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Abstract

The general Gutman index was introduced by Das and Vetŕık
very recently. For a graph G, the general Gutman index is defined
by

Gutα,β(G) =
∑

{u,v}⊆V (G)

[dG(u)dG(v)]
α[DG(u, v)]

β ,

where α, β ∈ R, DG(u, v) denotes the distance between u and v
in G, and dG(u) and dG(v) denote the degrees of u and v in G,
respectively. We show that for some α and β, the general Gutman
index decrease or increase with changing the adjacency of vertices.
For some α and β, we characterize trees of given order with the
largest or the smallest general Gutman index.

1 Introduction

Topological indices provide a convenient method of translating chemical

structures to numerical values, and they have been used in many fields

such as chemical documentation, medicine design and so on.

We denote the vertex-set and the edge-set of a graph G by V (G) and

E(G), respectively. The order of G is the number of vertices in G. The

set of neighbors of a vertex v ∈ G is denoted by NG(v), which is the set of

vertices adjacent to v in G. The degree of a vertex v, dG(v), is the size of
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NG(v). The distance DG(u, v) between vertices u, v ∈ V (G) is the number

of edges in a shortest path between u and v in G. We denote by Pn a path

of order n and by Sn a star of order n.

The Gutman index, Gut(G) =
∑

{u,v}⊆V (G) dG(u)dG(v)DG(u, v), is

one of the most well-known distance-based topological indices and there-

fore has been well studied; see [6] for example. In fact, the Gutman index

might be better called ZZ -index, for which we refer a paper [7] by Gutman

that stated some facts about the history of the index. Bounds on the Gut-

man index for graphs with maximum degree and minimum degree were

studied in [1,9], for unicyclic graphs were studied in [4,5]. Some methods

for calculating the Gutman index were studied in [2]. In [8], the authors

generalized the concept of Gutman index by Steiner distance. Some other

results on the Gutman index can be found in [10,11].

The general Gutman index was introduced by Das and Vetŕık very

recently in [3]. For a graph G, the general Gutman index is defined by

Gutα,β(G) =
∑

{u,v}⊆V (G)

[dG(u)dG(v)]
α[DG(u, v)]

β ,

where α, β ∈ R, DG(u, v) denotes the distance between u and v in G,

and dG(u) and dG(v) denote the degrees of u and v, respectively. In this

manuscript, Das and Vetŕık obtained some sharp bounds on the general

Gutman index for multipartite graphs of given order, graphs of given order

and chromatic number, and starlike trees of given order and maximum

degree. Their results are stated as follows.

Theorem 1. [3] Let α ≤ 0 and β ≥ 0, where at least one of α and β is

not 0. For any k-partite graph G with n vertices, where 2 ≤ k ≤ n,

Gutα,β(G) ≥ Gutα,β(Kn1,n2,...,nk
).

The equality holds only if G is Kn1,n2,...,nk
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ k and n1 + n2 + · · ·+ nk = n.

Theorem 2. [3] Let 0 ≤ α < 1
2 and β ≤ 0, where at least one of α and
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β is not 0. For any k-partite graph G with n vertices, where 2 ≤ k ≤ n,

Gutα,β(G) ≤ Gutα,β(Kn1,n2,...,nk
).

The equality holds only if G is Kn1,n2,...,nk
, where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ k and n1 + n2 + · · ·+ nk = n.

Theorem 3. [3] Let α ≤ 0 and β ≥ 0, where at least one of α and β is

not 0. For any connected graph G with n vertices and chromatic number

χ, where 2 ≤ χ ≤ n,

Gutα,β(G) ≥ Gutα,β(Kn1,n2,...,nχ
).

The equality holds only if G is Kn1,n2,...,nχ , where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ χ and n1 + n2 + · · ·+ nχ = n.

Theorem 4. [3] Let 0 ≤ α < 1
2 and β ≤ 0, where at least one of α and β

is not 0. For any graph G with n vertices and chromatic number χ, where

2 ≤ χ ≤ n,

Guta,b(G) ≤ Guta,b(Kn1,n2,...,nχ).

The equality holds only if G is Kn1,n2,...,nχ , where |ni − nj | ≤ 1, 1 ≤ i <

j ≤ χ and n1 + n2 + · · ·+ nχ = n.

A starlike tree is a tree which consists of some paths that have a com-

mon vertex. Let S′
n be a starlike tree of order n such that all lengths of

the paths except one are equal to 1, and S′′
n be a tree of order n such that

all paths differ in length by less than 1.

Theorem 5. [3] Let α ≥ 0 and β > 0. For any starlike tree G with n

vertices and maximum degree k, where 3 ≤ k ≤ n− 1, we have

Gutα,β(S
′′
n) ≤ Gutα,β(G) ≤ Gutα,β(S

′
n).

The first equality holds only if G is S′
n and the second equality holds only

if G is S′′
n.

Theorem 6. [3] Let α ≥ 0 and β < 0. For any starlike tree G with n
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vertices and maximum degree k, where 3 ≤ k ≤ n− 1, we have

Gutα,β(S
′
n) ≤ Gutα,β(G) ≤ Gutα,β(S

′′
n).

The first equality holds only if G is S′
n and the second equality holds only

if G is S′′
n.

Several topological indices can be seen as special cases of the general

Gutman index. For α = 1 and β = 1, Gutα,β(G) is the classical Gutman

index. For α = 0 and β = 1, Gutα,β(G) is the Wiener index. For α = 0

and β = −1, Gutα,β(G) is the Harary index. The results for these special

indices are special cases of the general Gutman index. So, the concept

of general Gutman index is very interesting and important, and thus it

makes sense to study it, extensively.

In this paper, we show that for some α and β, the general Gutman

index decreases or increases with changing the adjacency of vertices, and

we characterize trees of given order with the largest or the smallest general

Gutman index for some values of α and β.

The outline of this paper is as follows. In Section 2, we discuss three

operations on trees. In Section 3, we show that for some values of α and

β, the trees of given order with the largest or the smallest general Gutman

index is a path or a star. In Section 4, we conclude this paper with some

remarks.

2 Three operations on trees

In this section we will introduce three kinds of operations on trees, and

estimate the changes of values of the general Gutman index.

2.1 Operation 1 on trees

Let G be a graph with two paths P ′=u1u2 . . . utv3 and P ′′=w1w2 . . . wsv1,

where w1, u1 ∈ NG(v2) and v1, v3 are pendent vertices. We obtain a new

graph G1 by moving v1 to v3, i.e., G1 = G − wsv1 + v3v1; see Figure 1.

We divide V (G) into four parts V1 = {v1, v3, ws}, V2 = {u1, u2, . . . , ut},
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V3 = {w1, w2, . . . , ws−1} and V4 = V (G) − V1 − V2 − V3. Without loss of

generality, let 1 ≤ s ≤ t.

For {u, v} ⊆ V1,∑
{u,v}⊆V1

[dG1
(u)dG1

(v)]α[DG1
(u, v)]β −

∑
{u,v}⊆V1

[dG(u)dG(v)]
α[DG(u, v)]

β

=[dG1(v1)dG1(v3)]
α[DG1(v1, v3)]

β − [dG(v1)dG(v3)]
α[DG(v1, v3)]

β

+ [dG1(v1)dG1(ws)]
α[DG1(v1, ws)]

β − [dG(v1)dG(ws)]
α[DG(v1, ws)]

β

+ [dG1
(v3)dG1

(ws)]
α[DG1

(v3, ws)]
β − [dG(v3)dG(ws)]

α[DG(v3, ws)]
β

=2α − (t+ s+ 2)β + (t+ s+ 2)β − 2α + 2α(t+ s+ 1)β − 2α(t+ s+ 1)β

=0. (1)

v2 u1 u2 ut v3

w1

w2

ws

v1

v2 u1 u2 ut v3 v1

w1

w2

ws

Figure 1. Graph G and the resultant graph G1.

For u ∈ V1, v ∈ V2,∑
u∈V1
v∈V2

[dG1
(u)dG1

(v)]α[DG1
(u, v)]β −

∑
u∈V1
v∈V2

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V2

{[dG1
(v1)dG1

(v)]α[DG1
(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V2

{[dG1
(v3)dG1

(v)]α[DG1
(v3, v)]

β − [dG(v3)dG(v)]
α[DG(v3, v)]

β}

+
∑
v∈V2

{[dG1(ws)dG1(v)]
α[DG1(ws, v)]

β − [dG(ws)dG(v)]
α[DG(ws, v)]

β}

=
∑
v∈V2

2α[(t+ 2−DG(v2, v))
β − (s+ 1 +DG(v2, v))

β ]

+
∑
v∈V2

(4α − 2α)(t+ 1−DG(v2, v))
β +

∑
v∈V2

(2α − 4α)(s+DG(v2, v))
β
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=
∑
v∈V2

{2α[(t+ 2−DG(v2, v))
β − (s+ 1 +DG(v2, v))

β ]

+ (4α − 2α)[(t+ 1−DG(v2, v))
β − (s+DG(v2, v))

β ]}

=

t∑
D=1

{2α[(t+ 2−D)β − (s+ 1 +D)β ]

+ (4α − 2α)[(t+ 1−D)β − (s+D)β ]}. (2)

For u ∈ V1, v ∈ V3,∑
u∈V1
v∈V3

[dG1
(u)dG1

(v)]α[DG1
(u, v)]β −

∑
u∈V1
v∈V3

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V3

{[dG1(v1)dG1(v)]
α[DG1(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V3

{[dG1(v3)dG1(v)]
α[DG1(v3, v)]

β − [dG(v3)dG(v)]
α[DG(v3, v)]

β}

+
∑
v∈V3

{[dG1
(ws)dG1

(v)]α[DG1
(ws, v)]

β − [dG(ws)dG(v)]
α[DG(ws, v)]

β}

=
∑
v∈V3

2α[(t+ 2 +DG(v2, v))
β − (s+ 1−DG(v2, v))

β ]

+
∑
v∈V3

(4α − 2α)(t+ 1 +DG(v2, v))
β +

∑
v∈V3

(2α − 4α)(s−DG(v2, v))
β

=
∑
v∈V3

{2α[(t+ 2 +DG(v2, v))
β − (s+ 1−DG(v2, v))

β ]

+ (4α − 2α)[(t+ 1 +DG(v2, v))
β − (s−DG(v2, v))

β ]}

=

s−1∑
D=1

{2α[(t+ 2 +D)β − (s+ 1−D)β ]

+ (4α − 2α)[(t+ 1 +D)β − (s−D)β ]}. (3)

By adding Equation 2 to Equation 3, we get∑
u∈V1
v∈V2

[dG1(u)dG1(v)]
α[DG1(u, v)]

β −
∑
u∈V1
v∈V2

[dG(u)dG(v)]
α[DG(u, v)]

β
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+
∑
u∈V1
v∈V3

[dG1(u)dG1(v)]
α[DG1(u, v)]

β −
∑
u∈V1
v∈V3

[dG(u)dG(v)]
α[DG(u, v)]

β

=2α{[
s+t+1∑
D=2

Dβ − (t+ 2)β ]− [

s+t+1∑
D=2

Dβ − (s+ 1)β ]}

+ (4α − 2α){[
s+t∑
D=1

Dβ − (t+ 1)β ]− [

s+t∑
D=1

Dβ − sβ ]}

=2α[(s+ 1)β − (t+ 2)β ] + (4α − 2α)[sβ − (t+ 1)β ]. (4)

For u ∈ V1, v ∈ V4,∑
u∈V1
v∈V4

[dG1
(u)dG1

(v)]α[DG1
(u, v)]β −

∑
u∈V1
v∈V4

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V4

{[dG1(v1)dG1(v)]
α[DG1(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V4

{[dG1(v3)dG1(v)]
α[DG1(v3, v)]

β − [dG(v3)dG(v)]
α[DG(v3, v)]

β}

+
∑
v∈V4

{[dG1
(ws)dG1

(v)]α[DG1
(ws, v)]

β − [dG(ws)dG(v)]
α[DG(ws, v)]

β}

=
∑
v∈V4

dG(v)
α[(t+ 2 +DG(v2, v))

β − (s+ 1 +DG(v2, v))
β ]

+
∑
v∈V4

dG(v)
α(2α − 1)(t+ 1 +DG(v2, v))

β

+
∑
v∈V4

dG(v)
α(1− 2α)(s+DG(v2, v))

β

=
∑
v∈V4

dG(v)
α{[(t+ 2 +DG(v2, v))

β − (s+ 1 +DG(v2, v))
β ]

+ (2α − 1)[(t+ 1 +DG(v2, v))
β − (s+DG(v2, v))

β ]}. (5)

For {u, v} ⊆ V (G)− V1, it is obvious that∑
{u,v}⊈V1

[dG1
(u)dG1

(v)]α[DG1
(u, v)]β =

∑
{u,v}⊈V1

[dG(u)dG(v)]
α[DG(u, v)]

β ,

since the degrees and distance between u and v are not change.
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We begin with a lemma that is frequently used in subsequent proofs.

Lemma 1. Let 0 < x1 < x2, y > 0 and f(x) = xa. Then for a > 1 or

a < 0, we have f(x1 + y)− f(x1) < f(x2 + y)− f(x2). For 0 < a < 1, we

have f(x1 + y)− f(x1) > f(x2 + y)− f(x2).

The proof of this lemma is simple and we omit it.

Lemma 2. Let α ≥ 0 and β > 0, we have

Gutα,β(G1) > Gutα,β(G).

Proof. For Equation 5, it is easy to obtain that [(t+2+DG(v2, v))
β − (s+

1+DG(v2, v))
β ] + (2α− 1)[(t+1+DG(v2, v))

β − (s+DG(v2, v))
β ] > 0 for

α ≥ 0 and β > 0, since s ≤ t. In particular, if v is v2 in Equation 5, we

have that

dG(v2)
α{[(t+ 2 +DG(v2, v))

β − (s+ 1 +DG(v2, v))
β ]

+ (2α − 1)[(t+ 1 +DG(v2, v))
β − (s+DG(v2, v))

β ]}

=dG(v2)
α{[(t+ 2)β − (s+ 1)β ] + (2α − 1)[(t+ 1)β − sβ ]}

≥2α{[(t+ 2)β − (s+ 1)β ] + (2α − 1)[(t+ 1)β − sβ ]}.

Thus, the sum of Equations 4 and 5 greater than 0. So, Gutα,β(G1) >

Gutα,β(G). The proof is thus complete.

Lemma 3. For α ≥ 0 and β < 0, we have

Gutα,β(G1) < Gutα,β(G).

The proof is similar to that of Lemma 2 and we omit it.

2.2 Operation 2 on trees

Let G be a graph with pendent vertex v1 and path P ′ = u1u2 . . . utv3,

where v1, u1 ∈ NG(v2) and v3 is a pendent vertex. We obtain a new graph

G2 by moving v1 to v3, i.e., G2 = G − v2v1 + v3v1; see Figure 2. We

divide V (G) into three parts V1 = {v1, v2, v3}, V2 = {u1, u2, . . . , ut} and

V3 = V (G)− V1 − V2.
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v2 u1 u2 ut v3

v1

v2 u1 u2 ut v3 v1

Figure 2. Graph G and the resultant graph G2.

For {u, v} ⊆ V1,∑
{u,v}⊆V1

[dG2(u)dG2(v)]
α[DG2(u, v)]

β −
∑

{u,v}⊆V1

[dG(u)dG(v)]
α[DG(u, v)]

β

=[dG2(v1)dG2(v2)]
α[DG2(v1, v2)]

β − [dG(v1)dG(v2)]
α[DG(v1, v2)]

β

+ [dG2
(v1)dG2

(v3)]
α[DG2

(v1, v3)]
β − [dG(v1)dG(v3)]

α[DG(v1, v3)]
β

+ [dG2
(v2)dG2

(v3)]
α[DG2

(v2, v3)]
β − [dG(v2)dG(v3)]

α[DG(v2, v3)]
β

=(dG(v2)− 1)α(t+ 2)β − dG(v2)
α + 2α − (t+ 2)β

+ [2α(dG(v2)− 1)α − dG(v2)
α](t+ 1)β . (6)

For u ∈ V1, v ∈ V2,∑
u∈V1
v∈V2

[dG2
(u)dG2

(v)]α[DG2
(u, v)]β −

∑
u∈V1
v∈V2

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V2

{[dG2
(v1)dG2

(v)]α[DG2
(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V2

{[dG2(v2)dG2(v)]
α[DG2(v2, v)]

β − [dG(v2)dG(v)]
α[DG(v2, v)]

β}

+
∑
v∈V2

{[dG2(v3)dG2(v)]
α[DG2(v3, v)]

β − [dG(v3)dG(v)]
α[DG(v3, v)]

β}

=
∑
v∈V2

2α[(t+ 2−DG(v2, v))
β − (DG(v2, v) + 1)β ]

+
∑
v∈V2

2α[(dG(v2)− 1)α − dG(v2)
α]DG(v2, v)

β

+
∑
v∈V2

(4α − 2α)(t+ 1−DG(v2, v))
β

=2α
t∑

D=1

{[(t+ 2−D)β − (D + 1)β ] + [(dG(v2)− 1)α − dG(v2)
α]Dβ
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+ [(2α − 1)(t+ 1−D)β ]}

=2α[2α − 1 + (dG(v2)− 1)α − dG(v2)
α]

t∑
D=1

Dβ . (7)

For u ∈ V1, v ∈ V3,∑
u∈V1
v∈V3

[dG2
(u)dG2

(v)]α[DG2
(u, v)]β −

∑
u∈V1
v∈V3

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V3

{[dG2
(v1)dG2

(v)]α[DG2
(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V3

{[dG2
(v2)dG2

(v)]α[DG2
(v2, v)]

β − [dG(v2)dG(v)]
α[DG(v2, v)]

β}

+
∑
v∈V3

{[dG2(v3)dG2(v)]
α[DG2(v3, v)]

β − [dG(v3)dG(v)]
α[DG(v3, v)]

β}

=
∑
v∈V3

dG(v)
α[(DG(v2, v) + t+ 2)β − (DG(v2, v) + 1)β ]

+
∑
v∈V3

dG(v)
α[(dG(v2)− 1)α − dG(v2)

α]DG(v2, v)
β

+
∑
v∈V3

dG(v)
α(2α − 1)(t+ 1 +DG(v2, v))

β

=
∑
v∈V3

dG(v)
α{[(DG(v2, v) + t+ 2)β − (DG(v2, v) + 1)β ]

+[(dG(v2)− 1)α − dG(v2)
α]DG(v2, v)

β+(2α − 1)(t+ 1 +DG(v2, v))
β}.
(8)

For {u, v} ⊆ V2 ∪ V3, it is obvious that∑
{u,v}⊈V1

[dG2
(u)dG2

(v)]α[DG2
(u, v)]β =

∑
{u,v}⊈V1

[dG(u)dG(v)]
α[DG(u, v)]

β ,

since the degrees and distance between u and v are not change.

Lemma 4. Let 0 ≤ α ≤ 1 and β ≥ 0 such that at least one of α and β is

not 0. Then we have

Gutα,β(G2) > Gutα,β(G).



577

Proof. In fact, for α ≥ 0, β ≥ 0, Equation 6 not less than 0, since

(dG(v2)− 1)α(t+ 2)β − dG(v2)
α + 2α − (t+ 2)β

+ [2α(dG(v2)− 1)α − dG(v2)
α](t+ 1)β

≥2α(dG(v2)− 1)α − dG(v2)
α + (dG(v2)− 1)α − 1 + 2α − dG(v2)

α

≥0,

the last equality obtained by Lemma 1 and at least one of the two inequal-

ities strictly holds.

We can obtain that Equation 7 is not less than 0 for 0 ≤ α ≤ 1 by

Lemma 1.

For Equation 8, we have

[(DG(v2, v) + t+ 2)β − (DG(v2, v) + 1)β ]

+ [(dG(v2)− 1)α − dG(v2)
α]DG(v2, v)

β + [(2α − 1)(t+ 1 +DG(v2, v))
β ]

≥[(dG(v2)− 1)α − dG(v2)
α]DG(v2, v)

β + [(2α − 1)(t+ 1 +DG(v2, v))
β ]

≥(dG(v2)− 1)α − dG(v2)
α + (2α − 1)

≥0,

the last equality obtained by Lemma 1.

Thus, for 0 ≤ α ≤ 1 and β ≥ 0, and at least one of α and β is not 0, we

have that Gutα,β(G2) > Gutα,β(G) holds. The proof is this complete.

Lemma 5. Let α ≤ 0 and β ≤ 0 such that at least one of α and β is not

0. Then we have

Gutα,β(G2) < Gutα,β(G).

The proof is similar to that of Lemma 4 and we omit it.

2.3 Operation 3 on trees

Let G be a graph with t ≥ 1 pendent vertices {u1, u2, . . . , ut} which are

adjacent to v2, and v1 is adjacent to v2 too. We obtain a new graph G3

by moving {u1, u2, · · · , ut} to v1, i.e., G3 = G − {v2u1, v2u2, · · · , v2ut} +
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{v1u1, v1u2, · · · , v1ut}; see Figure 3. We divide V (G) into three parts

V1 = {v1, v2}, V2 = {u1, u2, · · · , ut} and V3 = V (G)− V1 − V2.

For {u, v} ⊆ V1,∑
{u,v}⊆V1

[dG3
(u)dG3

(v)]α[DG3
(u, v)]β −

∑
{u,v}⊆V1

[dG(u)dG(v)]
α[DG(u, v)]

β

=[dG3(v1)dG3(v2)]
α[DG3(v1, v2)]

β − [dG(v1)dG(v2)]
α[DG(v1, v2)]

β

=(t+ dG(v1))
α − (t+ 1)αdG(v1)

α. (9)

v1

v2

u1

u2

ut

v1

u2

v2

u1

ut

Figure 3. Graph G and the resultant graph G3.

For u ∈ V1, v ∈ V2,∑
u∈V1
v∈V2

[dG3
(u)dG3

(v)]α[DG3
(u, v)]β −

∑
u∈V1
v∈V2

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V2

{[dG3
(v1)dG3

(v)]α[DG3
(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}

+
∑
v∈V2

{[dG3(v2)dG3(v)]
α[DG3(v2, v)]

β − [dG(v2)dG(v)]
α[DG(v2, v)]

β}

=
∑
v∈V2

[(t+ dG(v1))
α − 2βdG(v1)

α] +
∑
v∈V2

[2β − (t+ 1)α]

=
∑
v∈V2

[2β(1− dG(v1)
α) + (t+ dG(v1))

α − (t+ 1)α].

(10)

For u ∈ V1, v ∈ V3,∑
u∈V1
v∈V3

[dG3
(u)dG3

(v)]α[DG3
(u, v)]β −

∑
u∈V1
v∈V3

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑
v∈V2

{[dG3
(v1)dG3

(v)]α[DG3
(v1, v)]

β − [dG(v1)dG(v)]
α[DG(v1, v)]

β}
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+
∑
v∈V2

{[dG3
(v2)dG3

(v)]α[DG3
(v2, v)]

β − [dG(v2)dG(v)]
α[DG(v2, v)]

β}

=
∑
v∈V2

[(t+ dG(v1))
αdG(v)

αDG(v1, v)
β − dG(v1)

αdG(v)
αDG(v1, v)

β ]

+
∑
v∈V2

[dG(v)
α(DG(v1, v) + 1)β − (t+ 1)αdG(v)

α(DG(v1, v) + 1)β ]

=
∑
v∈V2

dG(v)
α{(DG(v1, v) + 1)β [1− (t+ 1)α]

+DG(v1, v)
β [(t+ dG(v1))

α − dG(v1)
α]}. (11)

For u ∈ V2, v ∈ V3,∑
u∈V2
v∈V3

[dG3
(u)dG3

(v)]α[DG3
(u, v)]β −

∑
u∈V2
v∈V3

[dG(u)dG(v)]
α[DG(u, v)]

β

=
∑

u∈V2,v∈V3

dG(v)
α[(DG(u, v)− 1)β −DG(u, v)

β ].

(12)

For {u, v} ⊆ V2 or {u, v} ⊆ V3, it is obvious that∑
{u,v}

[dG3
(u)dG3

(v)]α[DG3
(u, v)]β =

∑
{u,v}

[dG(u)dG(v)]
α[DG(u, v)]

β ,

since the degrees and distance between u and v are not change.

Lemma 6. Let 0 ≤ α ≤ 1 and β ≥ 0 such that at least one of α and β is

not 0. Then we have

Gutα,β(G3) < Gutα,β(G).

Proof. For α ≥ 0, Equation 9 is not greater than 0.

For 0 ≤ α ≤ 1 and β ≥ 0, we have that 2β(1−dG(v1)
α)+(t+dG(v1))

α−
(t+ 1)α ≤ 0 by Lemma 1. Thus, Equation 10 is not greater than 0. This

is similar to Equation 11.

For β ≥ 0, dG(v)
α[(DG(u, v) − 1)β −DG(u, v)

β ] ≤ 0. Thus, Equation

12 is not greater than 0.

Since at least one of α and β is not 0, there exists an equation above

less than 0. So, 0 ≤ α ≤ 1 and β ≥ 0, and at least one of α and β is not 0,
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we then have Gutα,β(G3) < Gutα,β(G). The proof thus is complete.

Lemma 7. Let α ≤ β ≤ 0 such that at least one of α and β is not 0.

Then we have

Gutα,β(G3) > Gutα,β(G).

The proof is similar to that of Lemma 6 and we omit it.

3 Extremal results for trees

Now we are ready to present and prove our main results of this paper.

Theorem 7. Let T be a tree of order n. For 0 ≤ α ≤ 1 and β ≥ 0 such

that at least one of α and β is not 0, we have

(n− 1)α+1 + 2β−1(n− 1)(n− 2) =

Gutα,β(Sn) ≤ Gutα,β(T ) ≤ Gutα,β(Pn)

= 2α+1
n−2∑
k=1

kβ + 4α
∑

k1+k2=n−2
k1,k2≥1

k1k
β
2 + (n− 1)β .

The first equality holds if and only if T is the star Sn and the second

equality holds if and only if T is the path Pn.

Proof. For 0 ≤ α ≤ 1 and β ≥ 0 such that at least one of α and β is not

0, we can apply Operations 1 and 2 on a given tree T . By Lemma 2 and

Lemma 4, we know that the general Gutman index of the resultant trees

increase in each step. Finally, we obtain a path of order n.

Similarly, we can apply Operation 3 on a given tree T . By Lemma 6,

the general Gutman index of the resultant trees decrease in each step, and

finally we obtain a star of order n.

The calculations of the general Gutman index for a path and a star are

trivial and we omit it. The proof is now complete.

Theorem 8. Let T be a tree of order n. For ∀v ∈ V (T ) which dG(v) ≥ 3,

there are at most two vertices adjacent to v with degree greater than 1.
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Then for α ≤ 0, β ≤ 0, and at least one of α and β is not 0, we have

Gutα,β(Pn) ≤ Gutα,β(T ).

The equality holds if and only if T is the path Pn.

The proof is similar for Theorem 7 and we omit it.

Theorem 9. Let T be a tree of order n. For α ≤ β ≤ 0 such that at least

one of α and β is not 0, we have

Gutα,β(T ) ≤ Gutα,β(Sn).

The equality holds if and only if T is the star Sn.

The proof is similar to that of Theorem 7 and we omit it.

Corollary. Let T be a tree of order n. For ∀v ∈ V (T ) with dG(v) ≥ 3,

there are at most two vertices adjacent to v with degree greater than 1.

Then for α ≤ β ≤ 0 such that at least one of α and β is not 0, we have

Gutα,β(Pn) ≤ Gutα,β(T ) ≤ Gutα,β(Sn).

The first equality holds if and only if T is the path Pn and the second

equality holds if and only if T is the star Sn.

The proof is similar to that of Theorem 7 and we omit it.

4 Concluding remarks

In this paper, we give three kinds of operations on trees, and discuss the

changes of values of the general Gutman index under these operations. By

these operations, we obtain that for 0 ≤ α ≤ 1 and β ≥ 0 such that at

least one of α and β is not 0, the lower bound of the general Gutman index

for trees with given order is achieved by the star and the upper bound of

the general Gutman index is achieved by the path. If T is a tree such that

∀v ∈ V (T ) with dG(v) ≥ 3, there are at most two vertices adjacent to v

with degree greater than 1, then for α ≤ β ≤ 0 such that at least one of α
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and β is not 0, the lower bound of the general Gutman index is achieved

by the path and upper bound of the general Gutman index is achieved by

the star.
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