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Abstract

For a graph G with V (G) = {v1, v2, . . . , vn} and degree sequence
(dv1 , dv2 , . . . , dvn), the adjacency matrix A(G) of G is a (0, 1) square
matrix of order n with ij-th entry 1, if vi is adjacent to vj and 0,
otherwise. The Sombor matrix S(G) = (sij) is a square matrix of

order n, where sij =
√

d2vi + d2vj , whenever vi is adjacent to vj , and

0, otherwise. The sum of the absolute values of the eigenvalues of
A(G) is the energy, while the sum of the absolute eigenvalues of
S(G) is the Sombor energy of G. In this note, we provide counter
examples to the upper bound of Theorem 18 in [13] and Theorem 1
in [16].

1 Introduction

We consider only simple, finite and undirected graphs. A graph G(V,E)

(shortly G) consists of vertex set V = {v1, v2, . . . , vn} and edge set E of

unordered pairs of vertices. The cardinality of V is the order n and that

of E is the size m of G. The degree of a vertex v in G is the number of

edges incident with v and is denoted by dv. A vertex is said to be pendent

(pendent edge), if it has degree one. We follow the standard terminology,
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Kn, Ka,b, and Sn
∼= K1,n−1, respectively, denote the compete graph, the

complete bipartite graph, the star graph. For other undefined notations,

we follow [1].

The adjacency matrix of G is a real symmetric matrix, defined by

A(G) = (aij)n×n =

1 if vi ∼ vj

0 otherwise
,

where ∼ represents the adjacency relation of vertices vi and vj .

The set of all eigenvalues of A(G) is known as the adjacency spectrum

(spectrum) of G and are indexed from largest to smallest as:

λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn−1(A(G)) ≥ λn(A(G)),

where λ1(A(G)) is the knows as the spectral radius of G. In addition for

a connected graph, the Perron Frobenius theorem says that λ1(A(G)) is

unique and its associated eigenvector has positive components. Also, it is

easy to see that λ2
1(A(G)) + λ2

2(A(G)) + · · ·+ λ2
n(A(G)) = 2m. From now

onwards, we simply write λi instead of λi(A(G)). The absolute sum of the

eigenvalues of A(G) is known as the energy [8] of G, that is

E(G) =

n∑
i=1

|λi|.

The energy E(G) has its origin in theoretical chemistry and it helps in

approximating the π-electron energy of unsaturated hydrocarbons. There

is a wealthy literature about the energy and its related topics, see [3,6,13,

14].

The Sombor matrix of G is defined by

S(G) = (sij)n×n =


√
d2u + d2v if u ∼ v

0 otherwise.

We denote the eigenvalues of S(G) by µi’s and order them as µ1 ≥ µ2 ≥
· · · ≥ µn. The multiset of all eigenvalues of S(G) is known as the Sombor
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spectrum of S(G) and µ1 is the Sombor spectral radius of G. The Sombor

energy [11,15] of G, is defined by

ESO(G) =

n∑
i=1

|µi|.

The square sum of the eigenvalues of S(G) satisfies (see, [15])

µ2
1 + µ2

2 + · · ·+ µ2
n = 2F,

where F = F (G) =
n∑

i=1

d3vi =
∑

vi∼vj

(d2vi + d2vj ) is the forgotten topological

index of G. Various paper on spectral properties of Sombor matrix, like

properties of Sombor eigenvalues, Sombor spectral radius, Sombor energy,

Sombor Estrada index, relation of energy with Sombor energy and Sombor

index and others can be found in [7, 11,15,16,18].

The Sombor matrix has its origin from the recently introduced topo-

logical index called known as Sombor index [9], denoted by SO(G), defined

as

SO(G) =
∑
vi∼vj

√
d2vi

+ d2vj .

Several interesting properties of SO(G) can be seen in [2, 4, 5, 17] and the

references cited therein.

In the next section, we give some examples of graph classes whose

actual energy (Sombor energy) exceed the upper bound of Theorem 18,

in [13] (Theorem 1 in [16]).

2 Modified Sombor energy of graphs

The upper bound (1) on the energy of G was given in [13]. For some

graphs, like the complete graph, the complete bipartite graph, the com-

plete multipartite complete graphs and some other small graphs, the upper

bound (1) is true. While in general, the result fails and the proof of The-

orem 1 [13] violates the monotonic property of the function considered

there. Here, we state the result of [13].
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Theorem 1 (Theorem 18, [13]). Let G be a non-empty graph with n ver-

tices, m edges and degree sequence dv1 ≥ dv2 ≥ · · · ≥ dvn . Then

E(G) ≤
√

2m(n− 1)

n
. (1)

Equality holds if and only if G ∼= Kn.

Following the similar technique as in the proof of Theorem 18 of [13],

the authors in [16] gave the upper bound (2) for the Sombor energy of G.

Next, The result is stated and like Theorem 1, it is not valid.

Theorem 2 (Theorem 1, [16]). Let G be a graph of order n with forgotten

topological index F . Then

ESO(G) ≤ 2

√
2F (n− 1)

n
, (2)

equality occurs if and only if G ∼= Kn.

The brief outline of the proof of Theorem 1 (Theorem 18 [13]) is given

below:

By using Cauchy-Schwartz inequality, and
n∑

i=1

λ2
i = 2m, we have

n∑
i=2

|µi| ≤

√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1).

Hence

E(G) = λ1 +

n∑
i=2

|λi| ≤ λ1 +
√
(n− 1)(2m− λ2

1).

Note that the function F (x) = x+
√
(n− 1)(2m− x2) decreases for

√
1
2n ≤

x ≤
√
2m. By Lemma 1 [13], λ1 ≤

√
2m(n−1)

n . Clearly,
√

2m(n−1)
n ≤

√
2m.

Thereby,

λ1 ≤
√

2m(n− 1)

n
≤

√
2m.
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So F (λ1) ≤ F

(√
2m(n−1)

n

)
, which implies that

E(G) ≤
√

2m(n− 1)

n
+

√√√√(n− 1)

(
2m−

(√
2m(n− 1)

n

)2
)

=2

√
2m(n− 1)

n
.

(3)

The following are the defects of proof.

• F (x) decreases for x in
[√

1
2n ,

√
2m
]
and F (λ1) ≤ F

(√
2m(n−1)

n

)
must be F (λ1) ≥ F

(√
2m(n−1)

n

)
, that is, it must be used for lower

bound rather than the upper bound of the energy of G.

• For suppose, if F (λ1) ≥ F

(√
2m(n−1)

n

)
is used for lower bound for

the energy, that lower bound may or may not hold, since in the be-

ginning of proof, we use Cauchy-Schwartz inequality for establishing

the upper bound for the energy of G.

• Thus, in this way, any lower bound (not the upper bound) of λ1 along

with Cauchy-Schwartz inequality and F (x) can be used to obtain the

upper bound for the energy of G.

Let a ≥ 1 be a positive integer. The tree Sua of order n = 2a + 1,

containing a pendent vertices, each attached to a vertex of degree 2, and

a vertex of degree a, will be called the a-sun (see, [10]), see Figure 1. This

tree can be viewed as obtained by inserting a new vertex on each edge of

the star Sa+1. Note that Su0
∼= P1, Su1

∼= P3, Su2
∼= P5 where as for

a ≥ 3, the a-sun is not a path graph.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The union G1∪G2

of graphs G1 and G2 is the graph G = (V,E) for which V = V1 ∪ V2 and

E = E1 ∪ E2. The complete product G1 ∨G2 of graphs G1 and G2 is the

graph obtained fromG1∪G2 by joining every vertex ofG1 with every vertex

of G2. For a ≥ 1, b ≥ 1 and c ≥ 1, the extended complete split type graph

ECSb,c
a (see, [12] and Figure 1) is defined by ECSb,c

a
∼= Ka ∨

(
Kb ∪Kc

)
.
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For a = 2, b = c = 1, ECS1,1
2

∼= K2∨ (K1∪K1) = K2,2, otherwise ECSb,c
a

is not the complete bipartite graph.

Su8 ECS3,3
2

Figure 1. a-sun tree Su8 and extended complete split type graph
ECS3,3

2 .

Theorem 1 states that the energy of any non-empty graph is at most

2
√

2m(n−1)
n , while in reality, the actual value of the energy of majority of

graphs is above the bound of (1). Next, we consider two such family of

graphs which discards the bound given in (1).

Proposition 3. For a ≥ 2, the energy of Sua is strictly greater than the

upper bound (1) given in Theorem 1.

Proof. Let G ∼= Sua be a graph of order n = 2a+ 1 with size m = 2a

and let

{u, u1, u2, . . . , ua−1, ua, v1, v2, . . . , va−1, va}

be the vertex labelling of G, where u is a vertex of degree a, ui’s are

vertices of degree 2 and vi’s are vertices (pendent) of degree 1. Under this

labelling, the adjacency matrix of G can be written as:

A(G) =

 0 J1×a 01×a

Ja×1 0a×a Ia×a

0a×1 Ia×a 0a×a

 , (4)

where I is the identity matrix, 0 is the zero matrix and J is the matrix

with all entries equal to one. Choosing

XT
1 =

(
a,
√
a+ 1,

√
a+ 1, . . . ,

√
a+ 1︸ ︷︷ ︸

a

, 1, 1, . . . , 1, 1︸ ︷︷ ︸
a

)
,
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then we have

A(G)X1 =
(
a
√
a+ 1, a+ 1, a+ 1, . . . , a+ 1︸ ︷︷ ︸

a

, 1, 1, . . . , 1︸ ︷︷ ︸
a

)
=

√
a+ 1

(
a,
√
a+ 1,

√
a+ 1, . . . ,

√
a+ 1︸ ︷︷ ︸

a

, 1, 1, . . . , 1︸ ︷︷ ︸
a

)
=

√
a+ 1X1.

By Perron Frobenious theorem,
√
a+ 1 is the spectral radius of (4) with

its Perron eigenvector X1. Proceeding as above, it can be verified that

XT
2 =

(
a,−

√
a+ 1,−

√
a+ 1, . . . ,−

√
a+ 1︸ ︷︷ ︸

a

, 1, 1, . . . , 1︸ ︷︷ ︸
a

)

is the eigenvector corresponding to the eigenvalue −
√
a+ 1. Next, for i =

2, 3, . . . , a, let

Y T
i−1 =

(
0, 1, x22, x33, . . . , x(a−1)(a−1), xaa,−1, y22, y33, . . . , y(a−1)(a−1), yaa

)
,

where xij =

−1 if i = j

0 otherwise
, and yij =

1 if i = j

0 otherwise
. It is easy

to see that Y1, Y2, . . . , Ya−1 are linearly independent vectors. For Y1 =(
0, 1,−1, 0, 0, . . . , 0,−1, 1, 0, 0, . . . , 0

)
, we have

A(G)Y1 =
(
1− 1,−1, 1, 0, 0, . . . , 0, 1,−1, 0, 0, . . . , 0

)
= −1Y1.

This implies that Y1 is the eigenvectors corresponding to the eigenvalues

−1 of A(G). In a similar way, Y2, Y3, . . . , Ya−1 are the eigenvectors corre-

sponding to the eigenvalues −1. Consider

ZT
i−1 =

(
0,−1, x′

22, x
′
33, . . . , x

′
(a−1)(a−1), x

′
aa,−1, y′22, . . . , y

′
(a−1)(a−1), y

′
aa

)
,

where x′
ij =

−1 if i = j

0 otherwise
, and y′ij =

1 if i = j

0 otherwise
. Again, it is easy

to verify that Z1, Z2, . . . , Za−1 are the eigenvectors corresponding to the
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eigenvalues 1. Finally, for X =
(
− 1, 0, 0, . . . , 0︸ ︷︷ ︸

a

, 1, 1, . . . , 1︸ ︷︷ ︸
a

)
, we have

A(G)X =
(
0, 1− 1, 1− 1, . . . , 1− 1, 0, 0, . . . , 0

)
= 0Y1.

Therefore the spectrum of G is{
±
√
a+ 1, 0, (−1)[a−1], 1[a−1]

}
.

Now, the energy of G is

E(G) = 2
√
a+ 1 + 2(a− 1).

Finally, comparing energy of G with (1) with n = 2a+ 1 and m = 2a, we

have

2

√
2a(2a+ 1− 1)

2a+ 1
< 2

√
a+ 1 + 2(a− 1),

which further gives

2a3 − 5a2 + 3a+ 2

2a+ 1
+ 2(a− 1)

√
a+ 1 > 0.

Simplifying above expression, we get

4a4 − 36a3 + 37a2 + 6a− 7 > 0 (5)

Inequality (5) holds for a ≥ 8. For a = 2, 3, 4, 5, 6, 7, the following tables

gives the energy of G and the values of bound (1) of Theorem 1.

G Su2 Su3 Su4 Su5 Su6 Su7

E(G) 5.4641 8 10.4721 12.899 15.2915 17.6569
Thm. 1 5.05964 6.41427 7.54247 8.52803 9.41357 10.2242

Table 1. Energy of Sua, for a = 2, 3, 4, 5, 6, 7 and the approximate
values of the upper bound (1) of Theorem 1.

Thus from Table 1 and Inequality 5, it follows that the energy of

Sua, a ≥ 2 is always greater than the upper bound (1) given in Theo-

rem 1.
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Next, we consider another family of graphs for which Theorem 1 is not

valid.

Proposition 4. For a ≥ 2, the energy of ECSa,a
2

∼= K2 ∨
(
Ka ∪Ka

)
is

strictly greater than the upper bound (1) of Theorem 1.

Proof. Let G ∼= ECSa,a
2 be a graph of order n = 2a + 2 and size

m = a2+3a and let {u1, u2, v1, v2, . . . , va, va+1, va+2, . . . , v2a} be the vertex
labelling of G, where du1 = du2 = 2a, dvi = a+ 1, i = 1, 2, . . . , 2a. Under

this vertex indexing, the adjacency matrix of G is

A(G) =

02×2 J2×a J2×a

Ja×2 Ba×a 0a×a

Ja×2 0a×a Ba×a

 ,

where B = Ja×a − Ia×a. It is not hard to show that the spectrum of A(G)

is {
0, (−1)[2a−2], a− 1,

1

2

(
a− 1±

√
a2 + 14a+ 1

)}
,

and its energy is

E(G) = 3(a− 1) +
√
a2 + 14a+ 1.

Now, by comparing the energy of G, with the upper bound (1), we obtain

the following inequality

4
(
2a6 + 37a5 − 31a4 − 82a3 + 23a2 + 39a− 4

)
> 0,

which is always true for a ≥ 2. Thus the energy of ECSa,a
2 exceeds the

upper bound (1) given by Theorem 1.

Proceeding as in Proposition 3 and 4, the proof of the following results

can be worked out similarly.

Proposition 5. For a ≥ 2, the Sombor energy of Sua is strictly greater

than the upper bound (2) given in Theorem 2.

Proposition 6. For a ≥ 2, the Sombor energy of ECSa,a
2

∼= K2 ∨
(
Ka ∪

Ka

)
is strictly greater than the upper bound (2) of Theorem 2.
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Hence, in this note, both Theorem 18 of [13] and Theorem 1 of [16] are

not valid.
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