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Abstract

Based on computer search, Furtula characterized the connected
graphs with maximal ABCGG index. In this paper we give a math-
ematical proof of the established hypothesizes.

1 Introduction

Let G = (V,E) be a simple, undirected and connected graph on n vertices.

The degree of a vertex v ∈ V (G), denoted by dv, is equal to the number

of edges that are adjacent to v. For any two vertices u and v, the distance

d(u, v) is defined as the length of the shortest path between u and v. The

atom-bond connectivity index ABC(G) was introduced in 1998 in [6], as

follows:

ABC(G) =
∑

(u,v)∈E(G)

√
du + dv − 2

dudv
. (1)

This index has significant prediction ability and represents one of the most

studied successors of Randić index. In the last two decades various topo-

logical invariants of ABC index were defined and studied. In this paper

∗Corresponding author.

https://doi.org/10.46793/match.89-2.517F


518

we focus on the Graovac-Ghorbani index introduced in [10] as follows

ABCGG(G) =
∑

(u,v)∈E(G)

√
nu + nv − 2

nunv
, (2)

where nu is the number of vertices closer to vertex u than vertex v of the

edge (u, v) ∈ E(G), and nv is defined on the same way. The Graovac-

Ghorbani index is distance-based topological descriptor which gives better

prediction in the case of entropy and acentric factor than ABC index, see

in [3, 4, 7–9,11,12].

In the last decade the graphs with maximal Graovac-Ghorbani index were

studied in several publications. Rostami et al. in [11] give lower and

upper bounds for the trees with a given number of pendent vertices. Das

et al. in [3] obtain upper bounds for the unicyclic graphs. Dimitrov et al.

in [5] proved that among all bipartite graphs on n vertices, the maximal

Graovac-Ghorbani index is uniquely attained by the complete bipartite

graph K⌊n
2 ⌋,⌈n

2 ⌉.

It is easy to notice that among all connected graphs on n vertices, the

minimum value of ABCGG is achieved for the complete graphs. From the

definition of the Graovac-Ghorbani index we observe that ABCGG = 0 if

and only if nu = nv = 1 for each edge (u, v) from Kn.

Based on computer search, Furtula in [7] characterized the connected

graphs with maximal ABCGG index. It was shown that for connected

graphs with odd number of vertices there is a unique graph that maxi-

mizes ABCGG, while there are two of them for graphs on even number

of vertices. These graphs with odd number of vertices have exactly one

vertex of degree n − 1, and n − 1 vertices have degree equal to n − 2. In

this case the expected upper bound for the ABCGG is (n−1)2

4

√
2 = B1.

Among two graphs with even number of vertices one is regular graph with

degree equal to n − 2, known as a cocktail party graph, while the other

graph that maximizes ABCGG has exactly two vertices of degree equal to

n − 1, and all other vertices are of degree equal to n − 2. In both cases

ABCGG is equal to n(n−2)
4

√
2 = B2.

Despite the fact that the connected graphs with maximal ABCGG in-
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dex are described, in [7] was pointed out that the rigorous mathematical

confirmation of this characterization is needful. In this paper we support

Furtula’s hypothesizes giving a mathematical proof of the existence of the

extremal graphs with maximal Graovac-Ghorbani index.

2 Proof

Let G be a connected graph on n vertices and m edges. First, we

observe that the Graovac-Ghorbani index for triangle-free graphs on n

vertices is less than the bounds B1 and B2. If G is a triangle-free graph

on m edges and n vertices, from Mantel’s theorem [13] we have m ≤ n2

4 .

On the other hand, since
√

nu+nv−2
nunv

< 1 for which edge (u, v), we have

ABCGG(G) < m. Now, for n ≥ 7 we easily prove that

ABCGG(G) < m ≤ n2

4
≤ n(n− 2)

4

√
2 <

(n− 1)2

4

√
2.

The cases when n < 7 are considered in [7].

From now on we assume that the graph G contains at least one triangle.

For an edge (u, v) of G we define nuv = |{z | d(z, v) = d(z, u)}|. Note that

0 ≤ nuv ≤ n − 2. Moreover, for any edge (u, v) of G it holds the relation

nu + nv = n− nuv.

By t(G) we denote the number of triangles of a graph G. We use the

following result:

Lemma 1. [1] For the number of triangles of G it holds

m(4m− n2)

n
≤ 3t(G) ≤

∑
(u,v)

nuv. (3)

The left inequality is derived by Bollobás [1]. Since nuv counts cycles

of odd length containing an edge (u, v), the right inequality is obvious. In

our proof we also use the following lemma obtained by Cambie in [2].

Lemma 2. [2] For any edge e = (u, v) ∈ E(G), we have

nu + nv + du + dv ≤ 2n. (4)



520

As a consequence of Lemma 1 (the same result also follows from Lemma

2) we derive the following lemma.

Lemma 3. If G is a connected graph on m edges and n vertices, then

∑
(u,v)∈E(G)

(nu + nv) ≤ 2mn− 4m2

n
. (5)

Using Lemma 1 is not hard to prove that, if n is an even number and

if nu > 1, nv > 1 for each edge (u, v) ∈ E(G), then the maximum value of

ABCGG is achieved for the cocktail party graphs.

Proposition 1. Let G be a connected graph on n vertices and m edges.

If n is an even number and if nu ≥ 2, nv ≥ 2 for each edge (u, v) ∈ E(G),

then

ABCGG(G) ≤ n(n− 2)

4

√
2.

The maximum value is achieved for the cocktail party graphs.

Proof. First we show that nunv ≥ 2(n − nuv − 2) for each edge (u, v) ∈
E(G). Let s = n− nuv = nu + nv. The inequality nunv ≥ 2(n− nuv − 2)

is equivalent to nu(s − nu) ≥ 2(s − 2), which is true because s ≥ nu + 2

and nu ≥ 2. Thus we have

ABCGG(G) =
∑

(u,v)∈E(G)

√
nu + nv − 2

nunv

≤
∑

(u,v)∈E(G)

√
n− nuv − 2

2(n− nuv − 2)
=

m
√
2

2
.

From nu ≥ 2 and nv ≥ 2 we get nuv = n − nu − nv ≤ n − 4. Now from

Lemma 1 we get

m(4m− n2)

n
≤

∑
(u,v)∈E(G)

nuv ≤ m(n− 4) .

Hence m ≤ n(n−2)
2 and ABCGG(G) ≤ n(n−2)

4

√
2. The equality holds if

nu = nv = 2 for each edge (u, v) ∈ E(G) and m = n(n−2)
2 . The graph
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G does not contain a vertex u of degree n − 1; in such case nv = 1 for

each vertex v which is connected to u. From 2m = n(n− 2) =
∑n

i=1 di ≥
n(n− 2), we obtain that all vertices of G are of degree n− 2.

It is clear that the above approach does not work if G contains edges

(u, v) for which nu = 1 or nv = 1. In order to characterize the graphs on n

vertices with maximal ABCGG we apply the Lagrange multipliers method.

Theorem 2. Let G be a connected graph on n vertices. If n is even, then

ABCGG(G) ≤ n(n− 2)

4

√
2.

The equality holds for the (n − 2)-regular cocktail party graph and for a

graph which contains two vertices of degree n−1 and all other vertices are

of degree n− 2.

If n is an odd number, then

ABCGG(G) ≤ (n− 1)2

4

√
2.

The equality holds for the graphs with one vertex of degree n− 1 and n− 1

vertices of degree n− 2.

Proof. Let G be a connected graph on n vertices and m edges.

Let F : (x1, x2, . . . , x2m) → R be a real-valued function defined by

F (x1, x2, . . . , x2m) =

m∑
i=1

√
x2i−1 + x2i − 2

x2i−1x2i
.

It is clear that ABCGG(G) = F (x
′

1, x
′

2, . . . , x
′

2m) where x
′

2i−1 = nu and

x
′

2i = nv for each edge ei = (u, v) ∈ E(G), 1 ≤ i ≤ m. In order

to maximize the index ABCGG(G) we maximize the function F by ap-

plying the Lagrange multipliers method under the side condition 2m ≤
g(x1, x2, . . . , x2m) = x1 + x2 + . . . + x2m ≤ 2m(n − 2m

n ). The bounds for

the function g(x1, x2, . . . , x2m) come from 2 ≤ nu + nv and Lemma 3.

We calculate ∂F
∂x2i−1

= 1

2(x2i−1x2i)
3
2
· x2i(2−x2i)√

x2i−1+x2i−2
and ∂F

∂x2i
= 1

2(x2i−1x2i)
3
2
·

x2i−1(2−x2i−1)√
x2i−1+x2i−2

. Hence ∂F
∂xi

= 0 if and only if xi = 2. Thus, the point
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(2, 2, . . . , 2) is the unique critical point for the function F . If nu = nv = 2

for each edge of the graph G, then

F (2, 2, . . . , 2) = ABCGG(G) =
m
√
2

2
(6)

From ∇g = ⟨1, 1, . . . , 1⟩ and ∇F = λ · ∇g, for each i = 1, . . . ,m we get

1

2(x2i−1x2i)
3
2

· x2i(2− x2i)√
x2i−1 + x2i − 2

= λ (7)

1

2(x2i−1x2i)
3
2

· x2i−1(2− x2i−1)√
x2i−1 + x2i − 2

= λ (8)

Dividing (7) by (8) we get x2i−1 = x2i = c or x2i−1 + x2i = 2, that is,

x2i−1 = x2i = 1. The case x2i−1 = x2i = 1 contributes with 0 in the index

formula, thus we omit it. From the boundary constraint g = 2m(n− 2m
n )

we have 2mc = 2m(n− 2m
n ), that is, xi = n− 2m

n . Now if we assume that

nu = nv = n− 2m
n for each edge (u, v) ∈ E(G), we get

F (n−2m

n
, n−2m

n
, . . . , n−2m

n
) = ABCGG(G) =

m

n2 − 2m

√
n(2n2 − 2n− 4m).

(9)

Comparing (6) and (9) we easily prove that the inequality

m

n2 − 2m

√
n(2n2 − 2n− 4m) ≤ m

√
2

2

is equivalent to

n4 + 4n2 + 4m2 − 4n3 − 4mn2 + 8mn ≥ 0 ⇔ (n2 − 2n− 2m)2 ≥ 0.

The equality between the bounds in (6) and (9) holds if m = n(n−2)
2 .

Therefore, for each connected graph on m edges and n vertices holds

F (x1, x2, . . . , x2m) ≤ m
√
2

2
⇔ ABCGG(G) ≤ m

√
2

2
. (10)

In the second part of the proof we consider when the equality in (10) does

hold.
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Let n be an odd number. Since the maximum of F is achieved for nu =

nv = 2, we get nuv = n − 4. Now from Lemma 1 we get m ≤ n(n−2)
2 ,

but clearly the equality is not attained. Since each edge of the extremal

graph contributes with
√
2
2 in the index-formula, we can assume that there

are edges (u, v) for which
√

nu+nv−2
nunv

=
√
2
2 and nu ̸= nv. Easy calcula-

tions show that for each such edge it holds nu = 2 or nv = 2. In order

to maximize the value for m, from Lemma 1, we maximize the value of∑
(u,v)∈E(G) nuv. Thus we assume that nu = 1, i.e., we assume that the

graph G contains edges for which (nu, nv) = (1, 2). Let G contains k ver-

tices of degree n− 1. Then we have 2m ≤ k(n− 1) + (n− k)(n− 2), from

where m ≤ n2−2n+k
2 . There are

(
k
2

)
edges between these k vertices. If for

(u, v) holds du = dv = n − 1, then nu = nv = 1. In this case we have√
nu+nv−2

nunv
= 0. Thus

ABCGG(G) ≤
(
m− k(k − 1)

2

) √
2

2
≤

(
n2 − 2n+ 2k − k2

2

) √
2

2

≤
(
n2 − 2n+ 1

2

) √
2

2
(11)

The equality in (11) holds for k = 1, i.e., if G contains exactly one vertex

of degree n− 1 and n− 1 vertices of degree n− 2. The Graovac-Ghorbani

index of these graphs is equal to

ABCGG(G) =
(n− 1)2

4

√
2.

If n is even and if nu = nv = 2 for each edge, then G does not contain

a vertex of degree n − 1 and m ≤ n(n−2)
2 . Thus, m = n(n−2)

2 if and only

if all vertices of G are of degree n− 2; in this case we obtain the cocktail

party graph. If there are edges for which (nu, nv) = (1, 2), then we can

suppose that G contains k vertices of degree n − 1. Using the bounds in

(11), we find that the largest value of m is achieved for k = 0, (we already

consider this case), and for k = 2. In this case we have exactly two vertices

of degree n− 1 and all other vertices of degree n− 2. In both cases (k = 0
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or k = 2) we obtain

ABCGG(G) =
n(n− 2)

4

√
2.
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