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Abstract

Let C(G) denote the algebraic structure count of a bipartite
graph G with bipartition (V1, V2). Gutman proved that, for any
edge e = ab of G, one of the following formulas holds:

C(G) = C(G− e) + C(G− a− b),
C(G) = C(G− e)− C(G− a− b),
C(G) = C(G− a− b)− C(G− e).

In this paper, we prove that, for any pair of independent edges
{f = uv, g = wx} of G, then one of the following formulas holds.

C(G)C(G−f−g) = C(G−f)C(G−g)+C(G−u−x)C(G−w−v),
C(G)C(G−f−g) = C(G−f)C(G−g)−C(G−u−x)C(G−w−v),
C(G)C(G−f−g) = C(G−u−x)C(G−w−v)−C(G−f)C(G−g),

where u,w ∈ V1, v, x ∈ V2. We prove also that, for any edge h = yz
and two vertices r and s such that y, r ∈ V1 and z, s ∈ V2 and
{y, z} ∩ {r, s} = ∅, then one of the following formulas holds.

C(G)C(G−h−r−s) = C(G−h)C(G−r−s)+C(G−y−s)C(G−r−z),
C(G)C(G−h−r−s) = C(G−h)C(G−r−s)−C(G−y−s)C(G−r−z),
C(G)C(G−h−r−s) = C(G−y−s)C(G−r−z)−C(G−h)C(G−r−s).

1 Introduction

Suppose that G is a bipartite graph with bipartition (V1, V2). In theoretical

organic chemistry, Wilcox [16,17] defined the algebraic structure count of
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G, denoted by C(G), as the difference between the number of so-called

“even” and “odd” perfect matchings of G. Let A(G) be the adjacency

matrix of G. It is well known [6,8] that the determinant of A(G) satisfies:

det(A(G)) = (−1)
|V1|+|V2|

2 C(G)2, (1)

and if each “nice” cycle Cl in G satisfies l = 2 (mod 4), then

det(A(G)) = (−1)
|V1|+|V2|

2 M(G)2, (2)

if |V1| + |V2| is even, and det(A(G)) = 0 otherwise, where a cycle Cl is

called to be “nice” if G−Cl has perfect matchings (or Kekulé structures),

and M(G) is the number of perfect matchings of G. Hence if each “nice”

cycle Cl in G satisfies l = 2 (mod 4), then

C(G) = M(G), (3)

i.e., the algebraic structure count of G equals the number of perfect match-

ings of G. The relation between C(G) and M(G) has been studied exten-

sively [5, 10, 13]. On the other hand, C(G) has a closed relation with the

thermodynamic stability of the corresponding molecular graphs and has

important applications in theoretical organic chemistry [9, 12, 13, 15, 18].

On the further research on C(G), see references [1–4,11,14,19].

It is well known that, for any edge e = xy of G, the number of perfect

matchings of G satisfies:

M(G) = M(G− x− y) +M(G− e), (4)

where G−x−y (or G−e) is the graph obtained from G by deleting vertices

x and y (or e). Gutman [11] obtained a similar result to Eq. (4) for the

algebraic structure count, and proved that one of the following relations

holds.

C(G) = C(G− e) + C(G− x− y), (5)

C(G) = C(G− e)− C(G− x− y), (6)
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C(G) = C(G− x− y)− C(G− e). (7)

Motivated by Eqs. (5), (6) and (7), we obtained a variant of Gutman’s

formulas above as follows. Let G be a bipartite graph with bipartition

(V1, V2). For any a, c ∈ V1, b, d ∈ V2, then one of the following relations

holds.

C(G)C(G−a−b−c−d) = C(G−a−b)C(G−c−d)+C(G−a−d)C(G−b−c),

C(G)C(G−a−b−c−d) = C(G−a−b)C(G−c−d)−C(G−a−d)C(G−b−c),

C(G)C(G−a−b−c−d) = C(G−a−d)C(G−b−c)−C(G−a−b)C(G−c−d).

Further to the result above, in this paper, we continue to study the

new variants of Gutman’s formulas above and prove mainly the following

theorems, whose proofs will be given in the next section.

Theorem 1.1. Let G be a bipartite graph with bipartition (V1, V2). For

any pair of independent edges {f = uv, g = wx} of G, then one of the

following formulas holds.

C(G)C(G− f − g) = C(G− f)C(G− g) + C(G− u− x)C(G− w − v),

C(G)C(G− f − g) = C(G− f)C(G− g)− C(G− u− x)C(G− w − v),

C(G)C(G− f − g) = C(G− u− x)C(G− w − v)− C(G− f)C(G− g),

where u,w ∈ V1, v, x ∈ V2.

Theorem 1.2. Let G be a bipartite graph with bipartition (V1, V2). For

any edge h = yz and two vertices r and s such that y, r ∈ V1 and z, s ∈ V2

and {y, z} ∩ {r, s} = ∅, then one of the following formulas holds.

C(G)C(G−h−r−s) = C(G−h)C(G−r−s)+C(G−y−s)C(G−r−z),

C(G)C(G−h−r−s) = C(G−h)C(G−r−s)−C(G−y−s)C(G−r−z),

C(G)C(G−h−r−s) = C(G−y−s)C(G−r−z)−C(G−h)C(G−r−s).
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2 Proofs of main results

Let M be a matrix of order n. We use M j1j2...jk
i1i2...ik

to denote the matrix ob-

tained from M by deleting k rows i1, i2, . . . , ik and k columns j1, j2, . . . , jk.

We need to introduce some lemmas as follows.

Lemma 2.1. (Dodgson, [7]) Let P = (pij) be a real matrix of order n ≥ 3.

Then

det(P ) det(P 1n
1n ) = det(P 1

1 ) det(P
n
n )− det(Pn

1 ) det(P
1
n). (8)

Now, we use the Dodgson’s determinant-evaluation rule above to prove

the following lemmas which will play a key role in the proofs of the main

results.

Lemma 2.2. Let P = (pij) be a real matrix of order n ≥ 3 and pnn ̸= 0.

Let Q = (qij) be the matrix obtained from P by replacing entry pnn with

0, i.e., qij = pij if (i, j) ̸= (n, n) and qnn = 0. Then

det(P ) det(Q1
1) = det(P 1

1 ) det(Q) + pnn det(P
1
n) det(P

n
1 ). (9)

Proof. Let

X =

(
Q −αT

n

αn 1

)
,

where αn = (0, 0, . . . , 0, c) is a vector with n entries, c =
√
pnn if pnn > 0

and c = i
√
−pnn if pnn < 0, i2 = −1, and αT

n is the transpose of αn.

Obviously, X is a matrix of order n+ 1. Using Lemma 2.1,

det(X) det
(
X

1(n+1)
1(n+1)

)
= det(X1

1 ) det(X
n+1
n+1 )− det(Xn+1

1 ) det(X1
n+1).

(10)

Note that

det(X) = det

(
Q −αT

n

αn 1

)

= det

(
Q+ αT

nαn −αT
n

0 1

)
= det

(
Q+ αT

nαn

)
.
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By the definition of P,Q and X, it is not difficult to see that

Q+ αT
nαn = P, (11)

X
1(n+1)
1(n+1) = Q1

1, X
n+1
n+1 = Q. (12)

Hence

det(X) = det(P ). (13)

Similarly,

det(X1
1 ) = det

(
Q1

1 −βT
n−1

βn−1 1

)
= det

(
Q1

1 + βT
n−1βn−1

)
= det(P 1

1 ),

(14)

det(Xn+1
1 ) = det

(
Q1

αn

)
= cdet(Qn

1 ) = cdet(Pn
1 ), (15)

det(X1
n+1) = det

(
Q1,−αT

n

)
= −cdet(Q1

n) = −cdet(P 1
n). (16)

where βn−1 = (0, 0, . . . , 0, c) is a vector with n−1 entries, Q1 is the matrix

obtained from Q by deleting the first row, and Q1 is the matrix obtained

from Q by deleting the first column.

By Eqs. (10) and (12)-(16), Eq. (9) is immediate. Hence the lemma

follows.

Let M = (mij) be a real matrix of order n ≥ 3 and m11mnn ̸= 0.

Define three matrices R = (rij), S = (sij) and T = (tij) of order n from

M such that

rij =

{
mij , if (i, j) ̸= (1, 1), (n, n)

0, if (i, j) = (1, 1), (n, n)
,

sij =

{
mij , if (i, j) ̸= (1, 1)

0, if (i, j) = (1, 1)
, tij =

{
mij , if (i, j) ̸= (n, n)

0, if (i, j) = (n, n)
.

Lemma 2.3. Let M = (mij) be a real matrix of order n ≥ 3 and

m11mnn ̸= 0. Keeping the notations above, then

det(M) det(R) = det(S) det(T )−m11mnn det(M
1
n) det(M

n
1 ). (17)
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Proof. Set

F =

 1 αn 0

−αT
n R −βT

n

0 βn 1

 ,

which is a matrix of order n+2, where αn = (c, 0, . . . , 0), βn = (0, 0, . . . , 0, d)

are two vector with n entries, and c2 = m11, d
2 = mnn.

By the Dodgson’s determinant-evaluation rule,

det(F ) det(F
1(n+2)
1(n+2) ) = det(F 1

1 ) det(F
n+2
n+2 )− det(Fn+2

1 ) det(F 1
n+2). (18)

It is not difficult to prove the followings:

det(F ) = det(R+ αT
nαn + βT

n βn) = det(M), (19)

det(F
1(n+2)
1(n+2) ) = det(R), (20)

det(F 1
1 ) = det(R+ βT

n βn) = det(S), (21)

det(Fn+2
n+2 ) = det(R+ αT

nαn) = det(T ), (22)

det(Fn+2
1 ) = −cddet(Rn

1 ) = −cddet(Mn
1 ), (23)

det(F 1
n+2) = −cddet(R1

n) = −cddet(M1
n). (24)

Hence Eq. (17) is immediate from Eqs. (18)-(24) and the lemma thus

holds.

Now, we can give the proofs of the main results.

Proof of Theorem 1.1. Note that (V1, V2) is the bipartition of G. If |V1| ≠
|V2|, then det(A(G)) = 0. It is not difficult to see that C(G) = C(G− f −
g) = C(G − f) = C(G − g) = C(G − u − x) = C(G − w − v) = 0.

Hence it suffices to consider the case of |V1| = |V2| =: n. Set V1 =

{v(1)1 , v
(1)
2 , . . . , v

(1)
n }, V2 = {v(2)1 , v

(2)
2 , . . . , v

(2)
n }. Let B = (bij) be the bi-
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partite adjacency matrix of G, where

bij =

{
1 if v

(1)
i v

(2)
j is an edge of G,

0 otherwise.

Then

A(G) =

(
0 B

BT 0

)
,

is the adjacency matrix of G. So, by Eq. (1),

(−1)nC(G)2 = det(A(G)) = (−1)n det(B)2, (25)

which implies that

C(G) = ±det(B). (26)

We can set v
(1)
1 = u, v

(1)
n = w, v

(2)
1 = v, v

(2)
n = x. Then b11 = bnn = 1.

Define three matrices R = (rij), S = (sij) and T = (tij) of order n from B

such that

rij =

{
bij , if (i, j) ̸= (1, 1), (n, n)

0, if (i, j) = (1, 1), (n, n)
,

sij =

{
bij , if (i, j) ̸= (1, 1)

0, if (i, j) = (1, 1)
, tij =

{
bij , if (i, j) ̸= (n, n)

0, if (i, j) = (n, n)
.

By Lemma 2.3,

det(B) det(R) = det(S) det(T )− det(B1
n) det(B

n
1 ). (27)

It is not difficult to see that R,S, T,B1
n and Bn

1 are the bipartite adja-

cency matrices of G− f − g,G− f , G− g,G− v
(2)
1 − v

(1)
n (i.e., G−w− v)

and G− v
(1)
1 − v

(2)
n (i.e., G− u− x), respectively. Similarly,

C(G− f − g) = ±det(R), C(G− f) = ±det(S), (28)

C(G− g) = ± det(T ), C(G− w − v) = ±det(B1
n), (29)

C(G− u− x) = ±det(Bn
1 ). (30)
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By Eqs. (26)-(30), the theorem thus holds.

Proof of Theorem 1.2. Using a similar method to that in the proof of The-

orem 1.1, we can give the proof of the theorem. Hence we omit the proof

of Theorem 1.2.

3 Discussion

For the number of perfect matchings of a graph G, it satisfies a recur-

rence Eq. (4). Motivated by this result, Gutman obtained some similar

formulas—the Gutman’s forumae Eqs. (5)-(7), for the algebraic structure

count of bipartite graphs. Based on the Dodgson’s determinant-evaluation

rule, the current author in this paper obtained a variant, i.e., three equa-

tions above Theorem 1.1, of the Gutman’s formulas in [19], which is called

the formulas for the vertex graphical condensation. In this paper, by us-

ing new two variants of the Dodgson’s determinant-evaluation rule (i.e.,

Lemmas 2.2 and 2.3), we obtain two new variants of the Gutman’s formu-

las, which are called the formulas for the edge graphical condensation and

vertex-edge graphical condensation, i.e., Theorems 1.1 and 1.2.
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