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Abstract

For a simple graph G, the Seidel energy, denoted by E(S(G)), is
defined as the sum of absolute values of all eigenvalues of the Seidel
matrix of G. Two graphs are called SC-equivalent if one of them
is obtained from the other or its complement by a Seidel switching.
In [3] Haemers conjectured that if G is a graph of order n, then
E(S(G)) ≥ 2n− 2. Recently, in [S. Akbari, M. Einollahzadeh, M.M.
Karkhaneei, M. A. Nematollahi, Proof of a conjecture on the Seidel
energy of graphs, European J. Combin. 86 (2020): 103078] the
authors proved this conjecture and showed that if G is a graph of
order n, then E(S(G)) ≥ 2n−2 and the inequality is strict provided
that G is not SC-equivalent to Kn. In this paper, we improve this
lower bound and show that if G is a graph of order n ≥ 7 which is
not SC-equivalent to Kn, then E(S(G)) > 2n− 1.

1 Introduction and terminology

Throughout this paper all graphs we consider are simple and finite. For a

graph G, we denote the set of vertices and edges of G by V (G) and E(G),
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respectively. The order of a graph is its number of vertices and the size

of a graph is its number of edges. The complement of G is denoted by

G and the complete graph and path graph of order n are denoted by Kn

and Pn, respectively. In this paper, for v ∈ V (G), NG(v) denotes the open

neighborhood of v in G. Moreover, δ(G) represents the minimum degree

of G.

For every Hermitian matrix A the energy of A, E(A), is defined to be

sum of the absolute values of the eigenvalues of A. The well-known concept

of energy of a graph G, denoted by E(G), is the energy of its adjacency

matrix. Let G be a graph and V (G) = {v1, . . . , vn}. The Seidel matrix of

G, denoted by S(G), is an n×n matrix whose diagonal entries are zero, ij-

th entry is −1 if vi and vj are adjacent and otherwise is 1 (It is noteworthy

that at first, van Lint and Seidel introduced the concept of Seidel matrix

for the study of equiangular lines in [8]). The Seidel energy of G is defined

to be E(S(G)) (see for example [4, 5, 7] about some results on the Seidel

energy of graphs). Moreover, the Seidel switching ofG is defined as follows:

Partition V (G) into two subsets V1 and V2, delete the edges between V1

and V2 and join all vertices v1 ∈ V1 and v2 ∈ V2 which are not adjacent.

Therefore, if we call the new graph by G′, then we have S(G′) = DS(G)D,

where D is a diagonal matrix with entries 1 (resp. −1) corresponding to

the vertices of V1 (resp. V2) ( [3]). Hence, S(G) and S(G′) are similar

and they have the same Seidel energy. Note that if one of the V1 or V2 is

empty, then G remains unchanged and also, for every v ∈ V (G), using a

Seidel switching on G, one can convert v to an isolated vertex. Two graphs

G1 and G2 are called SC-equivalent if G2 is obtained from G1 or G1 by

a Seidel switching and is denoted by G1
∼= G2. Note that in either cases,

S(G2) is similar to S(G1) or −S(G1), hence E(S(G1)) = E(S(G2)). If X

and Y are two disjoint subsets of V (G), the set of edges of G with one

endpoint in X and another in Y is denoted by E(X,Y ). An ordered pair

(X,Y ) of disjoint subsets of V (G) with |X| = |Y | = 2, is called an odd pair

if |E(X,Y )| is an odd number (which is either 1 or 3). One can easily see

that applying a Seidel switching on an arbitrary graph G does not change

its odd pair(s). We denote the number of odd pairs in G by s(G). Also, if

H is a graph of order r and n > r be a positive integer, by H↑n, we mean
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the graph H ∪ (n− r)K1. One can easily check the following equalities:

s(Kn) = s(Kn) = 0,

s(K2
↑n) = 2(n− 2)(n− 3).

A subset {u, v} ⊆ V (G) is called an odd set if {u, v} is the first component

of an odd pair of G.

From a graph G, we construct a graph denoted by Λ(G), as follows:

V (Λ(G)) = V (G) and E(Λ(G)) consists of all the edges e = uv such that

{u, v} is an odd set of G. By λ(v) we denote the degree of vertex v ∈ V (G)

in the graph Λ(G).

In 2012 Haemers conjectured that if G is a graph of order n, then

E(S(G)) ≥ 2n − 2 [3]. Recently, by means of the concept of odd pairs

Akbari et al. in [1] proved this conjecture and showed that if G is a graph

of order n, then E(S(G)) ≥ 2n − 2 and the inequality is strict provided

that G is not SC-equivalent to Kn. More precisely, they show that for

every graph G of order n,

E(S(G)) ≥ E(S(Kn)) = 2n− 2. (1)

In this paper, we improve the lower bound (1) by proving that if

G is a graph of order n ≥ 7 which is not SC-equivalent to Kn, then

E(S(G)) > 2n − 1. Our result implies that there is no graph of order

n ≥ 7, say G, such that

2n− 2 < E(S(G)) ≤ 2n− 1.

It is worthy to say that in [1], one of the main steps in the proof of

inequality (1) is the fact that if G is a graph of order n which is not SC-

equivalent to Kn, then s(G) ≥ 2(n− 3)2. In this study, by proving several

lemmas, we show that for every graph G of order n (n ≥ 4), which is not

SC-equivalent to Kn and K2
↑n, we have

s(G) ≥ 4(n− 3)2. (2)
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Then, we show that E(S(K2
↑n)) = n− 2 +

√
n2 + 4n− 12 which implies

E(S(K2
↑n)) > 2n− 1,

provided that n ≥ 7. Finally, with the aid of Inequality (2), we prove that

if G is a graph of order n ≥ 6 which is not SC-equivalent to Kn and K2
↑n,

then E(S(G)) > 2n − 1. According to the two latter facts, we conclude

that if G is a graph of order n ≥ 7 which is not SC-equivalent to Kn, then

E(S(G)) > 2n− 1.

2 Improving the lower bound of Seidel en-

ergy

In this section, we begin with proving several lemmas to obtain the prelim-

inaries for the proof of Theorem 1, which is a crucial step in the procedure

of concluding our main result. Following this, Theorem 2 is devoted to

calculate the Seidel energy of graph K2
↑n. At the end, by use of the ob-

tained theorems and computer search, we express the principal result in

Theorem 4.

Lemma 1. [2, Lemma 5] Let G be a graph of order n and e = uv be an

edge in E(Λ(G)). Then, there exist at least n− 3 odd pairs in G such that

their first component is X = {u, v}.

Corollary. Let G be a graph of order n such that δ(Λ(G)) ≥ 8. Then

s(G) ≥ 4n(n− 3).

Proof. In this case, the size of Λ(G) is at least 4n and by Lemma 1 the

proof is complete.

Lemma 2. Let G be a graph of order n and v ∈ V (G) be an arbitrary

vertex. Also, assume that X is the set of all vertices of G which are

adjacent to v in Λ(G). Then, G is SC-equivalent to a graph H such that

the isolated vertices of H are exactly V (G) \X.

Proof. Using a Seidel switching one can assume that v is an isolated vertex

of G. Define Y = V (G)\(X∪{v}). Therefore, for every w ∈ Y , {v, w} isn’t
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an odd set in G. Hence, for every vertices x, y ∈ V (G) \ {v, w}, the parity

of |E(v, {x, y})| and |E(w, {x, y})| are the same. But E(v, {x, y}) = ∅,
so E(w, {x, y}) is of even order. Therefore, w is either connected to all

vertices of V (G)\{v, w} or is not connected to any vertices in V (G)\{v, w}.
This is equivalent to say that if Ĝ be the induced subgraph G[V (G)\{v}],
then every vertex of Y is either isolated in Ĝ or is connected to all other

vertices of Ĝ. Note that the above two cases cannot occur simultaneously.

In the case where all vertices of Y are isolated in Ĝ, then all vertices

of Y ∪ {v} are isolated in G. Now, define H to be the induced subgraph

G[X] which implies that G ∼= H↑n.

On the other hand, in the second case, by considering the graph G, one

can assume that every vertex of Y is isolated in Ĝ. Now, using a Seidel

switching with respect to (v, V (G) \ v), we obtain a graph in which every

vertex of Y ∪ {v} is isolated. Therefore, we have

G ∼= G[X]↑n,

as desired.

Corollary. Let G be a graph of order n which is not SC-equivalent to Kn.

Then, δ(Λ(G)) ≥ 2.

Proof. Assume that v ∈ V (G) be an arbitrary vertex of G. By Lemma

2, there exists a graph H of order |λ(v)| such that G ∼= H↑n. On the

contrary, if λ(v) = 0 or 1, then H↑n is Kn which implies that G ∼= Kn, a

contradiction.

Lemma 3. Let H be a graph of order at most n − 2 with no isolated

vertex. Suppose that X is the set of all vertices of H in H↑n and Y is

V (H↑n) \X. Then, every vertex of X is adjacent to every vertex of Y in

the graph Λ(H↑n).

Proof. Suppose that y′ ∈ Y \ {y} and x′ ∈ X is adjacent to x (Note that

since |H| ≤ n − 2, such a vertex y′ exists). Now, the only edge of H↑n

with one endpoint in {x, y} and the other in {x′, y′} is e = xx′. Therefore,

({x, y}, {x′, y′}) is an odd pair in H↑n and hence, {x, y} is an edge of

Λ(H↑n).
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Lemma 4. Let G be a graph of order n ≥ 4 which is not SC-equivalent

to Kn. Then, the size of Λ(G) is at least 2(n − 2) which implies that

s(G) ≥ 2(n− 2)(n− 3).

Proof. Let m be the size of Λ(G). By Lemma 1, s(G) ≥ m(n−3). If Λ(G)

is the complete graph Kn, then

m =
n(n− 1)

2
> 2(n− 2) ⇒ s(G) > 2(n− 2)(n− 3),

as desired.

Now, assume that Λ(G) ̸= Kn. Therefore, there exists v ∈ V (G) such

that λ(v) < n − 1. On the other hand, by Corollary 2, λ(v) ≥ 2. Hence,

by Lemma 2, G is SC-equivalent to H↑n where |H| < n − 1. One can

assume that H has minimum order with this property. Since G is not

SC-equivalent to Kn, then |H| ≥ 2. Note that H has no isolated vertex

(otherwise by deleting the isolated vertices of H the graph Ĥ is obtained

where |V (Ĥ)| < |V (H)| and G = Ĥ↑n, a contradiction). So, by Lemma 3,

we have

m ≥ |H|(n− |H|) ≥ 2(n− 2).

Therefore,

s(G) ≥ m(n− 3) ≥ 2(n− 2)(n− 3),

which completes the proof.

Lemma 5. Let G be a graph of order n ≥ 4 which is not SC-equivalent

to Kn or K2
↑n and, G ∼= H↑n, where H is either P3 or K3. Then s(G) ≥

4(n− 3)2.

Proof. One can assume that H has no isolated vertex; otherwise by delet-

ing the isolated vertices of H, a graph of less order is obtained.

First assume that H = P3. In this case, one can easily check that we

have

s(H↑n) = 4(n− 3) + 4(n− 3)(n− 4) = 4(n− 3)2.

Hence, suppose that H = K3. It is easy to see that we have

s(H↑n) = 6(n− 3)(n− 4).
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If n ≥ 6, then 6(n− 3)(n− 4) ≥ 4(n− 3)2. Also, if n = 5, then as sketched

in Figure 1, we have G = H↑5 ∼= K2
↑5, a contradiction. Finally if n = 4,

then using a Seidel switching with respect to the isolated vertex and the

other three vertices of G, we obtain G ∼= K4, a contradiction. Now, the

proof is complete.

u1 u1

u1

u2

u3 u4

u5 u2

u2

u3

u3

u4

u4

u5

u5

H↑5 =

Seidel switching with respect to

{u1, u2, u5} and {u3, u4}.
= K↑5

2

complementing

Figure 1. A visual proof that shows K3
↑5 = H↑5 ∼= K2

↑5.

Lemma 6. Let G be a graph of order n and u ∈ V (G) be an arbitrary

vertex. Also, define X = V (G) \NΛ(G)(u). Then, for every v ∈ NΛ(G)(u)

and w ∈ X we have e = vw ∈ E(Λ(G)).

Proof. If λ(u) = n − 1, then X = {u} and obviously the lemma holds.

Therefore, assume that |NΛ(G)(u)| ≤ n − 2. Now, by Lemma 2, G is

SC-equivalent to a graph H such that the non-isolated vertices of H are

exactly NΛ(G)(u). Finally, by Lemma 3, the proof is complete.
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Theorem 1. Let G be a graph of order n ≥ 4 which is not SC-equivalent

to Kn or K2
↑n. Then,

s(G) ≥ 4(n− 3)2.

Proof. Let d = δ(Λ(G)) = degΛ(G)(v). By Lemma 2, we can assume that

the non-isolated vertices of G are exactly NΛ(G)(v). Therefore, if we define

H to be the induced subgraph of G over V (NΛ(G)(v)), then G ∼= H↑n and

|V (H)| = d.

By Lemma 5, if d ≤ 3, the theorem holds. On the other hand, if

d = n − 1, then Λ(G) is complete graph and hence, |E(Λ(G))| = n(n−1)
2 .

So, s(G) ≥ n(n−1)
2 (n−3) > 4(n−3)2. Moreover, if d ≥ 8, then |E(A(G))| ≥

8n
2 > 4(n− 3); therefore s(G) > 4(n− 3)2. Hence, in the rest of the proof,

we turn into the cases where 4 ≤ d ≤ 7 and d ≤ n − 2. We consider two

cases:

Case 1. s(H) > 0. Then H is not SC-equivalent to Kd and by Lemma 3,

the size of Λ(H) is at least 2(d − 2) and obviously, E(Λ(H)) ⊆ E(Λ(G)).

Moreover, by Lemma 6, there exist at least d(n − d) edges in E(Λ(G))

different from those in E(Λ(H)). Hence,

|E(Λ(G))| ≥ d(n− d) + 2(d− 2).

Note that d(n− d)+2(d− 2) = d(n− d+2)− 4 and since d, n− d+2 ≥ 4,

we have

d(n− d+ 2) ≥ 4(n− 2) ⇒ E(Λ(G)) ≥ 4(n− 2)− 4 = 4(n− 3),

which Lemma 1 implies that s(G) ≥ 4(n− 3)2.

Case 2. s(H) = 0. Then, by Lemma 4, H ∼= Kd. Hence, there exist

non-negative integers a and b such that a + b = d and H is either Ka,b

or Ka ⊔ Kb. Also, since H has no isolated vertex, the cases K0,d = Kd

andK1 ⊔Kd−1 cannot occur.

Since s(H) = 0, all odd pairs of G appear as one of the followings:

({x, u}, {y, v}), where xy ∈ E(H) and v, w /∈ V (H). (3)
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or

({x, u}, {y, v}) or ({y, v}, {x, u}), where u /∈ V (H), xy ∈ E(H)

and v ∈ V (H) and xv /∈ E(H). (4)

First we calculate the odd pairs of H = Ka,b. Here, G has 2ab(n− d)(n−
d − 1) odd pairs of the form (3) and 2(n − d)(a(a − 1)b + b(b − 1)a) odd

pairs of the form (4). Therefore,

s(G) ≥ 2(n− d)(ab(n− d− 1) + ab(a− 1 + b− 1))

= 2(n− d)(ab(n− d− 1) + ab(d− 2))

= 2ab(n− d)(n− 3).

Note that ab ≥ d− 1 ≥ 3 and n− d ≥ 2. So

ab(n− d) ≥ (d− 1)(n− d) ≥ 2(n− 3),

which implies that s(G) ≥ 4(n− 3)2, as desired.

Now we turn to the case H = Ka ⊔ Kb, where 0 ≤ a ≤ b ≤ d and

a+ b = d. As we mentioned before, the case a = 1 don’t occur.

Here G has (n−d)(n−d− 1)(a(a− 1)+ b(b− 1)) odd pairs of the form

(3) and

2(n− d)(a(a− 1)b+ b(b− 1)a) odd pairs of the form (4). Therefore,

s(G) = (n− d)((a2 + b2 − d)(n− d− 1) + 2ab(d− 2)). (5)

All possible cases for (a, b) are as follows:

I: a = 0. By (5), we have s(G) = (n− d)(d− 1)d(n− d− 1). Note that if

n− d ≥ 3, then

n = d+ (n− d) ≥ 7,

n− d ≥ 3, d− 1 ≥ 3 ⇒ (d− 1)(n− d) ≥ 3(n− 4) > 2(n− 3) (n > 6)

d ≥ 4, n− d− 1 ≥ 2 ⇒ d(n− d− 1) ≥ 2(n− 3),

which together yield s(G) > 4(n − 3)2. Also, if n − d = 2, then G is
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SC-equivalent to Kd
↑n which can be easily seen that is SC-equivalent to

K2
↑n (by complementing and a Seidel switching), a contradiction.

II: (a, b) = (2, 2). So, d = 4 and hence n ≥ 6. By (5), we have

s(G) = (n− 4)(16 + 4(n− 5)) = 4(n− 4)(n− 1).

Now, n ≥ 6 implies that

s(G) = 4(n− 4)(n− 1) > 4(n− 3)2.

III: (a, b) = (2, 3). So, d = 5 and hence n ≥ 7. By (5), we have

s(G) = (n− 5)(36 + 8(n− 6)) = 4(n− 5)(2n− 3).

Now, n ≥ 7 implies that

s(G) = 4(n− 5)(2n− 3) > 4(n− 3)2.

IV: (a, b) = (2, 4). So, d = 6 and hence n ≥ 8. By (5), we have

s(G) = (n− 6)(64 + 14(n− 7)) = 2(n− 6)(7n− 17) > 2(n− 6) · 7(n− 3).

Now, n ≥ 8 implies that

s(G) > 14(n− 6)(n− 3) > 4(n− 3)2.

V: (a, b) = (2, 5). So, d = 7 and hence n ≥ 9. By (5), we have

s(G) = (n− 7)(100 + 22(n− 8)) = 2(n− 7)(11n− 38) > 22(n− 7)(n− 4).

Now, n ≥ 9 implies that

s(G) > 22(n− 7)(n− 4) > 4(n− 3)2.

VI: (a, b) = (3, 3). So, d = 6 and hence n ≥ 8. By (5), we have

s(G) = (n− 6)(72 + 12(n− 7)) = 12(n− 6)(n− 1) > 12(n− 6)(n− 3).
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Now, n ≥ 8 implies that

s(G) > 12(n− 6)(n− 3) > 4(n− 3)2.

VII: (a, b) = (3, 4). So, d = 7 and hence n ≥ 9. By (5), we have

s(G) = (n− 7)(120 + 18(n− 8)) = 6(n− 7)(3n− 4) > 18(n− 7)(n− 2).

Now, n ≥ 9 implies that

s(G) > 18(n− 7)(n− 2) > 4(n− 3)2,

which completes the proof.

The next theorem deals with the Seidel energy of K2
↑n:

Theorem 2. For every integer n ≥ 7, we have E(S(K2
↑n)) > 2n− 1.

Proof. First, we calculate E(S(K2
↑n)), where n ≥ 4 is an integer. Note

that S(K2
↑n) has the following form:

0 −1

−1 0

1 1 · · · 1

1 1 · · · 1

1 1

1 1
...

...

1 1

0

0 1
. . .

1 0

0


.

Hence, S(K2
↑n) + I has n− 2 equal rows which implies that S(K2

↑n)

has eigenvalue −1 of multiplicity n − 3. Similarly, S(K2
↑n) − I has two

equal rows implying that 1 is an eigenvalue of S(K2
↑n) with multiplicity

1. Denote the other two eigenvalues of S(K2
↑n) by λ and µ. Therefore:

λ+ µ− (n− 3) + 1 = 0.
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λ2 + µ2 + (−1)2 + · · ·+ (−1)2︸ ︷︷ ︸
n−3

+12 = n(n− 1).

Solving the above two equations imply that

λ =
n− 4

2
+

√
n2

4
+ n− 3 , µ =

n− 4

2
−

√
n2

4
+ n− 3.

Putting all the above together and the assumption that n ≥ 4, we obtain

E(S(K2
↑n)) = n− 2 +

√
n2 + 4n− 12. (6)

Substituting n = 4, 5, 6 in (6), we obtain that

E(S(K2
↑4)) ≈ 6.47213595 < 7, E(S(K2

↑5)) ≈ 8.74456265 < 9

and

E(S(K2
↑6)) ≈ 10.9282032 < 11,

in addition, one can easily check that for n ≥ 7

E(S(K2
↑n)) = n− 2 +

√
n2 + 4n− 12 > 2n− 1,

which completes the proof.

Note that in the procedure of the proof of Theorem 2 of [1], for a graph

G of order n ≥ 4, the inequality

E(S(G)) ≥ n− 4 +

√
n2 − 2n+ 4 + 4

√
3

4
n2 + s(G). (7)

was obtained. With this inequality in hand and Theorem 1, we are ready

to express the following theorem:

Theorem 3. Let G be a graph of order n ≥ 6 which is not SC-equivalent

to Kn or K2
↑n. Then,

E(S(G)) > 2n− 1. (8)

Proof. By Theorem 1, s(G) ≥ 4(n− 3)2. Plugging this into the Inequality

(7), we show that for n ≥ 38, the resulting value of E(S(G)) is greater
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than 2n− 1. Hence, it suffices to prove that

n− 4 +

√
n2 − 2n+ 4 + 4

√
3

4
n2 + 4(n− 3)2 > 2n− 1 (9)

holds for n ≥ 38. Squaring twice the latter expressions and simplifying

both sides, one can easily obtain that the inequality (9) is equivalent to

12n2 − 464n+ 551 > 0.

Solving the above inequality implies that n <
116−

√
11803

6
or n >

116 +
√
11803

6
which yields the validity of theorem for n ≥ 38.

Now, by computer searches, using the software SageMath [6] and Math-

ematica [9], we obtain Table 1 which clearly shows that for the graphs of

order n, where 6 ≤ n ≤ 37, we have

E(S(G)) > 2n− 1,

which completes the proof.

n Minimum of E(S(G)) n Minimum of E(S(G))
6 11.21110255 22 44.98248915
7 13.54400375 23 47.00933586
8 15.79795897 24 49.03410215
9 18.0 25 51.0570234
10 20.16552506 26 53.07830041
11 22.3041347 27 55.09810561
12 24.4222051 28 57.11658792
13 26.5241747 29 59.13387668
14 28.61324773 30 61.15008476
15 30.69180601 31 63.16531114
16 32.75760169 32 65.17964300
17 34.80517472 33 67.19315742
18 36.84786941 34 69.20592281
19 38.88641242 35 71.21800012
20 40.92139078 36 73.22944384
21 42.95328426 37 75.24030280

Table 1. The graphs G are among those that are not SC-equivalent to
Kn and K2

↑n.
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We close the paper by combining Theorem 2 and 3 which yields our

main result:

Theorem 4. Let G be a graph of order n ≥ 7 which is not SC-equivalent

to Kn. Then,

E(S(G)) > 2n− 1.
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