c)

s−1

× ((a+ c) (a+ b− ap) + as (c− b))

(16)
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Proof.

det

([
(a+ c)Is 0

0 (a+ b)Ip−s

]
− a Jp

)

= det

[
(a+ c)Is − a Js −a Js p−s

−a Jp−s s (a+ b)Ip−s − a Jp−s

]
= det

[
(a+ c)Is − a Js

]
det
[
((a+ b)Ip−s − a Jp−s)

− a2Jp−s s {(a+ c)Is − a Js}−1
Js p−s

]
= det

[
(a+ c)Is − a Js

]
det
[
((a+ b)Ip−s − a Jp−s)

− a

(
s

a+c
a − s

)
Jp−s

]
, by applying lemma 7

= det
[
(a+ c)Is − a Js

]
det
[
(a+ b)Ip−s − σJp−s

]
,

where σ = a

(
1 +

as

a+ c− as

)
= as

(
a+ c

a

)s−1(
a+ c

a
− s

)
σp−s a+ b

σ

p−s−1

×
(
a+ b

σ
− (p− s)

)
, by applying lemma 5

= (a+ b)
p−s−1

(a+ c)
s−1

((a+ c) (a+ b− ap) + as (c− b)) ,

by applying the value of σ and on straightforward simplification.

Now, we prove the following theorem which gives the complete spec-

trum of the matrix J
(q1,q2,q3)
(p1,p2,p3)

.

Theorem 1. The eigenvalues of the matrix J
(q1,q2,q3)
(p1,p2,p3)

are zero with multi-

plicity p1+p3+q1+q3−4, one with multiplicity p2+q2−2 and αi, 1 ≤ i ≤ 6,

where αi’s are the root of the polynomial p(x) = x6−a5x
5+a4x

4+a3x
3+
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a2x
2 + a1x− a0 with

a0 = p1p3q1q3,

a1 = p1 (p2 + 1) q1q3 + p3q1q3 + p1p3 (q3 + q1 (q2 + 2q3 + 1)) ,

a2 = −p2q1q3 − p3 (q3 + q1 (q2 + 2q3 + 1))− p1 (p2 (q3 + q1 (q2 + q3 + 1))

+p3 (q2 + 2q3 + q1 (q2 + q3 + 2)) + q1q2 + 2q1q3 + q3) ,

a3 = p3q2 + p2q3 + 2p3q3 + q1 (p2 (q2 + q3 + 1) + p3 (q2 + q3 + 2)− 1)

+ p1 (p2 (q1 + q2 + q3) + p3 (q1 + q2 + q3)

+q1q2 + q2 + q1q3 + 2q3 − 1) ,

a4 = p1 (−q2)− p1q3 − p2 (q1 + q2 + q3)− p3 (q1 + q2 + q3)

+ 2p1 + 2q1 + 1,

a5 = p1 + q1 + 2.

Proof. The characteristic polynomial of J
(q1,q2,q3)
(p1,p2,p3)

from equation (3) is

given by

fJ(λ) = det
(
λIp+q − J

(q1,q2,q3)
(p1,p2,p3)

)
= det

[
λIp − C −Jpq

−Jqp λIq −D

]
= det

(
λIp − C

)
det
(
(λIq −D)− Jqp (λIp − C)

−1
Jpq

)
.

(17)

Now consider

(λIp − C)
−1

=

λIp1 − Jp1 0 0

0 (λ− 1)Ip2 0

0 0 λIp3


−1

, by equation (4)

=

(λIp1 − Jp1)
−1

0 0

0 ((λ− 1)Ip2)
−1

0

0 0 (λIp3)
−1

 ,using lemma 2

(18)
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=


1
λIp1

+
(

1
λ(λ−p1)

Jp1

)
0 0

0 1
λ−1Ip2

0

0 0 1
λIp3

 , using lemma 7(i).

Hence, by lemma 4,

Jqp (λIp − C)
−1

Jpq = ΓJq, (19)

where

Γ =
p1
λ

+
p21

λ(λ− p1)
+

p2
λ− 1

+
p3
λ
. (20)

Then from equation (17),

fJ(λ) = det
(
λIp − C

)
det
(
(λIq −D)− ΓJq

)
. (21)

But, from equation (5),

det
(
(λIq −D)− ΓJq

)
= det


λIq1 − Jq1 0 0

0 λ− 1Iq2 0

0 0 λIq3

− ΓJq



= det

B11 B12 B13

B21 B22 B23

B31 B32 B33

 ,

where B11 = λIq1 − (Γ + 1) Jq1 , B12 = −ΓJq1q2 = BT
21

B13 = −ΓJq1q3 = BT
31, B22 = (λ− 1) Iq2 − ΓJq2

B23 = −ΓJq2q3 = BT
32, B33 = λIq3 − ΓJq3 .

= det (B11) det

([
B22 B23

B32 B33

]
−

[
B21

B31

]
B−1

11

[
B12 B13

])
,

using lemma 1.

(22)
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But,

det

([
B22 B23

B32 B33

]
−

[
B21

B31

]
B−1

11

[
B12 B13

])

= det

([
B22 B23

B32 B33

]
− ΓJq2+q3 q1B

−1
11 ΓJq1 q2+q3

)

= det

([
B22 B23

B32 B33

]
− Γ2

(
1

Γ + 1

)
q1

λ
Γ+1 − q1

Jq2+q3

)
,

using lemma 7(ii)

= det

([
B22 B23

B32 B33

]
−∆Jq2+q3

)
,where ∆ = Γ2 q1

λ− (Γ + 1)q1

= det

[
(λ− 1)Iq2 − (Γ + ∆)Jq2 −(Γ + ∆)Jq2 q3

−(Γ + ∆)Jq3 q2 λIq3 − (Γ + ∆)Jq3

]

= det

([
(λ− 1)Iq2 0

0 λIq3

]
− (Γ + ∆)Jq2+q3

)
= (a+ b)

q3−1
(a+ c)

q2−1
((a+ c) (a+ b− a(q2 + q3)) + aq2(c− b)) ,

using lemma 8,where a = Γ +∆, b = λ− (Γ + ∆) , c = (λ− 1)− (Γ + ∆)

(23)

Substituting this in equation (22) we get,

det
(
(λIq −D)− ΓJq

)
= det (B11) (a+ b)

q3−1
(a+ c)

q2−1

× ((a+ c) (a+ b− a(q2 + q3)) + aq2(c− b))

= (Γ + 1)
q1

(
λ

Γ + 1

)q1−1(
λ

Γ + 1
− q1

)
(a+ b)

q3−1
(a+ c)

q2−1

× ((a+ c) (a+ b− a(q2 + q3)) + aq2(c− b)) ,

using lemma 5 for the matrix B11.

(24)
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Now,

det (λIp − C)

= det

λIp1
− Jp1

0 0

0 (λ− 1) Ip2
0

0 0 λIp3

 , by equation (4)

= det (λIp1
− Jp1

) det ((λ− 1) Ip2
) det (λIp3

) , using lemma 2

= λp1+p3−1 (λ− p1) (λ− 1)
p2 , using lemma 5.

(25)

Substituting the values from equations (24) and (25) in equation (21) and

after a lengthy but straight forward simplification, we get,

fJ(λ) = λp1+p3+q1+q3−4(λ− 1)p2+q2−2

×
(
λ6 − a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ− a0

) (26)

where

a0 = p1p3q1q3, a5 = p1 + q1 + 2,

a1 = p1 (p2 + 1) q1q3 + p3q1q3 + p1p3 (q3 + q1 (q2 + 2q3 + 1)) ,

a2 = −p2q1q3 − p3 (q3 + q1 (q2 + 2q3 + 1))− p1 (p2 (q3 + q1 (q2 + q3 + 1))

+p3 (q2 + 2q3 + q1 (q2 + q3 + 2)) + q1q2 + 2q1q3 + q3) ,

a3 = p3q2 + p2q3 + 2p3q3 + q1 (p2 (q2 + q3 + 1) + p3 (q2 + q3 + 2)− 1)

+ p1 (p2 (q1 + q2 + q3) + p3 (q1 + q2 + q3)

+q1q2 + q2 + q1q3 + 2q3 − 1) ,

a4 = p1 (−q2)− p1q3 − p2 (q1 + q2 + q3)− p3 (q1 + q2 + q3)

+ 2p1 + 2q1 + 1.

So, the spectrum of J
(q1,q2,q3)
(p1,p2,p3)

is obtained as stated in the theorem.

Theorem 2. If G is a graph of order n whose non-zero eigenvalues are

given by {λi}, 1 ≤ i ≤ r, for some r ≤ n, then the non-zero eigenvalues

of the graph H = G
(q1,q2,q3)
(p1,p2,p3)

are given by {λi} , 1 ≤ i ≤ r, each with

multiplicity p2 + q2 − 2 and {λiαj} , 1 ≤ i ≤ r, 1 ≤ j ≤ 6, which are 6r

in number and αj are the roots of the sixth degree polynomial given in the
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statement of theorem 1.

Proof. The adjacency matrix of the graph H = G
(q1,q2,q3)
(p1,p2,p3)

is

AH = J
(q1,q2,q3)
(p1,p2,p3)

⊗AG.

So, the theorem follows from lemma 3 and theorem 1.

4 Applications of the new graph operation

We discuss several simple but significant special cases of the generalized

unary graph operation G
(q1,q2,q3)
(p1,p2,p3)

and their properties and applications in

this section. We prove different methods for generating new orderenergetic

graphs from known orderenergetic graphs and non-orderenergetic graphs.

We also give different ways of generating integral graphs from known in-

tegral graphs.

4.0.1 Case 1

Let p2 = s, q3 = t and p1 = p3 = q1 = q2 = 0. Then the characteristic

polynomial of J
(0,0,t)
(0,s,0) is obtained from equation (26) as

fJ(λ) = (λ− 1)s−1λt−1((λ− 1)λ− st) (27)

Then the eigenvalues of J
(0,0,t)
(0,s,0) are 1 with multiplicity s − 1, 0 with mul-

tiplicity t − 1 and 1
2

(
1±

√
4st+ 1

)
with multiplicity one. Using these

eigenvalues, we can easily find eigenvalues of the graph H = G
(0,0,t)
(0,s,0) from

theorem 2. This gives an efficient way for generating integral graphs from

known integral graphs and a new method for generating orderenergetic

graphs. In what follows we define x and y are complementary factors of a

positive integer z if z = xy.

Theorem 3. Let G is an integral graph of order n. If r is positive integer

such that s and t are any pair of complementary factors of r2 + 3r + 2,

then the graph H = G
(0,0,t)
(0,s,0) is also an integral graph. Moreover, if the

given graph G is an orderenergetic graph and r is an even integer, then

the graph H is also orderenergetic.
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Proof. Let G is a graph of order n. If s and t are as stated in the theorem,

then the eigenvalues of the matrix J
(0,0,t)
(0,s,0) are 1 with multiplicity s− 1, 0

with multiplicity t− 1 and −(1 + r) and 2 + r each with multiplicity one.

Then by theorem 2, the eigenvalues of the graphH are −(r+1)λi, (2+r)λi,

each λi with multiplicity s− 1 and 0 with multiplicity n(t− 1), where λi

are the n eigenvalues of the graph G. Hence the graph H is an integral

graph.

The energy of the graph H can be computed as

EH = (1 + r)EG + (2 + r)EG + (s− 1)EG
= (s+ 2r + 2)EG.

(28)

Suppose the given graph G is an orderenergetic graph so that EG = n.

Now we derive the condition for the graph H to be orderenergetic. The

order of this graph is n(s+ t). If H is orderenergetic, then form equation

(28) we get

n(s+ t) = (s+ 2r + 2)EG = (s+ 2r + 2)n. (29)

So, the graph H is orderenergetic if s + t = (s + 2r + 2). This gives the

condition t = 2r + 2. Then s = (r + 2)/2, as s and t are complementary

factors of r2 + 3r + 2. Since s is always an integer, it follows that r = 2k

for some positive integer k. So the necessary condition for the graph H to

be orderenergetic graph is that s = k+1 and t = 4k+2 for some positive

integer k.

The following result easily follows from the above theorem.

Corollary 1. Let G is an orderenergetic graph. Then the graph H =

G
(0,0,4k+2)
(0,k+1,0) is always an orderenergetic graph for any positive integer k.

It is also possible to generate several new orderenergetic graphs from

non-orderenergetic graphs in certain special cases using the unary opera-

tion.

Corollary 2. Let G is a graph of order n with energy EG = m is an integer.

If there exist positive integers s and t such that (s + 2r + 2)m = n(t + s)
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where st = r2 + 3r + 2 , then the graph H = G
(0,0,t)
(0,s,0) is an orderenergetic

graph.

Proof. The proof follows from the equation (28) and the fact that the order

of the graph H is n(s+ t).

We illustrate this type of construction of orderenergetic graphs from

non-orderenergetic graphs. Consider the graph G on five vertices given in

figure 3. The energy of this graph is 6. Let s = 2, t = 10 and r = 3.

Then the conditions in corollary 2 are satisfied and the generated graph

H = G
(0,0,10)
(0,2,0) is orderenergetic. For further examples, consider the six

graphs on 10 vertices given in figure 4, each with energy 12. From each

of these non-orderenergetic graphs we can generate orderenergetic graphs

using corollary 2 with s = 2, t = 10 and r = 3.

It is also possible to generate sequences of orderenergetic graphs using

a non-orderenergetic graph as a seed graph. Let Gk be the graph whose

adjacent matrix is Jk ⊗ AG, for any positive integer k and G is as given

in figure 3. Then, it is easy to see that Gk is a graph on 5k vertices

with energy 6k. Then the conditions in corollary 2 are satisfied and it

follows that the graphs H = G
(0,0,10)

k(0,2,0) are all orderenergetic graphs for

any positive integer k. Similarly, Let G′
k be the graph whose adjacent

matrix is J
(0,0,2k)
(k,0,0) ⊗ AG, for any positive integer k and G is as given in

figure 3. Then, G′
k is also a graph on 5k vertices with energy 6k [11]. So,

it follows that the graphs H = G
′ (0,0,10)
k(0,2,0) are all orderenergetic graphs for

any positive integer k. We can construct other families of orderenergetic

graphs using suitable seed graphs such as given in figure 4.

Figure 3. Graph on 5 vertices with energy EG = 6.
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Figure 4. Six Graphs on 10 vertices with energy EG = 12.

4.0.2 Case 2

Let p1 = s, q3 = t and p2 = p3 = q1 = q2 = 0. Then the characteristic

polynomial of J
(0,0,t)
(s,0,0) is obtained from equation (26) as

fJ(λ) = λs+t−2
(
λ2 − s(λ+ t)

)
(30)

Then the eigenvalues of J
(0,0,t)
(s,0,0) are 0 with multiplicity s + t − 2 and

1
2

(
s±

√
s(s+ 4t)

)
with multiplicity one each. Using these eigenvalues,

we can easily find eigenvalues of the graph H = G
(0,0,t)
(s,0,0) from theorem

2. This gives an efficient way for generating integral graphs from known

integral graphs and another method for generating orderenergetic graphs.

Some results in this case are given in [11].

Theorem 4. [11] Let G is an integral graph of order n. If s = k2 is a

perfect square, then the graph H = G
(0,0,(k+r)r)
(s,0,0) is also an integral graph for

any non-negative integer r. Otherwise, if s is not a perfect square, then the

graph H = G
(0,0,sr(r+1))
(s,0,0) is an integral graph for any non-negative integer

r. Moreover, if the given graph G is an integral energy graph with energy

m and r is a non-negative integer satisfying m(2r + 1) = n(r2 + r + 1),

then the graph H = G
(0,0,sr(r+1))
(s,0,0) is always orderenergetic graph for any

positive integer s.
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This theorem gives two different methods to generate orderenergetic

graphs from known orderenergetic graphs.

Corollary 3. If G is an orderenergetic graph on n vertices, then the se-

quence of graphs H = G
(0,0,0)
(s,0,0) and H ′ = G

(0,0,2s)
(s,0,0) are orderenergetic graphs

for any positive integer s with order sn and 3sn respectively.

Proof. Corollary follows from theorem 4 by putting r = 0 and r = 1

respectively.

4.0.3 Case 3

Let p2 = s, q2 = t and p1 = p3 = q1 = q3 = 0. Then the characteristic

polynomial of J
(0,0,t)
(s,0,0) is obtained from equation (26) as

fJ(λ) = (λ− 1)p+q−2
(
(λ− 1)2 − pq

)
(31)

Then the eigenvalues of J
(0,t,0)
(0,s,0) are 1 with multiplicity s+t−2 and 1±√

pq

with multiplicity one each. Using these eigenvalues, we can easily find

eigenvalues of the graph H = G
(0,t,0)
(0,s,0) from theorem 2. This gives another

efficient way for generating integral graphs from known integral graphs

and another method for generating orderenergetic graphs.

Theorem 5. Let G is an integral graph of order n. If r is positive integer

and s and t are any pair of complementary factors of r2, then the graph

H = G
(0,t,0)
(0,s,0) is also an integral graph. Moreover, if the given graph G is

an integral energy graph with EG = m and (s + t + 2r − 2)m = n(s + t),

then the graph H is orderenergetic.

Proof. Let G is a graph of order n. If s and t are as stated in the theorem,

then the eigenvalues of the matrix J
(0,t,0)
(0,s,0) are 1 with multiplicity s+ t−12

and (1− r) and 1 + r each with multiplicity one. Then by theorem 2, the

eigenvalues of the graph H are (1−r)λi, (1+r)λi, each λi with multiplicity

s+ t− 2, where λi are the n eigenvalues of the graph G. Hence the graph

H is an integral graph.
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The energy of the graph H can be computed as

EH = (1− r)EG + (1 + r)EG + (s+ t− 2)EG
= (s+ t+ 2r − 2)EG.

(32)

Suppose the given graph G is an integral energy graph so that EG = m.

Now we derive the condition for the graph H to be orderenergetic. The

order of the graph H is clearly n(s + t). But it is given that n(s + t) =

(s+ t+ 2r − 2)m. So it follows that n(s+ t) = (s+ t+ 2r − 2)EG = EH ,

from equations (32). Hence H is an orderenergetic graph.

It is clear from the above theorem that we cannot generate orderener-

getic graphs from a given orderenergetic graph in this case. But we can

generate orderenergetic graphs from non-orderenergetic graphs in certain

cases. We illustrate this type of construction of orderenergetic graphs from

non-orderenergetic graphs by using a seed graph. Consider the star graph

G on 10 vertices given in figure 5. The energy of this graph is 6 an it is not

orderenergetic. Let s = 3, t = 3 and r = 3. Then the conditions in theorem

5 are satisfied and the generated graph H = G
(0,3,0)
(0,3,0) is orderenergetic. Let

Gk be the graph whose adjacent matrix is Jk⊗AG, for any positive integer

k and G is as given in figure 5. Then, it is easy to see that Gk is a graph on

10k vertices with energy 6k. It follows that the graphs H = G
(0,3,0)

k(0,3,0) are

all orderenergetic graphs for any positive integer k. Similarly, let G′
k be

the graph whose adjacent matrix is J
(0,0,2k)
(k,0,0) ⊗AG, for any positive integer

k and G is as given in figure 5. Then, G′
k is also a graph on 10k vertices

with energy 6k [11]. So, it follows that the graphs H = G
′ (0,3,0)
k(0,3,0) are all

orderenergetic graphs for any positive integer k. We can construct other

families of orderenergetic graphs using suitable seed graphs other than the

star graph on 10 vertices.

Figure 5. A graph on 10 vertices with energy EG = 6.



684

4.0.4 Case 4

Let p1 = 2s, q1 = s, q3 = s and p2 = p3 = q2 = 0. Then the characteristic

polynomial of J
(s,0,s)
(2s,0,0) is obtained from equation (26) as

fJ(λ) = λ4s−3
(
λ3 + 2s3 − 2λs2 − 3λ2s

)
. (33)

Then the eigenvalues of J
(s,0,s)
(2s,0,0) are 0 with multiplicity 4s − 3 and −s,

and
(
2±

√
2
)
s with multiplicity one each. Using these eigenvalues, we

can easily find eigenvalues of the graph H = G
(s,0,s)
(2s,0,0) from theorem 2.

This gives another efficient way for generating integral graphs from known

integral graphs and another method for generating orderenergetic graphs.

Theorem 6. Let G is an integral graph of order n.Then the graph H =

G
(s,0,s)
(2s,0,0) is an integral energy graph for any positive integer s. Moreover, if

the given graph G is an integral energy graph with EG = m and 4n = 5m,

then the graph H is orderenergetic for any positive integer s.

Proof. Let G is a graph of order n. Then the eigenvalues of the matrix

J
(s,0,s)
(2s,0,0) are 0 with multiplicity 4s − 3 and −s,

(
2±

√
2
)
s with multiplic-

ity one each. Then by theorem 2, the eigenvalues of the graph H are

−sλi,
(
2 +

√
2
)
λi,
(
2−

√
2
)
λi, 0 with multiplicity n(4s−3), where λi are

the n eigenvalues of the graph G. So, the graph H is not an integral graph.

The energy of the graph H can be computed as

EH = sEG +
(
2 +

√
2
)
EG +

(
2−

√
2
)
EG = 5sEG. (34)

Hence, the energy of the graph H is an integer and hence it is an integral

energy graph for any positive integer s.

Suppose the given graph G is an integral energy graph so that EG = m

for some positive integer m. Now we derive the condition for the graph H

to be orderenergetic. The order of the graph H is clearly 4ns. But it is

given that 4n = 5m. So, it follows from equation (34) that 4ns = 5sm =

5sEG = EH . Hence H is an orderenergetic graph.

As an example, consider the star graph G on five vertices. Clearly

energy of this graph is 4 and hence 4n = 5m is satisfied. Hence H =
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G
(s,0,s)
(2s,0,0) is always an orderenegetic graph for any positive integer s. We can

generate one more sequence of orderenergetic graphs from this star graph

as follows. Let G′
k be the graph whose adjacent matrix is J

(0,0,2k)
(k,0,0) ⊗ AG,

for any positive integer k and G is star graph on five vertices. Then G′
k is

a graph on 5k vertices with energy 4k [11] and the condition in the above

theorem is clearly satisfied. So, it follows that the graphs H = G
′ (s,0,s)
k(2s,0,0)

are all orderenergetic graphs for any positive integer k. We can construct

other families of orderenergetic graphs using suitable seed graphs other

than the star graph on 5 vertices.

So far we have discussed four different special cases of the new unary

graph operation defined in this paper. In all these cases it is possible

to generate new orderenergetic graphs from known orderenergetic graphs

and non-orderenergetic graphs. In a similar fashion it may be possible

to find other special cases using which it is possible to generate further

orderenergetic graphs. Finally, we prove a general method for generating

families of equienergetic graphs using the new graph operation.

Corollary 4. Let G and Ĝ be a pair of equienergetic graphs, then the

graph G
(q1,q2,q3)
(p1,p2,p3)

and the graph Ĝ
(q1,q2,q3)
(p1,p2,p3)

are also pair of equienergetic

graphs for any positive integers pi and qi for all i = 1, 2, 3. Moreover,

the graphs G
(0,0,0)
(3s,0,0) and G

(0,0,2s)
(s,0,0) are non-cospectral equienergetic graphs of

same order for any positive integer s.

Proof. First part follows from theorem 1 and 2. Second part follows from

corollary 3 and noting that the non-zero eigenvalue of J
(0,0,0)
(3s,0,0) is 3s only

and the non-zero eigenvalues of J
(0,0,2s)
(s,0,0) are −s and 2s only.

References

[1] S. Akbari, M. Ghahremani, I. Gutman, F. Koorepazan-Moftakhar,
Orderenergetic graphs, MATCH Commun. Math. Comput. Chem. 84
(2020) 325–334.

[2] B. Deng, X. Li, I. Gutman, More on borderenergetic graphs, Lin.
Algebra Appl. 497 (2016) 199–208.



686

[3] B. Furtula, I. Gutman, Borderenergetic graphs of order 12, Iran. J.
Math. Chem. 8 (2017) 339–344.

[4] S. Gong, X. Li, G. Xu, I. Gutman, B. Furtula, Borderenergetic graphs,
MATCH Commun. Math. Comput. Chem. 74 (2015) 321–332.

[5] A. Graham, Kronecker Products and Matrix Calculus: with Applica-
tions, Wiley, New York, 1981.

[6] I. Gutman, Hyperenergetic and hypoenergetic graphs, in: D.
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