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Abstract

Sombor index is a recently introduced degree based graph topo-
logical index. For a graph G, it is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v,

where du denotes the degree of the vertex u in G. Within a short
period of time after introduction of this index by Gutman, many
aspects of it have been studied by many researchers. Relating the
Sombor index SO(G) of a graph G with the energy ε(G) of G is one
such instance among the others. In this article, we aim to provide
some improved results relating SO(G) and ε(G).

1 Introduction

Let G be a simple, undirected graph with n vertices and m edges. Let

V (G) = {v1, v2, . . . , vn} and E(G) are the vertex set and edge set of G

respectively. We denote the edge between the vertices u and v by uv.

Degree of a vertex u is the number of edges adjacent to the vertex u,

denoted by du. We denote the maximum and minimum vertex degree of

G by ∆ and δ respectively.
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Let A(G) = (aij)n×n be the 0-1 adjacency matrix of the graphG, where

aij = 1 if vi is adjacent to vj and aij = 0, otherwise. Let λ1, λ2, . . . , λn

are the eigenvalues of A(G). Energy of G is defined as

ε(G) =

n∑
i=1

|λi|.

Finding lower and upper bounds of graph energy has been a hot topic of

research in the recent years [10,11,17].

A topological index is a numerical quantity involving different graph

parameters. Various topological indices which have some correlation with

physico-chemical properties of the underlying graphs of different molecules

are extensively studied by the researchers in the field of mathematical

chemistry. Numerous graph degree based topological indices are found in

the literature. In general, the bond incident degree (BID) graph invariants

are given by the form

BID(G) =
∑

uv∈E(G)

Γ(du, dv)

where, Γ is a symmetric function of its arguments. First Zagreb index

is one of the oldest topological index of this kind. It was introduced by

Gutman and Trinajstic in 1972 [8] and was defined as

M1(G) =
∑

uv∈E(G)

(du + dv) .

Very recently, as a manifestation of a geometric approach, Gutman

introduced a new topological index called Sombor index [9] by taking

Γ(x, y) =
√
x2 + y2. So the Sombor index of a graph G is defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

After the introduction of Sombor index, within a short span of time, a

lot of works on it have been done by many researchers [3–5,13–16]. Relating

the Sombor index SO(G) of a graph G with the energy ε(G) of G is one
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such instance among the others. It has been studied by Ulker et al. in [15]

and [16]. In this article, we have provided relationships between SO(G)

and ε(G) which are improvements of the results presented in [15,16].

2 Energy of a vertex and some useful results

In 2018, Arizmendi et al. [1] introduced the concept of energy of a vertex

of a graph as the corresponding diagonal entry of the absolute value of the

adjacency matrix. The trace of a matrix B is denoted by Tr(B) and its

absolute value (BB∗)1/2, is denoted by |B|. Then the energy of G is

ε(G) = Tr(|A(G)|) =
n∑

i=1

(|A(G)|ii).

Definition 1. Let G be a graph with vertex set V (G) = {u1, u2, . . . , un}.
The energy of a vertex ui ∈ V (G) is denoted by ε(ui) and is defined by

ε(ui) = |A(G)|ii, where A(G) is the adjacency matrix of G and |A(G)| =
(A(G)A(G)∗)1/2.

Thus the energy of G can be viewed as the sum of the energies of its

vertices, i.e.,

ε(G) = ε(u1) + ε(u2) + · · ·+ ε(un).

Then following [6], one can have the energy of an edge e = uv ∈ E(G)

as,

ε(e) =
ε(u)

du
+

ε(v)

dv
·

Then the energy of G can also be written as

ε(G) =
∑

e∈E(G)

ε(e) =
∑

e=uv∈E(G)

(
ε(u)

du
+

ε(v)

dv

)
. (1)

Following useful results on the bounds of vertex energy were obtained

by Arizmendi et al. [1].

Theorem 1. [1] Let G be a graph and u ∈ V (G) be any vertex of G.
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Then

ε(u) ≤
√
du,

with equality holds if and only if G ∼= K1,n and u is the central vertex of

K1,n.

Theorem 2. [1] Let G be a graph with at least one edge. Then for all

u ∈ V (G), ε(u) ≥ du

∆ , and hence ε(G) ≥ 2m
∆ with equality holds if and only

if G ∼= K∆,∆.

Several upper bounds of energy of a graph are found in the literature.

McClleland bound [12] is one among the mostly cited bounds.

Theorem 3. [12] Let G be a graph with n vertices and m edges. Then

ε(G) ≤
√
2mn.

In [7], Gutman et al. obtained the following lower bounds for energy

of regular graphs.

Theorem 4. [7] Let G be a ∆-regular graph on n vertices. Then

ε(G) ≥ n. (2)

Equality is attained if and only if every component of G is isomorphic to

the complete bipartite graph K∆,∆.

Corollary. [7] If G is a triangle– and quadrangle–free ∆-regular graph

on n vertices, then

ε(G) ≥ n∆√
2∆− 1

· (3)

An upper bound of Sombor index in terms of first Zagreb index is

obtained by Das et al. [4] as follows.

Theorem 5. [4] Let G be a graph with m edges and minimum degree δ.

Then

SO(G) ≤ M1(G)− (2−
√
2)δm,

where M1(G) is the first Zagreb index of G. Moreover, the equality holds

if and only if G is a regular graph.
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3 Upper bounds of Sombor index in terms

of graph energy

Ulker et al. [15], obtained the following result.

Theorem 6. [15] Let G be a graph with maximum degree ∆. If ε(G) is

its graph energy and SO(G) is its Sombor index, then SO(G) ≤ ε(G)∆3.

In this section, we present an improvement of the above result. For

that purpose, we shall use the following lemma.

Lemma 1. If xi ≥ 0 for i = 1, 2, . . . , n is a list of n non-negative real

numbers, then

1

n

(
n∑

i=1

√
xi

)2

≤
n∑

i=1

xi, (4)

with equality holds if and only if x1 = x2 = · · · = xn.

Proof. Using Arithmetic Mean - Quadratic Mean inequality [2] on the

positive square roots of xi, i = 1, 2, . . . , n, we have∑n
i=1

√
xi

n
≤
√∑n

i=1 xi

n
·

Squaring both sides, the lemma follows.

Theorem 7. Let G be a graph with m edges and maximum degree ∆. If

ε(G) is its graph energy and SO(G) is its Sombor index, then SO(G) ≤√
ε(G)m∆5.

Proof. From (1), we have

ε(G) =
∑

e∈E(G)

ε(e) =
∑

e=uv∈E(G)

(
ε(u)

du
+

ε(v)

dv

)

≥
∑

uv∈E(G)

(
ε(u)

d2u
+

ε(v)

d2v

)

=
∑

uv∈E(G)

d2vε(u) + d2uε(v)

d2ud
2
v
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≥
∑

uv∈E(G)

d2v
du

∆ + d2u
dv

∆

d2ud
2
v

(by Theorem 2)

≥ 1

m

 ∑
uv∈E(G)

√
d2v

du

∆ + d2u
dv

∆

d2ud
2
v

2

(by Lemma 1)

≥ 1

m

 ∑
uv∈E(G)

√
d2v

du

∆ + d2u
dv

∆

∆2

2

≥ 1

m

 ∑
uv∈E(G)

√
d2v + d2u

∆
5
2

2

=
1

m∆5

 ∑
uv∈E(G)

√
d2u + d2v

2

=
1

m∆5
· SO(G)2.

Thus we get the inequality SO(G) ≤
√

ε(G)m∆5.

Remark. It can be shown that the upper bound of SO(G) given in the

above theorem is better than that given by Theorem 6. Because, otherwise√
ε(G)m∆5 ≥ ε(G)∆3

⇒ ε(G)m∆5 ≥ ε(G)2∆6

⇒ m ≥ ε(G)∆

⇒ ε(G) ≤ m

∆

which contradicts Theorem 2.

Using Theorem 5, we can have another improvement of Theorem 6 as

given below.

Theorem 8. Let G be a graph with m edges, maximum and minimum

degree ∆ and δ respectively. If ε(G) is its graph energy and SO(G) is its

Sombor index, then SO(G) ≤ ε(G)∆3 − (2−
√
2)δm.
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Proof. From (1), we have

ε(G) =
∑

e∈E(G)

ε(e) =
∑

e=uv∈E(G)

(
ε(u)

du
+

ε(v)

dv

)

≥
∑

uv∈E(G)

(
ε(u)

d2u
+

ε(v)

d2v

)

=
∑

e=uv∈E(G)

d2vε(u) + d2uε(v)

d2ud
2
v

≥
∑

e=uv∈E(G)

d2v
du

∆ + d2u
dv

∆

d2ud
2
v

(By Theorem 2)

≥
∑

e=uv∈E(G)

1
∆ (dv + du)

dudv

≥
∑

e=uv∈E(G)

(dv + du)

∆3

=
1

∆3
M1

≥ 1

∆3

{
SO(G) + (2−

√
2)δm

}
(By Theorem 5)

⇒ SO(G) ≤ ∆3ε(G)− (2−
√
2)δm.

Remark. Since (2−
√
2)δm is always a positive quantity, the bound given

in the above theorem is always better than that given in Theorem 6.

For regular graph, Ulker et al. [15] obtained the following result.

Theorem 9. [15] Let G be a ∆-regular graph. If ε(G) is its graph energy

and SO(G) is its Sombor index, then SO(G) ≤ ε(G)∆2.

This can also be improved as described in the following theorem.

Theorem 10. Let G be a ∆-regular graph. If ε(G) is its graph energy and

SO(G) is its Sombor index, then SO(G) ≤ ε(G)∆2

√
2

·

Proof. Let G has n vertices and m edges. Since G is ∆-regular,

SO(G) =
∑

e=uv∈E(G)

√
d2u + d2v =

∑
e=uv∈E(G)

√
2∆2 =

√
2m∆ =

n∆2

√
2
·
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Thus from Theorem 4 we have,

ε(G) ≥ n =

√
2SO(G)

∆2
⇒ SO(G) ≤ ∆2ε(G)√

2
·

Remark. Similar bound was obtained by Ulker et al. in [16] for connected

graphs only. Here we have obtained it for regular graphs which are not

necessarily connected. It is illustrated with the graph given in Figure 1.

Figure 1. 2-regular disconnected graph.

For this graph, ∆ = 2, SO(G) = 12
√
2, ε(G) = 8 and as such the

inequaity SO(G) ≤ ε(G)∆2

√
2

holds true.

Theorem 11. Let G be a triangle– and quadrangle– free ∆-regular graph.

If ε(G) is its graph energy and SO(G) is its Sombor index, then SO(G) ≤
∆
√
2∆−1√
2

ε(G).

Proof. As earlier,

SO(G) =
n∆2

√
2
·

Thus from Corollary 2 we have,

ε(G) ≥ n∆√
2∆− 1

=

√
2SO(G)

∆
√
2∆− 1

⇒ SO(G) ≤ ∆
√
2∆− 1√
2

ε(G)·

4 Lower bound of Sombor index in terms of

graph energy

Using Theorem 1, we find below a new bound of graph energy which is

better than the McClleland bound.

Theorem 12. Let G be a graph with n vertices, m edges and minimum

degree δ. Then

ε(G) ≤
√
(n− 1)(2m− δ) +

√
δ. (5)
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Proof. Let V = {v1., v2, . . . , vn} be the vertex set of G and di be the

degree of the vertex vi. Let us assume without loss of generality that

dn = δ. Then, by Theorem 1, we have

ε(G) =
∑

v∈V (G)

ε(v) ≤
n∑

i=1

√
di

=

n−1∑
i=1

√
di +

√
dn

≤

√√√√(n− 1)

n−1∑
i=1

di +
√
δ (by Lemma 1)

=
√
(n− 1)(2m− δ) +

√
δ.

Remark. The above bound is better than the McClleland’s bound. Because

otherwise, √
(n− 1)(2m− δ) +

√
δ >

√
2mn

⇒ (n− 1)(2m− δ) + 2
√
δ(n− 1)(2m− δ) + δ > 2mn

⇒ 2
√

δ(n− 1)(2m− δ) > 2m+ (n− 2)δ

⇒ 4δ(n− 1)(2m− δ) >
(
m+ (n− 2)δ

)2
⇒ 4mnδ > 4m2 + n2δ2

⇒ (2m− nδ)2 < 0,

which is impossible.

In [9], Gutman has shown that the Sombor index among all connected

graphs is minimum for the path graph Pn. In the following, we obtain

a lower bound of the Sombor index of a connected graph in terms of the

number of edges. To establish that, we define the following transformations

on connected graphs and show that application of those transformations

reduce the Sombor index of the graph.

Transformation A

In the graph G, let u1 − u2 − · · · − up, p ≥ 2 be an induced path and u1v1



460

be another pendant edge attached to the same vertex u1 with du1 ≥ 3.

Let G′ be the graph obtained from G by removing the edge u1v1 and by

inserting the edge upv1, as shown in Figure 2. Then G′ is said to be the

graph obtained from graph G by Transformation A.

G

u1
u2 up

v1

G′

u1
u2 up v1

Figure 2. Transformation A.

Lemma 2. Let G be a connected graph with n ≥ 3 vertices at least two

of which are pendant vertices and G′ be the graph obtained from G by

Transformation A. Then SO(G) > SO(G′).

Proof. We consider two different cases as described below.

Case 1. (p = 2) In this case, both u2 and v1 are pendant vertices in G. In

G′, degree of u2 becomes 2, degree of u1 decreases by 1, and degrees of all

other vertices remain same.

So,

SO(G)− SO(G′)

≥
∑
v∼u1

v ̸=u2,v1

√
d2u1

+ d2v + 2
√
d2u1

+ 1

−
∑
v∼u1

v ̸=u2,v1

√
(du1

− 1)2 + d2v −
√
(du1

− 1)2 + 4−
√
5

≥ 2
√
d2u1

+ 1−
√
d2u1

+ 4−
√
5.

Let f(x) = 2
√
x2 + 1−

√
x2 + 4−

√
5.

Then, f ′(x) = 2x√
x2+1

− x√
x2+4

≥ 0 for x ≥ 0.

Hence, f(x) ≥ f(3) = 2
√
10−

√
13−

√
5 > 0 for x ≥ 3.

Thus, SO(G)− SO(G′) ≥ f(du1
) > 0 since du1

≥ 3.

Therefore, SO(G)− SO(G′) > 0, i.e., SO(G) > SO(G′).
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Case 2. (p ≥ 3) Here, up is a pendant vertex in G and it becomes a two

degree vertex in G′. Thus in G′, degree of up changes to 2, degree of u1

decreases by 1, and degrees of all other vertices remain same. So,

SO(G)− SO(G′) ≥
∑
v∼u1
v ̸=u2

√
d2u1

+ d2v +
√
d2u1

+ 4 +
√
5 +

√
d2u1

+ 1

−
∑
v∼u1
v ̸=u2

√
(du1

− 1)2 + d2v −
√
(du1

− 1)2 + 4

−2
√
2−

√
5

≥
√
d2u1

+ 1− 2
√
2.

Let g(x) =
√
x2 + 1− 2

√
2.

Then, g′(x) = x√
x2+1

≥ 0 for x ≥ 0.

Hence, g(x) ≥ g(3) =
√
10− 2

√
2 > 0 for x ≥ 3.

Thus, SO(G)− SO(G′) ≥ g(du1
) > 0 since du1

≥ 3.

Therefore, SO(G)− SO(G′) > 0, i.e., SO(G) > SO(G′).

Transformation B

In a graph G, let u1−u2−· · ·−up, p ≥ 2 and w1−w2−· · ·−wq, q ≥ 2 be

two induced paths attached to the vertices u1 and w1 respectively, where

dw1
≥ du1

≥ 3. Also let G′ be the graph obtained from G by removing the

edge w1w2 and by inserting the edge upw2, as shown in Figure 3. Then

G′ is said to be the graph obtained from graph G by Transformation B.

G

u1

u2

up

w1

w2 wq
G′

u1
u2 up w2 wq

Figure 3. Transformation B.

Lemma 3. Let G be a connected graph with n ≥ 3 vertices at least two

of which are pendant vertices and G′ be the graph obtained from G by

Transformation B. Then SO(G) > SO(G′).
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Proof. We consider different cases as described below.

Case 1. (p = q = 2) In this case, both u2 and w2 are pendant vertices in

G. In G′, degree of u2 becomes 2, degree of w1 decreases by 1, and degrees

of all other vertices remain same. So,

SO(G)− SO(G′) ≥
∑
v∼w1
v ̸=w2

√
d2w1

+ d2v +
√
d2w1

+ 1

+
√
d2u1

+ 1−
∑
v∼w1
v ̸=w2

√
(dw1

− 1)2 + d2v

−
√
d2u1

+ 4−
√
5

≥ 2
√
d2u1

+ 1−
√
d2u1

+ 4−
√
5.

Taking f(x) = 2
√
x2 + 1−

√
x2 + 4−

√
5 as before, we have SO(G) >

SO(G′).

Case 2. (p = 2, q ≥ 3) In this case, u2 is a pendant vertex, but w2 is a two

degree vertex in G. As in Case – 1, in G′, degree of u2 becomes 2, degree

of w1 decreases by 1, and degrees of all other vertices remain same. So,

SO(G)− SO(G′) ≥
∑
v∼w1
v ̸=w2

√
d2w1

+ d2v +
√
d2w1

+ 4 +
√
d2u1

+ 1

−
∑
v∼w1
v ̸=w2

√
(dw1

− 1)2 + d2v − 2
√
2−

√
d2u1

+ 4

≥
√
d2u1

+ 1− 2
√
2.

Taking g(x) =
√
x2 + 1− 2

√
2 as earlier, we get SO(G) > SO(G′).

Case 3. (p ≥ 3, q ≥ 3) Here, up is a pendant vertex in G and it becomes a

two degree vertex in G′. Thus in G′, degree of up changes to 2, degree of

w1 decreases by 1, and degrees of all other vertices remain same. So,

SO(G)− SO(G′) ≥
∑
v∼w1
v ̸=w2

√
d2w1

+ d2v +
√
d2w1

+ 4 +
√
5
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−
∑
v∼w1
v ̸=w2

√
(dw1

− 1)2 + d2v − 2
√
2−

√
5

≥
√

d2u1
+ 1− 2

√
2.

Thus, proceeding as before, we get SO(G) > SO(G′).

Lemma 4. Let G be a connected graph with n ≥ 3 vertices at least one of

which is a pendant vertex and with m edges. Then

SO(G) ≥ 2
√
5 + (m− 2)2

√
2, (6)

with equality holds if and only if G ≃ Pn.

Proof. If G does not contain a cycle, then it is a tree. In [9], it is shown

that the Sombor index among the trees is minimum for the path graph Pn

and so, SO(G) ≥ SO(Pn) = 2
√
5 + (n− 3)2

√
2 and the lemma holds true

since m = n− 1 for any tree.

If G contains a cycle and a single pendant edge, then there is a vertex

u with degree du ≥ 3 to which an induced path P is attached and degree

of each non-pendant vertex is at least 2. If length of P is 1, then SO(G) ≥√
10+2

√
13+(m−3)2

√
2 > 2

√
5+(m−2)2

√
2. If length of P is greater than

or equal to 2, then SO(G) ≥
√
5+3

√
13+(m−4)2

√
2 > 2

√
5+(m−2)2

√
2.

If G contains a cycle and two or more pendant edges, then by repeated

applications of Transformation A and/ or Transformation B, G can be

reduced to a graph G′ with an induced path attached to a vertex of degree

3 or more and at each step of application of either of the transformations,

the Sombor index decreases (as shown in Lemma 2 and Lemma 3). Clearly,

SO(G) > SO(G′) > 2
√
5 + (m− 2)2

√
2 in this case also.

It is straightforward to see that the equality holds only for G ≃ Pn.

Hence the proof is complete.

Ulker et al. [16] found the following result.
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Theorem 13. [16] Let G be a connected graph with n ≥ 3 vertices. Then

SO(G) ≥


δ√
2

[
ε(G)2 − n(n− 1)∆

]
if δ ≥ 2,

√
5
2

[
ε(G)2 − n(n− 1)∆

]
if δ = 1.

While proving the above theorem, Ulker et al. [16] have used the energy

bound for the graph G with n vertices, m edges and maximum degree ∆

as

ε(G) ≤
√
2m+ n(n− 1)∆. (7)

But, it can be shown that for n ≥ 2, the bound (7) is weaker than

the McClleland’s bound and hence weaker than the bound (5). Because,

otherwise

2mn > 2m+ n(n− 1)∆

⇒ 2m(n− 1) > n(n− 1)∆

⇒ 2m

n
> ∆.

Since the average degree can not exceed the maximum degree, it is a

contradiction.

In the following, we present a modification of the above theorem.

Theorem 14. Let G be a connected graph with n ≥ 3 vertices and mini-

mum degree δ. Then

SO(G) ≥


δ√
2

[
(ε(G)−

√
δ)

2

n−1 + δ

]
if δ ≥ 2,

√
2(ε(G)−1)2

n−1 + 2
√
5− 3

√
2 if δ = 1.

Proof. Since δ ≤ du for every vertex u, from the definition of SO(G) it

follows that

√
2δm ≤ SO(G)

⇒ 2m ≤
√
2SO(G)

δ
·
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Substituting the value of 2m in the inequality (5), we get,(
ε(G)−

√
δ
)2

≤ (n− 1)(2m− δ)

⇒
(
ε(G)−

√
δ
)2

≤ (n− 1)

(√
2SO(G)

δ
− δ

)

⇒ SO(G) ≥ δ√
2


(
ε(G)−

√
δ
)2

n− 1
+ δ

 ·

For δ = 1, substituting the value of 2m from inequalty (6) into the

inequality (5), we get,

(ε(G)− 1)
2 ≤ (n− 1)(2m− 1)

⇒ (ε(G)− 1)
2 ≤ (n− 1)

(
SO(G)− 2

√
5 + 3

√
2√

2

)

⇒ SO(G) ≥
√
2 (ε(G)− 1)

2

n− 1
+ 2

√
5− 3

√
2.

Hence the theorem follows.
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