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Abstract

The Wiener index of a connected graph is the sum of distances
between all pairs of vertices. Let G(n, 2k) be the set of all graphs
on n vertices with exactly 2k vertices of odd degree. G(n, 0) is
just the set of all Eulerian graphs on n vertices. In Gutman et
al. (2014) and Dankelmann (2021), the authors characterized the
graphs G(n, 0) with the first four minimum Wiener index and the
first two maximum Wiener index. In the paper, we characterize the
graph in G(n, 2k) with the minimum Wiener index for all 0 ≤ k ≤
n
2
, and the graph in G(n, 2) with the first-maximum and second-

maximum Wiener index.

1 Introduction

All graphs considered in this article are finite, undirected, connected, with-

out loops and multiple edges. Let G = (V,E) be a graph. The distance

between vertices u and v of G, denoted by dG(u, v), is the number of edges

on a shortest path connecting these vertices in G. The distance of a vertex
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v ∈ V (G), σG(v), is the sum of distances between v and all other vertices

of G. The Wiener index of G is a graph invariant based on distances in a

graph. It is denoted by W (G) and defined as the sum of distances between

all pairs of vertices in G:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
v∈V (G)

σG(v).

The Wiener index is the oldest and one among the most investigated

topological indices in mathematical chemistry and in related disciplines.

It has been investigated extensively in many literature. From the middle

of the 1970s, the Wiener index gained much popularity and new results

related to it are constantly being reported. For a review, historical details

and further bibliography on the chemical applications of the Wiener index

see [2, 3, 6, 9, 11].

An Euler tour is a closed walk in a graph that traverses every edge

exactly once. A graph is Eulerian if it admits an Euler tour, and a graph

is Eulerian if and only if it is connected and all its vertices have even

degrees. Recently, the Wiener index of an Eulerian graph was considered

in [1, 5]. Gutman, Cruz and Rada [5] characterized the Eulerian graphs

with the first four minimal Wiener indices, and proved that the cycle is

the unique graph maximising the Wiener index among all Eulerian graphs

of given order. They also conjectured that for Eulerian graphs of order

n ≥ 26 the graph consisting of a cycle on n−2 vertices and a triangle that

share a vertex is the unique Eulerian graph with second largest Wiener

index. This conjecture was proved by Dankelmann [1].

Note that an Eulerian graph has no vertex of odd degree. This leads

naturally to determine the extremal Wiener indices and characterize the

extremal graphs among all graphs with given number of vertices of odd

degree. It is well known that every nontrivial tree has at least two vertices

of degree one. Among all trees of given order that have only vertices of

odd degrees, Lin [7] characterized the trees which maximize and minimize

the Wiener index, then trees with second, third, ..., seventeenth maximal

Wiener index were characterized in [4]. Also, Lin [8] characterized the trees

which minimize and maximize the Wiener index among all trees with given
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number of vertices of even degree, respectively.

In this paper, we continue to study the extremal Wiener index of graphs

with 2k vertices of odd degree. Specially, they are Eulerian for k = 0.

Let Gn,2k be the set of all n-vertex graphs with exactly 2k vertices of

odd degree, where 0 ≤ k ≤ n
2 . We will characterize the graphs among

Gn,2k with the smallest, the first and the second greatest Wiener indices.

Some terminologies and notations we use are as follows. Let G = (V,E)

be a graph, a path P = v1v2 · · · vt is a pendant path of G if dG(vt) = 1,

dG(v1) ≥ 3 and dG(v2) = · · · = dG(vt−1) = 2. An edge e ∈ E of a

connected graph G is called a cut edge if the graph G − e obtained by

deleting the edge e is disconnected. A vertex u ∈ V of a simple and

connected graph G is called a cut vertex if the graph G − u obtained by

deleting the vertex u is disconnected. If v is a cut vertex of G and H

a component of G − v, then we say that the subgraph G[V (H) ∪ {u}],
induced by V (H) ∪ {u}, is a branch of G at u. If u is a vertex of G, then

the number of vertices of G adjacent to u is called the degree of u in G,

denoted by dG(v).

2 The graph with the minimal Wiener index

Denote by Kn the complete graph on n vertices. If n is odd, then Kn

has no vertex of odd degree. If n is even, then all vertices in Kn are

of odd degree. Let Mt be a set of t independent edges from Kn. Then

Kn \Mt ∈ Gn,2k, where t = k for odd n and t = n
2 − k for even n.

Theorem 1. (i) If n is odd, then the unique graph among Gn,2k with the

minimal Wiener index is Kn \Mk;

(ii) If n is even, then the unique graph among Gn,2k with the minimal

Wiener index is Kn \Mn
2 −k.

Proof. Let G ∈ Gn,2k, V (G) = {v1, v2, · · · , vn} and v1, v2, · · · , v2k all ver-

tices of odd degree in G.

If n is odd, then dG(vi) ≤ n − 2 and at least one vertex in G is not

adjacent to vi, σG(vi) ≥ 2 + 1 + · · · + 1 = n for 1 ≤ i ≤ 2k. Moreover,
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σG(vj) ≥ 1 + 1 + · · ·+ 1 = n− 1 for 2k + 1 ≤ j ≤ n. So, we have

W (G) =
1

2

∑
v∈V (G)

σG(v) ≥
1

2
(2kn+ (n− 2k)(n− 1))

=
1

2
(n2 − n) + k =

(
n

2

)
+ k

with equality if and only if dG(vi) = n−2 (1 ≤ i ≤ 2k) and dG(vj) = n−1

(2k + 1 ≤ j ≤ n), i.e., G ∼= Kn \Mk.

If n is even, then dG(vj) ≤ n − 2 and at least one vertex in G is not

adjacent to vj , σG(vj) ≥ 2 + 1 + · · · + 1 = n for 2k + 1 ≤ j ≤ n. More

over, σG(vi) ≥ 1 + 1 + · · ·+ 1 = n− 1 for 1 ≤ i ≤ 2k. So, we have

W (G) =
1

2

∑
v∈V (G)

σG(v) ≥
1

2
(2k(n− 1) + (n− 2k)n)

=
1

2
n2 − k =

(
n

2

)
+
(n
2
− k

)
with equality if and only if dG(vi) = n−1 (1 ≤ i ≤ 2k) and dG(vj) = n−2

(2k + 1 ≤ j ≤ n), i.e., G ∼= Kn \Mn
2 −k.

Corollary. (Gutman, Cruz and Rada [5])

(i) If n is odd, then the unique Eulerian graph of order n with minimal

Wiener index is Kn.

(ii) If n is even, then the unique Eulerian graph of order n with minimal

Wiener index is Kn \Mn
2 −k (the cocktail-party graph).

3 Graphs with the maximal Wiener indices

In this section, we consider the elements with the maximal Wiener index

among Gn,2k. For k = 0, it was shown in [5] that the cycle Cn on n

vertices is the unique graph with the maximal Wiener index among Gn,0

(all Eulerian graphs on n vertices). Now, for k = 1, we will determine the

graphs with the first and the second maximal Wiener indices among Gn,2.

Note that Pn ∈ Gn,2, and it is well-known that for any graph G on n
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vertices,

W (G) ≤ n(n+ 1)(n− 1)

6

with equality if and only if G is the path Pn on n vertices. Therefore, we

have

Theorem 2. Pn is the unique graph with the maximal Wiener index

among Gn,2.

We see that all vertices of the extremal graph Pn have the smallest

possible degree (the odd degree is 1 and the even degree is 2). So, it

is plausible to expect that the element of Gn,2 with the second maximal

Wiener index be a graph with n−2 vertices of degree 2, a vertex of degree 1

and a vertex of degree 3, i.e., a graph on n vertices obtained by coalescing

one vertex of the cycle Ca with a pendant vertex of the path Pn−a+1,

denoted by Hn,a. The graph H6,4 is displayed as in Figure 1.

Figure 1. The graph H6,4.

Lemma 1. If 3 ≤ a ≤ n− 1, then

W (Hn,a) =
(2n− a)

2

⌊(a
2

)2⌋
+

(n+ 2a− 1)(n− a+ 1)(n− a)

6
.

Moreover, W (Hn,a) ≤ W (Hn,3) =
n3−7n+12

6 with equality holds if and only

if a = 3.

Proof. Let v be the coalescing vertex of Ca and Pn−a+1, b = n − a + 1.

Then v is a cut vertex of Hn,a, and

W (Hn,a) =
∑

{x,y}⊆V (Ca)

dCa
(x, y) +

∑
{x,y}⊆V (Pb)

dPb
(x, y)
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+
∑

x∈V (Ca)\{v}

∑
y∈V (Pb)\{v}

(dCa(x, v) + dPb
(v, y))

= W (Ca) +W (Pb) + (a− 1)σPb
(v) + (b− 1)σCa

(v).

It is easy to see that W (Ca) =
a
2 ⌊(

a
2 )

2⌋, σCa
(v) = ⌊(a2 )

2⌋, and W (Pb) =
b(b+1)(b−1)

6 , σPb
(v) = b(b−1)

2 . So, we can obtain that

W (Hn,a) =
a

2

⌊(a
2

)2⌋
+

b(b+ 1)(b− 1)

6
+ (a− 1)

b(b− 1)

2
+ (b− 1)

⌊(a
2

)2⌋
=

(2n− a)

2

⌊(a
2

)2⌋
+

(n+ 2a− 1)(n− a+ 1)(n− a)

6
.

Specially, W (Hn,3) =
n3−7n+12

6 .

Now, we show that W (Hn,a) < W (Hn,3) for 4 ≤ a ≤ n− 1.

Since ⌊(a2 )
2⌋ ≤ a2

4 , we have

W (Hn,a) ≤
4n3 − 6a2n+ 5a3 + 12an− 12a2 − 4n+ 4a

24

and

W (Hn,3)−W (Hn,a) ≥
−5a3 + 6a2n+ 12a2 − 12an− 4a− 24n+ 48

24
.

Let f(a) = −5a3+6a2n+12a2−12an−4a−24n+48, where 4 ≤ a ≤ n−1.

Then f is a polynomial of degree 3 with its leading coefficient −5 < 0, the

derivative f ′(a) = −15a2+12na+24a−12n−4. Since f ′(4) = 36n−148 >

0, f(4) = 24n−96 > 0 and f(n−1) = n3+3n2−49n+69 > 0 for n ≥ 5, we

have f(a) > 0 for 4 ≤ a ≤ n − 1. This implies that W (Hn,3) > W (Hn,a)

for 4 ≤ a ≤ n− 1.

Some bounds on the Wiener index and on the total distance of vertices

in 2-connected and 2-edge-connected graphs are given in [10].

Lemma 2. [10] (a) Let G be a 2-edge connected graph of order n. Then

W (G) ≤ n

2

⌊
(
n

2
)2
⌋

with equality if and only if G is a cycle.
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(b) Let G be a 2-connected graph of order n and v a vertex of G. Then

σG(v) ≤
⌊
(
n

2
)2
⌋

with equality if G is a cycle.

(c) Let G be a 2-edge connected graph of order n and v a vertex of G.

Then

σG(v) ≤
n(n− 1)

3
.

Lemma 3. Let G be a connected graph of order n and v a vertex with

dG(v) = s. Then

σG(v) ≤
(n− s)(n− s+ 1)

2
+ s− 1

and σG(v) ≤ (n−3)(n−2)
2 + 2 for 3 ≤ s ≤ n− 1.

Proof. From dG(v) = s, we have

σG(v) ≤ s+ 2 + 3 + · · ·+ (n− s) =
(n− s)(n− s+ 1)

2
+ s− 1.

It is easy to show that (n−s)(n−s+1)
2 + s− 1 ≤ (n−3)(n−2)

2 + 2 for 3 ≤ s ≤
n− 1.

Now, we characterize the elements of G(n, 2) with the second greatest

Wiener index. Let G ∈ G(n, 2). If the degrees of the only two vertices

of odd degree in G are 1 and at least 3, respectively, then we have the

following result.

Lemma 4. Let G ∈ G(n, 2). If one of its only two vertices of odd degree

has degree 1 and the other one has degree at least 3, then

W (G) ≤ W (Hn,3)

with equality if and only if G = Hn,3.

Proof. Suppose to the contrary that the lemma is not valid, and let n be

the minimum value of G for which the lemma fails. Since G has a vertex
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of degree 1, G must have a pendant path Pb = v1v2 · · · vb, where v1 is a cut

vertex with dG(v1) ≥ 3. Let K be the union of the branches at v1 distinct

from Pb, and a = |V (K)|. Then a+ b = n+ 1, and

W (G) = W (K) +W (Pb) + (a− 1)σPb
(v1) + (b− 1)σK(v1).

If a = 3 or a = 4, then K is 2-connected. From Lemma 2, W (K) ≤
W (Ca) =

a
2 ⌊(

a
2 )

2⌋, σK(v1) ≤ σCa
(v1) = ⌊(a2 )

2⌋. We have

W (G) ≤ W (Ca) +W (Pb) + (a− 1)σPb
(v1) + (b− 1)σCa

(v1)

= W (Hn,a) ≤ W (Hn,3)

with equality if and only if a = 3, i.e., G = Hn,3.

If a ≥ 5, K may or may not be 2-edge connected.

Case 1. There is no cut edge in K, or K is 2-edge connected.

It follows from Lemma 2 that W (K) ≤ a
2 ⌊(

a
2 )

2⌋ and σK(v1) ≤ a(a−1)
3 .

On the other hand, W (Pb) =
b(b+1)(b−1)

6 and σPb
(v1) =

b(b−1)
2 . We have

W (G) ≤ a

2

⌊
(
a

2
)2
⌋
+

b(b+ 1)(b− 1)

6
+ (a− 1)

b(b− 1)

2
+ (b− 1)

a(a− 1)

3

=
n3 − a2n+ an− n− a2 + a

6
+

a

2

⌊
(
a

2
)2
⌋
.

Note that W (Hn,3) =
n3−7n+12

6 ,

W (Hn,3)−W (G) ≥ a2n− (a+ 6)n+ a2 − a+ 12

6
− a

2

⌊
(
a

2
)2
⌋
.

If a = 5, we have W (Hn,3) −W (G) = 14n−58
6 > 0 for n ≥ a + 1 = 6,

i.e., W (G) < W (Hn,3).

If a ≥ 6, from a
2 ⌊(

a
2 )

2⌋ ≤ a3

8 , we have

W (Hn,3)−W (G) ≥ 4a2n− 3a3 + 4a2 − 4an− 4a− 24n+ 48

24
.

Let f(a) = 4a2n− 3a3 + 4a2 − 4an− 4a− 24n+ 48, where 6 ≤ a ≤ n− 1.

Then f is a polynomial of degree 3 with its leading coefficient −3 < 0, the
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derivative f ′(a) = −9a2 +8na+8a− 4n− 4. Since f ′(6) = 44n− 280 > 0,

f(6) = 96n − 480 > 0 and f(n − 1) = n3 + n2 − 37n + 59 > 0 for n ≥ 7,

we have f(a) > 0 for 6 ≤ a ≤ n− 1. Therefore, W (Hn,3) > W (Hn,a).

Case 2. There is a cut edge in K. Then v1 is not a vertex of odd

degree in G, otherwise, K is Eulerian and no cut edge in K.

Let uw be a cut edge farthest from v1, see Figure 2, x the vertex of

odd degree with degree at least 3 in G. Then x must belong to H, where

H is the branch of G− uw containing u, H is 2-edge connected. Let F be

the union of the branches at u different from H, we have

W (G) = W (H) +W (F ) + (p− 1)σF (u) + (q − 1)σH(u),

where p = |V (H)|, q = |V (F )| and p+ q = n+ 1.

uH
v1 vb

w

Figure 2. The graph G of Case 2 in Lemma 4.

Note that F is a connected graph with exactly two vertices vb, u of odd

degree and containing two pendant paths v1v2 · · · vb and uw · · · . Then

F = F1

⋃
F2, where F2 = v1v2 · · · vb and F1 is the union of the branches

at v1 in F different from F2, and F1 is a connected graph with exactly two

vertices of odd degree, their degrees in F1 are 1 and at least 3, respectively.

And

W (F ) = W (F1) +W (F2) + (r − 1)σF2
(v1) + (b− 1)σF1

(v1),

where r = |V (F1)|, r + b = q + 1.

Since G is a smallest counterexample that does not satisfy this lemma,

we have W (F1) ≤ W (Hr,3) = r3−7r+12
6 . Also, W (F2) = W (Pb) =

b(b+1)(b−1)
6 , σF2

(v1) = b(b−1)
2 , and σF1

(v1) ≤ (r−3)(r−2)
2 + 2 from Lemma
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3, we have

W (F ) ≤ r3 − 7r + 12

6
+

b(b+ 1)(b− 1)

6

+ (r − 1)
b(b− 1)

2
+ (b− 1)(

(r − 3)(r − 2)

2
+ 2)

=
q3 − 12qr + 29q + 12r2 − 36r + 12

6
.

And

W (Hq,3)−W (F ) ≥ q3 − 7q + 12

6
− q3 − 12qr + 29q + 12r2 − 36r + 12

6

= 2(q − r)(r − 3) > 0 (4 ≤ r < q).

So, we have W (F ) < W (Hq,3) =
q3−7q+12

6 .

Since H is 2-edge connected, W (H) ≤ p
2⌊(

p
2 )

2⌋ and σH(u) ≤ p(p−1)
3 by

Lemma 2. Clearly, W (F ) < q3−7q+12
6 and σF (u) ≤ 1 + 2+ · · ·+ (q − 1) =

q(q−1)
2 . Now,

W (G) = W (H) +W (F ) + (p− 1)σF (u) + (q − 1)σH(u)

<
p

2

⌊
(
p

2
)2
⌋
+

q3 − 7q + 12

6
+ (p− 1)

q(q − 1)

2
+ (q − 1)

p(p− 1)

3
.

From p + q = n + 1, q = n − p + 1, by simple calculation, it can be

obtained that[n3 − p2n+ pn− n− p2 + p

6

]
−
[q3 − 7q + 12

6
+ (p− 1)

q(q − 1)

2
+ (q − 1)

p(p− 1)

3

]
=
[n3 − p2n+ pn− n− p2 + p

6

]
−
[n3 − p2n+ pn− 7n− p2 + 7p+ 6

6

]
=n− p− 1 > 0

and

W (G) <
p

2

⌊
(
p

2
)2
⌋
+

n3 − p2n+ pn− n− p2 + p

6
.

So, we have W (G) < W (Hn,3) by the same calculation as Case 1.
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Finally, we show that Hn,3 is the unique graph with the second Wiener

index among G(n, 2).

Theorem 3. Let G be the graph of order n and exactly two vertices of odd

degree that is not a path. Then

W (G) ≤ W (Hn,3)

with equality if and only if G = Hn,3.

Proof. Let x, y be the unique two vertices of odd degree in G. We consider

three cases according to the degrees of x, y in G, where dG(x) ≤ dG(y).

Case 1. dG(x) = 1 and dG(y) ≥ 3.

From Lemma 4, we have W (G) ≤ W (Hn,3) with equality if and only if

G = Hn,3.

Case 2. dG(x) = dG(y) = 1.

Let Pb = v1v2 · · · vb be a pendant path of G, where vb = y and dG(v1) ≥
3. Then G = Pb

⋃
K, where K is the union of branches at v1 different

from Pb. Let |V (K)| = a = n− b+ 1, we have

W (G) = W (K) +W (Pb) + (a− 1)σPb
(v1) + (b− 1)σK(v1).

Note that K is a connected graph with exactly two vertices x, v1 of odd

degree, and dK(x) = 1, dK(v1) > 1, we have W (K) ≤ W (Ha,3) =
a3−7a+12

6 from Case 1. Since the odd number dK(v1) = dG(v1) − 1 ≥ 3,

σK(v1) ≤ (a−3)(a−2)
2 + 2 by Lemma 3. Clearly, W (Pb) =

b(b+1)(b−1)
6 and

σPb
(v1) =

b(b−1)
2 , b = n− a+ 1, 4 ≤ a ≤ n− 1. So,

W (G) ≤a3 − 7a+ 12

6
+

b(b+ 1)(b− 1)

6
+ (a− 1)

b(b− 1)

2

+ (b− 1)
(a− 3)(a− 2)

2
+ 2

=
n3 − 12na+ 29n+ 12a2 − 36a+ 12

6

<
n3 − 7n+ 12

6
= W (Hn,3)

and W (G) < W (Hn,3).
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Case 3. dG(x) ≥ 3 and dG(y) ≥ 3.

Subcase 3.1. G has no cut edge. Then G is 2-edge connected and

different from Cn. By Lemma 2, we have W (G) < W (Cn) = n
2 ⌊(

n
2 )

2⌋.
And

W (Hn,3)−W (G) >
n3 − 7n+ 12

6
− n

2

⌊
(
n

2
)2
⌋
=

n(n2 − 28) + 48

24
≥ 0,

i.e., W (G) < W (Hn,3).

Subcase 3.2. There is a cut edge in G.

Let uw be an end-cut edge in G, and H be the block without cut edge

of G − uw. With loss of generality, we assume that H contains the cut

vertex u of G contained in H. Let K be the union of the branches at u

distinct from H, and a = |V (H)| and b = |V (K)|. Then b = n−a+1, and

W (G) = W (H) +W (K) + (a− 1)σK(u) + (b− 1)σH(u).

For a = 3 or a = 4, then H is 2-connected, have W (H) ≤ W (Ca)

and σH(u) ≤ σCa
(u). Clearly, W (K) ≤ b3−7b+12

6 < W (Pb) and σK(u) ≤
σPb

(u). Thus, have

W (G) < W (Hn,a) ≤ W (Hn,3).

For a ≥ 5, we note that H is 2-edge connected, W (H) ≤ a
2 ⌊(

a
2 )

2⌋
and σH(u) ≤ a(a−1)

3 by Lemma 2. K contains exactly two vertices of

odd degree, one is the vertex u with dK(u) = 1 and the other is x or

y with degree at least 3. From Lemma 4, W (K) ≤ b3−7b+12
6 . Clearly,

σK(u) ≤ 1 + 2 + · · ·+ (b− 1) = b(b−1)
2 , and

W (G) ≤ a

2

⌊
(
a

2
)2
⌋
+

b3 − 7b+ 12

6
+ (a− 1)

b(b− 1)

2
+ (b− 1)

a(a− 1)

3

<
n3 − a2n+ an− n− a2 + a

6
+

a

2

⌊
(
a

2
)2
⌋
.

We have W (G) < W (Hn,3) by the same calculation as in Case 1 of Lemma

4.

From [1,5], if n is odd, then the graphs with the first-minimal, second-
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minimal, third-minimal, and fourth-minimal Wiener index among G(n, 0)

are Kn, the graphs obtained from Kn by deleting the edges of a triangle,

of a quadrangle, and of a pentagon, respectively; if n is even, then the

graphs with the first-minimal, second-minimal, third-minimal, and fourth-

minimal Wiener index among G(n, 0) are the cocktail-party graph CPn,

the graphs obtained from CPn by deleting the edges of a triangle, of a

quadrangle, and of a pentagon, respectively. The graphs with the first-

maximal and second-maximal Wiener index among G(n, 0) are Cn and

Cn,3 obtained from the disjoint union of two cycles on n− 2 vertices and

3 vertices for all n with exception of six values. Based on our results, the

graph with the minimal Wiener index among G(n, 2k) for 0 ≤ k ≤ n
2 is

characterized, and the graphs with the first-maximal and second-maximal

Wiener index among G(n, 2k) for k = 0, 1 are characterized.

These results lead to a natural question which we pose as a problem.

Problem. What is the maximum Wiener index and the extremal

graph among G(n, 2k), where 2 ≤ k ≤ n
2 ?
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