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Abstract

For a graph G, we generalize the well-known Gutman index by
introducing the general Gutman index

Guta,b(G) =
∑

{u,v}⊆V (G)

[dG(u)dG(v)]
a[DG(u, v)]

b,

where a, b ∈ R, DG(u, v) is the distance between vertices u and v
in G, and dG(u) and dG(v) are the degrees of u and v, respectively.
We show that for some a and b, the Guta,b index decreases/increases
with the addition of edges. We present sharp bounds on the general
Gutman index for multipartite graphs of given order, graphs of given
order and chromatic number, and starlike trees of given order and
maximum degree. We also state several problems open for further
research.

1 Introduction

Topological indices have been used for example for chemical documenta-

tion, quantitative structure versus property/activity relationships (QSPR/

QSAR), toxicology hazard assessments, isomer discrimination, drug design
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and combinatorial library design. They have been used in the process of

correlating chemical structures with various characteristics such as boiling

points and molar heats of formation. Topological indices provide a conve-

nient method of translating chemical constitutions into numerical values

which are applied for correlations with physical properties.

Let V (G) and E(G) be the vertex set and the edge set of a graph G,

respectively. The order is the number of vertices of G. The degree dG(v)

of a vertex v ∈ V (G) is the number of vertices adjacent to v. The distance

DG(u, v) between two vertices u, v ∈ V (G) is the number of edges in a

shortest path between u and v.

The Gutman index of a connected graph G,

Gut(G) =
∑

{u,v}⊆V (G)

dG(u)dG(v)DG(u, v)

belongs to important topological indices. It was introduced in [8] and it

has been studied due to its extensive applications, especially in chemistry.

Upper bounds on the Gutman index for graphs of prescribed order were

investigated in [4] and [14]. Bounds for graphs with maximum degree and

minimum degree were studied in [1] and [11]. Upper bounds for graphs of

given vertex-connectivity and edge-connectivity were given in [12] and [13],

respectively.

Feng [6] investigated the Gutman index of unicyclic graphs, Feng and

Liu [7] studied bicyclic graphs, Chen [2] studied lower bounds for cacti.

Relations between the degree distance and the Gutman index were investi-

gated by Das, Su and Xiong [5]. Relations between the edge-Wiener index

and the Gutman index were studied by Knor, Potočnik and Škrekovski [9].

We generalize the Gutman index by introducing the general Gutman

index of a connected graph G as

Guta,b(G) =
∑

{u,v}⊆V (G)

[dG(u)dG(v)]
a[DG(u, v)]

b

for a, b ∈ R. If a = 1 and b = 1, we get the classical Gutman index. For

a = 0 and b = 1, we obtain the Wiener index. A different generalization

of the Gutman index using the Steiner distance was given in [10].
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We present bounds on the general Gutman index for multipartite gra-

phs of given order, graphs of given order and chromatic number, and star-

like trees of given order and maximum degree. Shortly after we introduced

the general Gutman index, it also motivated other researchers to study this

general index; see the work on trees by Cheng and Li [3].

2 Results

For a graph G with two non-adjacent vertices u1, u2, the graph G+ u1u2

has vertex set V (G) and edge set E(G) ∪ {u1u2}. For a ≤ 0 and b ≥ 0,

where at least one of a and b is not 0, we compare the Guta,b indices of

two graphs which differ by one edge.

Lemma 1. Let a ≤ 0 and b ≥ 0, where at least one of a and b is not 0.

For a connected graph G, where u1, u2 are any non-adjacent vertices in G,

we have

Guta,b(G+ u1u2) < Guta,b(G).

Proof. Let G′ = G+ u1u2, where u1u2 ̸∈ E(G). Then dG′(ui) = dG(ui) +

1 ≥ 2 for i = 1, 2. We obtain

dG′(u1)dG′(u2) > dG(u1)dG(u2) ≥ 1.

Thus, for a ≤ 0,

[dG′(u1)dG′(u2)]
a ≤ [dG(u1)dG(u2)]

a, (1)

with equality only if a = 0. We have 1 = DG′(u1, u2) < DG(u1, u2). For

b ≥ 0,

[DG′(u1, u2)]
b ≤ [DG(u1, u2)]

b (2)

with equality only if b = 0. By (1) and (2), if at least one of a and b is not

0, we obtain

0 < [dG′(u1)dG′(u2)]
a[DG′(u1, u2)]

b < [dG(u1)dG(u2)]
a[DG(u1, u2)]

b. (3)

For x ∈ V (G) \ {u1, u2}, we have dG′(x) = dG(x) ≥ 1. Let us consider
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{y, z} ⊆ V (G) where {y, z} ≠ {u1, u2}. We have

dG′(y)dG′(z) ≥ dG(y)dG(z) ≥ 1.

Thus, for a ≤ 0,

0 < [dG′(y)dG′(z)]a ≤ [dG(y)dG(z)]
a ≤ 1. (4)

By adding an edge, the distance between two vertices cannot be increased,

therefore we obtain 1 ≤ DG′(y, z) ≤ DG(y, z) for {y, z} ⊆ V (G) where

{y, z} ≠ {u1, u2}. Since b ≥ 0, we get

1 ≤ [DG′(y, z)]b ≤ [DG(y, z)]
b. (5)

From (4) and (5), we obtain

0 < [dG′(y)dG′(z)]a[DG′(y, z)]b ≤ [dG(y)dG(z)]
a[DG(y, z)]

b. (6)

From (3) and (6), we get

Guta,b(G
′)

=
∑

{y,z}⊆V (G′),
{y,z}̸={u1,u2}

[dG′(y)dG′(z)]a[DG′(y, z)]b + [dG′(u1)dG′(u2)]
a[DG′(u1, u2)]

b

<
∑

{y,z}⊆V (G),
{y,z}̸={u1,u2}

[dG(y)dG(z)]
a[DG(y, z)]

b + [dG(u1)dG(u2)]
a[DG(u1, u2)]

b

= Guta,b(G).

Now, we compare the Guta,b indices of two graphs which differ by one

edge if a ≥ 0 and b ≤ 0, where at least one of a and b is not 0. The proofs

of Lemmas 1 and 2 are similar, therefore we omit a few steps which are

the same in both proofs.

Lemma 2. Let a ≥ 0 and b ≤ 0, where at least one of a and b is not 0.

For a connected graph G, where u1, u2 are any non-adjacent vertices in G,
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we have

Guta,b(G+ u1u2) > Guta,b(G).

Proof. We have

dG′(u1)dG′(u2) > dG(u1)dG(u2) ≥ 1.

Thus, for a ≥ 0,

[dG′(u1)dG′(u2)]
a ≥ [dG(u1)dG(u2)]

a, (7)

with equality only if a = 0. We have 1 = DG′(u1, u2) < DG(u1, u2). Thus,

for b ≤ 0,

[DG′(u1, u2)]
b ≥ [DG(u1, u2)]

b (8)

with equality only if b = 0. By (7) and (8), if at least one of a and b is not

0, we obtain

[dG′(u1)dG′(u2)]
a[DG′(u1, u2)]

b > [dG(u1)dG(u2)]
a[DG(u1, u2)]

b > 0. (9)

Let us consider {y, z} ⊆ V (G) where {y, z} ≠ {u1, u2}. We have

dG′(y)dG′(z) ≥ dG(y)dG(z) ≥ 1.

Thus, for a ≥ 0,

[dG′(y)dG′(z)]a ≥ [dG(y)dG(z)]
a ≥ 1. (10)

We obtain 1 ≤ DG′(y, z) ≤ DG(y, z) for {y, z} ⊆ V (G) where {y, z} ≠

{u1, u2}. Since b ≤ 0, we get

1 ≥ [DG′(y, z)]b ≥ [DG(y, z)]
b > 0. (11)

From (10) and (11), we obtain

[dG′(y)dG′(z)]a[DG′(y, z)]b ≥ [dG(y)dG(z)]
a[DG(y, z)]

b > 0. (12)
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From (9) and (12), we get

Guta,b(G
′)

=
∑

{y,z}⊆V (G′),
{y,z}̸={u1,u2}

[dG′(y)dG′(z)]a[DG′(y, z)]b + [dG′(u1)dG′(u2)]
a[DG′(u1, u2)]

b

>
∑

{y,z}⊆V (G),
{y,z}̸={u1,u2}

[dG(y)dG(z)]
a[DG(y, z)]

b + [dG(u1)dG(u2)]
a[DG(u1, u2)]

b

= Guta,b(G).

It is easy to use Lemmas 1 and 2 to obtain bounds on the general

Gutman index for connected graphs of given order.

Proposition 1. Let G be a connected graph with n vertices. For a ≤ 0

and b ≥ 0, where at least one of a and b is not 0,

Guta,b(G) ≥ n(n− 1)2a+1

2
.

For a ≥ 0 and b ≤ 0, where at least one of a and b is not 0,

Guta,b(G) ≤ n(n− 1)2a+1

2
.

The equalities hold only if G is Kn.

Proof. By Lemma 1, when adding an edge to a graph, the Guta,b index

decreases for a ≤ 0 and b ≥ 0, where at least one of a and b is not 0. Thus,

for graphs of order n, the only graph having the smallest Guta,b index

is Kn. By Lemma 2, when adding an edge to a graph, the Guta,b index

increases for a ≥ 0 and b ≤ 0, where at least one of a and b is not 0. Thus,

the only graph having the largest Guta,b index is Kn.
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Any two vertices of Kn are adjacent, their degree is n− 1, therefore

Guta,b(Kn) =
∑

{u,v}⊆V (Kn)

[(n− 1)(n− 1)]a1b

=

(
n

2

)
(n− 1)2a =

n(n− 1)2a+1

2
.

Lemma 3 was presented in [15] and it is useful in the study of the

general Gutman index.

Lemma 3. Let 1 ≤ x < y and c > 0. For a > 1 and a < 0, we have

(x+ c)a − xa < (y + c)a − ya.

If 0 < a < 1, then

(x+ c)a − xa > (y + c)a − ya.

For k ≥ 2, a k-partite graph (multipartite graph) is a graph whose

vertices can be partitioned into k sets, such that no two vertices in the same

set are adjacent. A k-partite graph with partite sets having cardinalities

n1, n2, . . . , nk is called complete if every two vertices from different partite

sets are adjacent. It is denoted by Kn1,n2,...,nk
. In Theorems 2 and 3, we

present multipartite graphs having the minimum and maximum general

Gutman index (for some intervals).

Theorem 2. Let a ≤ 0 and b ≥ 0, where at least one of a and b is not 0.

For any k-partite graph G with n vertices, where 2 ≤ k ≤ n,

Guta,b(G) ≥ Guta,b(Kn1,n2,...,nk
).

The equality holds only if G is Kn1,n2,...,nk
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ k and n1 + n2 + · · ·+ nk = n.

Proof. LetG′ be any k-partite graph of order n having the minimumGuta,b

index. From Lemma 1, any two vertices of G′ from distinct partite sets
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are adjacent. So G′ is Kn1,n2,...,nk
, where n1, n2, . . . , nk are some positive

integers. Let us prove that |ni − nj | ≤ 1, where 1 ≤ i < j ≤ k.

Assume to the contrary that |ni − nj | ≥ 2 for some i, j, where 1 ≤ i <

j ≤ k. We can assume that n1 ≥ n2 + 2. Let us investigate Guta,b(G
′)−

Guta,b(G
′′) for G′ = Kn1,n2,...,nk

and G′′ = Kn1−1,n2+1,...,nk
.

For any vertex v′ ∈ V ′
1 and any w′ ∈ V ′

2 , we obtain dG′(v′) = n − n1,

dG′(w′) = n − n2 and DG′(v′, w′) = 1. For any vertex v′′ ∈ V ′′
1 and any

w′′ ∈ V ′′
2 , we obtain dG′′(v′′) = n − (n1 − 1), dG′′(w′′) = n − (n2 + 1)

and DG′′(v′′, w′′) = 1. For any other vertex z, we have dG′(z) = dG′′(z).

Therefore, we obtain Guta,b(G
′)−Guta,b(G

′′) = A+B + C, where

A =
∑

v′∈V ′
1 ,w

′∈V ′
2

[dG′(v′)dG′(w′)]a[DG′(v′, w′)]b

−
∑

v′′∈V ′′
1 ,w′′∈V ′′

2

[dG′′(v′′)dG′′(w′′)]a[DG′′(v′′, w′′)]b

B =
∑

{u′,v′}⊆V ′
1

[dG′(u′)dG′(v′)]a[DG′(u′, v′)]b

+
∑

{w′,z′}⊆V ′
2

[dG′(w′)dG′(z′)]a[DG′(w′, z′)]b

−
∑

{u′′,v′′}⊆V ′′
1

[dG′′(u′′)dG′′(v′′)]a[DG′′(u′′, v′′)]b

−
∑

{w′′,z′′}⊆V ′′
2

[dG′′(w′′)dG′′(z′′)]a[DG′′(w′′, z′′)]b

C =
∑

v′∈V ′
1 ,z

′∈V (G′)\(V ′
1∪V ′

2 )

[dG′(v′)dG′(z′)]a[DG′(v′, z′)]b

+
∑

w′∈V ′
2 ,z

′∈V (G′)\(V ′
1∪V ′

2 )

[dG′(w′)dG′(z′)]a[DG′(w′, z′)]b

−
∑

v′′∈V ′′
1 ,z′′∈V (G′′)\(V ′′

1 ∪V ′′
2 )

[dG′′(v′′)dG′′(z′′)]a[DG′′(v′′, z′′)]b

−
∑

w′′∈V ′′
2 ,z′′∈V (G′′)\(V ′′

1 ∪V ′′
2 )

[dG′′(w′′)dG′′(z′′)]a[DG′′(w′′, z′′)]b.
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Note that

(n− n1)(n− n2) = n2 − n1n− n2n+ n1n2

< n2 − n1n− n2n+ n1n2 + (n1 − n2 − 1)

= (n− n1 + 1)(n− n2 − 1).

Thus

[(n− n1)(n− n2)]
a ≥ [(n− n1 + 1)(n− n2 − 1)]a

for a ≤ 0 and

A = n1n2(n− n1)
a(n− n2)

a

−(n1 − 1)(n2 + 1)[n− (n1 − 1)]a[n− (n2 + 1)]a

= (n1n2 + n1 − n2 − 1)([(n− n1)(n− n2)]
a

− [(n− n1 + 1)(n− n2 − 1)]a)− (n1 − n2 − 1)(n− n1)
a(n− n2)

a

≥ − (n1 − n2 − 1)(n− n1)
a(n− n2)

a.

We have

B =

(
n1

2

)
(n− n1)

a(n− n1)
a2b +

(
n2

2

)
(n− n2)

a(n− n2)
a2b

−
(
n1 − 1

2

)
[n− (n1 − 1)]a[n− (n1 − 1)]a2b

−
(
n2 + 1

2

)
[n− (n2 + 1)]a[n− (n2 + 1)]a2b

=
[n1(n1 − 1)

2
(n− n1)

2a +
n2(n2 − 1)

2
(n− n2)

2a

− (n1 − 1)(n1 − 2)

2
(n− n1 + 1)2a − (n2 + 1)n2

2
(n− n2 − 1)2a

]
2b

=
[ (n1 − 1)(n1 − 2)

2
[(n− n1)

2a − (n− n1 + 1)2a]

− (n2 + 1)n2

2
[(n− n2 − 1)2a − (n− n2)

2a]

+ (n1 − 1)(n− n1)
2a − n2(n− n2)

2a
]
2b

≥ [(n1 − 1)(n− n1)
2a − n2(n− n2)

2a]2b

≥ (n1 − 1)(n− n1)
2a − n2(n− n2)

2a.
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If b > 0, then the last inequality is strict since 2b > 1. If a < 0, then the

first inequality is strict since (n1−1)(n1−2)
2 ≥ (n2+1)n2

2 and by Lemma 3,

(n− n1)
2a − (n− n1 + 1)2a > (n− n2 − 1)2a − (n− n2)

2a

which is greater than 0. Thus, if at least one of a and b is not 0, we have

B > (n1 − 1)(n− n1)
2a − n2(n− n2)

2a

and

A+B > (n1 − 1)(n− n1)
2a − n2(n− n2)

2a

− (n1 − n2 − 1)(n− n1)
a(n− n2)

a

= (n1 − 1)(n− n1)
a[(n− n1)

a − (n− n2)
a]

− n2(n− n2)
a[(n− n2)

a − (n− n1)
a]

= [(n1 − 1)(n− n1)
a + n2(n− n2)

a][(n− n1)
a − (n− n2)

a]

≥ 0,

since (n− n1)
a ≥ (n− n2)

a for a ≤ 0. We get

C = n1(n− n1)
a + n2(n− n2)

a

− (n1 − 1)(n− n1 + 1)a − (n2 + 1)(n− n2 − 1)a

= (n1 − 1)[(n− n1)
a − (n− n1 + 1)a]

− (n2 + 1)[(n− n2 − 1)a − (n− n2)
a] + (n− n1)

a − (n− n2)
a

≥ 0,

since (n− n1)
a − (n− n2)

a ≥ 0 for a ≤ 0, n1 − 1 ≥ n2 + 1 and by Lemma

3, for a < 0,

(n− n1)
a − (n− n1 + 1)a > (n− n2 − 1)a − (n− n2)

a

which is greater than 0. Clearly, for a = 0, we have (n− n1)
a − (n− n1 +

1)a = (n− n2 − 1)a − (n− n2)
a = 0.

Since A + B > 0 and C ≥ 0, we have Guta,b(G
′) − Guta,b(G

′′) > 0,
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so Guta,b(G
′) > Guta,b(G

′′). Thus, G′ does not have the minimum Guta,b

index which is a contradiction. Hence, |ni − nj | ≤ 1.

The proof of Theorem 3 is similar to the proof of Theorem 2, therefore

we omit some steps which are the same in both proofs.

Theorem 3. Let 0 ≤ a < 1
2 and b ≤ 0, where at least one of a and b is

not 0. For any k-partite graph G with n vertices, where 2 ≤ k ≤ n,

Guta,b(G) ≤ Guta,b(Kn1,n2,...,nk
).

The equality holds only if G is Kn1,n2,...,nk
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ k and n1 + n2 + · · ·+ nk = n.

Proof. Let G′ be a k-partite graph of order n having the maximum Guta,b

index. By Lemma 2, G′ is the complete k-partite graph.

Assume that G′ = Kn1,n2,...,nk
, where |ni − nj | ≥ 2, say n1 ≥ n2 + 2.

Let G′′ = Kn1−1,n2+1,...,nk
. Since (n−n1)(n−n2) < (n−n1+1)(n−n2−1),

we have

[(n− n1)(n− n2)]
a ≤ [(n− n1 + 1)(n− n2 − 1)]a

for a > 0 and

A = (n1n2 + n1 − n2 − 1)([(n− n1)(n− n2)]
a

− [(n− n1 + 1)(n− n2 − 1)]a)− (n1 − n2 − 1)(n− n1)
a(n− n2)

a

≤ − (n1 − n2 − 1)(n− n1)
a(n− n2)

a.

We have

B =
[ (n1 − 1)(n1 − 2)

2
[(n− n1)

2a − (n− n1 + 1)2a]

− (n2 + 1)n2

2
[(n− n2 − 1)2a − (n− n2)

2a]

+ (n1 − 1)(n− n1)
2a − n2(n− n2)

2a
]
2b

=
[ (n2 + 1)n2

2
[(n− n2)

2a − (n− n2 − 1)2a]
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− (n1 − 1)(n1 − 2)

2
[(n− n1 + 1)2a − (n− n1)

2a]

+ (n1 − 1)(n− n1)
2a − n2(n− n2)

2a
]
2b

≤ [(n1 − 1)(n− n1)
2a − n2(n− n2)

2a]2b

≤ (n1 − 1)(n− n1)
2a − n2(n− n2)

2a,

If b < 0, then the last inequality is strict since 0 < 2b < 1. If 0 < a < 1
2 ,

then the first inequality is strict since (n2+1)n2

2 ≤ (n1−1)(n1−2)
2 and by

Lemma 3,

(n− n2)
2a − (n− n2 − 1)2a < (n− n1 + 1)2a − (n− n1)

2a.

Thus, if at least one of a and b is not 0, we have B < (n1 − 1)(n−n1)
2a −

n2(n− n2)
2a. Then

A+B < [(n1 − 1)(n− n1)
a + n2(n− n2)

a][(n− n1)
a − (n− n2)

a] ≤ 0,

since (n− n1)
a ≤ (n− n2)

a for a ≥ 0. We get

C = (n2 + 1)[(n− n2)
a − (n− n2 − 1)a]

− (n1 − 1)[(n− n1 + 1)a − (n− n1)
a] + (n− n1)

a − (n− n2)
a

≤ 0,

since (n− n1)
a − (n− n2)

a ≤ 0 for a ≥ 0, n2 + 1 ≤ n1 − 1 and by Lemma

3,

(n− n2)
a − (n− n2 − 1)a < (n− n1 + 1)a − (n− n1)

a

for 0 < a < 1
2 .

Since A+B < 0 and C ≤ 0, we have Guta,b(G
′) < Guta,b(G

′′). So G′

does not have the maximum Guta,b index which is a contradiction.

The chromatic number of a graph G is the smallest number of colors

needed to color the vertices of G such that no two adjacent vertices have

the same color. We use Theorem 2 to obtain the following theorem for

graphs with given chromatic number.



595

Theorem 4. Let a ≤ 0 and b ≥ 0, where at least one of a and b is not

0. For any connected graph G with n vertices and chromatic number χ,

where 2 ≤ χ ≤ n,

Guta,b(G) ≥ Guta,b(Kn1,n2,...,nχ
).

The equality holds only if G is Kn1,n2,...,nχ
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ χ and n1 + n2 + · · ·+ nχ = n.

Proof. Let G′ be any graph of order n and chromatic number χ having the

minimum Guta,b index. The graph G′ contains no edges connecting the

vertices in the same color class, thus G′ is a χ-partite graph. Hence, by

Theorem 2, G′ is Kn1,n2,...,nχ
, where |ni − nj | ≤ 1 and 1 ≤ i < j ≤ χ.

Similarly, Theorem 5 follows from Theorem 3.

Theorem 5. Let 0 ≤ a < 1
2 and b ≤ 0, where at least one of a and b is

not 0. For any graph G with n vertices and chromatic number χ, where

2 ≤ χ ≤ n,

Guta,b(G) ≤ Guta,b(Kn1,n2,...,nχ
).

The equality holds only if G is Kn1,n2,...,nχ
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ χ and n1 + n2 + · · ·+ nχ = n.

It seems complicated to obtain sharp bounds on the general Gutman

index for trees. Thus we consider a special class of trees called starlike

trees. A starlike tree is a tree having exactly one vertex of degree greater

than 2. For the starlike tree S(n1, n2, . . . , nk) with a vertex v0 of degree

k ≥ 3, we have

S(n1, n2, . . . , nk)− v0 = Pn1
∪ Pn2

∪ · · · ∪ Pnk
,

where Pni
is the path of order ni (1 ≤ i ≤ k); see Figure 1. This tree

has n1 + n2 + · · · + nk + 1 = n vertices. In particular, S(n1, n2, . . . , nk)

is the star Sn for n1 = n2 = · · · = nk = 1. Let S′
n be a starlike tree

S(n1, n2, . . . , nk) of order n such that all n1, n2, . . . , nk except for one are

equal to 1. We denote by S′′
n a tree S(n1, n2, . . . , nk) of order n such that
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|ni − nj | ≤ 1 for any 1 ≤ i < j ≤ k. Let us compare the Guta,b index of

two starlike trees.

v0

v2

v1 v3

Pn1
Pn2

Pn3
Pnk

Figure 1. Starlike tree S(n1, n2, . . . , nk).

Lemma 4. Let a ≥ 0 and b > 0. For n1 ≥ n2 + 2, we have

Guta,b(S(n1, n2, . . . , nk)) > Guta,b(S(n1 − 1, n2 + 1, . . . , nk)).

Proof. Let n1 ≥ n2 + 2. In H1 = S(n1, n2, . . . , nk), let v1 and v2 be

adjacent vertices of V (Pn1) such that dH1(v1) = 1 < 2 = dH1(v2), and let

v3 ∈ V (Pn2) such that dH1(v3) = 1 (see Figure 1).

Let H2 = S(n1 − 1, n2 + 1, . . . , nk) = S(n1, n2, . . . , nk) − v1v2 + v1v3.

Let Z = {v1, v2, v3}. Then∑
{u,v}⊆Z

[dH1
(u)dH1

(v)]a[DH1
(u, v)]b = (n1 + n2)

b + 2a(n1 + n2 − 1)b + 2a

=
∑

{u,v}⊆Z

[dH2
(u)dH2

(v)]a[DH2
(u, v)]b
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and ∑
{u,v}⊆V (H1)\Z

[dH1
(u)dH1

(v)]a[DH1
(u, v)]b

=
∑

{u,v}⊆V (H2)\Z

[dH2
(u)dH2

(v)]a[DH2
(u, v)]b.

Let F = {v0} ∪ V (Pn1) ∪ V (Pn2). Then

Guta,b(H1)−Guta,b(H2)

=
∑

{u,v}⊆Z

([dH1
(u)dH1

(v)]a[DH1
(u, v)]b − [dH2

(u)dH2
(v)]a[DH2

(u, v)]b)

+
∑

{u,v}⊆V (H1)\Z

([dH1
(u)dH1

(v)]a[DH1
(u, v)]b − [dH2

(u)dH2
(v)]a[DH2

(u, v)]b)

+
∑

u∈Z,v∈V (H1)\Z

([dH1
(u)dH1

(v)]a[DH1
(u, v)]b − [dH2

(u)dH2
(v)]a[DH2

(u, v)]b)

=
∑

u∈Z,v∈V (H1)\Z

([dH1
(u)dH1

(v)]a[DH1
(u, v)]b − [dH2

(u)dH2
(v)]a[DH2

(u, v)]b)

=
∑

v∈V (H1)\Z

[dH1
(v)]a[DH1

(v1, v)]
b −

∑
v∈V (H1)\Z

[dH2
(v)]a[DH2

(v1, v)]
b

+ 2a
∑

v∈V (H1)\Z

[dH1
(v)]a[DH1

(v2, v)]
b −

∑
v∈V (H1)\Z

[dH2
(v)]a[DH2

(v2, v)]
b

+
∑

v∈V (H1)\Z

[dH1
(v)]a[DH1

(v3, v)]
b − 2a

∑
v∈V (H1)\Z

[dH2
(v)]a[DH2

(v3, v)]
b

=
∑

v∈V (H1)\Z

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)

+ (2a − 1)
∑

v∈V (H1)\Z

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b).

Note that

DH1
(v2, v) = DH2

(v2, v) > DH1
(v3, v) = DH2

(v3, v)



598

for v ∈ V (H1)\F . We obtain

R =
∑

v∈V (H1)\Z

[dH1
(v)]a([D

1
(v2, v)]

b − [DH1
(v3, v)]

b)

=
∑

v∈V (H1)\F

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

+
∑

v∈F\Z

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

>
∑

v∈F\Z

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

= 2a[1 + 2b + · · ·+ (n1 − 2)b + nb
1 + · · ·+ (n1 + n2 − 2)b]

− 2a[1 + 2b + · · ·+ (n2 − 1)b + (n2 + 1)b + · · ·+ (n1 + n2 − 2)b]

+ ka(n1 − 1)b − ka nb
2

= ka(n1 − 1)b − 2a(n1 − 1)b + 2a nb
2 − ka nb

2

= (ka − 2a)[(n1 − 1)b − nb
2]

≥ 0,

since ka−2a ≥ 0 for k ≥ 3 and a ≥ 0, and (n1−1)b−nb
2 > 0 for n1−1 > n2

and b > 0. For v ∈ V (H1)\F , we have DH1
(v1, v) > DH2

(v1, v). Thus

P =
∑

v∈V (H1)\Z

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)

=
∑

v∈V (H1)\F

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)

+
∑

v∈F\Z

[dH1
(v)]a([DH1

(v1, v)
b]− [DH2

(v1, v)]
b)

>
∑

v∈F\Z

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)

= 2a[2b + · · ·+ (n1 − 1)b + (n1 + 1)b + · · ·+ (n1 + n2 − 1)b]

− 2a[2b + · · ·+ nb
2 + (n2 + 2)b + · · ·+ (n1 + n2 − 1)b]

+ kanb
1 − ka(n2 + 1)b

= kanb
1 − 2anb

1 + 2a(n2 + 1)b − ka(n2 + 1)b

= (ka − 2a)[nb
1 − (n2 + 1)b] ≥ 0,
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since nb
1 − (n2 +1)b > 0 for n1 > n2 +1 and b > 0. We have R > 0, P > 0

and 2a ≥ 1 for a ≥ 0, thus

Guta,b(H1)−Guta,b(H2) = P + (2a − 1)R > 0.

Hence Guta,b(H1) > Guta,b(H2).

We obtain a similar lemma for a ≥ 0 and b < 0.

Lemma 5. Let a ≥ 0 and b < 0. For n1 ≥ n2 + 2, we have

Guta,b(S(n1, n2, . . . , nk)) < Guta,b(S(n1 − 1, n2 + 1, . . . , nk)).

Proof. We present those parts of the proof of Lemma 5 that differ from

the proof of Lemma 4.

Let H1 = S(n1, n2, . . . , nk) and H2 = S(n1 − 1, n2 + 1, . . . , nk) =

S(n1, n2, . . . , nk) − v1v2 + v1v3. We have DH1(v2, v) > DH1(v3, v), thus

[DH1(v2, v)]
b < [DH1(v3, v)]

b since b < 0. Then

R =
∑

v∈V (H1)\F

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

+
∑

v∈F\Z

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

<
∑

v∈F\Z

[dH1
(v)]a([DH1

(v2, v)]
b − [DH1

(v3, v)]
b)

= (ka − 2a)[(n1 − 1)b − nb
2] ≤ 0,

since (n1 − 1)b − nb
2 < 0 for n1 − 1 > n2 and b < 0. For v ∈ V (H1)\F ,

we have DH1(v1, v) > DH2(v1, v), thus [DH1(v1, v)]
b < [DH2(v1, v)]

b, since

b < 0. Then

P =
∑

v∈V (H1)\F

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)

+
∑

v∈F\Z

[dH1
(v)]a([DH1

(v1, v)
b]− [DH2

(v1, v)]
b)

<
∑

v∈F\Z

[dH1
(v)]a([DH1

(v1, v)]
b − [DH2

(v1, v)]
b)
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= (ka − 2a)[nb
1 − (n2 + 1)b] ≤ 0,

since nb
1 − (n2 +1)b < 0 for n1 > n2 +1 and b < 0. We have R < 0, P < 0

and 2a ≥ 1 for a ≥ 0, thus

Guta,b(H1)−Guta,b(H2) = P + (2a − 1)R < 0.

Hence Guta,b(H1) < Guta,b(H2).

In Theorems 6 and 7, we obtain bounds on the Guta,b index of starlike

trees for a ≥ 0 and b > 0.

Theorem 6. Let a ≥ 0 and b > 0. For any starlike tree G with n vertices

and maximum degree k, where 3 ≤ k ≤ n− 1, we have

Guta,b(G) ≥ Guta,b(S
′′
n).

The equality holds only if G is S′′
n.

Proof. Let G′ be any starlike tree of order n and maximum degree k with

the smallest Guta,b index. Let us show that G′ is S′′
n.

Assume to the contrary that G′ is not S′′
n. So G′ is S(n1, n2, . . . , nk)

and there exist i and j, where 1 ≤ i < j ≤ k, such that |ni − nj | ≥ 2.

Without loss of generality, assume that n1 − n2 ≥ 2. By Lemma 4

Guta,b(S(n1, n2, . . . , nk)) > Guta,b(S(n1 − 1, n2 + 1, . . . , nk)).

Hence, S(n1, n2, . . . , nk) does not have the smallest Guta,b index, which is

a contradiction.

Theorem 7. Let a ≥ 0 and b > 0. For any starlike tree G with n vertices

and maximum degree k, where 3 ≤ k ≤ n− 1, we have

Guta,b(G) ≤ Guta,b(S
′
n).

The equality holds only if G is S′
n.

Proof. Let G′ be any starlike tree with n vertices and maximum degree k

having the largest Guta,b index. We prove that G′ is S′
n.
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Assume to the contrary that G′ is not S′′
n. So, G′ is S(n1, n2, . . . , nk)

and there exist i and j, where 1 ≤ i < j ≤ k, such that ni, nj ≥ 2. Without

loss of generality, we can assume that n1 ≥ n2 ≥ 2. From Lemma 4

Guta,b(S(n1 + 1, n2 − 1, . . . , nk)) > Guta,b(S(n1, n2, . . . , nk)).

Hence, S(n1, n2, . . . , nk) does not have the largest Guta,b index, which is

a contradiction.

Lemma 4 was used to obtain bounds for the Guta,b index of starlike

trees if a ≥ 0 and b > 0. Similarly, Lemma 5 can be used to obtain bounds

on the Guta,b index for starlike trees if a ≥ 0 and b < 0.

Theorem 8. Let a ≥ 0 and b < 0. For any starlike tree G with n vertices

and maximum degree k, where 3 ≤ k ≤ n− 1, we have

Guta,b(S
′
n) ≤ Guta,b(G) ≤ Guta,b(S

′′
n).

The first equality holds only if G is S′
n and the second equality holds only

if G is S′′
n.

3 Conclusion

In this paper, we generalized the Gutman index and presented some first

results on the general Gutman index. Let us state several problems open

for future research.

Problem 9. Find a tree with the smallest or a tree having the largest

Guta,b index among trees with given order for some a and b.

Problem 10. Find bounds on the Guta,b index for unicyclic graphs and

bicyclic graphs graphs with given order for some a and b.

Problem 11. Find a sharp lower bound or an upper bound on the Guta,b

index for graphs with given order and vertex connectivity for some a and

b.
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Problem 12. Find bounds on the general Gutman index for graphs with

given order and number of pendant vertices.
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[9] M. Knor, P. Potočnik, R. Škrekovski, Relationship between the edge-
Wiener index and the Gutman index of a graph, Discr. Appl. Math.
167 (2014) 197–201.

[10] Y. Mao, K. C. Das, Steiner Gutman index, MATCH Commun. Math.
Comput. Chem. 79 (2018) 779–794.



603

[11] J. P. Mazorodze, S. Mukwembi, T. Vetŕık, On the Gutman index and
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