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Abstract

Based on computer search, Furtula characterized the connected
graphs with maximal ABCgq index. In this paper we give a math-
ematical proof of the established hypothesizes.

1 Introduction

Let G = (V, E) be a simple, undirected and connected graph on n vertices.
The degree of a vertex v € V(G), denoted by d,, is equal to the number
of edges that are adjacent to v. For any two vertices u and v, the distance
d(u,v) is defined as the length of the shortest path between u and v. The
atom-bond connectivity index ABC(G) was introduced in 1998 in [6], as

apc@@)= Y 4 ftd=2? 22_2 (1)

(u,v)EE(G)

follows:

This index has significant prediction ability and represents one of the most
studied successors of Randi¢ index. In the last two decades various topo-

logical invariants of ABC index were defined and studied. In this paper
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we focus on the Graovac-Ghorbani index introduced in [10] as follows

ABCao(G) = Y etz 2

Ny Ny
(u,0)EE(G)

where n,, is the number of vertices closer to vertex u than vertex v of the
edge (u,v) € E(G), and n, is defined on the same way. The Graovac-
Ghorbani index is distance-based topological descriptor which gives better
prediction in the case of entropy and acentric factor than ABC' index, see
in [3,4,7-9,11,12].

In the last decade the graphs with maximal Graovac-Ghorbani index were
studied in several publications. Rostami et al. in [11] give lower and
upper bounds for the trees with a given number of pendent vertices. Das
et al. in [3] obtain upper bounds for the unicyclic graphs. Dimitrov et al.
in [5] proved that among all bipartite graphs on n vertices, the maximal
Graovac-Ghorbani index is uniquely attained by the complete bipartite
graph K|z 2.

It is easy to notice that among all connected graphs on n vertices, the
minimum value of ABCg¢ is achieved for the complete graphs. From the
definition of the Graovac-Ghorbani index we observe that ABCgg = 0 if
and only if n, = n, =1 for each edge (u,v) from K,.

Based on computer search, Furtula in [7] characterized the connected
graphs with maximal ABCgqg index. It was shown that for connected
graphs with odd number of vertices there is a unique graph that maxi-
mizes ABCgg, while there are two of them for graphs on even number
of vertices. These graphs with odd number of vertices have exactly one
vertex of degree n — 1, and n — 1 vertices have degree equal to n — 2. In
this case the expected upper bound for the ABCqg is (n-1)° V2 = By.

1
Among two graphs with even number of vertices one is regular graph with

degree equal to n — 2, known as a cocktail party graph, while the other
graph that maximizes ABCgg has exactly two vertices of degree equal to
n — 1, and all other vertices are of degree equal to n — 2. In both cases
ABCgq is equal to @\/ﬁ = Bs.

Despite the fact that the connected graphs with maximal ABCgqg in-
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dex are described, in [7] was pointed out that the rigorous mathematical
confirmation of this characterization is needful. In this paper we support
Furtula’s hypothesizes giving a mathematical proof of the existence of the

extremal graphs with maximal Graovac-Ghorbani index.

2 Proof

Let G be a connected graph on n vertices and m edges. First, we
observe that the Graovac-Ghorbani index for triangle-free graphs on n
vertices is less than the bounds By and Bs. If G is a triangle-free graph
on m edges and n vertices, from Mantel’s theorem [13] we have m < %2.
On the other hand, since ,/%’j{:}*2 < 1 for which edge (u,v), we have
ABCgc(G) < m. Now, for n > 7 we easily prove that

ABCea(G) <m < % < ”(”4_ 2 /3 < (”_41)2\/5.

The cases when n < 7 are considered in [7].

From now on we assume that the graph G contains at least one triangle.
For an edge (u,v) of G we define n,, = [{z | d(z,v) = d(z,u)}|. Note that
0 < nyw < n — 2. Moreover, for any edge (u,v) of G it holds the relation
Ny + Ny =N — Ny

By t(G) we denote the number of triangles of a graph G. We use the
following result:

Lemma 1. [1] For the number of triangles of G it holds

m(4m — n?

) <3HG) < D N (3)

(u’v)

n

The left inequality is derived by Bollobés [1]. Since n,, counts cycles
of odd length containing an edge (u,v), the right inequality is obvious. In

our proof we also use the following lemma obtained by Cambie in [2].

Lemma 2. [2] For any edge e = (u,v) € E(G), we have

Ny + Ny + dy + dy < 2n. (4)
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As a consequence of Lemma 1 (the same result also follows from Lemma

2) we derive the following lemma.

Lemma 3. If G is a connected graph on m edges and n vertices, then

m2
Z (ny + ny) §2mn747. (5)

(u,v)€E(G)

Using Lemma 1 is not hard to prove that, if n is an even number and
if ny, > 1,m, > 1 for each edge (u,v) € E(G), then the maximum value of
ABCgg is achieved for the cocktail party graphs.

Proposition 1. Let G be a connected graph on n vertices and m edges.
If n is an even number and if n, > 2,n, > 2 for each edge (u,v) € E(G),
then

ABCao() < =2

The mazimum value is achieved for the cocktail party graphs.

Proof. First we show that n,n, > 2(n — ny,, — 2) for each edge (u,v) €
E(G). Let s =n — nyy = ny + ny. The inequality ny,n, > 2(n — Ny, — 2)
is equivalent to n,(s — n,) > 2(s — 2), which is true because s > n, + 2

and n, > 2. Thus we have

Ny + Ny — 2
ABCgq(G) = Z Vo

(u,w)EE(G)

< Z n— Nyy — 2 m\/il
2(n — nyy — 2) 2

(u,w)EE(G)

From n, > 2 and n, > 2 we get ny, = n —ny — ny < n— 4. Now from

Lemma 1 we get

m(4m —n?) < Z

o < m(n—4) .
- < Ny < m(n—4)

(u,v)EE(G)

Hence m < w and ABCgq(G) < %\/i The equality holds if
c bk

ny = n, = 2 for each edge (u,v) (G) and m = w The graph
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G does not contain a vertex u of degree n — 1; in such case n, = 1 for
each vertex v which is connected to u. From 2m =n(n—2) =>"" , d; >

n(n — 2), we obtain that all vertices of G are of degree n — 2. |

It is clear that the above approach does not work if G contains edges
(u,v) for which n, =1 or n,, = 1. In order to characterize the graphs on n

vertices with maximal ABCgg we apply the Lagrange multipliers method.

Theorem 2. Let G be a connected graph on n vertices. If n is even, then

-2
ABCs(c) < "=
The equality holds for the (n — 2)-regular cocktail party graph and for a
graph which contains two vertices of degree n—1 and all other vertices are
of degree n — 2.

If n is an odd number, then

ABCqq(G) < @\@

The equality holds for the graphs with one vertex of degree n —1 and n—1

vertices of degree n — 2.

Proof. Let G be a connected graph on n vertices and m edges.

Let F': (z1,22,...,Z2m) — R be a real-valued function defined by

m
r _ Z Toi—1 + T — 2
($1,$27...,l‘2m)— _—.

=1 L2i—1L24
It is clear that ABCaq(G) = F(z), 2y, ..., &y,,) where 25, | = n, and
xm = n, for each edge ¢;, = (u,v) € E(G), 1 < ¢ < m. In order

to maximize the index ABCgq(G) we maximize the function F' by ap-
plying the Lagrange multipliers method under the side condition 2m <

g(z1,22, ..., Tom) = 1+ T2+ ... + Toym < 2m(n — 277”) The bounds for
the function g(x1, s, ..., T2y, ) come from 2 < n, + n, and Lemma 3.
We calculate -2 = 1. —malZooa) oF -1 ..

Owa;_1 @i 172:)2 \/z21_1+12,;—2 Owa; 2(wa;_1x2:) 2
Toi—1(2—w2i-1) OF

Hence o = 0 if and only if x; = 2. Thus, the point

VT2i-1+tT2;—2
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(2,2,...,2) is the unique critical point for the function F. If n, = n, = 2

for each edge of the graph G, then

F(2,2,...,2) = ABCga(G) = mT‘/i (6)

From Vg =(1,1,...,1) and VF = X - Vg, for each i = 1,...,m we get

2(.%‘22‘,1,%21')% \/W
. i1 (2 Taic) (8)

2wpi 1w2:)% V21 T2 —2
Dividing (7) by (8) we get x9;—1 = X2; = ¢ Or Zg;—1 + T2; = 2, that is,

To;_1 = x9; = 1. The case x9;,_1 = x9; = 1 contributes with 0 in the index

formula, thus we omit it. From the boundary constraint g = 2m(n — 27"‘)
we have 2mc = 2m(n — 22), that is, z; = n — 2. Now if we assume that

ny =ny, =n — 22 for each edge (u,v) € E(G), we get

2 2 2
m m n—" S V/n(2n2 — 2n — 4m).

(9)

n n’' n n2 —2m
Comparing (6) and (9) we easily prove that the inequality

2
Vn(2n2 — 2n — 4m) < %f

m
n?2 —2m

is equivalent to
n* +4n? + 4m? — 4n® — 4mn® + 8mn > 0 & (n® — 2n — 2m)? > 0.

n(n—2)
5 -

The equality between the bounds in (6) and (9) holds if m =
Therefore, for each connected graph on m edges and n vertices holds

my/2 - my/2
5

F($1,$2,...7£B2m) S T @ABCGg(G) < (10)

In the second part of the proof we consider when the equality in (10) does
hold.
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Let n be an odd number. Since the maximum of F' is achieved for n, =
n, = 2, we get ny, = n — 4. Now from Lemma 1 we get m < w,
but clearly the equality is not attained. Since each edge of the extremal
graph contributes with ? in the index-formula, we can assume that there
are edges (u,v) for which ,/% = g and n, # n,. Basy calcula-
tions show that for each such edge it holds n, = 2 or n, = 2. In order
to maximize the value for m, from Lemma 1, we maximize the value of
Z(H,U)GE(G) Nuy. Thus we assume that n, = 1, i.e., we assume that the
graph G contains edges for which (n,,n,) = (1,2). Let G contains k ver-
tices of degree n — 1. Then we have 2m < k(n — 1) + (n — k)(n — 2), from
where m < % There are (g) edges between these k vertices. If for

(u,v) holds d, = d, = n — 1, then n, = n, = 1. In this case we have

Ny+n,—2 _
\ e = 0. Thus

ABCGG(G) < (m —

k(lﬂ2—1)>\2§< <n2—2n—2i-2k—k2>\£§

- <n2§n+l>\g§ (11)

The equality in (11) holds for k£ = 1, i.e., if G contains exactly one vertex
of degree n — 1 and n — 1 vertices of degree n — 2. The Graovac-Ghorbani

index of these graphs is equal to

ABCgq(G) = @ﬁ

If n is even and if n, = n, = 2 for each edge, then G does not contain
n(n—2) n(n—2)
7 2
if all vertices of G are of degree n — 2; in this case we obtain the cocktail

a vertex of degree n — 1 and m < Thus, m = if and only
party graph. If there are edges for which (n,,n,) = (1,2), then we can
suppose that G contains k vertices of degree n — 1. Using the bounds in
(11), we find that the largest value of m is achieved for k = 0, (we already
consider this case), and for £ = 2. In this case we have exactly two vertices

of degree n — 1 and all other vertices of degree n — 2. In both cases (k = 0
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or k = 2) we obtain

ABCae(@) = " =2 /3.

Acknowledgment: The author is supported by the Slovenian Research
Agency through the grants P1-0285, J1-1695, J1-9108 and J1-9110.

References

1]

2]

B. Bollobas, Extremal Graph Theory, Acad. Press, London, 1978, pp.
297-297.

S. Cambie, Five results on maximizing topological indices of graphs,
Discr. Math. Theor. Comput. Sci. 23 (2021) #6896.

K. C. Das, K. Xu, A. Graovac, Maximal unicyclic graphs with respect
to new atom-bond connectivity index, Acta Chim. Slov. 60 (2013)
34-42.

K. C. Das, M. A. Mohammed, I. Gutman, K. A. Atan, Comparison be-
tween atom-bond connectivity indices of graphs, MATCH Commun.
Math. Comput. Chem. 76 (2016) 159-170.

D. Dimitrov, B. Ikica, R. Skrekovski, Remarks on the Graovac-
Ghorbani index of bipartite graphs, Appl. Math. Comp. 293 (2017)
370-376.

E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom—bond con-
nectivity index: Modelling the enthalpy of formation of alkanes, In-
dian J. Chem. 37A (1998) 849-855.

B. Furtula, Atom-bond connectivity index versus Graovac-Ghorbani
analog, MATCH Commun. Math. Comput. Chem. 75 (2016) 233-242.

B. Furtula, I. Gutman, K. C. Das, On atom-bond molecule structure
descriptors, J. Serb. Chem. Soc. 81 (2016) 271-276.

W. Gao, W. Wang, Second atom—bond connectivity index of special
molecular structures, J. Chem. 2014 (2014) #906254.



525

[10]

[11]

[12]

[13]

A. Graovac, M. Ghorbani, A new version of atom-bond connectivity
index, Acta Chim. Slov 57 (2010) 609-612.

M. Rostami, M. Sohrabi-Haghighat, M. Ghorbani, On second
atom-bond connectivity index, Iranian J. Math. Chem. 4 (2013)
265-270.

M. Rostami, M. Sohrabi-Haghighat, Further results on new version
of atom—bond connectivity index, MATCH Commun. Math. Comput.
Chem. 71 (2014) 21-32.

W. Mantel, Solution to Problem 28, by H. Gouwentak, W. Mantel,
J. Teixeira de Mattes, F. Schuh, and W. A. Wythoff, Wiskundige
Opgaven 10 (1907) 60-61.



	Introduction
	Proof

