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Abstract

Introduced by Gutman in 2021, the Sombor index is a novel
graph-theoretic topological descriptor possessing potential applica-
tions in the modeling of thermodynamic properties of compounds.
Let Hk

n be the family of graphs on order n and k number of cut-
vertices having at least one cycle. In this paper, we present mini-
mum Sombor indices of graphs in Hk

n. The corresponding extremal
graphs have been characterized as well.

1 Introduction

We consider finite, connected and simple graphs only.

In modern chemistry, it is a cornerstone idea that the structure (molec-

ular) of a chemical compound comprises information on the physicochemi-

cal characteristics of the respective compound. Topological indices are nu-

merical quantities which provide efficient tools to retrieve this structural

information of compounds. They have diverse applications in materials
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science, pharmacology, chemistry. among other, [12,29]. Recently in 2021,

Gutman [9] introduced a novel degree-based topological descriptors called

the Sombor index. For a graph Γ, it is defined as follows:

SO(Γ) =
∑

xy∈E(Γ)

√
degΓ(x)

2 + degΓ(y)
2,

where degΓ(x) (resp. degΓ(y)) is the degree of the vertex x (resp. y) in Γ.

Within a short span of time, the Sombor index has attracted a sig-

nificant amount of attention among researchers from mathematics and

theoretical chemistry. Redžepović [25] investigated predictive potential of

the Sombor index for statistical modeling of enthalpy of vaporization and

entropy for alkanes. Successful predictive potential of the Sombor index

has also been employed for simulating the thermodynamic characteristics

of organic compounds. The reader is referred to [1–11,13,16–24,26,27,30],

for a detailed mathematical treatment of the Sombor index of graphs.

A graph Γ is an ordered pair Γ = (V,E), where V is the set of point

called vertices and E ⊆
(
V
2

)
is the set of lines called edges. The cardinality

n =| V | (resp. ε =| E |) of Γ is called the order (resp. size) of Γ. Two

vertices y, z ∈ V (Γ) are said to be adjacent or neighbors if yz ∈ E(Γ).

The set NΓ(x) = {y ∈ V (Γ) | xy ∈ E(Γ)} or N(x) for short, is called

the neighborhood of the vertex x in Γ. The number degΓ(x) =| NΓ(x) |
is said to be the degree of x. For an edge xy ∈ E(Γ), the graph Γ − xy

is obtained by deleting xy ∈ E(Γ) from Γ. On other hand, the subgraph

Γ−x for x ∈ V (Γ) is obtained by deleting x and its incident edges from Γ.

We denote the n-vertex path by Pn. For further understanding of graphs

and its notation see [31].

Investigating mathematical behavior of topological indices is a contem-

porary research topic these days. Determining extremal values of Sombor

indices of graphs with a given property has been started recently. For

instance, Sun & Du [28] studied extremal values of the Sombor index of

graphs with given domination number. Zhou et al. [33, 34] investigated

the extremal Sombor index of trees & unicyclic graphs with given match-

ing number and maximum degree. On the other hand, studying extremal

topological indices of graphs with given number of cut-vertices has also
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been studied frequently. For instance, Hua & Zhang [14] studied extremal

Merrifield-Simmons index of graphs with given number of cut-vertices. Xu

et al. [32] studied minimum Kirchhoff index of graphs with a given num-

ber of cut vertices. Ji & Wang recently studied minimum multiplicative

Zagreb indices of graphs with given number of cut-vertices. In this pa-

per, we study the minimum Sombor index of non-tree graphs with a given

number of cut-vertices. Corresponding extremal graphs have also been

characterized.

First, we introduced some auxiliary results which will be used in our

characterization.

2 Auxiliary results

Regarding the Sombor index of a graph, we start with an elementary

lemma below.

Lemma 1. Let Γ be a graph. If xy ∈ E(Γ), then SO(Γ− xy) < SO(Γ).

For the Sombor index, the following lemma presents an important prop-

erty of maximal 2-connected blocks.

Lemma 2. Let B be a maximal 2-connected block of a graph Γ ∈ Hk
n,

where Γ has the smallest Sombor index. If | B |≥ 3, then B is a cycle.

Proof. The case of | B |= 3 follows immediately that B ∼= Ct for some

t ≤ n. Next, we assume that | B |≥ 4. On contrary, we suppose that

the block B, comprising no cut-vertices, is not isomorphic to B ∼= Ct for

some t ≤ n. Since, the block B is 2-connected, so by deleting an edge, say

xy, the graph Γ still contains k-cut vertices. Also, the assumption that

B is not isomorphic to Ct for some t ≤ n implies that the deletion of of

an edge xy results in Γ still containing at least one cycle. This implies

that Γ − xy ∈ Hk
n. By Lemma 1, we have SO(Γ − xy) < SO(Γ), which

arises a contradiction that Γ has the smallest Sombor index. This shows

the lemma.

Next, we present four crucial auxiliary operations playing a key role in

our characterization.
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Here we first explain the α-operation on a graph Γ ∈ Hk
n. Let Γ ∈ Hk

n

be a graph with y, y1, x1, x2 ∈ Γ such that degΓ(y) ≥ 3, degΓ(y1) = 1,

and x1x2 is an edge lying on a cycle of Γ. See Figure 1. Let Γα =

Γ − {x1x2, y1y} + {x1y1, x2y1}. Then, we say that Γα is the α-switched

graph obtained from Γ by α-operation.

Figure 1. The α-operation used in Lemma 3.

Based on the α-operation, we obtain the following lemma.

Lemma 3. Let Γα be the α-switched graph of a graph Γ ∈ Hk
n described

in Figure 1. Then, SO(Γα) < SO(Γ).

Proof. Following the structure of Γ in Figure 1, assume y, x1, x2 ∈ Γ

such that degΓ(y) ≥ 3 and x1x2 is an edge lying on a cycle of Γ, where

degΓ(x1),degΓ(x2) ≥ 2. Furthermore, let Γ comprises at least one pendent

vertex y1. Let NΓ(y) = {y1, y2, . . . , yl} be the neighborhood set for y with

l ≥ 3 (see Figure 1).

Let C be an arbitrary cycle of Γ. If y /∈ C, then the α-switched graph

Γα is constructed by removing the edges yy1, x1x2 and adding x1y1, x2y1.

By taking this into account, the following relation between Sombor indices

of Γ and Γα emerges.

SO(Γ)− SO(Γα) =
l∑

j=1

√
degΓ(y)

2 + degΓ(yj)
2 +

√
degΓ(x1)2 + degΓ(x2)2 −

l∑
j=2

√
degΓα

(y)2 + degΓα
(yj)2 −

√
degΓα

(x1)2 + degΓα
(y1)2 −√

degΓα
(x2)2 + degΓα

(y1)2,

>
√

degΓ(y)
2 + degΓ(y1)

2 +
√
degΓ(x1)2 + degΓ(x2)2 −√

degΓα
(x1)2 + degΓα

(y1)2 −
√

degΓα
(x2)2 + degΓα

(y1)2
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≥
√
32 + 12 +

√
22 + 22 −

√
22 + 22 −

√
22 + 22.

This implies that SO(Γ)− SO(Γα) =
√
10−

√
8 > 0.

Thus, we are left with the remaining case, where y ∈ C for some cycle

C of Γ. In that case, if the vertex y1 is the unique pendent vertex of Γ, then

the case is settled. Next, we assume Γ contains another pendent vertex,

say z1, and then Γα = Γ − yy1 + y1z1. Thus, the conclusion is verified

as well. Repeating this process would need similar arguments, thus, they

have been omitted.

Therefore, the proof is finished.

Next, we provide the β-operation on a graph Γ ∈ Hk
n. Let Γ ∈ Hk

n

be a graph with y, z1, z2 ∈ Γ such that degΓ(y) ≥ 3 and z1z2 is an

edge lying on C, where C is a cycle of Γ. See Figure 2. Let Γβ =

Γ− {yy2, x21y2, z1z2}+ {y2z1, y2z2, x21xltl}. Then, we say that Γβ is the

β-switched graph obtained from Γ by β-operation.

Figure 2. The α-operation used in Lemma 4.

The following lemma compares the Sombor indices of Γ and Γβ .

Lemma 4. Let Γβ be the β-switched graph of a graph Γ ∈ Hk
n described

in Figure 2. Then

SO(Γβ) < SO(Γ).

Proof. Following the structure of Γ in Figure 2, assume y, z1, z2 ∈ Γ such

that degΓ(y) ≥ 3 and z1z2 is an edge lying on C, where C is an arbitrary

cycle of Γ. Let NΓ(y) = {y1, y2, . . . , yl} be the neighborhood set for y

with l ≥ 3 (see Figure 1). Moreover, if Γ comprises at least one pendent

vertex with y, then the β-operation can be reduced to α-operation, and

Lemma 3 is applicable. Thus, we assume that y is associated with pendent
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paths only with length at least 2. Give that, if y is associated to a unique

pendent path, then the case is settled.

Next, assume the case in which y is associated with at least two pendent

paths, say, P2(y2x21 . . . x2t2) and Pl(yl . . . xl1xltl), with t2, tl ≥ 1. Let Γβ =

Γ− {yy2, x21y2, z1z2}+ {y2z1, y2z2, x21xltl}. By taking this into account,

the following relation between Sombor indices of Γ and Γβ emerges.

SO(Γ)− SO(Γβ) =

l∑
j=1

√
degΓ(y)

2 + degΓ(yj)
2 +

√
degΓ(z1)

2 + degΓ(z2)
2 +

√
degΓ(x21)2 + degΓ(y2)

2 +
√
degΓ(xltl−1

)2 + degΓ(xltl)
2 −

l∑
j=1,j ̸=2

√
degΓβ

(y)2 + degΓβ
(yj)2 −

√
degΓβ

(y2)2 + degΓβ
(z1)2 −√

degΓβ
(y2)2 + degΓβ

(z2)2 −
√

degΓβ
(xltl−1

)2 + degΓβ
(xltl)

2 −√
degΓβ

(x21)2 + degΓβ
(xltl)

2

>
√

degΓ(y)
2 + degΓ(y2)

2 +
√
8 +

√
8 +

√
5−

√
8−

√
8−

√
8−

√
8 ≥

√
13 +

√
5− 2

√
8 > 0.

This completes the proof.

Next, we provide the third operation which we call the γ-operation on

a graph Γ ∈ Hk
n. Following the structure of Γ in Figure 3, let Γ0 be a graph

with | Γ0 |≥ 2 and x, z ∈ Γ0. Assume that Γ1 is the graph comprising C,

where C is a cycle. Next, from Γ0, we construct an n-vertex graph Γ ∈ Hk
n

with n ≥ 6 by identifying a vertex c ∈ C (resp. c′ ∈ C ′) with x (resp. z).

We construct Γγ = Γ−{y1z, y0y2, x1x2}+{x1y0, x2y1} and we say that

Γγ is the γ-switched graph obtained from Γ by applying the γ-operation.

The following lemma compares the Sombor indices of Γ ∈ Hk
n and Γγ .

Lemma 5. Let Γγ be the γ-switched graph of a graph Γ ∈ Hk
n described

in Figure 3. Then SO(Γγ) < SO(Γ).

Proof. Following the structure of Γ in Figure 3, assume that x, z ∈ Γ (resp.

C,C ′) be two cut-vertices (resp. cycles) in Γ such that C ′ is an endblock.



443

Figure 3. The γ-operation used in Lemma 5.

Let x1x2 ∈ E(C) and y1z, y0y2, y2z ∈ E(C ′) be the edges of C and C ′ such

that degΓ(x1),degΓ(x2) ≥ 2. Considering Γγ = Γ − {y1z, y0y2, x1x2} +

{x1y0, x2y1}, we obtain the following relation between Sombor indices of

Γ and Γγ :

SO(Γ)− SO(Γγ) =

l∑
j=1

√
degΓ(z)

2 + degΓ(yj)
2 +

√
degΓ(y2)

2 + degΓ(y0)
2 +

√
degΓ(x1)2 + degΓ(x2)2 −

l∑
j=2

√
degΓγ

(z)2 + degΓγ
(yj)2 −√

degΓγ
(x1)2 + degΓγ

(y0)2 −
√
degΓγ

(x2)2 + degΓγ
(y1)2,

>
√
degΓ(z)

2 + degΓ(y1)
2 +

√
8 +

√
8−

√
8−

√
8,

≥
√
13 > 0.

This shows the lemma.

Finally, we provide the fourth operation called the δ-operation on a

graph Γ ∈ Hk
n. Following the structure of Γ in Figure 4, let Γ0 be a graph

with | Γ0 |≥ 2 and y ∈ Γ0 is a vertex of Γ0. Assume that Γ1 is the graph

comprising C, where C is a cycle. Next, from Γ0, we construct an n-vertex

graph Γ ∈ Hk
n by attaching a vertex c ∈ C and c′ ∈ C ′ with y. This implies

that C ′ is an endblock of Γ. Considering Γδ = Γ− {yy2, y0y1}+ y0y2, we

say that Γδ is constructed from Γ by applying the δ-operation.

The following lemma compares the Sombor indices of Γ ∈ Hk
n and Γδ.

Lemma 6. Let Γδ be the δ-switched graph of a graph Γ ∈ Hk
n as described

in Figure 4. Then SO(Γδ) < SO(Γ).
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Figure 4. The δ-operation used in Lemma 6.

Proof. Following the structure of Γ in Figure 4, assume that C,C ′ (resp.

y ∈ Γ) be two cycles (resp. common vertex of C,C ′) in Γ such that

degΓ(y) ≥ 4 and C ′ is an endblock. Assume NΓ(y) = {y1, y2, . . . yt} with

t ≥ 4 be the set denoting neighbors of y ∈ Γ.

Considering Γδ to be constructed from Γ by removing edges yy2, y0y1,

and joining y2 to y0, we obtain the following relation between Sombor

indices of Γ and Γδ:

SO(Γ)− SO(Γδ) =
t∑

j=1

√
degΓ(y)

2 + degΓ(yj)
2 +

√
degΓ(y0)

2 + degΓ(y1)
2 −

t∑
j=3

√
degΓδ

(y)2 + degΓδ
(yj)2 −

√
degΓδ

(y)2 + degΓδ
(y1)2 −√

degΓδ
(y0)2 + degΓδ

(y2)2,

=
√
degΓ(y)

2 + degΓ(y1)
2 +

√
degΓ(y)

2 + degΓ(y2)
2 +

√
8−

√
degΓδ

(y)2 + degΓδ
(y1)2 −

√
8,

≥
√
42 + 22 +

√
42 + 22 −

√
32 + 12 > 0.

This verifies the conclusion.

Next, we consider Ω to be a graph satisfying | E(Ω) | − | V (Ω) |≥ 0

and two vertices x, y ∈ Ω lying on a cycle of Ω. By identifying a path Pr

(resp. Ps) to x (resp. y) in Ω, we construct the graph Ω(r, s).

Lemma 7. For x, y ∈ Ω(r, s) such that degΩ(r,s)(x),degΩ(r,s)(y) ≥ 3, we
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have

SO(Ω(r, s)) ≥ SO(Ω(1, r + s− 1)).

Proof. We have that degΩ(r,s)(x),degΩ(r,s)(y) ≥ 3, as x, y ∈ Ω lie on a cycle

of Ω. One may assume, without loss of generality, that degΩ(r,s)(x) ≥
degΩ(r,s)(y). Let xx1x2 . . . xr−1 (resp. yy1y2 . . . ys−1) be the vertices of

the path Pr (resp. Ps). Assume that NΩ(r,s)(x) = {x1, z1, z2, . . . , zt}, such
that t ≥ 2. Then, we construct the graph Ω(1, r + s − 1) from Ω(r, s) by

removing xx1 ∈ E
(
Ω(r, s)

)
and adjoining x1 with ys−1. For the sake of

simplicity, let Ω0 = Ω(r, s) and Ω′
0 = Ω(1, r+ s− 1). Then, we deduce the

following relation between the Sombor indices of Ω0 and Ω′
0.

SO(Ω0)− SO(Ω′
0) =

t∑
j=1

√
degΩ0

(x)2 + degΩ0
(zj)2 +

√
degΩ0

(x0)2 + degΩ0
(x1)2 +

√
degΩ0

(ys−2)2 + degΩ0
(ys−1)2 −

t∑
j=1

√
degΩ′

0
(x)2 + degΩ′

0
(zj)2 −√

degΩ′
0
(ys−2)2 + degΩ′

0
(ys−1)2 −

√
degΩ′

0
(ys−1)2 + degΩ′

0
(x1)2,

≥
√
32 + 22 +

√
32 + 22 +

√
32 + 22 +

√
22 + 12 −√

32 + 22 −
√
32 + 22 −

√
22 + 22 −

√
22 + 22,

=
√
13 +

√
5− 2

√
8 > 0.

Thus, this verifies the proof.

If we identify the two vertices x, y in Ω(r, s), then using a similar way

as we did in Lemma 7, we obtain a graph Ω(2, r + s − 2) implying that

SO(Ω(r, s)) ≥ SO(Ω(r′, s′)) such that r′ = 2, s′ = r + s − 2. Therefore,

this implies that x1 is a pendant vertex and Pr′ = xx1. In that case, we

employ Lemma 3, which suggests that there exists Ω′ with | Ω′ |=| Ω | +1

which is constructed from Ω by applying subdivision on edge z1z2 lying

on some cycle and denoting this vertex as x1 such that SO(Ω(r, s)) ≥
SO(Ω′(1, r + s− 2)) is verified. This suggests the following corollary:

Corollary. The identification of two vertices x, y in Ω(r, s) suggests the
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existence of a graph Ω′ on | Ω | +1 vertices for which SO
(
Ω(r, s)

)
≥

SO
(
Ω′(1, r + s− 2)

)
is satisfied.

3 Main result

This section provides a sharp lower bound on the Sombor index of graphs

in Hk
n. The corresponding graphs have been characterized as well. For

n, k ≥ 2, let Cn−k be a cycle of order n − k and x ∈ Cn−k be a vertex

of Cn−k. Then, the family Cn,k is obtained by adjoining a path Pk+2 of

order k + 2 with the vertex x of Cn−k. This makes Cn−k a graph of Hk
n

on order n and k cut-vertices. See Figure 5 for the graph Cn,k.

Figure 5. The graph Cn,k.

Next, we show the main result of this paper.

Theorem 1. Let Γ be a graph in Hk
n. Then

SO(Γ) ≥ 2(n− 4)
√
2 + 3

√
13 +

√
5,

where equality holds if and only if Γ ∼= Cn,k.

Proof. Let Γ ∈ Hk
n be a graph attaining the minimal Sombor index. As-

sume S is a set of k cut-vertices in Γ. Let B1, . . . , Br be the blocks of Γ

corresponding to k cut-vertices. Notice that, for some ℓ, either | Bℓ |= 2

or | Bℓ |≥ 3. First, we prove the following claim.

Claim 1. There exists exactly one pendent tree Pt in Γ. Moreover, Pt is

a path.
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Proof of Claim 1. Among graphs in Hk
n, since Γ is assumed to attain

minimum value of SO(Γ). We claim that Γ comprises one or more pendent

trees, as otherwise, we would have constructed Γ′ from Γ by Lemmas 5

& 6 for which SO(Γ′) < SO(Γ) holds which then arises a contradiction

to the choice of Γ. Furthermore, each of the pendant tree has to be a

path, as otherwise, Lemma 4 ensures construction of Γ′′ from Γ which

SO(Γ′′) < SO(Γ), which arises a contradiction again. Thus, we obtain

that there exist at least one pendent tree in Γ and, in fact, every pendent

tree is a path.

Next, we show that Γ comprises precisely one pendent tree i.e. a path.

One contrary, assume that there exists at least two pendent trees in Γ.

Then, Lemma 7 and Corollary 2 ensures existence of graph Γ1 such that

SO(Γ1) < SO(Γ) is satisfied. This contradict with the selection of Γ.

It is important to notice that the cardinality | B | of B is not effected

under operations of Lemmas 4, 5, 6 & 7. This shows the claim. □

By employing Lemma 2, we obtain that Γ is a block graph with K2

or cycles as its blocks. Moreover, Claim 1 implies that we obtain that

Γ contains Pt as its unique pendent path. If Γ comprises only one block

which is a cycle, then Γ ∼= Cn,k and the case is settled. Thus, we assume

that Γ contains two or more cycles.

Next, we show that, except for K2 of Pt, all endblocks are cycles. As

otherwise, Γ would contain at least two pendent trees which contradicts

Claim 1. Next, we divide our discussion into two possible cases.

Case 1. There exists precisely two endblocks in Γ.

By using our earlier claim, one of the endblocks is a cycle C1 and the other

is K2. By assumption, Γ comprises another cycle, say, C2. Given that,

Lemmas 5 & 6 ensure existence of a graph Γ′ such that SO(Γ′) < SO(Γ)

holds. We arrive at a contradiction to the choice of Γ.

Case 2. The graph Γ contains at least two endblocks.

Earlier discussion implies that Γ comprises at least two endclocks which are

cycles. Once again, by Lemmas 5 & 6, there exists a graph Γ′′ satisfying

SO(Γ′′) < SO(Γ), which is a contradiction.
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Both Cases 1 & 2 arise contradiction to the minimality of Γ. Thus,

Γ contains exactly one cycle Cr. Since Γ lies in Hk
n, we conclude that

Cr
∼= Cn−k and Pt

∼= Pk+2. This implies that Γ ∼= Cn,k. By some routine

calculations, we arrive at SO(Cn,k) = 2(n − 4)
√
2 + 3

√
13 +

√
5. This

completes the proof and shows the theorem.

4 Concluding remarks

This paper studies the Sombor index of non-tree n-vertex graphs having k

cut-vertices i.e. Hk
n. We find a sharp lower bound on the Sombor index of

graphs in Hk
n. Moreover, all graphs achieving the lower bound have been

characterized.

Problem 1. Find maximum graphs with respect to the Sombor index in

Hk
n.

Let Vk
n (resp. Ek

n) be the set of all n-vertex graphs with vertex connec-

tivity (resp. edge connectivity) at most k. We propose the following open

problems on the Sombor index of graphs.

Problem 2. Find extremal graphs with respect to the Sombor index

among the families in Vk
n and Ek

n.

Acknowledgment : We would like to thank to Prof. Gutman for reading
this paper.

References

[1] S. Alikhani, N. Ghanbari, Sombor index of polymers, MATCH Com-
mun. Math. Comput. Chem. 86 (2021) 715–728.

[2] H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of
trees, MATCH Commun. Math. Comput. Chem. 87 (2022) 23–49.

[3] R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl.
Math. Comput. 399 (2021) #126018.

[4] R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic
and bicyclic graphs, J. Math. Chem. 59 (2021) 1098–1116.



449

[5] K. C. Das, A. S. Cevik, I. N. Cangul, Y. Shang, On Sombor index,
Symmetry 13 (2021) #140.

[6] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Com-
put. 412 (2022) #126575.

[7] X. Fang, L. You, H. Liu, The expected values of Sombor indices in
random hexagonal chains, phenylene chains and Sombor indices of
some chemical graphs, 2021, arXiv: 2103.07172.

[8] S. Filipovski, Relations between Sombor index and some degree-based
topological indices, Iranian J. Math. Chem. 12 (2021) 19–26.

[9] I. Gutman, Geometric approach to degree-based topological indices:
Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021)
11–16.

[10] K. C. Das, I. Gutman, On Sombor index of trees, Appl. Math. Com-
put. 412 (2022) #126575.

[11] I. Gutman, Some basic properties of Sombor indices, Open J. Discr.
Appl. Math. 4 (2021) 1–3.

[12] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors
– Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010.

[13] B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH Com-
mun. Math. Comput. Chem. 86 (2021) 703–713.

[14] H. Hua, S. Zhang, Graphs with given number of cut vertices and
extremal Merrifield-Simmons index, Discr. Appl. Math. 159 (2011)
971–980.

[15] S. Ji, S. Wang, On the sharp lower bounds of Zagreb indices of graphs
with given number of cut vertices, J. Math. Anal. Appl. 458 (2018)
21–29.

[16] S. Li, Z. Wang, M. Zhang, On the extremal Sombor index of trees
with a given diameter, Appl. Math. Comput. 416 (2022) 126731.

[17] Z. Lin, On the spectral radius, energy and Estrada index of the Som-
bor matrix of graphs, 2021, arXiv: 2102.03960.

[18] H. Liu, Ordering chemical graphs by their Sombor indices, 2021a
arXiv: 2103.05995.

[19] H. Liu, Maximum Sombor index among cacti, 2021b arXiv: 2103.

07924.

2103.07172
2102.03960
2103.05995
2103.07924
2103.07924


450

[20] H. Liu, L. You, Y. Huang, Ordering chemical graphs by Sombor in-
dices and its applications, MATCH Commun. Math. Comput. Chem.
87 (2022) 5–22.

[21] H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and
its applications, MATCH Commun. Math. Comput. Chem. 86 (2021)
729–753.
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