Connected Graphs with Maximal Graovac-Ghorbani Index

Slobodan Filipovski ${ }^{a, *}$
${ }^{a}$ FAMNIT, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia slobodan.filipovski@famnit.upr.si

(Received June 17, 2022)

Abstract

Based on computer search, Furtula characterized the connected graphs with maximal $A B C_{G G}$ index. In this paper we give a mathematical proof of the established hypothesizes.

1 Introduction

Let $G=(V, E)$ be a simple, undirected and connected graph on n vertices. The degree of a vertex $v \in V(G)$, denoted by d_{v}, is equal to the number of edges that are adjacent to v. For any two vertices u and v, the distance $d(u, v)$ is defined as the length of the shortest path between u and v. The atom-bond connectivity index $A B C(G)$ was introduced in 1998 in [6], as follows:

$$
\begin{equation*}
A B C(G)=\sum_{(u, v) \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}} \tag{1}
\end{equation*}
$$

This index has significant prediction ability and represents one of the most studied successors of Randić index. In the last two decades various topological invariants of $A B C$ index were defined and studied. In this paper

[^0]we focus on the Graovac-Ghorbani index introduced in [10] as follows
\[

$$
\begin{equation*}
A B C_{G G}(G)=\sum_{(u, v) \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}} \tag{2}
\end{equation*}
$$

\]

where n_{u} is the number of vertices closer to vertex u than vertex v of the edge $(u, v) \in E(G)$, and n_{v} is defined on the same way. The GraovacGhorbani index is distance-based topological descriptor which gives better prediction in the case of entropy and acentric factor than $A B C$ index, see in $[3,4,7-9,11,12]$.
In the last decade the graphs with maximal Graovac-Ghorbani index were studied in several publications. Rostami et al. in [11] give lower and upper bounds for the trees with a given number of pendent vertices. Das et al. in [3] obtain upper bounds for the unicyclic graphs. Dimitrov et al. in [5] proved that among all bipartite graphs on n vertices, the maximal Graovac-Ghorbani index is uniquely attained by the complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.

It is easy to notice that among all connected graphs on n vertices, the minimum value of $A B C_{G G}$ is achieved for the complete graphs. From the definition of the Graovac-Ghorbani index we observe that $A B C_{G G}=0$ if and only if $n_{u}=n_{v}=1$ for each edge (u, v) from K_{n}.
Based on computer search, Furtula in [7] characterized the connected graphs with maximal $A B C_{G G}$ index. It was shown that for connected graphs with odd number of vertices there is a unique graph that maximizes $A B C_{G G}$, while there are two of them for graphs on even number of vertices. These graphs with odd number of vertices have exactly one vertex of degree $n-1$, and $n-1$ vertices have degree equal to $n-2$. In this case the expected upper bound for the $A B C_{G G}$ is $\frac{(n-1)^{2}}{4} \sqrt{2}=B_{1}$. Among two graphs with even number of vertices one is regular graph with degree equal to $n-2$, known as a cocktail party graph, while the other graph that maximizes $A B C_{G G}$ has exactly two vertices of degree equal to $n-1$, and all other vertices are of degree equal to $n-2$. In both cases $A B C_{G G}$ is equal to $\frac{n(n-2)}{4} \sqrt{2}=B_{2}$.

Despite the fact that the connected graphs with maximal $A B C_{G G}$ in-
dex are described, in [7] was pointed out that the rigorous mathematical confirmation of this characterization is needful. In this paper we support Furtula's hypothesizes giving a mathematical proof of the existence of the extremal graphs with maximal Graovac-Ghorbani index.

2 Proof

Let G be a connected graph on n vertices and m edges. First, we observe that the Graovac-Ghorbani index for triangle-free graphs on n vertices is less than the bounds B_{1} and B_{2}. If G is a triangle-free graph on m edges and n vertices, from Mantel's theorem [13] we have $m \leq \frac{n^{2}}{4}$. On the other hand, since $\sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}<1$ for which edge (u, v), we have $A B C_{G G}(G)<m$. Now, for $n \geq 7$ we easily prove that

$$
A B C_{G G}(G)<m \leq \frac{n^{2}}{4} \leq \frac{n(n-2)}{4} \sqrt{2}<\frac{(n-1)^{2}}{4} \sqrt{2}
$$

The cases when $n<7$ are considered in [7].
From now on we assume that the graph G contains at least one triangle. For an edge (u, v) of G we define $n_{u v}=|\{z \mid d(z, v)=d(z, u)\}|$. Note that $0 \leq n_{u v} \leq n-2$. Moreover, for any edge (u, v) of G it holds the relation $n_{u}+n_{v}=n-n_{u v}$.
By $t(G)$ we denote the number of triangles of a graph G. We use the following result:

Lemma 1. [1] For the number of triangles of G it holds

$$
\begin{equation*}
\frac{m\left(4 m-n^{2}\right)}{n} \leq 3 t(G) \leq \sum_{(u, v)} n_{u v} \tag{3}
\end{equation*}
$$

The left inequality is derived by Bollobás [1]. Since $n_{u v}$ counts cycles of odd length containing an edge (u, v), the right inequality is obvious. In our proof we also use the following lemma obtained by Cambie in [2].

Lemma 2. [2] For any edge $e=(u, v) \in E(G)$, we have

$$
\begin{equation*}
n_{u}+n_{v}+d_{u}+d_{v} \leq 2 n \tag{4}
\end{equation*}
$$

As a consequence of Lemma 1 (the same result also follows from Lemma $2)$ we derive the following lemma.

Lemma 3. If G is a connected graph on m edges and n vertices, then

$$
\begin{equation*}
\sum_{(u, v) \in E(G)}\left(n_{u}+n_{v}\right) \leq 2 m n-\frac{4 m^{2}}{n} \tag{5}
\end{equation*}
$$

Using Lemma 1 is not hard to prove that, if n is an even number and if $n_{u}>1, n_{v}>1$ for each edge $(u, v) \in E(G)$, then the maximum value of $A B C_{G G}$ is achieved for the cocktail party graphs.

Proposition 1. Let G be a connected graph on n vertices and m edges. If n is an even number and if $n_{u} \geq 2, n_{v} \geq 2$ for each edge $(u, v) \in E(G)$, then

$$
A B C_{G G}(G) \leq \frac{n(n-2)}{4} \sqrt{2}
$$

The maximum value is achieved for the cocktail party graphs.
Proof. First we show that $n_{u} n_{v} \geq 2\left(n-n_{u v}-2\right)$ for each edge $(u, v) \in$ $E(G)$. Let $s=n-n_{u v}=n_{u}+n_{v}$. The inequality $n_{u} n_{v} \geq 2\left(n-n_{u v}-2\right)$ is equivalent to $n_{u}\left(s-n_{u}\right) \geq 2(s-2)$, which is true because $s \geq n_{u}+2$ and $n_{u} \geq 2$. Thus we have

$$
\begin{aligned}
A B C_{G G}(G) & =\sum_{(u, v) \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}} \\
& \leq \sum_{(u, v) \in E(G)} \sqrt{\frac{n-n_{u v}-2}{2\left(n-n_{u v}-2\right)}}=\frac{m \sqrt{2}}{2}
\end{aligned}
$$

From $n_{u} \geq 2$ and $n_{v} \geq 2$ we get $n_{u v}=n-n_{u}-n_{v} \leq n-4$. Now from Lemma 1 we get

$$
\frac{m\left(4 m-n^{2}\right)}{n} \leq \sum_{(u, v) \in E(G)} n_{u v} \leq m(n-4)
$$

Hence $m \leq \frac{n(n-2)}{2}$ and $A B C_{G G}(G) \leq \frac{n(n-2)}{4} \sqrt{2}$. The equality holds if $n_{u}=n_{v}=2$ for each edge $(u, v) \in E(G)$ and $m=\frac{n(n-2)}{2}$. The graph
G does not contain a vertex u of degree $n-1$; in such case $n_{v}=1$ for each vertex v which is connected to u. From $2 m=n(n-2)=\sum_{i=1}^{n} d_{i} \geq$ $n(n-2)$, we obtain that all vertices of G are of degree $n-2$.

It is clear that the above approach does not work if G contains edges (u, v) for which $n_{u}=1$ or $n_{v}=1$. In order to characterize the graphs on n vertices with maximal $A B C_{G G}$ we apply the Lagrange multipliers method.

Theorem 2. Let G be a connected graph on n vertices. If n is even, then

$$
A B C_{G G}(G) \leq \frac{n(n-2)}{4} \sqrt{2}
$$

The equality holds for the ($n-2$)-regular cocktail party graph and for a graph which contains two vertices of degree $n-1$ and all other vertices are of degree $n-2$.
If n is an odd number, then

$$
A B C_{G G}(G) \leq \frac{(n-1)^{2}}{4} \sqrt{2}
$$

The equality holds for the graphs with one vertex of degree $n-1$ and $n-1$ vertices of degree $n-2$.

Proof. Let G be a connected graph on n vertices and m edges.
Let $F:\left(x_{1}, x_{2}, \ldots, x_{2 m}\right) \rightarrow \mathbb{R}$ be a real-valued function defined by

$$
F\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{i=1}^{m} \sqrt{\frac{x_{2 i-1}+x_{2 i}-2}{x_{2 i-1} x_{2 i}}} .
$$

It is clear that $A B C_{G G}(G)=F\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{2 m}^{\prime}\right)$ where $x_{2 i-1}^{\prime}=n_{u}$ and $x_{2 i}^{\prime}=n_{v}$ for each edge $e_{i}=(u, v) \in E(G), 1 \leq i \leq m$. In order to maximize the index $A B C_{G G}(G)$ we maximize the function F by applying the Lagrange multipliers method under the side condition $2 m \leq$ $g\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=x_{1}+x_{2}+\ldots+x_{2 m} \leq 2 m\left(n-\frac{2 m}{n}\right)$. The bounds for the function $g\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ come from $2 \leq n_{u}+n_{v}$ and Lemma 3 .
We calculate $\frac{\partial F}{\partial x_{2 i-1}}=\frac{1}{2\left(x_{2 i-1} x_{2 i}\right)^{\frac{3}{2}}} \cdot \frac{x_{2 i}\left(2-x_{2 i}\right)}{\sqrt{x_{2 i-1}+x_{2 i}-2}}$ and $\frac{\partial F}{\partial x_{2 i}}=\frac{1}{2\left(x_{2 i-1} x_{2 i}\right)^{\frac{3}{2}}}$. $\frac{x_{2 i-1}\left(2-x_{2 i-1}\right)}{\sqrt{x_{2 i-1}+x_{2 i}-2}}$. Hence $\frac{\partial F}{\partial x_{i}}=0$ if and only if $x_{i}=2$. Thus, the point
$(2,2, \ldots, 2)$ is the unique critical point for the function F. If $n_{u}=n_{v}=2$ for each edge of the graph G, then

$$
\begin{equation*}
F(2,2, \ldots, 2)=A B C_{G G}(G)=\frac{m \sqrt{2}}{2} \tag{6}
\end{equation*}
$$

From $\nabla g=\langle 1,1, \ldots, 1\rangle$ and $\nabla F=\lambda \cdot \nabla g$, for each $i=1, \ldots, m$ we get

$$
\begin{align*}
& \frac{1}{2\left(x_{2 i-1} x_{2 i}\right)^{\frac{3}{2}}} \cdot \frac{x_{2 i}\left(2-x_{2 i}\right)}{\sqrt{x_{2 i-1}+x_{2 i}-2}}=\lambda \tag{7}\\
& \frac{1}{2\left(x_{2 i-1} x_{2 i}\right)^{\frac{3}{2}}} \cdot \frac{x_{2 i-1}\left(2-x_{2 i-1}\right)}{\sqrt{x_{2 i-1}+x_{2 i}-2}}=\lambda \tag{8}
\end{align*}
$$

Dividing (7) by (8) we get $x_{2 i-1}=x_{2 i}=c$ or $x_{2 i-1}+x_{2 i}=2$, that is, $x_{2 i-1}=x_{2 i}=1$. The case $x_{2 i-1}=x_{2 i}=1$ contributes with 0 in the index formula, thus we omit it. From the boundary constraint $g=2 m\left(n-\frac{2 m}{n}\right)$ we have $2 m c=2 m\left(n-\frac{2 m}{n}\right)$, that is, $x_{i}=n-\frac{2 m}{n}$. Now if we assume that $n_{u}=n_{v}=n-\frac{2 m}{n}$ for each edge $(u, v) \in E(G)$, we get

$$
\begin{equation*}
F\left(n-\frac{2 m}{n}, n-\frac{2 m}{n}, \ldots, n-\frac{2 m}{n}\right)=A B C_{G G}(G)=\frac{m}{n^{2}-2 m} \sqrt{n\left(2 n^{2}-2 n-4 m\right)} \tag{9}
\end{equation*}
$$

Comparing (6) and (9) we easily prove that the inequality

$$
\frac{m}{n^{2}-2 m} \sqrt{n\left(2 n^{2}-2 n-4 m\right)} \leq \frac{m \sqrt{2}}{2}
$$

is equivalent to

$$
n^{4}+4 n^{2}+4 m^{2}-4 n^{3}-4 m n^{2}+8 m n \geq 0 \Leftrightarrow\left(n^{2}-2 n-2 m\right)^{2} \geq 0
$$

The equality between the bounds in (6) and (9) holds if $m=\frac{n(n-2)}{2}$. Therefore, for each connected graph on m edges and n vertices holds

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{2 m}\right) \leq \frac{m \sqrt{2}}{2} \Leftrightarrow A B C_{G G}(G) \leq \frac{m \sqrt{2}}{2} \tag{10}
\end{equation*}
$$

In the second part of the proof we consider when the equality in (10) does hold.

Let n be an odd number. Since the maximum of F is achieved for $n_{u}=$ $n_{v}=2$, we get $n_{u v}=n-4$. Now from Lemma 1 we get $m \leq \frac{n(n-2)}{2}$, but clearly the equality is not attained. Since each edge of the extremal graph contributes with $\frac{\sqrt{2}}{2}$ in the index-formula, we can assume that there are edges (u, v) for which $\sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}=\frac{\sqrt{2}}{2}$ and $n_{u} \neq n_{v}$. Easy calculations show that for each such edge it holds $n_{u}=2$ or $n_{v}=2$. In order to maximize the value for m, from Lemma 1, we maximize the value of $\sum_{(u, v) \in E(G)} n_{u v}$. Thus we assume that $n_{u}=1$, i.e., we assume that the graph G contains edges for which $\left(n_{u}, n_{v}\right)=(1,2)$. Let G contains k vertices of degree $n-1$. Then we have $2 m \leq k(n-1)+(n-k)(n-2)$, from where $m \leq \frac{n^{2}-2 n+k}{2}$. There are $\binom{k}{2}$ edges between these k vertices. If for (u, v) holds $d_{u}=d_{v}=n-1$, then $n_{u}=n_{v}=1$. In this case we have $\sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}=0$. Thus

$$
\begin{gather*}
A B C_{G G}(G) \leq\left(m-\frac{k(k-1)}{2}\right) \frac{\sqrt{2}}{2} \leq\left(\frac{n^{2}-2 n+2 k-k^{2}}{2}\right) \frac{\sqrt{2}}{2} \\
\leq\left(\frac{n^{2}-2 n+1}{2}\right) \frac{\sqrt{2}}{2} \tag{11}
\end{gather*}
$$

The equality in (11) holds for $k=1$, i.e., if G contains exactly one vertex of degree $n-1$ and $n-1$ vertices of degree $n-2$. The Graovac-Ghorbani index of these graphs is equal to

$$
A B C_{G G}(G)=\frac{(n-1)^{2}}{4} \sqrt{2}
$$

If n is even and if $n_{u}=n_{v}=2$ for each edge, then G does not contain a vertex of degree $n-1$ and $m \leq \frac{n(n-2)}{2}$. Thus, $m=\frac{n(n-2)}{2}$ if and only if all vertices of G are of degree $n-2$; in this case we obtain the cocktail party graph. If there are edges for which $\left(n_{u}, n_{v}\right)=(1,2)$, then we can suppose that G contains k vertices of degree $n-1$. Using the bounds in (11), we find that the largest value of m is achieved for $k=0$, (we already consider this case), and for $k=2$. In this case we have exactly two vertices of degree $n-1$ and all other vertices of degree $n-2$. In both cases $(k=0$
or $k=2$) we obtain

$$
A B C_{G G}(G)=\frac{n(n-2)}{4} \sqrt{2} .
$$

Acknowledgment: The author is supported by the Slovenian Research Agency through the grants P1-0285, J1-1695, J1-9108 and J1-9110.

References

[1] B. Bollobás, Extremal Graph Theory, Acad. Press, London, 1978, pp. 297-297.
[2] S. Cambie, Five results on maximizing topological indices of graphs, Discr. Math. Theor. Comput. Sci. 23 (2021) \#6896.
[3] K. C. Das, K. Xu, A. Graovac, Maximal unicyclic graphs with respect to new atom-bond connectivity index, Acta Chim. Slov. 60 (2013) 34-42.
[4] K. C. Das, M. A. Mohammed, I. Gutman, K. A. Atan, Comparison between atom-bond connectivity indices of graphs, MATCH Commun. Math. Comput. Chem. 76 (2016) 159-170.
[5] D. Dimitrov, B. Ikica, R. Škrekovski, Remarks on the GraovacGhorbani index of bipartite graphs, Appl. Math. Comp. 293 (2017) 370-376.
[6] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[7] B. Furtula, Atom-bond connectivity index versus Graovac-Ghorbani analog, MATCH Commun. Math. Comput. Chem. 75 (2016) 233-242.
[8] B. Furtula, I. Gutman, K. C. Das, On atom-bond molecule structure descriptors, J. Serb. Chem. Soc. 81 (2016) 271-276.
[9] W. Gao, W. Wang, Second atom-bond connectivity index of special molecular structures, J. Chem. 2014 (2014) \#906254.
[10] A. Graovac, M. Ghorbani, A new version of atom-bond connectivity index, Acta Chim. Slov 57 (2010) 609-612.
[11] M. Rostami, M. Sohrabi-Haghighat, M. Ghorbani, On second atom-bond connectivity index, Iranian J. Math. Chem. 4 (2013) 265-270.
[12] M. Rostami, M. Sohrabi-Haghighat, Further results on new version of atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 71 (2014) 21-32.
[13] W. Mantel, Solution to Problem 28, by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and W. A. Wythoff, Wiskundige Opgaven 10 (1907) 60-61.

[^0]: *Corresponding author.

