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Abstract

Let Gσ be a graph obtained by attaching a self-loop, or just a
loop, for short, at each of σ chosen vertices of a given graph G.
Gutman et al. have recently introduced the concept of the energy
of graphs with self-loops, and conjectured that the energy E(G) of
a graph G of order n is always strictly less than the energy E(Gσ)
of a corresponding graph Gσ, for 1 ≤ σ ≤ n − 1. In this paper,
a simple set of graphs which disproves this conjecture is exposed,
together with some remarks regarding the standard deviations of
the (adjacency) eigenvalues of G and Gσ, respectively.

1 Introduction

Let G = (V (G), E(G)) be a simple graph on n vertices and m edges, where

V (G) stands for the set of vertices of G, while E(G) is the set of its edges.

The degree of a vertex v ∈ V (G) will be denoted by deg(v), while for the

maximum degree of G, the label ∆(G) will be used.

Let A(G) be the adjacency matrix of G. The characteristic polynomial

PG(x) = det(xI − A(G)) of G is the characteristic polynomial of its ad-

jacency matrix A(G). The (adjacency) eigenvalues λ1(G) ≥ · · · ≥ λn(G)
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of G are actually the eigenvalues of A(G), and we say that they form the

(adjacency) spectrum of G. The largest eigenvalue λ1(G) is usually called

the index of G. If λi(G), for some i, is the eigenvalue of the multiplici-

ty k, we will write [λi(G)]k. It is well known that
n∑

i=1

λi(G) = 0, while

n∑
i=1

λ2
i (G) = 2m.

The energy E(G) of G was defined by Ivan Gutman in [3]:

E(G) =

n∑
i=1

|λi(G)|.

This graph invariant has been intensively studied in the last two decades,

and plenty of research papers on this subject can be found in the literature

in the field of applied mathematics and mathematical chemistry. For more

details about graph energy, we refer the reader to the monographs [6]

and [8], and the review papers [4] and [5].

Let us denote by Gσ a graph obtained by attaching a self-loop, or just a

loop, for short, at each of σ chosen vertices of G. Precisely, if S is a subset

of V (G) whose cardinality is equal to σ, then Gσ is formed by adding

a loop at each vertex from the set S. Notice that a loop at v ∈ V (G)

contributes to its degree in Gσ with 1.

The adjacency matrix A(Gσ) of Gσ is of the form A(Gσ) = A(G)+Iσ,
where Iσ is the ”almost” identity matrix, with exactly σ ones on the

main diagonal and all other entries equal to zero. The non-zero en-

tries correspond to the vertices with a loop attached from the set S.

Since A(Gσ) is a square and symmetric matrix, its (adjacency) eigenvalues

λ1(Gσ) ≥ λ2(Gσ) ≥ · · · ≥ λn(Gσ) are reals. In [7], it has been proved that
n∑

i=1

λi(Gσ) = σ and
n∑

i=1

λ2
i (Gσ) = 2m+ σ.

Because of its importance and significance in chemistry, the energy

E(Gσ) of Gσ has been recently introduced in [7]:

E(Gσ) =

n∑
i=1

∣∣∣λi(Gσ)−
σ

n

∣∣∣ .
It can be noticed that the average value of λ1(G), λ2(G), . . . , λn(G) is equal
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to 0, while the average value of λ1(Gσ), λ2(Gσ), . . . , λn(Gσ) is equal to
σ
n ,

so E(G) and E(Gσ) can be interpreted as the absolute deviation of the

corresponding eigenvalues. In that sense, the standard deviation ΣG of

the eigenvalues λ1(G), λ2(G), . . . , λn(G) is

ΣG =

√√√√ 1

n

n∑
i=1

λ2
i (G) =

√
2m

n
, (1)

while the standard deviation ΣGσ
of the eigenvalues λ1(Gσ), . . . , λn(Gσ)

is equal to:

ΣGσ
=

√√√√ 1

n

n∑
i=1

(
λi(Gσ)−

σ

n

)2
=

√
1

n

(
2m+ σ − σ2

n

)
. (2)

In [7], some properties of E(Gσ) are exposed, together with the follow-

ing conjecture

Conjecture 1. Let G = (V (G), E(G)) be a simple graph of order n, and

let S ⊂ V (G) be a subset of cardinality σ, where 1 ≤ σ ≤ n − 1. Then

E(Gσ) > E(G).

In the section that follows, we give a simple set of graphs that disproves

this conjecture.

The notation common for spectral graph theory is used in the paper. In

that way, Kn is the complete graph on n vertices, while Pn is the n-vertex

path. The graph G ∪ H means the disjoint union of the graphs G and

H, while the coalescence G ◦H of these two graphs, is a graph obtained

from their disjoint union by identifying a vertex u of G with a vertex v

of H. For the remaining terminology and additional details, the reader is

referred to [1] and [2].

Below, we shall list some previously known results that will be needed

in the next section.

Corollary 1 (Corollary 1.3.12. from [2]). Let G be a graph with n vertices

and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and let H be an induced subgraph of

G with m vertices. If the eigenvalues of H are µ1 ≥ µ2 ≥ · · · ≥ µm, then

λn−m+i ≤ µi ≤ λi, i = 1, 2, . . . ,m.
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Theorem 1 (Theorem 1.3.15. from [2]). Let A and B be n×n Hermitian

matrices. Then

λi(A+B) ≤ λj(A) + λi−j+1(B), n ≥ i ≥ j ≥ 1; (3)

λi(A+B) ≥ λj(A) + λi−j+n(B), 1 ≤ i ≤ j ≤ n. (4)

Theorem 2 (Theorem 2.2.1. from [2]). Let Gj denote the graph obtained

from G by adding a pendant edge at the vertex j. Then

PGj
(x) = xPG(x)− PG−j(x).

Theorem 3 (Theorem 3.2.1. from [2]). Let λ1 be the index of the graph

G, and let d and ∆ be its average degree and maximum degree, respectively.

Then

d ≤ λ1 ≤ ∆.

Moreover, d = λ1 if and only if G is regular. For a connected graph G,

λ1 = ∆ if and only if G is regular.

2 A counterexample

Let G = Kn ◦K2 be the graph obtained by coalescing Kn, for n ≥ 4, with

K2. Precisely, a vertex of Kn is identified with a vertex of K2.

Lemma 1. The adjacency spectrum of G consists of an eigenvalue −1 with

multiplicity n− 2, and three simple eigenvalues λ1 ∈ [n− 1, n], λ2 ∈ (0, 1)

and λ3 ∈ (−2,−1.5).

Proof. The characteristic polynomial of G, according to Theorem 2, is:

PG(x) = xPKn
(x)− PKn−1

(x)

= x (x− n+ 1) (x+ 1)n−1 − (x− n+ 2) (x+ 1)n−2

= (x+ 1)n−2 (x3 − (n− 2)x2 − nx+ n− 2),

wherefrom it is obvious that the spectrum of G has an eigenvalue −1 with

multiplicity n− 2.
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Let us denote r(x) = x3 − (n− 2)x2 − nx+ n− 2, and let λ1, λ2 and

λ3 be the roots of the polynomial r(x). For n ≥ 4, the following holds:

r(0) = n− 2 > 0;

r(1) = −n+ 1 < 0;

r(−1.5) = 0.25n− 0.875 > 0;

r(−2) = −n− 2 < 0.

Therefore, the polynomial r(x) has one positive root, say λ2, in the interval

(0, 1), and one negative root, say λ3, in the interval (−2,−1.5).

SinceKn is an induced subgraph of G, from Corollary 1, we find that the

largest eigenvalue of G must be greater than or equal to n− 1, while from

Theorem 3, we obtain that this eigenvalue is not greater than ∆(G) = n,

i.e. λ1 = λ1(G) ∈ [n− 1, n].

Let Gσ be the graph obtained by adding a loop at each vertex of G,
except at the vertex whose degree is equal to one. The graph Gσ for n = 4 is

depicted in Figure 1. The adjacency matrix A(Gσ) of Gσ is of the following

form

A(Gσ) =

(
Jn M

MT 0

)
,

where Jn is the n × n all-ones matrix, while M denotes the vector (of

appropriate size) whose all but one of the coordinates are equal to zero.

Without loss of generality, we may assume that M = (0, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1)T .

Figure 1. Graph Gσ , where G = K4 ◦K2
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Lemma 2. The adjacency spectrum of Gσ consists of an eigenvalue 0,

whose multiplicity is n−2, and three simple eigenvalues λσ
1 ∈ [n−1, n+1],

λσ
2 ∈

(
n

n+1 , 1
)
and λσ

3 ∈ (−1, 0).

Proof. The adjacency matrix A(Gσ) of Gσ has n−1 identical rows, which

means that rank(A(Gσ)) ≤ 3, and therefore the characteristic polynomial

PGσ (x) of Gσ has a factor xn−2.

Let V1 = {v ∈ V (Gσ) : deg(v) = 1}, V2 = {v ∈ V (Gσ) : deg(v) =

n + 1} and V3 = {v ∈ V (Gσ) : deg(v) = n}. It is obvious that the

partition V (Gσ) = V1 ⊔ V2 ⊔ V3, where ⊔ stands for the disjoint union, is

an equitable partition (for more details related to equitable partitions, as

well as graph divisors, see Chapter 3 in [2] or Chapter 4 in [1]), with the

following quotient matrix

Q =

 0 1 0

1 1 n− 1

0 1 n− 1

 .

The characteristic polynomial q(x) of Q equals: q(x) = det(xI − Q) =

x3 − nx2 − x+ n− 1. Since q(x) is a divisor of PGσ (x), we may conclude

that the roots λσ
1 , λ

σ
2 and λσ

3 of q(x) are the remaining three eigenvalues

of Gσ.

For n ≥ 4, we have

q(1) = −1 < 0;

q

(
n

n+ 1

)
=

n3 − 2n2 − 3n− 1

(n+ 1)3
> 0;

q(0) = n− 1 > 0;

q(−1) = −1 < 0.

Therefore, the polynomial q(x) has one positive root, say λσ
2 , in the interval(

n
n+1 , 1

)
, and one negative root, say λσ

3 , in the interval (−1, 0).

Let us apply Theorem 1 to the matrices A(G) and Iσ, where A(G) is

the adjacency matrix of G, while Iσ is the (n + 1) × (n + 1) ”almost”

identity matrix, with n diagonal entries equal to 1. Given the previous,
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we may assume that

Iσ =



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 0


.

By setting i = j = 1 in (3) and (4), we obtain λ1(G) ≤ λ1(Gσ) ≤ λ1(G)+1,

i.e. λσ
1 ∈ [n− 1, n+ 1].

Proposition 4. For every n ≥ 3, E(G) > E(Gσ).

Proof. For n = 3, by direct computation, we find that the spectrum of G
is: 2.17, 0.31, −1, −1.48, while the spectrum of Gσ consists of the following

eigenvalues: 3.11, 0.75, 0, −0.86. Therefore, 4.96 = E(G) > E(Gσ) = 4.72.

Using Lemma 1, and the fact
n+1∑
i=1

λi(G) = 0, i.e. λ1 + λ2 + λ3 = n− 2,

for n ≥ 4, we calculate

E(G) = λ1 + λ2 − λ3 + n− 2

= 2(n− 2)− 2λ3

> 2n− 1.

By using Lemma 2, since
n+1∑
i=1

λi(Gσ) = n, i.e. λσ
1 + λσ

2 + λσ
3 = n, for

n ≥ 4, we compute

E(Gσ) = λσ
1 + λσ

2 − λσ
3 +

n (n− 3)

n+ 1

= n− 2λσ
3 +

n (n− 3)

n+ 1

< n+ 2 +
n (n− 3)

n+ 1
.

For n ≥ 4, 2n−1 > n+2+ n (n−3)
n+1 . Indeed, this inequality is equivalent
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to

(2n− 1) (n+ 1) > (n+ 2) (n+ 1) + n (n− 3),

i.e. n > 3. Therefore,

E(G) > 2n− 1 > n+ 2 +
n(n− 3)

n+ 1
> E(Gσ).

3 Concluding remarks

Considering the given counterexample, the absolute deviations of the adja-

cency eigenvalues of G and Gσ, respectively, do not seem to be comparable.

But, in a similar way as it is elaborated in [9], from (1) and (2), and using

the fact that the function f(σ) = σ − σ2

n is non-negative and concave in

the interval [0, n], we obtain that the standard deviations of the adjacency

eigenvalues of G and Gσ, respectively, satisfy the following inequality:

Proposition 5. The standard deviation of the adjacency eigenvalues of

an arbitrary graph G is not greater than the standard deviation of the

adjacency eigenvalues of the corresponding graph Gσ, i.e. ΣG ≤ ΣGσ
.

In order to possibly find some more counterexamples for the conjec-

tured inequality E(Gσ) > E(G), n-vertex graphs Gσ for which the value

of f(σ) is small, i.e. n-vertex graphs G with σ = 1 or σ = n − 1 loops

attached, as in the exposed example, should be considered. However, it

is interesting to mention that the conjectured inequality will not be valid

even for large values of f(σ), for example if σ = [n2 ]. Indeed, let us consider

the graph H = K6 ◦ P7 and the graph Hσ, presented in Figure 2, which

is obtained by attaching a loop at all vertices of H whose degree is equal

to 5 and 6. The spectrum of H consists of the following eigenvalues: 5.04,

1.82, 1.31, 0.58, −0.23, [−1]5, −1.59, −1.92, while the adjacency eigenval-

ues of Hσ are: 6.03, 1.83, 1.38, 0.73, [0]5, −0.74, −1.39, −1.84. Therefore,

17.49 = E(H) > E(Hσ) = 15.94.
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Figure 2. Graph Hσ , where H = K6 ◦ P7

It is worth mentioning that according to some computational results,

E(Kn ◦ Pm) > E((Kn ◦ Pm)σ),

for n ≥ 3 and m > 2, where (Kn ◦ Pm)σ is the graph obtained by adding

a loop at all vertices of Kn ◦ Pm whose degree is equal to n− 1 and n.
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