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Abstract

For a (chemical) graph G with vertex set VG and edge set EG,
the Sombor index is defined as SO(G) =

∑
uv∈EG

√
d2(u) + d2(v),

where d(u) denotes the degree of vertex u in G. In this paper, we
determine the second and third minimum (resp. maximum) Som-
bor index of catacondensed hexagonal systems and phenylenes, the
second minimum Sombor index of cata-catacondensed fluoranthene-
type benzenoid systems. We also determine the minimum (resp.
maximum) Sombor index of caterpillar trees with given degree se-
quence. At last, the first three maximum and the minimum Sombor
index of star-like trees are determined.

1 Introduction

Let G be a simple connected graph with vertex set VG and edge set EG.

The degree of a vertex u is defined as d(u). If d(u) ≤ 4 for all u ∈ VG, then

∗Corresponding author.
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we call G is a chemical graph (or molecular graph). We write uv ∈ EG

if u ∼ v in G. Let mij be the number of edges if the degrees of two end

vertices are i and j. Denote by Sn and Pn, the star graph and path with

order n, respectively. In this paper, all notations and terminologies used

but not defined can refer to Bondy and Murty [2].

The distance dG(u, v) between vertex u and v is the length of short-

est path from u to v. The diameter diam(G) is defined as diam(G) =

max{dG(u, v)|u, v ∈ VG}. A tree T is a star-like tree if diam(T ) ≤ 4. Note

that the star-like tree we considered here are different from the star-like

tree of [4] which is a tree with exactly one vertex of degree greater than 2.

If d1, d2, · · · , dn is the degrees of n vertices in G and d1 ≥ d2 ≥ · · · ≥ dn,

then we call π = (d1, d2, · · · , dn) the degree sequence of G.

Inspired by Euclidean metric, in 2020, Gutman proposed the Sombor

index [9], which is defined as

SO(G) =
∑

uv∈EG

√
d2(u) + d2(v).

Since then, the Sombor index has attracted much attention of re-

searchers. Redžepović et al. [20] researched the chemical applicability of

the Sombor indices. Deng et al. [7] determined the maximum Sombor

index in chemical trees. Li et al. [15] considered the extremal Sombor in-

dex of trees with given diameter. Very recently, Gutman [10] showed that

geometry-based reasonings reveal the geometric background of several clas-

sical topological indices, and led to a series of new SO-like degree-based

graph invariants. One can refer to [16–18, 21, 22] for more details about

the Sombor index.

The remainder of this paper is organized as follow. In Section 2.1, we

determine the second and third minimum (resp. maximum) Sombor in-

dex of catacondensed hexagonal systems and phenylenes. In Section 2.2,

we determine the second minimum Sombor index of cata-catacondensed

fluoranthene-type benzenoid systems. In Section 3, we determine the mini-

mum (resp. maximum) Sombor index of caterpillar trees with given degree

sequence. In Section 4, the first three maximum and minimum Sombor

index of star-like trees are determined.
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2 Hexagonal systems and phenylenes

In this section, we determine the extremal Sombor index of catacon-

densed hexagonal systems, phenylenes and cata-catacondensed fluoranthen

e-type benzenoid systems.

2.1 Catacondensed hexagonal systems and phenylenes

A hexagonal system is a special chemical graph. A hexagonal system

[11,12] (or called a benzenoid system) is a finite connected plane graph with

out cut vertices, in which all interior regions are mutually congruent regular

hexagons. Let HSh be the set of hexagonal systems with h hexagons.

We use ID(H) to denote the inner dual graph [11] of a hexagonal

system H, which is the graph whose vertices are the hexagons of H and

two vertices are adjacent in ID(H) if the corresponding hexagons in H

are adjacent. If the inner dual ID(H) is a tree with h vertices, then we

call H is a catacondensed hexagonal system with h hexagons, and denote

by CHSh the set of catacondensed hexagonal systems with h hexagons.

Further, if the inner dual ID(H) is a path with h vertices, then we call H

is a hexagonal chain with h hexagons, and denoted by Lh.

The types of hexagons in a catacondensed hexagonal system can be

divided into linear (L1 and L2) and angular (A2 and A3) (see Figure 1,

and which is defined in [13]). We use l1(H), l2(H), a2(H), a3(H) to de-

note the number of L1-, L2-, A2-, A3-hexagons in H, respectively. A

fissure is a path with degree sequence (2, 3, 2) if it goes along the perime-

ter of a catacondensed hexagonal system, and bay with degree sequence

(2, 3, 3, 2), cove with degree sequence (2, 3, 3, 3, 2), fjord with degree se-

quence (2, 3, 3, 3, 3, 2), respectively (see Figure 1). The numbers of fissures,

bays, coves, fjords in a catacondensed hexagonal system H are denoted by

f(H), B(H), C(H), F (H), respectively. Then the number of inlets of H

is r(H) = f(H) +B(H) + C(H) + F (H).

Let H be a catacondensed hexagonal system. Then by the definition

of the Sombor index, we have SO(H) = 2
√
2m22 +

√
13m23 + 3

√
2m33.
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Figure 1. A catacondensed hexagonal system H and its ID(H).

Lemma 2.1. [19] Let H ∈ HSh with n vertices and r inlets. Then
m22 = n− 2h− r + 2,

m23 = 2r,

m33 = 3h− r − 3.

Note that n = 4h + 2 for a catacondensed hexagonal system with h

hexagons, then by Lemma 2.1, we immediately have

Lemma 2.2. If H ∈ HSh with n vertices and r inlets, then

SO(H) = 2
√
2n+ 5

√
2h+ (2

√
13− 5

√
2)r − 5

√
2.

Especially, if H ∈ CHSh, then we have

SO(H) = 13
√
2h+ (2

√
13− 5

√
2)r −

√
2. (1)

Lemma 2.3. [25] Let H ∈ CHSh with a2(H) = a2, a3(H) = a3 and r

inlets. Then r + 3a3 + a2 = 2(h− 1).

Lemma 2.4. [24] Let H ∈ CHSh with a2(H) = a2, a3(H) = a3, l2(H) =

l2 and r inlets. Then a2 + 2a3 + l2 = h− 2 and

r =
1

2
(h+ 2 + a2 + 3l2) ≥

{
h+2
2 , if h is even,

h+3
2 , if h is odd,

(2)

with equality if and only if

{
a2 = l2 = 0, if h is even,

a2 = 1, l2 = 0, if h is odd.

By Lemmas 2.3 and 2.4 and Equation (1), we have
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Theorem 2.5. [5] Let h ≥ 3 and H ∈ CHSh. Then

(i) SO(H) ≤ (4
√
13 + 3

√
2)h + 9

√
2 − 4

√
13, with equality if and only if

H ∼= Lh.

(ii) SO(H) ≥

{
13
√
2h+ (2

√
13− 5

√
2)h+2

2 −
√
2, if h is even,

13
√
2h+ (2

√
13− 5

√
2)h+3

2 −
√
2, if h is odd,

with equality if and only if

{
a2 = 0, a3 = h−2

2 , if h is even,

a2 = 1, a3 = h−3
2 , if h is odd.

Remark 2.6. Note that the graphs in CHSh with the minimum Sombor

index satisfied:

{
a2 = 0, a3 = h−2

2 , if h is even,

a2 = 1, a3 = h−3
2 , if h is odd.

It is obvious that

the Figure 6 of [5] are not correct. We redrawn it (see Figure 2).

Figure 2. Minimum graphs in CHSh with h = 16 and h = 15.

In the following, we consider the second and third maximum graphs in

CHSh with respect to the Sombor index. Let L2
h be the set of the second

maximum catacondensed hexagonal systems in CHSh.

Theorem 2.7. Let H ∈ CHSh \ {Lh} with a2(H) = a2, a3(H) = a3 and

r inlets.

(i) SO(H) ≤ 13
√
2h + (2

√
13 − 5

√
2)(2h − 3) −

√
2, with equality if and

only if a2 = 1, a3 = 0 in H.

(ii) If H ∈ CHSh\({Lh}∪L2
h), then SO(H) ≤ 13

√
2h+(2

√
13−5

√
2)(2h−

4)−
√
2, with equality if and only if a2 = 2, a3 = 0 in H.



420

Proof. By Theorem 2.5, SO(H) ≤ SO(Lh), with equality if and only if

r = 2(h− 1).

If r ̸= 2(h−1), then r ≤ 2(h−1)−1 = 2h−3, with equality if and only

if a2 = 1, a3 = 0 in H. Thus SO(H) ≤ 13
√
2h+(2

√
13−5

√
2)(2h−3)−

√
2,

with equality if and only if a2 = 1, a3 = 0 in H.

If r ̸= 2(h− 1), r ̸= 2h− 3, then r ≤ 2h− 4 with equality if and only if

a2 = 2, a3 = 0 in H. Thus SO(H) ≤ 13
√
2h+(2

√
13− 5

√
2)(2h− 4)−

√
2

with equality if and only if a2 = 2, a3 = 0 in H.

Note that it is easy to confirm that the graphs with the second and the

third maximum Sombor index exist (see (1) and (2) of Figure 3).

Figure 3. Examples for the second maximum, the third maximum, the
second minimum and the third minimum graphs in CHS6.

Next, we consider the second and the third minimum graphs in CHSh

with respect to the Sombor index.

Theorem 2.8. Let H ∈ CHSh (h ≥ 5) with a2(H) = a2, a3(H) = a3 and

r inlets.

(i) If h is even, then H has the second minimum Sombor index if and only

if a2 = 2, a3 = 1
2 (h− 4) in H.

(ii) If h is odd, then H has the second minimum Sombor index if and only

if a2 = 0, a3 = 1
2 (h− 3) or a2 = 3, a3 = 1

2 (h− 5) in H.
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Proof. (i) If h is even, by Lemma 2.4, H has the minimum Sombor index if

and only if r = 1
2 (h+2). If r ̸= 1

2 (h+2), then r ≥ 1
2 (h+4) with equality if

and only if a2 = 2, a3 = 1
2 (h− 4) in H. Thus SO(H) ≥ 13

√
2h+ (2

√
13−

5
√
2)h+4

2 −
√
2, with equality if and only if a2 = 2, a3 = 1

2 (h− 4) in H.

(ii) If h is odd, by Lemma 2.4, H has the minimum Sombor index if

and only if r = 1
2 (h+ 3). If r ̸= 1

2 (h+ 3), then r ≥ 1
2 (h+ 5) with equality

if and only if a2 = 0, a3 = 1
2 (h − 3) or a2 = 3, a3 = 1

2 (h − 5) in H. Thus

SO(H) ≥ 13
√
2h + (2

√
13 − 5

√
2)h+5

2 −
√
2, with equality if and only if

a2 = 0, a3 = 1
2 (h− 3) or a2 = 3, a3 = 1

2 (h− 5) in H.

Note that it is easy to confirm that the graphs with second minimum

Sombor index exist (see (3) of Figure 3).

Further, similar to the proof of Theorem 2.8, we have

Theorem 2.9. Let H ∈ CHSh (h ≥ 5) with a2(H) = a2, a3(H) = a3 and

r inlets.

(i) If h is even, then H has the third minimum Sombor index if and only

if a2 = 1, a3 = 1
2 (h− 4) in H.

(ii) If h is odd, then H has the third minimum Sombor index if and only

if a2 = 2, a3 = 1
2 (h− 5) in H.

Note that it is easy to confirm that the graphs with the third minimum

Sombor index of Theorem 2.9 exist (see (4) of Figure 3).

Phenylenes (denoted by PH) are polycyclic conjugated molecules pos-

sessing both quadrilaterals and hexagons. Each quadrilateral is adjacent

to two disjoint hexagons, and no two hexagons are adjacent. By squeezing

out the squares from a phenylene, we can obtain a catacondensed hexago-

nal system which is also called the hexagonal squeeze (denoted by HS) of

the corresponding phenylene. A hexagonal squeeze is also a catacondensed

hexagonal system. An example of the PH and its corresponding HS see

Figure 4.

Let PH be the set of phenylenes. Firstly, we consider the relationship

between the Sombor index of phenylenes and its hexagonal squeeze. Let

H ∈ PH, then by the definition of the Sombor index, we have

SO(H) = 2
√
2m22 +

√
13m23 + 3

√
2m33.
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Figure 4. A phenylene (PH) and its hexagonal squeeze (HS).

Lemma 2.10. [19] Let H ∈ PH with h hexagons and r inlets. Then
m22 = 2h− r + 4,

m23 = 2r,

m33 = 6h− r − 6.

Note that n = 6h for phenylene with h hexagons, then by Lemma 2.10,

we immediately have

Theorem 2.11. Let H ∈ PH with h hexagons and r inlets. Then

SO(H) = 22
√
2h+ (2

√
13− 5

√
2)r − 10

√
2.

Combining the conclusions of Theorem 2.11 and Lemma 2.2, we have

Corollary 2.12. Let H ∈ PH with h hexagons, H∗ ∈ HS be the corre-

sponding hexagonal squeeze of H. Then SO(H) = SO(H∗) + 9
√
2(h− 1).

By Corollary 2.12, similarly, we can determine the extremal Sombor

index of phenylenes with h hexagons. We omit the proof of Theorems

2.13-2.15.

Theorem 2.13. Let h ≥ 3 and H ∈ PH, H∗ ∈ HS be the corresponding

hexagonal squeeze of H. Then

(i) SO(H) ≤ (4
√
13+12

√
2)h−4

√
13, with equality if and only if H∗ ∼= Lh.

(ii) SO(H) ≥

{
22
√
2h+ (2

√
13− 5

√
2)h+2

2 − 10
√
2, if h is even,

22
√
2h+ (2

√
13− 5

√
2)h+3

2 − 10
√
2, if h is odd,
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with equality if and only if

{
a2(H

∗) = 0, a3(H
∗) = h−2

2
, if h is even,

a2(H
∗) = 1, a3(H

∗) = h−3
2

, if h is odd.

Theorem 2.14. Let h ≥ 3 and H ∈ PH, H∗ ∈ HS be the corresponding

hexagonal squeeze of H. Then

(i) H has the second maximum Sombor index if and only if a2(H
∗) =

1, a3(H
∗) = 0 in H∗.

(ii) H has the third maximum Sombor index if and only if a2(H
∗) =

2, a3(H
∗) = 0 in H∗.

Theorem 2.15. Let h ≥ 5 and H ∈ PH, H∗ ∈ HS be the corresponding

hexagonal squeeze of H. Then

(i) If h is even, then H has second minimum Sombor index if and only if

a2(H
∗) = 2, a3(H

∗) = 1
2 (h− 4) in H∗.

(ii) If h is odd, then H has second minimum Sombor index if and only if

a2(H
∗) = 0, a3(H

∗) = 1
2 (h− 3) or a2(H

∗) = 3, a3(H
∗) = 1

2 (h− 5) in H∗.

(iii) If h is even, then H has third minimum Sombor index if and only if

a2(H
∗) = 1, a3(H

∗) = 1
2 (h− 4) in H∗.

(iv) If h is odd, then H has third minimum Sombor index if and only if

a2(H
∗) = 2, a3(H

∗) = 1
2 (h− 5) in H∗.

2.2 Cata-catacondensed fluoranthene-type benzenoid

systems

Let X be a benzenoid system, d(u) = d(v) = 2, d(w) = 3 for uw, vw ∈
E(X) (see Figure 5). Let Y be another benzenoid system, d(x) = d(y) =

2 for xy ∈ E(Y ) (see Figure 5). The the fluoranthene-type benzenoid

system (simply for f-benzenoid system) F (X,Y ) is the graph obtained

from X and Y by connecting vertices u and x, v and y, respectively. If

X and Y are both catacondensed benzenoid system, then we call F (X,Y )

cata-catacondensed fluoranthene-type benzenoid system (simply for cata-

catacondensed f-benzenoid system). Let FCh be the set of cata-cataconden

sed f-benzenoid systems with h hexagons.

Lemma 2.16. [13] Let F be a f-benzenoid system with n vertices and h ≥ 3

hexagons and r inlets. Then SO(F ) = 2
√
2n+ (2

√
13− 5

√
2)r + 5

√
2h.
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Figure 5. benzenoid systems X,Y and f-benzenoid system F (X,Y ).

For F ∈ FCh with n vertices and h hexagons, then n = 4h+ 4, thus

Corollary 2.17. [13] Let F ∈ FCh with r inlets. Then SO(F ) = (2
√
13−

5
√
2)r + 13

√
2h+ 8

√
2.

Lemma 2.18. [8] Let h ≥ 3 and F ∈ FCh, FLh and Eh be defined in [13]

(see Figures 4,8,9 of [13]). Then

(i) r(F ) ≤ r(FLh) = 2h− 3;

(ii) r(F ) ≥ r(Eh) =

{
1
2 (h+ 4), if h is even,
1
2 (h+ 3), if h is odd.

Theorem 2.19. [13] Let h ≥ 3 and F ∈ FCh. Then

(i) SO(F ) ≤ SO(FLh) = 14
√
2 +

√
13(4h− 6) + 3

√
2(h+ 3);

(ii) SO(F ) ≥ SO(Eh) =

{
( 21

2

√
2 +

√
13)h+ 4

√
13− 2

√
2, if h is even,

( 21
2

√
2 +

√
13)h+ 4

√
13− 1

2

√
2, if h is odd.

Let F (X,Y ) be the cata-catacondensed fluoranthene-type benzenoid

systems with h hexagons, a2 A2-hexagons, a3 A3-hexagons and l2 L2-

hexagons. Let a12, a
2
2 be the numbers of A2-hexagons in X and Y , l12, l

2
2 the

numbers of L2-hexagons inX and Y , respectively. Let d(u), d(v), d(x), d(y)

be the degree of vertices u, v, x, y in cata-catacondensed f-benzenoid system

F (X,Y ), see Figure 5.

Lemma 2.20. [8] Let F ∈ FCh with h ≥ 3. Then

(i) if h is even and r ̸= 1
2 (h + 4), then r ≥ 1

2 (h + 6), with equality if and

only if one of the following holds:

(1) d(u) = d(v) = d(x) = d(y) = 2, l2 = l12 = l22 = 0, a2 = a12 = a22 = 0;
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(2) d(u) = d(x) = d(y) = 2, d(v) = 3, a2 = a12 + a22 = 1, l2 = l12 = l22 = 0;

(3) d(v) = d(x) = d(y) = 2, d(u) = 3, a2 = a12 + a22 = 1, l2 = l12 = l22 = 0;

(4) d(u) = d(x) = 3, d(v) = d(y) = 2, l2 = l12 = 1, a2 = a12 + a22 = 1;

(5) d(x) = d(y) = 2, d(u) = d(v) = 3, a2 = a12 + a22 = 3, l2 = l12 = l22 = 0;

(6) d(u) = d(y) = 3, d(v) = d(x) = 2, a2 = a12 + a22 = 0, l2 = l12 = 1;

(7) d(v) = d(y) = 3, d(u) = d(x) = 2, l2 = l12 = 1, a2 = a12 = a22 = 0;

(8) d(v) = d(y) = d(x) = 3, d(u) = 2, l2 = l12 = 2, a2 = a12 = a22 = 0;

(9) d(v) = d(y) = d(u) = 3, d(x) = 2, a22 ≥ 1, a2 = a12 + a22 = 2, l2 = l12 = 1;

(10)d(v) = d(x) = d(u) = 3, d(y) = 2, a22 ≥ 1, a2 = a12+a22 = 2, l2 = l12 = 1;

(11) d(y) = d(u) = d(x) = 3, d(v) = 2, l2 = l12 = 2, a2 = a12 = a22 = 0;

(12) d(u) = d(v) = d(x) = d(y) = 3, l2 = l12 = 2, a12 ≥ 1, a2 = a12 + a22 = 2.

(ii) if h is odd and r ̸= 1
2 (h + 3), then r ≥ 1

2 (h + 5), with equality if

and only if one of the following holds:

(1) d(u) = d(y) = 3, d(v) = d(x) = 2, l2 = 0, a2 = a12 + a22 = 2, a12 ≥ 1;

(2) d(u) = d(x) = d(y) = 2, d(v) = 3, a2 = a12 + a22 = 1, l2 = l12 = l22 = 0;

(3) d(v) = d(x) = d(y) = 2, d(u) = 3, a2 = a12 + a22 = 1, l2 = l12 = l22 = 0;

(4) d(u) = d(x) = 3, d(v) = d(y) = 2, l2 = l12 = 1, a2 = a12 + a22 = 0;

(5) d(u) = d(y) = 2, d(x) = d(v) = 3, l2 = l12 = 1, a2 = a12 + a22 = 0;

(6) d(u) = d(y) = d(v) = 3, d(x) = 2, l2 = l12 = 1, a2 = a12 + a22 = 2;

(7) d(u) = d(y) = 3, d(v) = d(x) = 2, l2 = l12 = 1, a2 = a12 + a22 = 0;

(8) d(u) = d(v) = d(y) = d(x) = 3, l2 = l12 = 2, a12 ≥ 0, a2 = a12 = 1.

By Corollary 2.17 and Lemma 2.20, we can determine the second min-

imum Sombor index in FCh.

Theorem 2.21. Let F ∈ FCh \ {Eh}. Then

(i) if h is even, then SO(F ) ≥ (2
√
13 − 5

√
2)h+6

2 + 13
√
2h + 8

√
2, with

equality if and only if the same with case (i) of Lemma 2.20.

(ii) if h is odd, then SO(F ) ≥ (2
√
13 − 5

√
2)h+5

2 + 13
√
2h + 8

√
2, with

equality if and only if the same with case (ii) of Lemma 2.20.

Our purpose for introducing Lemma 2.20 is to show that the extremal

graphs exist.
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3 Caterpillar trees of given degree sequence

In this section, we determine the minimum and maximum Sombor

index of caterpillar trees with given degree sequence.

Definition 3.1. Let π = (d1, d2, · · · , dn) be a non-negative nonincreasing

sequence. If there exists a graph whose degree sequence is π, the we call π

is a graphical sequence.

The caterpillar tree (also called Gutman tree) is the tree obtained from

a path P = v1v2 · · · vl by connecting pendent vertices to vertices, say

v1, v2, · · · , vl, of the path P . Let d(vi) = xi + 1 ≥ 2 for i = 1, 2, · · · , l. We

denote the caterpillar trees of Figure 6 by CT (x1, x2, · · · , xl).

Figure 6. CT (x1, x2, · · · , xl).

The following result is obvious, we omit the proof.

Lemma 3.2. Let x > a ≥ 1, y > 0, f(x, y) =
√

x2 + y2−
√
(x− a)2 + y2.

Then f(x, y) is strictly increasing with x, strictly decreasing with y.

Let π = (d1, d2, · · · , dn). Then we use CTπ to denote the set of cater-

pillar trees with given degree sequence π.

Lemma 3.3. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl).
If the caterpillar tree CT (x1−1, x2−1, · · · , xl−1) in CTπ has the maximum

Sombor index, then min{x1, xl} > xi for i = 2, 3, · · · , l − 1.

Proof. For any 2 ≤ i ≤ l − 1, we compare the sequence (x1, · · · , xi−1, xi,

xi+1, · · · , xl) with sequence (xi, xi−1, · · · , x1, xi+1, · · · , xl). Since CT (x1−
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1, x2 − 1, · · · , xl − 1) has the maximum Sombor index, then

SO(CT (xi − 1, xi−1 − 1, xi−2 − 1, · · · , x1 − 1, xi+1 − 1, · · · , xl − 1))

− SO(CT (x1 − 1, · · · , xi−2 − 1, xi−1 − 1, xi − 1, xi+1 − 1, · · · , xl − 1))

= (xi − 1)
√
x2
i + 1 + (x1 − 2)

√
x2
1 + 1 +

√
x2
1 + x2

i+1

− {(x1 − 1)
√
x2
1 + 1 + (xi − 2)

√
x2
i + 1 +

√
x2
i + x2

i+1}

= (
√
x2
1 + x2

i+1 −
√
x2
i + x2

i+1)− (
√
x2
1 + 1−

√
x2
i + 1) ≤ 0.

Since xi+1 ≥ 2, then by Lemma 3.2, we have x1 > xi. Similarly, we

have xl > xi. Thus min{x1, xl} > xi for i = 2, 3, · · · , l − 1.

Lemma 3.4. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl).
If the caterpillar tree CT (x1−1, x2−1, · · · , xl−1) in CTπ has the maximum

Sombor index, then xi < xj ⇔ xi−1 > xj+1 for 2 ≤ i < j ≤ l − 1.

Proof. For any 2 ≤ i < j ≤ l − 1, we compare the sequence (x1, · · · , xi−1,

xi, · · · , xj−1, xj , xj+1, · · · , xl) with the sequence (x1, . . . , xi−1, xj , xj−1,

. . . , xi, xj+1, . . . , xl). Since CT (x1 − 1, x2 − 1, . . . , xl − 1) has the max-

imum Sombor index, then

SO(CT (x1−1, · · · , xi−1−1, xj −1, xj−1−1, · · · , xi−1, xj+1−1, · · · , xl−
1)) − SO(CT (x1 − 1, · · · , xi−1 − 1, xi − 1, · · · , xj−1 − 1, xj − 1, xj+1 −
1, · · · , xl−1)) = (

√
x2
i−1 + x2

j−
√
x2
j+1 + x2

j )−(
√

x2
i−1 + x2

i−
√

x2
j+1 + x2

i )

≤ 0.

Then by Lemma 3.2, we have xi < xj ⇔ xi−1 > xj+1 for 2 ≤ i < j ≤
l − 1.

Example 3.5. Let d1 > d2 > · · · > d9 ≥ 2 > d10 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , x9) be a permutation of (d1, d2, · · · , d9).
If the caterpillar tree CT (x1−1, x2−1, · · · , x9−1) in CTπ has the maximum

Sombor index, then (x1, x2, · · · , x9) = (d1, d9, d3, d7, d5, d6, d4, d8, d2) or

(d2, d8, d4, d6, d5, d7, d3, d9, d1).

Proof. By Lemma 3.3, we have min{x1, x9} > xi for i = 2, 3, · · · , 8. With-

out loss of generality, we suppose x1 > x9, thus x1 = d1, x9 = d2.
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Since x1 > x9, then by Lemma 3.4, we have x2 < x8. Since xi < x9 for

i = 2, 3, · · · , 6, then by Lemma 3.4, we have x8 < xj for j = 3, 4, · · · , 7.
Thus x2 = d9, x8 = d8.

Since x2 < x8, then by Lemma 3.4, we have x3 > x7. Since x8 < xi

for i = 3, 4, 5, then by Lemma 3.4, we have x7 > xj for j = 4, 5, 6. Thus

x3 = d3, x7 = d4.

Since x3 > x7, then by Lemma 3.4, we have x4 < x6. Since x4 < x7,

then by Lemma 3.4, we have x5 > x6. Thus x4 = d7, x6 = d6, x5 = d5.

In summary, we have (x1, x2, · · · , x9) = (d1, d9, d3, d7, d5, d6, d4, d8, d2).

If x1 < x9, similarly, we have (x1, x2, · · · , x9) = (d2, d8, d4, d6, d5, d7, d3,

d9, d1).

Due to symmetry in caterpillar trees, we always suppose x1 > xl in the

rest of this paper. Using the conclusions of Lemmas 3.3 and 3.4 repeatedly,

we have

Theorem 3.6. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1,

π = (d1, d2, · · · , dn), (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl),
and the caterpillar tree CT (x1 − 1, x2 − 1, · · · , xl − 1) in CTπ have the

maximum Sombor index. If l = 4m+ r with r = 0, 1, 2, 3, then one of the

following holds:

(i) (x1, x2, · · · , x4m) = (d1, d4m, d3, d4m−2, · · · , d2m−1, d2m+2, d2m+1, d2m,

· · · , d4m−3, d4, d4m−1, d2);

(ii) (x1, x2, · · · , x4m+1) = (d1, d4m+1, d3, d4m−1, · · · , d2m−1, d2m+3, d2m+1,

d2m+2, d2m, · · · , d4m−2, d4, d4m, d2);

(iii) (x1, x2, · · · , x4m+2) = (d1, d4m+2, d3, d4m, · · · , d2m−1, d2m+4, d2m+1,

d2m+2, d2m+3, d2m, · · · , d4m−1, d4, d4m+1, d2);

(iv) (x1, x2, · · · , x4m+3) = (d1, d4m+3, d3, d4m+1, · · · , d2m−1, d2m+5,

d2m+1, d2m+3, d2m+2, d2m+4, d2m, · · · , d4m, d4, d4m+2, d2).

Proof. We only consider the case of l = 4m. The proof of other cases are

similar to the case of l = 4m, so we omit it.

By Lemma 3.3, we have min{x1, x4m} > xi for i = 2, 3, · · · , 4m − 1.

Without loss of generality, we suppose x1 > x4m, thus x1 = d1, x4m = d2.

Since x1 > x4m, then by Lemma 3.4, we have x2 < x4m−1. Since

xi < x4m for i = 2, 3, · · · , 4m−3, then by Lemma 3.4, we have x4m−1 < xj
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for j = 3, 4, · · · , 4m− 2. Thus x2 = d4m, x4m−1 = d4m−1.

Since x2 < x4m−1, then by Lemma 3.4, we have x3 > x4m−2. Since

x4m−1 < xi for i = 3, 4, · · · , 4m−4, then by Lemma 3.4, we have x4m−2 >

xj for j = 4, 5, · · · , 4m− 3. Thus x3 = d3, x4m−2 = d4.

Since x3 > x4m−2, then by Lemma 3.4, we have x4 < x4m−3. Since

xi < x4m−2 for i = 4, 5, · · · , 4m−5, then by Lemma 3.4, we have x4m−3 <

xj for j = 5, 6, · · · , 4m− 4. Thus x4 = d4m−2, x4m−3 = d4m−3.

Using Lemma 3.4 repeatedly, we obtain (x1, x2, · · · , x4m) = (d1, d4m,

d3, d4m−2, · · · , d2m−1, d2m+2, d2m+1, d2m, · · · , d4m−3, d4, d4m−1, d2).

Similar to the proof of Lemmas 3.3 and 3.4, we have

Lemma 3.7. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl).
If the caterpillar tree CT (x1−1, x2−1, · · · , xl−1) in CTπ has the mimimum

Sombor index, then max{x1, xl} < xi for i = 2, 3, · · · , l − 1.

Lemma 3.8. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl).
If the caterpillar tree CT (x1−1, x2−1, · · · , xl−1) in CTπ has the minimum

Sombor index, then xi < xj ⇔ xi−1 < xj+1 for 2 ≤ i < j ≤ l − 1.

Example 3.9. Let d1 > d2 > · · · > d9 ≥ 2 > d10 = · · · = dn = 1, π =

(d1, d2, · · · , dn), and (x1, x2, · · · , x9) be a permutation of (d1, d2, · · · , d9).
If the caterpillar tree CT (x1−1, x2−1, · · · , x9−1) in CTπ has the minimum

Sombor index, then (x1, x2, · · · , x9) = (d8, d6, d4, d2, d1, d3, d5, d7, d9).

Proof. By Lemma 3.7, we have max{x1, x9} < xi for i = 2, 3, · · · , 8. With-

out loss of generality, we suppose x1 > x9, thus x1 = d8, x9 = d9.

Since x1 > x9, then by Lemma 3.8, we have x2 > x8. Since x1 < xi for

i = 4, 5, · · · , 8, then by Lemma 3.8, we have x2 < xj for j = 3, 4, · · · , 7.
Thus x2 = d6, x8 = d7.

Since x2 > x8, then by Lemma 3.8, we have x3 > x7. Since x2 < xi

for i = 5, 6, 7, then by Lemma 3.8, we have x3 < xj for j = 4, 5, 6. Thus

x3 = d4, x7 = d5.

Since x3 > x7, then by Lemma 3.8, we have x4 > x6. Since x3 < x6,

then by Lemma 3.8, we have x4 < x5. Thus x4 = d2, x6 = d3, x5 = d1.
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Combining the above arguments, we have (x1, x2, · · · , x9) = (d8, d6, d4,

d2, d1, d3, d5, d7, d9).

Using the conclusions of Lemmas 3.7, 3.8 repeatedly, we have

Theorem 3.10. Let d1 > d2 > · · · > dl ≥ 2 > dl+1 = · · · = dn = 1,

π = (d1, d2, · · · , dn), (x1, x2, · · · , xl) be a permutation of (d1, d2, · · · , dl),
and the caterpillar tree CT (x1 − 1, x2 − 1, · · · , xl − 1) in CTπ have the

minimum Sombor index. If l = 2k + r with r = 0, 1, then one of the

following holds:

(i) (x1, x2, · · · , x2k) = (d2k−1, d2k−3, d2k−5, · · · , d5, d3, d1, d2, d4, d6, · · · ,
d2k−4, d2k−2, d2k).

(ii) (x1, x2, · · · , x2k+1) = (d2k, d2k−2, d2k−4, · · · , d6, d4, d2, d1, d3, d5, · · · ,
d2k−3, d2k−1, d2k+1).

Proof. We only consider the case of l = 2k. The proof of the other case is

similar to the case of l = 2k, so we omit it.

By Lemma 3.7, we have max{x1, x2k} < xi for i = 2, 3, · · · , 2k − 1.

Without loss of generality, we suppose x1 > x2k, thus x1 = d2k−1, x2k =

d2k.

Since x1 > x2k, then by Lemma 3.8, we have x2 > x2k−1. Since

x1 < xi for i = 4, 5, · · · , 2k − 1, then by Lemma 3.8, we have x2 < xj for

j = 3, 4, · · · , 2k − 2. Thus x2 = d2k−3, x2k−1 = d2k−2.

Since x2 > x2k−1, then by Lemma 3.8, we have x3 > x2k−2. Since

x2 < xi for i = 5, 6, · · · 2k − 2, then by Lemma 3.8, we have x3 < xj for

j = 4, 5, · · · 2k − 3. Thus x3 = d2k−5, x7 = d2k−4.

Using Lemma 3.8 repeatedly, we can finally obtain that (x1, x2, · · · , x2k)

= (d2k−1, d2k−3, d2k−5, · · · , d5, d3, d1, d2, d4, d6, · · · , d2k−4, d2k−2, d2k).

4 Star-like trees

In [6], Cruz et al. determined the extremal Sombor index of trees with

at most three branch vertices. In this section, we determine the first three

maximum and minimum Sombor index in star-like trees.

Definition 4.1. [14] A tree T is called a star-like tree if diam(T ) ≤ 4.
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Definition 4.2. [14] Let (c1, c2, · · · , cd) be a partition of n with c1 + c2 +

· · ·+ cd = n. A star-like tree is constructed as follows:

(i) Let S1,S2, · · · , Sd be stars with c1 − 1, c2 − 1, · · · , cd − 1 edges, respec-

tively, and vi be the center of Si for 1 ≤ i ≤ d.

(ii) Add a vertex v0 to the union S1 ∪ S2 ∪ · · · ∪ Sd and connect v0 to

v1, v2, · · · , vd.
Then we can obtain a star-like tree T with order n+1 and diam(T ) ≤ 4.

For convenience, we denote the star-like tree T by S(c1, c2, · · · , cd) (see

Figure 7). Let Sn,d = {S(c1, c2, · · · , cd)|c1 + c2 + · · · + cd = n}. Without

loss of generality, we suppose that c1 ≥ c2 ≥ · · · ≥ cd.

Figure 7. S(c1, c2, · · · , cd).

Note that the double star tree is a special star-like tree whose diameter

is 3. In [3,15], the authors considered the extremal double star trees with

respect to Sombor index. In the following, we generalize their results,

determine the first three maximum and the minimum star-like trees with

respect to Sombor index.

Lemma 4.3. Let x ≥ 2 and g(x) = (x−1)
√
(x+ 1)2 + 1−(x−2)

√
x2 + 1.

Then g(x) is a strictly increasing function with x.

Proof. Since ((x2 − 1)
√
x2 + 1)2 − (x(x− 2)

√
(x+ 1)2 + 1)2 = 2x5 + x4 −

9x2 + 1 > 0 for x ≥ 2, then g′(x) = (
√

(x+ 1)2 + 1 −
√
x2 + 1) +

(x2−1)
√
x2+1−x(x−2)

√
(x+1)2+1√

(x+1)2+1
√
x2+1

> 0 for x ≥ 2, thus g(x) is a strictly in-

creasing function with x.

Since Sn,n−2 = {S(3, 1, 1, · · · , 1), S(2, 2, 1, 1, · · · , 1)}, Sn,n−3 = {S(4, 1,
1, · · · , 1), S(3, 2, 1, 1, · · · , 1), S(2, 2, 2, 1, 1 · · · , 1)}, it is trivial when d = n−
2 or d = n− 3. Thus we only consider the extremal Sombor index in Sn,d

with 2 ≤ d ≤ n− 4.
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Let S0
n,d = S(l + 1, l + 1, · · · , l + 1, l, l, · · · , l) (l = ⌊n

d ⌋), S1
n,d =

S(n − d + 1, 1, 1, · · · , 1), S2
n,d = S(n − d, 2, 1, 1, · · · , 1), S3

n,d = S(n − d −
1, 3, 1, 1, · · · , 1). Then we have

Theorem 4.4. Let 2 ≤ d ≤ n−4, T ∈ Sn,d \{S0
n,d, S

1
n,d, S

2
n,d, S

3
n,d}. Then

SO(S0
n,d) < SO(T ) < SO(S3

n,d) < SO(S2
n,d) < SO(S1

n,d).

Proof. (i) If T1 = S(c1, c2, · · · , cd) ∈ Sn,d \ {S1
n,d}, then there exists some

2 ≤ t ≤ d satisfying ct ≥ 2. Let i = max{t|ct ≥ 2}, and T2 = S(c1 +

1, c2, · · · , ci−1, ci − 1, ci+1, · · · , cd) ∈ Sn,d. By Lemmas 3.2, 4.3, we have

SO(T2)− SO(T1)

= c1
√
(c1 + 1)2 + 12 − (c1 − 1)

√
c21 + 12 + (ci − 2)

√
(ci − 1)2 + 12

−(ci − 1)
√
c2i + 12 +

√
d2 + (c1 + 1)2 −

√
d2 + c21

+
√
d2 + (ci − 1)2 −

√
d2 + c2i

= {(
√
(c1 + 1)2 + 12 −

√
c21 + 12)− (

√
c2i + 12 −

√
(ci − 1)2 + 12)}

+{(
√
d2 + (c1 + 1)2 −

√
d2 + c21)− (

√
d2 + c2i −

√
d2 + (ci − 1)2)}

+{((c1 − 1)
√
(c1 + 1)2 + 12 − (c1 − 2)

√
c21 + 12)

−((ci − 2)
√
c2i + 12 − (ci − 3)

√
(ci − 1)2 + 12)} > 0.

Using the transformation from S(c1, c2, · · · , cd) to S(c1 + 1, c2, · · · ,
ci−1, ci − 1, ci+1, · · · , cd) repeatedly, we can finally obtain S1

n,d. Thus S
1
n,d

has the maximum Sombor index.

(ii) If T3 = S(c1, c2, · · · , cd) ∈ Sn,d \ {S0
n,d}, then there exists ci ≥

cj + 2. Let α = (c1, c2, · · · , ci−1, ci, ci+1, · · · , cj−1, cj , cj+1, · · · , cd) and

β = (c1, c2, · · · , ci−1, ci − 1, ci+1, · · · , cj−1, cj + 1, cj+1, · · · , cd). Let the

sequence after reordering the numbers in sequence β be (c′1, c
′
2, · · · , c′d)

satisfying c′1 ≥ c′2 ≥ · · · ≥ c′d. Let T4 = S(c′1, c
′
2, · · · , c′d), then similarly we

have SO(T4) < SO(T3).

Using the transformation from S(c1, c2, · · · , cd) to S(c1, c2, · · · , ci−1,

ci − 1, ci+1, · · · , cj−1, cj +1, cj+1, · · · , cd) repeatedly, we can finally obtain

S0
n,d. Thus S

0
n,d has the minimum Sombor index.



433

(iii) If T5 = S(c1, c2, · · · , cd) ∈ Sn,d\{S1
n,d, S

2
n,d}, then c2 ≥ 3 or c3 ≥ 2.

Let T6 = S(c1+1, c2−1, c3, · · · , cd) ∈ Sn,d or S(c1+1, c2, c3−1, · · · , cd) ∈
Sn,d ∈ Sn,d. We denote the graph obtained from reordering the sequence

of graph T6 as T ′
6 = S(c′′1 , c

′′
2 , · · · , c′′d) satisfying c′′1 ≥ c′′2 ≥ · · · ≥ c′′d , then

similarly we have SO(T ′
6) > SO(T5).

Using the above transformation repeatedly, we can finally obtain S2
n,d.

Thus S2
n,d has the second maximum Sombor index.

(iv) If T7 = S(c1, c2, · · · , cd) ∈ Sn,d\{S1
n,d, S

2
n,d, S

3
n,d}, then c2 = 2, c3 ≥

2 or c2 = 3, c3 ≥ 2 or c2 ≥ 4. Similarly, using the transformation of case

(i), we can find T8 with SO(T8) > SO(T7).

Using the transformation of case (i) repeatedly, we can finally obtain

S3
n,d. Thus S

3
n,d has the third maximum Sombor index.

Note that the star-like trees we considered here are different from the

of star-like trees of [4]. In [4], Betancur et al. determined the extremal

vertex-degree-based topological indices over starlike trees. It is easy to

verify that the conclusions of [4] are suitable for Sombor index.

5 Conclusions

A bivariable function f(x, y) defined on N × N is called de-escalating

if f(a, b) + f(c, d) ≤ f(c, b) + f(a, d) for any a ≥ c and b ≥ d.

Definition 5.1. [23] (Greedy Tree) With given vertex degrees, the greedy

tree is achieved through the following greedy algorithm:

(i) Label the vertex with the largest degree as v (the root);

(ii) Label the neighbors of v as v1, v2, · · · , assign the largest degrees

available to them such that degree d(v1) ≥ d(v2) ≥ · · · ;
(iii) Label the neighbors of v1 (except v) as v11, v12, · · · , such that they

take all the largest degrees available and that d(v11) ≥ d(v12) ≥ · · · , then
do the same for v2, v3, · · · ;

(iv) Repeat (iii) for all the newly labled vertices. Always start with the

neighbors of the labeled vertex with largest degree whose neighbors are not

labeled yet.
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By Lemma 3.2, it is easy to know that
√
x2 + y2 is de-escalating. Thus

by the conclusions of [27], we have

Theorem 5.2. The Sombor index is minimized by the greedy tree among

trees with given degree sequence.

A nonincreasing sequence of nonnegative integer π is called a unicyclic

degree sequence (denoted by Uπ) if there exists a unicyclic graph having

π as its vertex sequence [26]. Since
√

x2 + y2 is de-escalating, then by the

conclusions of [26], we have

Theorem 5.3. Given a unicyclic degree sequence π, the Sombor index is

minimized by U∗
π (see [26] for the definition) in Uπ.

In [16], authors calculate the (reduced) Sombor index of a set of ben-

zenoid hydrocarbons (see Table 1 of [16]). The Sombor index (resp. re-

duced Sombor index) of the 4-th and 12-th benzenoid hydrocarbons should

be 72.6850 (resp. 43.3444) and 98.2809 (resp. 60.5444). The correlation

coefficient R between boiling points and Sombor indices (resp. reduced

Sombor indices) is about 0.9929 (resp. 0.9892).

In [1], authors calculate the Sombor index of a set of octane isomers

(see Table 12 of [1]). The Sombor index of the 13-th octane isomer of [1]

should be 24.2477. The absolute value of correlation coefficient |R| between
acentric factor (resp. entropy, enthalpy of vaporization, standard enthalpy

of vaporization) and Sombor indices is about 0.9594 (resp. 0.9465, 0.9031,

0.9469).

In this paper, we characterize some extremal chemical graphs and trees

with respect to Sombor index. In the future, we will consider more chem-

ical and mathematical properties of the Sombor index.
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