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Abstract

In this paper, we extend some results of [F. Shaveisi, lower
bounds on the vertex cover number and energy of graphs, MATCH
Commun. Math. Comput. Chem, 87(3) (2022) 683-692] which
state some relations between the vertex cover and other parame-
ters, such as the order and maximum or minimum degree of graphs.
Also, we prove that for a graph G, E(G) ≥ 2β(G)− 2Ce(G) and so
E(G) ≥ 2β(G) − 2C(G), where E(G), β(G), Ce(G) and C(G) de-
note the energy, vertex cover, number of even cycles and number of
cycles in G, respectively. For these both inequalities we investigate
their equality. Finally, we give some relations between E(G), γ(G)
and γt(G), where γ(G) and γt(G) are domination number and total
domination number of G, respectively.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph, where V (G) and E(G) denote

the set of its vertices and edges, respectively. By the size of G, we mean

the number of its edges. The maximum and minimum degrees of G are

denoted by ∆(G) and δ(G), respectively. The adjacency matrix of G,

denoted by A(G), is an n×n matrix whose (i, j)-entry is 1 if vi and vj are

adjacent and 0 otherwise. The corona of two graphs, denoted by G1 ◦G2,

is the graph obtained by taking one copy of G1 ( which has n vertices )

and n copies of G2, and then joining the ith vertex in G1 to every vertex

in the ith copy of G2. In this paper, the energy of a graph G, is shown

by E(G) and is defined as the sum of the absolute values of its adjacency

eigenvalues. A vertex cover of a graph is a subset of vertices that includes

at least one endpoint of every edge of the graph. The minimum size of

a vertex cover of G is called the vertex cover number and is denoted by

β(G). The number of connected components of G is denoted by c(G),

and we define cv(G) = min {c(G[Q]) : Q is a minimum vertex cover of

G}. Also, for a set Q ⊂ V (G), G[Q] means the induced subgraph of G

on Q. For a graph G, Co(G) and Ce(G) denote the number of odd and

even cycles in G, respectively. The number of all cycles in G is denoted

by C(G). A dominating set in a graph G is a set S of vertices of G such

that every vertex in V (G) \ S is adjacent to at least one vertex in S and

a total dominating set of G with no isolated vertex is a set S of vertices

of G such that every vertex in V (G) is adjacent to at least one vertex

in S. The domination number (total domination number) of G, denoted

by γ(G) (γt(G)), is the minimum cardinality of a dominating set (a total

dominating set) of G. A maximum matching is a matching that contains

the largest possible number of edges. If a matching covers all vertices of G,

then it is called a perfect matching. The matching number of G, denoted

by µ(G), is the size of a maximum matching. We denote the complete

graph and the cycle graph of order n by Kn and Cn, respectively.

In all of the above notation, we remove the additional G if there is no

ambiguity; for example δ instead of δ(G), or V instead of V (G).
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2 Preliminaries

In the following, we state some lemmas which are used in our proofs.

Lemma 1. [2]. Let G be a graph and H1, . . . ,Hk be its k vertex-disjoint

induced subgraphs. Then E(G) ≥
k∑

i=1

E(Hi).

Lemma 2. [1, Lem. 11]. If n is an odd integer, then E(Cn) ≥ n+ 1.

Lemma 3. [11, Thm. 1.1]. Let G be a graph. Then E(G) ≥ 2µ(G).

Lemma 4. [6]. If G is a graph without any isolated vertex, then µ(G) ≥
γ(G).

Lemma 5. [5, Thm. 3]. A connected graph G of order 2n has γ(G) = n if

and only if either G = C4 or the vertices of G can be partitioned into two

sets, V1 and V2 with a matching between them and satisfying G[V1] = Kn

and G[V2] connected.

Lemma 6. [7, Thm. 4.20]. (1) If F is an edge cut of a simple graph G,

then E(G − F ) ≤ E(G). (2) Let H be a subgraph of G and F be the edge

cut between G−H and H. Suppose that F is not empty and that all edges

in F are incident to one and only one vertex in H, i.e. the edges in F

form a star. Then E(G− F ) < E(G).

3 Main results

We start this section by the following theorem that extends Theorems 1

and 2 of [8] by considering the values of δ, i.e. we extend the results if

δ ≥ k. If we put k = 1, then both Theorems 1 and 2 of [8] are an immediate

consequence of the following theorem.

Theorem 1. Let G be a graph of order n with δ ≥ k. Then the following

hold:

(i) β >
n

∆+ 2− k
,

(ii) β ≥ kn− 2cv(G)

∆ + k − 2
.
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Proof. First, we claim that n ≤ β∆+β−(k−1)(n−β). Clearly, n ≤ β∆+β.

Assume that Q is a covering set of order β. Suppose that v ∈ V (G) \ Q.

Since G\Q is an independent set, |NQ(v)| ≥ k. Without lose of generality,

assume that v1, . . . , vk ∈ Q are adjacent to v. In this case,

|N(v1) ∪ · · · ∪N(vk)| ≤ k∆− (k − 1).

Hence, each vertex v ∈ G\Q decreases the bound β∆+β at least by k−1.

Thus, n ≤ β∆+β− (k−1)(n−β) and the claim is proved. Now, we claim

that if there exist t edges in G[Q], then n ≤ β∆+ β − (k− 1)(n− β)− 2t.

For this, suppose that u and v in Q are adjacent. Therefore the number of

vertices in G\Q that are adjacent to u or v is at most 2∆−2. This means

that each edge in G[Q] decreases the upper bound β∆+β− (k−1)(n−β)

by 2 and thus the second claim is proved.

For Part (i), if β >
n

2
, then clearly β >

n

∆+ 2− k
, since ∆ − k ≥ 0.

So suppose β ≤ n

2
and by contrary β ≤ n

∆+ 2− k
. Therefore, by the first

claim we have

β <
β∆+ β − (k − 1)(n− β)

∆ + 2− k

and consequently β >
k

2k − 1
n >

n

2
, a contradiction.

For Part (ii), let Q be a minimum vertex cover of the graph G in which

c(G[Q]) = cv(G). Suppose the ith connected component of G[Q] has order

βi, for i = 1, . . . , cv(G). So it has at least βi − 1 edges and hence by the

second claim, one can see that

n ≤ β∆+β−(k−1)(n−β)−
cv(G)∑
i=1

2(βi−1) = β∆−β−(k−1)(n−β)+2cv(G),

which yields that β ≥ kn− 2cv(G)

∆ + k − 2
and the proof is complete.

Remark 1. Let G be a connected graph of size m and ∆ ≥ 2. In Theorem

5 of [8], with a long proof, it is proved that

β ≥
√
(2∆− 1)2 + 8m− (2∆− 1)

2
.
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Clearly, m ≤ β∆ and so β ≥ m

∆
. By some calculations, it is easy to see

that 2m+ 2∆2 −∆ ≥ ∆
√
(2∆− 1)2 + 8m. Hence

m

∆
≥

√
(2∆− 1)2 + 8m− (2∆− 1)

2
.

Thus
m

∆
is a better bound for β. Also, since

m

∆
≥ n

∆+ 1
, Corollary 6 of [8]

cannot give us new information. In addition by Theorem 4.2 of [9], there

is a much better lower bound 2(
m

∆
−co) for the energy of a graph instead of

what is introduced in [8, Cor. 10]. Surprisingly, there is no any difference

between Corollaries 10 and 12 of [8]. Furthermore, Lemma 11 of [8] is

presented just for clarifying Corollary 12 which is equal to Corollary 10.

The next theorem is proved by Chen and Liu in [4] (Proposition 6),

but here we give an easier and shorter proof.

Theorem 2. Let G be a graph of order n with the adjacency matrix A.

Then rank(A) ≤ 2β.

Proof. Let Q = {v1, . . . , vβ} be a minimum vertex cover of G. With an

appropriate labeling for vertices, we have A =

[
B C

CT 0

]
, where B is the

adjacency matrix of G[Q]. Obviously, in the first β rows of A, there are

maximum β independent rows. Also, rank(CT ) ≤ β and so the inequality

follows.

In the following theorem, we state a sufficient condition so that equality

in the above theorem occurs.

Theorem 3. Let G be a graph of order n with the adjacency matrix A.

If B is a non-singular (0, 1)-matrix of order n and H is the graph whose

adjacency matrix is A′ =

[
A B

BT 0

]
, then rank(H) = 2β(H) = 2n.

Proof. Let V (G) = {v1, . . . , vn} and V (H) = V (G) ∪ {u1, . . . , un}. Note

that for i = 1, . . . , n, we have NH(ui) = {vj | bij = 1}. Since V (G) is

a vertex cover for H, we conclude that β(H) ≤ n. Now, we show that

β(H) ≥ n. To see this, it suffices to prove that H has a perfect matching.

Since H \ E(G) is a spanning subgraph of H, if we show that H \ E(G)
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has a perfect matching, then we are done. For simplicity call the graph

H \ E(G) = H
′
. Note that H

′
= (U, V (G)) is a bipartite graph, where

U = {u1, . . . , un}. By Marriage Theorem [3], it is enough to show that

for every S ⊆ U , |NH′ (S)| ≥ |S|. By contrary, suppose that there exists

S ⊆ U such that |S| = r and t = |NH′ (S)| < r. With no lose of generality

assume that S = {u1, . . . , ur}. Hence there are t < r rows in B which

contain all non-zero entries of B appeared in the first r columns of B.

Now, if B
′
is an n × r submatrix of B formed by the first r columns

of B, then rank(B′) ≤ t. Thus rank(B) ≤ t + n − r < n and so B

is singular, a contradiction. Therefore H ′ has a perfect matching which

implies that β(H) ≥ n and so β(H) = n. Also, since B and BT are

non-singular, one can easily see that A
′
is non-singular. Thus rank(H) =

rank(A
′
) = 2n = 2β(H) and the result follows.

Note that the inverse of previous theorem is true.

Remark 2. If H is a graph of order 2n with the non-singular adjacency

matrix A′ and rank(H) = 2β(H) = 2n, then there exists a graph G of

order n with adjacency matrix A and a (0, 1) non-singular square matrix

B of order n such that

A
′
=

[
A B

BT 0

]
.

To see this, let S = {v1, . . . , vn} be a minimum vertex cover for H and G =

H[S]. Since S is a vertex cover, V (H)\S is an independent set. Obviously,

by a suitable labeling of vertices of H, we have A
′
=

[
A B

BT 0

]
, where A

is the adjacency matrix of G. Since A
′
is non-singular, the columns of B

are linearly independent, that is B is a non-singular (0, 1)-square matrix

of order n.

Wang and Ma [9] provided the following lower bound for the energy of

a graph in terms of its cover vertex number and the number of odd cycles.

Theorem 4. [9, Thm. 4.2]. Let G be a graph with Co odd cycles. Then

E(G) ≥ 2β(G) − 2Co(G), equality holds if and only if G is the disjoint

union of some complete bipartite graphs with perfect matchings together

with some isolated vertices.
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Now, we show that the above result also holds if one replaces Co(G)

with Ce(G). Moreover, we characterize the equality case. To prove it, we

need the following corollary which easily can be deduced from Lemma 6.

Corollary 1. If H is a proper subgraph of a graph G, then E(H) < E(G).

Theorem 5. Let G be a graph. Then E(G) ≥ 2β(G)−2Ce(G). Moreover,

the equality holds if and only if Ce(G) = 0 and G is a disjoint union of

some Ki, (i = 1, 2, 3).

Proof. We prove the inequality by induction on Ce. First suppose that

Ce(G) = 0. In this case, by Exercise 4.2.18 of [10], G has a block decom-

position in which every block is K2 or an odd cycle. By induction on the

number of vertices, we show that E(G) ≥ 2β(G). For n = 2, the assertion

is trivial. If there exists a pendant vertex v adjacent to a vertex, say u,

then by induction hypothesis G \ {u, v} = G
′
has energy at least 2β(G

′
).

Note that the union of a vertex cover for G
′
and {u} is a vertex cover for

G. So by Lemma 1 one can see that E(G) ≥ E(G′
) + 2 ≥ 2β(G

′
) + 2 ≥

2(β(G) − 1) + 2 = 2β(G). Now, suppose that there is no pendant vertex.

Therefore there is a leaf block C2k+1 containing a unique cut vertex of

G, say x. Let G
′
= G \ V (C2k+1). By induction hypothesis and Lemmas

1 and 2, E(G) ≥ E(G′
) + E(C2k+1) ≥ 2β(G

′
) + 2k + 2. By considering

a vertex cover of size k + 1 of C2k+1 containing x, it is easy to see that

β(G
′
) + k + 1 ≥ β(G). Thus E(G) ≥ 2β(G). Now, suppose that the in-

equality holds for the graphs with at most Ce(G) − 1 even cycles, and G

is a graph with Ce(G) ≥ 1 even cycles. Let x be a vertex of G lying on

an even cycle. Thus G − x has at most Ce(G) − 1 even cycles. Thus the

induction hypothesis implies that E(G − x) ≥ 2β(G − x) − 2(Ce(G) − 1).

Since β(G− x) + 1 ≥ β(G), then by Corollary 1, we have

E(G) > E(G− x) ≥ 2β(G− x)− 2(Ce(G)− 1) ≥ 2β(G)− 2Ce(G)

and the inequality is proved.

Now, suppose that the equality holds. So Ce(G) = 0. With no lose of

generality suppose that G is connected of order n. Using induction on

n, we show that G is Ki, (i = 1, 2, 3). If n = 1, then G = K1. Now,
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assume that the result holds for all graphs of order less than n and that

|V (G)| = n.

Case 1. There is a leaf block C2k+1 with a unique cut vertex x of G.

Let G
′
= G\V (C2k+1). By Lemmas 1 and 2 and the induction hypothesis

E(G) ≥ E(G
′
) + 2k + 2 ≥ 2β(G

′
) + 2k + 2 ≥ 2β(G) = E(G). (∗)

Thus by induction hypothesis every connected component of G′ is K1, K2

or K3. If K2 is one of the connected components of G′ with vertices u and

v, then by Lemma 1 and induction hypothesis for G′′ = G\{u, v} we have

a similar inequalities as (∗) where k = 0. Note that G′′ is connected and

so by induction hypothesis G′′ is K3 and so G is one of the graphs shown

in Figure 1 (i) and (ii) which is not satisfy the equality, a contradiction.

If K3 is one of the connected components of G′ with vertices u, v and w,

then by Lemma 1 and induction hypothesis for G′′ = G\{u, v, w} we have

a similar inequalities as (∗) where k = 1. Note that G′′ is connected and so

by induction hypothesis G′′ is K3 and so G is the graph shown in Figure

1 (iii) which is not satisfy the equality, a contradiction. If all connected

components of G′ are K1, then G is the graph shown in Figure 1 (iv) (i.e. a

cycle C2k+1 whose one vertex is adjacent to some pendant vertices) which

is not satisfy the equality because by Corollary 1 and Lemma 2, one can

see that E(G) > E(C2k+1) ≥ 2k + 2 = 2β(G). Hence G = C2k+1 and due

to E(G) = 2β(G), G = K3.

Figure 1

Case 2. All of leaf blocks are K2. If n = 2, then G ∼= K2. Now, let

n ≥ 3 and v is a pendent vertex adjacent to u. Suppose G′ = G \ {u, v}.
So by relations (∗), every connected components of G′ satisfies induction

hypothesis and so equals to K1 or K2. In this case, it is not hard to see

that G is the graph shown in Figure 2. If there exists a vertex w such
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Figure 2

that d(u,w) = 2, then remove w and its neighbor and apply induction

hypothesis. Therefore the remaining graph is K1 or K2. So G = P4 or

G = P3 which do not satisfy the equality. Thus suppose that G is a star

and so clearly, G = K2.

Conversely, if every component of G is a complete graph of order at

most 3, then clearly Ce(G) = 0 and E(G) = 2β(G); and the proof is

complete.

The interesting point is that in both Theorems 4 and 5, the necessary

condition for the equality is that Co and Ce must be zero. So, K1 and K2

are the only graphs that satisfy both equalities in these two theorems.

By combining two previous theorems, we can deduce the next impor-

tant result about the relation between E(G), β(G) and C(G).

Corollary 2. Let G be a graph. Then E(G) ≥ 2β(G)− C(G). Moreover,

equality holds if and only if G is a disjoint union of some K1 or K2.

Proof. By adding two inequalities of Theorems 4 and 5 and paying at-

tention to the fact that C(G) = Co(G) + Ce(G), the desired inequality

is obtained. Now, suppose that E(G) = 2β(G) − C(G). There are two

following cases:

Case 1. Ce(G) ≤ Co(G). In this case, by Theorem 5, one can easily

see that E(G) = 2β(G) − C(G) ≤ 2β(G) − 2Ce(G) ≤ E(G). So C(G) =

2Ce(G) = 0 and hence Co(G) = 0. Thus G =
⋃

Ki, i = 1, 2.

Case 2. Co(G) ≤ Ce(G). In this case, by Theorem 4, one can easily

see that E(G) = 2β(G) − C(G) ≤ 2β(G) − 2Co(G) ≤ E(G). So C(G) =

2Co(G) = 0 and G is the disjoint union of some Kt,t for integers t together
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with some isolated vertices. On the other hand, Ce(G) = 0 implies that

G =
⋃
Ki, where i = 1, 2.

Finally, if G is a disjoint union of some Ki where i = 1, 2, then E(G)

equals twice of the number of K2 which is equal to 2β(G). So equality

holds and the proof is complete.

According to Theorems 4 and 5, our next purpose is to remove the

coefficient 2 of Co(G) and Ce(G). To achieve this goal, investigating the

next conjecture which is true for almost all graphs can be interesting.

Conjecture 1. Let G be a graph. Then

E(G) ≥ min{2β(G)− Ce(G), 2β(G)− Co(G)}.

Remark 3. Let G be a graph of order n and size m. Then Conjecture

1 holds if m ≥ 5n. Because adding t edge to a spanning tree of G makes

at least t cycles, one can see that one of the Ce(G) or Co(G) is at least

2n and so min{2β(G) − Ce(G), 2β(G) − Co(G)} ≤ 0. Consequently, if

δ(G) ≥ 10, then the conjecture holds.

Theorem 6. Let G be a graph without isolated vertices. Then E(G) ≥
2γ(G). Moreover, equality holds if and only if each connected component

of G is K2 or C4.

Proof. Clearly, E(G) ≥ 2µ(G) ≥ 2γ(G), by Lemmas 3 and 4. Now,

suppose that E(G) = 2γ(G). Hence, E(G) = 2µ(G) = 2γ(G). If G

does not have a perfect matching, then by Corollary 1, E(G) > 2µ(G),

a contradiction. So assume that G has a perfect matching. Therefore

n = 2γ(G). Consider one of its connected components, say G′. By

Lemma 5, G′ = G1 ◦ K1, for a suitable graph G1, or G′ = C4. If G1

has at least one edge uv, then let H ′ be the induced subgraph P4 on u, v

and their pendant neighbors and let H1, . . . ,H|V (G1)|−2 be some K2. So,

E(G′) > 2γ(G′), by Lemma 1 and considering the fact that E(P4) > 4;

and hence E(G) > 2γ(G), a contradiction. Therefore, G1 = K1 and con-

sequently each component of G is K2 or C4. The converse is obvious and

we are done.
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We finish the paper with the following results about the energy and

the total dominating number.

Theorem 7. Let G be a graph without isolated vertices. Then E(G) ≥
γt(G).

Proof. Note that each maximum matching set is a total dominating set

for G. So by Lemma 3, E(G) ≥ 2µ(G) ≥ γt(G).

Note that for the path P5 we have E(P5) < 2γt(P5). Therefore, it is

not correct that E(G) ≥ 2γt(G), in general.

Remark 4. The key inequality in the proof of Theorem 7 is γt(G) ≤
2µ(G). Hence, investigating this inequality can be interesting. Actually,

we cannot improve this inequality. In fact, for every real number ε > 0,

there is a graph G with γt(G) > (2 − ε)µ(G). For constructing such a

graph, consider the graph G shown in the Figure 3. For this graph, we

have γt(G) = 2t + 1, µ(G) = t + 1 and so
γt(G)

µ(G)
=

2t+ 1

t+ 1
= 2 − 1

t+ 1
.

Hence lim
t→∞

γt(G)

µ(G)
= 2.

Therefore, for every ε > 0, if we put t >
1

ε
− 1, then we have γt(G) >

(2− ε)µ(G).

Figure 3
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